
Regression Test Selection Across JVM Boundaries

Ahmet Celik, Marko Vasic
University of Texas at Austin (USA)
{ahmetcelik,vasic}@utexas.edu

Aleksandar Milicevic
Microsoft (USA)

almili@microsoft.com

Milos Gligoric
University of Texas at Austin (USA)

gligoric@utexas.edu

ABSTRACT

Modern software development processes recommend that changes

be integrated into the main development line of a project multiple

times a day. Before a new revision may be integrated, developers

practice regression testing to ensure that the latest changes do not

break any previously established functionality. The cost of regres-

sion testing is high, due to an increase in the number of revisions

that are introduced per day, as well as the number of tests devel-

opers write per revision. Regression test selection (RTS) optimizes

regression testing by skipping tests that are not afected by recent

project changes. Existing dynamic RTS techniques support only

projects written in a single programming language, which is unfor-

tunate knowing that an open-source project is on average written

in several programming languages.

We present the irst dynamic RTS technique that does not stop

at predeined language boundaries. Our technique dynamically

detects, at the operating system level, all ile artifacts a test depends

on. Our technique is, hence, oblivious to the speciic means the

test uses to actually access the iles: be it through spawning a new

process, invoking a system call, invoking a library written in a

diferent language, invoking a library that spawns a process which

makes a system call, etc. We also provide a set of extension points

which allow for a smooth integration with testing frameworks

and build systems. We implemented our technique in a tool called

RTSLinux as a loadable Linux kernel module and evaluated it on

21 Java projects that escape the JVM by spawning new processes or

invoking native code, totaling 2,050,791 lines of code. Our results

show that RTSLinux, on average, skips 74.17% of tests and saves

52.83% of test execution time compared to executing all tests.

CCS CONCEPTS
· Software and its engineering → Software testing and debug-

ging; Software evolution;

KEYWORDS
Regression test selection, language-agnostic

ACM Reference format:

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017.

Regression Test Selection Across JVM Boundaries. In Proceedings of 2017

11th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

Paderborn, Germany, September 4ś8, 2017 (ESEC/FSE’17), 12 pages.

https://doi.org/10.1145/3106237.3106297

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4ś8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3106297

1 INTRODUCTION

To check that recent project changes do not break any established

functionality developers practice regression testingÐrunning avail-

able tests against the new changes. Although immensely important,

regression testing often comes at a high cost [17, 22, 27, 52, 64].

Google recently reported that the company runs more than 70 mil-

lion tests daily and the testing cost increases quadratically: both the

number of revisions per day and the number of tests per revision

increase linearly [3, 79].

Background: Regression test selection (RTS) optimizes regression

testing by skipping tests that are not afected by recent project

changes (i.e., changes between two given revisions) [19, 27ś29, 37,

66, 67, 69, 70, 77, 79, 84ś86]. To determine which tests are afected,

dependencies on various source artifacts must be established and

maintained for each test throughout the life cycle of a program.

Before tests are executed, only those tests whose dependencies are

invalidated by the recent changes are selected.

An RTS technique typically has to make two big choices re-

garding tracking dependencies: (1) what kind of dependencies to

track (e.g., at what granularity level), and (2) how to track them

(e.g., statically or dynamically). This leads to a whole spectrum of

techniques, which all greatly vary in safety and precision: a safe

technique always selects all afected tests, while a precise technique

does not select any unafected test [71].

In this paper, we consider Java projects that are either multilin-

gual (i.e., make native calls via JNI) or span across multiple JVMs (by

spawning multiple Java processes). We argue that the existing RTS

techniques are not well suited for this class of projects. To address

their shortcomings, we propose a novel RTS technique based on

dynamic (system-level) ile and process monitoring.

Problem: Existing dynamic RTS techniques [14, 21, 37, 67, 69, 71,

77, 86] are all language-speciic (i.e., unable to observe dependencies

that span across languages), making them unsafe for multilingual

projects. Recent studies found that an open-source project is written

in ive programming languages on average [57, 68].

Existing static RTS techniques, on the other hand, are imprecise.

Due to common limitations of static analyses, such techniques

must typically overapproximate the set of dependencies [51, 61,

81, 82]. Examples include Google’s continuous integration system

TAP [3, 26, 79] and Microsoft’s CloudBuild [31], which only track

dependencies between projects. Assume, for example, a newmethod

is added to a commonly used collections library; in such a setting,

all tests of all dependent projects must be rerun, even though none

of them are efectively afected by that change.

