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A general, highly selective method for decarbonylative
thioetherification of aryl thioesters by C-S cleavage is reported.
These reactions are promoted by a commercially-available, user-
friendly, inexpensive, air- and moisture-stable nickel precatalyst.
The process occurs with broad functional group tolerance,
including free anilines, cyanides, ketones, halides and aryl esters,
to efficiently generate thioethers using ubiquitous carboxylic acids
as ultimate cross-coupling precursors (cf. conventional aryl halides
or pseudohalides). Selectivity studies and site-selective orthogonal
cross-coupling/thioetherification are described. This thioester
activation/coupling has been highlighted in the expedient
synthesis of biorelevant drug analogues. In light of the synthetic
utility of thioethers and Ni(ll) precatalysts, we anticipate that this

user-friendly method will be of broad interest.

The thioether functional group represents one of the
privileged structural motifs in the synthesis of pharmaceuticals
(Fig. 1A).12 Most synthetic disconnections for the synthesis of
aryl thioethers capitalize on transition-metal-catalyzed cross-
coupling of aryl halides or pseudohalides with thiols (Fig. 1B).34
Recently, significant progress has been made in the
development of transition-metal-catalyzed decarbonylative
processes that utilize ubiquitous carboxylic acids as ultimate
cross-coupling precursors in the oxidant free, redox-neutral
decarbonylative pathway.> Carboxylic acids are among the
most appealing chemical building blocks in organic synthesis.s?
Of note, carboxylic acids are (1) cheaper and there are more
carboxylic acids commercially available than aryl halides; (2)
derived from a different pool of precursors than aryl halides
and pseudohalides; (3) inert to a variety of reaction conditions
allowing for ring prefunctionalization.® Likewise, significant
effort has been devoted to the cross-coupling of inert C-S
bonds.” Notably, Morandi and co-workers have developed a
versatile method for carbon-sulfur bond metathesis,® while
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Yorimitsu and co-workers have shown that Pd-NHC systems
catalyze the coupling of aromatic thioethers with N- and C-
nucleophiles.® In another important development, Niwa,
Hosoya and co-workers established the feasibility of Rh-
catalyzed decarbonylative borylation of thioesters.’® The
recent surge of efforts to capture sulfur intermediates in
metal-free pathways!! engenders the appeal of assembling
thioethers from carboxylic acid-based substrates using robust,
operationally-simple protocols that could be widely adapted in
various areas of chemical science.

In the past decade, there has been an increasing interest in
nickel catalysis due to more facile oxidative addition,
abundance and economic advantages compared with Pd
catalysis.’? Generally speaking, the use of air- and moisture-
stable precatalysts is strongly preferred in modern cross-
coupling applications.’®> In this context, the groups of
Monteiro,* Percec,’> Buchwald,’® Jamison,'” Doyle,18
Monfettel® and others!>-1° have reported well-defined Ni(ll)
precatalysts, which enable a variety of cross-coupling
transformations. The fact that the use of robust, bench-stable
Ni(ll) precatalysts enables broad applications of metal catalysis
in industrial research3 in lieu of the limited options available
with air-sensitive and capricious Ni(0)-complexes.

Inspired by our recent studies in decarbonylative
olefination,2° arylation,?! cyanation?? and phosphorylation?3 of
amides,?* in this report we communicate our findings on
decarbonylative thioetherification of aryl thioesters by
selective C-S cleavage enabled by user-friendly, air- and
moisture-stable nickel precatalysts (Fig. 1C). While this work
was in progress, a Ni(0)-catalyzed decarbonylative thioether
synthesis by C-S cleavage using a combination of air-sensitive
Ni(cod), (10 mol%) and PCys (20 mol%) was reported.?> Since
our method (1) utilizes Ni(ll) precatalysts that are air-stable,
easy to handle and manipulate, (2) is significantly broader in
scope, and (3) enables the use of operationally-simple and
robust decarbonylative thioetherification for wide applications
within both industry and academia, we anticipate that the
protocol will be of general interest to the broad synthetic
community.1-413
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Fig. 1 (a) Examples of pharmaceutically important aryl thioethers.
(b) Conventional synthesis. (c) Decarbonylative thioetherification
using air- and moisture-stable Ni precatalysts (this study).

The reaction was optimized using S-phenyl benzothioate as
a model substrate. Key optimization experiments are
summarized in Table 1. Using our optimized conditions,
Ni(dppp)Clz, (10 mol%), Na,COs (1.5 equiv), dioxane, 160 °C, S-
phenyl benzothioate undergoes selective C-S insertion/CO
extrusion in excellent yield (entry 1). Under these conditions,
Ni(PCys3),Cl; is also a highly effective catalyst (entry 2). As
expected, no reaction is observed in the absence of base
(entries 3-4) or nickel precatalyst (entry 5). Examination of
various reaction parameters revealed a significant dependence
on the Ni(ll) complex used (entries 6-10), with Ni(dppp)Cla,
Ni(dppe)Cl,, and Ni(PCys),Cl, showing similar performance. As
expected, no reaction was observed in the absence of
phosphine ligand (entry 11). An extensive screen of bases
revealed that the best results were obtained with Na,;COs
(entries 12-14). Dioxane was identified as the optimal solvent
(entries 15-17). We were pleased to find that decreasing the
nickel loading to 5 mol% delivered the product under the
optimized conditions (entries 18-19). Low conversions were
observed in the presence of oxygen (not shown). Finally, we
note that substantial conversion was observed as 120 °C,
consistent with facile decarbonylation by this catalytic system
(entry 20).
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Table 1 Reaction Optimization:
Thioetherification?