Technique: We present the irst dynamic language-agnostic RTS

technique, dubbed RTSLinux. RTSLinux collects dependencies at

the ile level granularity. To do so, RTSLinux integrates with the OS

kernel (via a loadable kernel module [6]), where it intercepts all rele-

vant process- and ile-related system calls. The beneits of such tight

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

integration with the operating system are twofold: (1) it enables

RTSLinux to precisely observe all dynamic dependencies, no matter

which part of the test’s process tree creates them, and (2) keeps the

overhead to a minimum. Finally, RTSLinux provides primitives and

extension points for easy integration with testing frameworks and

build systems, as well as for further (domain-speciic) improvements

of the technique’s precision.

Evaluation: We evaluated RTSLinux on 420 revisions of 21 pop-

ular open-source projects. Our evaluation has the following main

objectives: (1) evaluate RTSLinux’s efectiveness in its own right (in

terms of the reduction in testing time), (2) evaluate the added ben-

eits of the key novelty behind RTSLinuxÐdependency detection

across JVM boundariesÐcomparing to an RTS tool for Java-only

projects, and (3) provide initial assessment of the signiicance of

kernel-level integration.

We measured the efectiveness in terms of the reduction in the

end-to-end testing time and in terms of the number of skipped tests.

Our results show that RTSLinux, on average, reduces testing time

by 52.83% and skips 74.17% of tests (compared to RetestAll, i.e.,

executing all tests at each project revision).

To measure the added beneit, we compared RTSLinux to Ek-

stazi [35ś37], a recent RTS technique that collects dynamic ile

dependencies for Java projects, but fails to collect dependencies

created from child processes or from JNI calls to code that does

not compile to Java bytecode. We compared the two techniques in

terms of safety, i.e., the percent of dependencies that are missed by

Ekstazi, and in terms of reduction in number of tests and testing

time. Our indings show Ekstazi is less safe, as it collects only (on

average) 16.99% of accessed iles collected by RTSLinux. Despite

being safer than Ekstazi, RTSLinux achieves comparable savings,

both in the number of tests skipped and the overall testing time.

2 MOTIVATING EXAMPLES

We motivate our work with two sample unit tests taken from popu-

lar open-source projects: Hadoop [2] and Ant [1]. The irst sample

test illustrates the case when code written in multiple languages is

executed in the same process. The second sample test illustrates the

case when code written in a single language is executed in multiple

processes. In neither of these two cases (or combinations thereof)

the existing RTS techniques provide safety. We discuss the issues

faced by the existing techniques and briely describe our proposed

technique to overcome the challenges.

2.1 Multiple Languages and a Single Process

Figure 1 shows a test that invokes C code from Java code; the test

is from the Apache Hadoop project [2] (Git SHA: fe6c1bd7), a pop-

ular map-reduce framework. The testSnappyNullPointerException

test method (which is declared in TestSnappyCompressorDecompress-

or.java) invokes (line 7) compress method (declared in SnappyComp-

ressor.java), which in turn invokes (line 13) compressBytesDirect

(a native method also declared in SnappyCompressor.java). The im-

plementation of the native method is in Java_compressBytesDirect

function (written in C and implemented in SnappyCompressor.c).

Java uses the JavaNative Interface (JNI) to invoke the native code [47,

53]. Note that JNI does not spawn a new process but executes the

native code in the same process as the Java Virtual Machine (JVM).

1 // TestSnappyCompressorDecompressor.java

2 void testSnappyNullPointerException() {

3 SnappyCompressor compressor =

4 new SnappyCompressor();

5 byte[] bytes = BytesGenerator.get(1024 ∗ 6);

6 compressor.setInput(bytes, 0, bytes.length);

7 compressor.compress(null, 0, 0);

8 ... }

9

10 // SnappyCompressor.java

11 int compress(byte[] b, int of, int len) {...

12 // Compress data

13 n = compressBytesDirect();

14 compressedDirectBuf.limit(n);

15 uncompressedDirectBuf.clear();

16 ... }

17 native int compressBytesDirect();

18

19 // SnappyCompressor.c

20 JNIEXPORT jint JNICALL Java_compressBytesDirect (JNIEnv ∗

env, jobject thisj) {

21 ... }

Figure 1: An example test from the Hadoop project that in-

vokes C code from Java (without spawning a new process)

The existing dynamic RTS techniques are unsafe in this scenario.

For example, Ekstazi would collect dependencies only on classes

that are loaded in the JVM (i.e., TestSnappyCompressorDecompressor-

.class and SnappyCompressor.class) but it would not collect the

dependency on libhadoop.so that contains the compiled code for

SnappyCompressor.c. Similarly, techniques that collect dependen-

cies on executed methods, e.g., TestTube [21], would detect meth-

ods written in Java (i.e., testSnappyNullPointerException, compress,

and compressBytesDirect) and would miss functions written in C

(i.e., function Java_compressBytesDirect).