Ni-Catalyzed Decarbonylative

o
ﬁ?lﬂef_s/Ph [Ni, -CO ©/S‘Ph
@ 1 conditions 2
Entry Catalyst Base T(°C) I:;;S
1 Ni(dppp)Cl> Na,COs 160 >95
2 Ni(PCV},)zClz N32C03 160 >95
3 Ni(dppp)Cl2 - 160 <2
4 Ni(PCys),Cl, - 160 <2
5 - Na,CO; 160 <2
6 Ni(dppp)Cl> Na,COs 140 >95
7 Ni(PCV},)zClz N32C03 140 >95
8 Ni(PPhs),Cl, Na,CO3 140 43
9 Ni(dppe)Cl, Na,CO3 140 >95
10 Ni(dppf)Cl, Na,COs 140 18
11 Ni(OAc), Na,CO; 140 <5
12 Ni(PCys)2Cly K2CO3 140 27
13 Ni(PCy3)2CI2 CSzCO3 140 <5
14 Ni(PCys),Cl, KsPO4 140 15
15¢ Ni(PCys)2Cly Na,CO; 140 87
16 Ni(PCys)2Cly Na,CO; 140 >95
17¢ Ni(PCys)2Cl> Na,CO; 140 >95
18f Ni(PCys)Cl, Na,COs; 140 27
19/ Ni(PCys)2Cla Na,CO3 160 >95
20 Ni(PCys)2Cl> Na,CO; 120 52

9Conditions: thioester (1.0 equiv), catalyst (10 mol%), base (1.5
equiv), 1,4-dioxane (0.20 M), T, 15 h. \GC/*H NMR yields. toluene.
dCH3CN. eDMF. fcatalyst (5 mol%). See ESI for details.

The reaction exhibits broad substrate scope (Scheme 1).
Electron-rich (2b-c) and electron-deficient (2d) substrates
performed well in this protocol. Notable examples include
halides (2e-f) and electrophilic functional groups (2g-i),
providing handles for further functionalization. Ortho-
substitution was well-tolerated under these conditions (2j-k).
Furthermore, this protocol could be extended to polyaromatic
(21), heterocyclic (2m-n) and vinyl substrates (20), providing
the desired products in good to excellent yields. Finally, the
scope of the thiol component was briefly examined (Table 2). A
selection of electron-rich (entry 2), electron-deficient (entry 3),
halide-containing (entry 4) and sterically-hindered (entry 5)
substrates were converted into the desired thioethers in high
yields. Important from a practical point of view, all of these
reactions were conveniently set-up on a bench-top, which
provides a very attractive feature of this protocol.13-19
Furthermore, the scope supersedes the Ni(cod), system?s in
that cyanides, ketones, halides, unprotected anlines (vide
infra) and aryl esters (vide infra) are readily tolerated.

Preliminary studies demonstrate that cross-coupling of an
aryl-alkyl thioester is also feasible (Scheme 2), providing
another advantage of this user-friendly method. Note that
alkyl thioesters are not tolerated using air-sensitive Ni(cod),.25
Studies to expand the scope of aryl-alkyl coupling to chiral
thioesters are ongoing and will be reported in due course.

To investigate the potential utility of this cross-coupling
method, we tested this protocol in the rapid derivatization of
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flufenamic acid, a selective COX-2 inhibitor (Scheme 3).26 As
shown, the reaction proceeded uneventfully, delivering the
desired thioether product in high overall yield.10

Scheme 1 Substrate Scope: Ni-Catalyzed Decarbonylative
Thioetherificationa?
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aConditions: thioester (1.0 equiv), Ni(dppp)Cl2 (10 mol%), Na2COs (1.5 equiv),
dioxane (0.20 M), 160 °C, 15 h. ?Isolated yields. See ESI for details.
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Scheme 4 Selective Decarbonylative Thioetherification
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Yamaguchi, Itami and co-workers recently reported a Ni-
catalyzed decarbonylative diaryl ether synthesis by C-O
cleavage.?? We were intrigued to find that the present
coupling proceeds in the presence of the sensitive aryl ester
linkage (Scheme 4), demonstrating high chemoselectivity of
the present method.

To further showcase the utility of this
thioetherification, sequential orthogonal cross-couplings were
investigated (Scheme 5). This sequence highlights the potential

new
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of decarbonylative thioetherification to selectively generate
thioethers from readily available carboxylic acids.>610

In conclusion, we have reported a general method for
decarbonylative thioetherification by C-S cleavage using a
commercially-available, user-friendly, inexpensive, air- and
moisture-stable nickel(ll) precatalyst. The process provides a
synthetic entry to the biologically-relevant thioether functional
group exploiting abundant carboxylic acids as ultimate cross-
coupling precursors. In view of the synthetic utility of
thioethers and Ni(ll) precatalysts, we anticipate that the
method will be of broad interest.?8 Further studies on related
decarbonylative cross-coupling transformations are ongoing.

Rutgers University and the NSF (CAREER CHE-1650766) are
acknowledged for support.
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