Our proposed technique,RTSLinux, is, by design, oblivious to the

speciicities of JNI. As such, it collects all dependencies introduced

by the JVM loading whatever iles it needs to execute JNI calls.

RTSLinux only needs to be informed (by a build system or a testing

framework) when each test starts and inishes; no changes to the

project under test are needed.

2.2 A Single Language and Multiple Processes

Figure 2 shows a test that spawns a new Java process; the test is

taken from the Ant project [1] (Git SHA: c50b683c), a popular build

system for Java.

The testForkedCapture test method (declared in JUnitTaskTest

class) checks the correctness of the JUnit task [4] with łforkž set to

true (meaning that Ant should execute the test in a newly spawned

JVM rather than the same one that Ant is already running in).

In the setup of the test, a build script to be executed by Ant is

speciied (line 3); the build script contains a target with a JUnit

task in it. The test irst sets the łforkž option to true (line 6) and

then executes said target (line 7). The execution continues through

the implementation of the build system (line 10) until it eventually

spawns a new JVM where the requested JUnit task executes the

tests found in the Printer class (line 16).

The existing RTS techniques would only collect dependencies

within the JVM of JUnitTaskTest and would miss dependencies in-

troduced from the spawned processes. For example, Ekstazi would

Regression Test Selection Across JVM Boundaries ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

1 // JUnitTaskTest.java

2 public void setUp() {

3 buildRule.conigureProject("src/etc/testcases/taskdefs/

optional/junit.xml");

4 ...}

5 public void testForkedCapture() throws IOException {

6 buildRule.getProject().setProperty("fork", "true");

7 buildRule.executeTarget("capture");

8 ...}

9

10 // BuildFileRule.java → Project.java → Target.java →
Task.java → DispatchUtils.java11

12

13 <!−− src/etc/testcases/taskdefs/optional/junit.xml −−>

14 <target name="capture" depends="setUp">...

15 <junit fork="${fork}">

16 <test name="org.apache.tools.ant...optional.junit.Printer"

17 .../>...

18 </junit>

19 </target>

Figure 2: An example test from the Ant project that spawns

a new JVM to execute tests in the Printer class

collect dependencies on JUnitTaskTest, BuildFileRule, Project, Task,

Target, and DispatchUtils .class iles, but not Printer.class (ul-

timately failing to select testForkedCapture if the Printer class is

modiied, impacting the regression testing safety). RTS techniques

which collect ine-grained dependencies (e.g., TestTube [21] or

FaultTracer [86]) face the same issue.

RTSLinux, automatically tracks the entire process tree of the test

(rather than a single process at a time), and collects dependencies

on all iles accessed by either the root process or any of its children

processes. Given the example in Figure 2, therefore, RTSLinux col-

lects the same dependencies as Ekstazi as well as the dependencies

introduced by the spawned process, i.e., the Printer.class ile.

3 TECHNIQUE

This section describes the details of RTSLinux. We describe the

common phases performed by traditional RTS techniques, present

theway RTSLinux performs those phases, discuss amechanism that

a user can utilize to alter the behavior of the technique, and present

the integration of RTSLinux with the existing testing frameworks

and build systems.

RTS techniques typically include three phases: analysis, execu-

tion, and collection [37]. The analysis phase checks, for each test, if

any of the previously collected dependencies have been afected by

the recent changes. If a test is not invalidated by the changes, the

test is not executed. (Tests for which dependencies have not previ-

ously been collected are always selected.) The execution phase runs

selected tests. The collection phase collects dependencies for each

test; these dependencies are used in the analysis phase of the sub-

sequent project revision. The execution and collection phases are

frequently interleaved, i.e., collection is done during test execution

rather than in a separate run.

Figure 3 shows the three phases as performed by RTSLinux.

Function Run (line 1) takes as input a command to execute and

functions deined by the user that can alter RTSLinux’s behavior

(as discussed later in this section). The given command can be an

arbitrary Unix command; in the context of this paper, that command

Require: cmd - user command to execute

Require: userFuns - functions deined by the user

1: function Run(cmd, userFuns)

2: if IsTestAffected(cmd, userFuns) then

3: processMap← EMPTY_MAP

4: pid← ExecuteTest(cmd, processMap)

5: StoreDeps(cmd, pid, userFuns, processMap)

6: end if

7: end function

8: function IsTestAffected(cmd, userFuns)

9: if HasDependencies(cmd) then

10: for all proc ∈ SetOfProcesses(cmd) do

11: for all dep ∈ SetOfDeps(proc) do

12: nsum← userFuns.cksum(proc.type, dep.path)

13: if nsum = NONE then

14: nsum← SysCksum(dep.path)

15: end if

16: if nsum , dep.cksum then

17: return TRUE

18: end if

19: end for

20: end for

21: return FALSE

22: end if

23: return TRUE

24: end function

25: function SystemExecute(syscall, processMap)

26: if SpawnsNewProcess(syscall) then

27: processMap
+

← (syscall.currentProc, syscall.newPid)

28: else if AccessesFiles(syscall) then

29: for all dep ∈ syscall.getAccessedFiles() do

30: SetOfDeps(syscall.currentProc)
+

← dep

31: end for

32: end if

33: end function

34: function StoreDeps(cmd, pid, userFuns, processMap)

35: processes = ∅

36: for all proc ∈ {p | ∃pid′ s .t . pid′ = p.pid ∧

37: pid′ ∈ TransitiveClosure(pid, processMap) } do

38: processes
+

← proc

39: for all dep ∈ SetOfDeps(proc) do

40: if userFuns.includeIn(dep) then

41: dep.cksum←

42: userFuns.cksum(proc.type, dep.path)

43: if dep.cksum = NONE then

44: dep.cksum← SysCksum(dep.path)

45: end if

46: end if

47: end for

48: end for

49: SetOfProcesses(cmd) ← processes

50: end function

Figure 3: Analysis, execution, and collection phases as per-

formed by RTSLinux

will always execute a test. If any dependency of the given command

is afected (line 2), then RTSLinux executes the command and stores

(in the current working directory) new dependencies for the given

process id (line 5). We next describe the details of the three phases.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

User Applications

GNU C Library (glibc)

RTSLinux

System Call Interface

Kernel

Architecture Dependent Kernel Code

Hardware Platform

GNU /

Linux

U ser

Space

Kernel

Space

Figure 4: Integration of RTSLinux in the Linux software

stack. RTSLinux wraps system calls that manage processes

and iles

3.1 Analysis Phase

Analysis phase (Figure 3, lines 8 - 24) checks if the given com-

mand/test is afected or not; the utility function HasDependencies

checks if there are dependencies associated with the given com-

mand and the current working directory. As stated earlier, if there

are no dependencies associated with the command (e.g., command

has not been executed before or its meta-data was removed), the

command is always afected (line 23). If dependencies are present,

then RTSLinux checks if any dependency of the given command is

afected since the latest run (lines 10 - 20). The set of dependencies

for a given command includes all dependencies collected (in the

previous run) by any process that was spawned by the command.

To check if a dependency ile is modiied or not (line 16), RT-

SLinux compares the checksum of the current version of the ile

and the checksum that was computed at the end of the prior exe-

cution of the same command. By default, RTSLinux computes the

checksum of the entire ile or (ile names in a) directory.

RTSLinux provides an extension mechanism, which allows the

user to specify a customized function for computing the checksums

(line 12). The custom function accepts two arguments: the type

of the process that accesses the dependency and the path to the

dependency. Based on the type of the process and the type of the

ile, the user can adjust the computation of the checksum. For

example, if a process parses an XML ile, the user may exclude

comments from all XML iles. In such cases, the command would

not be selected if the changes are only in the comments of XML

iles. Note that computing the checksum is application dependent;

RTSLinux provides a function that ignores debug info in .class iles

if these iles are accesses from a JVM. The extension mechanism for

the checksum can also be used to implement hierarchical checksum,

i.e., a user can irst check the size of the ile and then check the

content only if the size is the same.

3.2 Execution Phase

In RTSLinux, collection happens for every executed process. Unlike

most existing dynamic RTS techniques, RTSLinux does not require

changes to either sources or binaries of the project under test to

enable collection of dependencies.

Figure 4 shows the integration of RTSLinux in the Linux OS.

Speciically, RTSLinux implements wrappers [33] for each system

call available in Linux that manages the set of running processes

(e.g., fork) or accesses the ile system (e.g., open). After starting

the execution of the command (line 4 in Figure 3), system calls

go through RTSLinux wrappers. Speciically our SystemExecute

function (line 25 in Figure 3) is invoked from the wrappers. The

function checks if the system call is spawning a new process or if it

accesses any ile or directory on the ile system. If the call spawns

a new process, RTSLinux updates the mapping of processes to

include that the current process is spawning a new process; the

map is used later to reconstruct the process tree, which is used to

ind all transitively spawned processes from the given process id.

On the other hand, if the system call accesses a ile or a directory,

RTSLinux updates the set of dependencies of the current process.

Note that this phase only creates the mapping among processes

and collects dependencies, but does not compute the checksum of

dependencies or associate dependencies with the command being

executed. We separated the two phases to enable the user to collect

dependencies for any part of the process tree and to entirely ignore

dependencies for some commands if necessary.

3.3 Collection Phase

Collection phase (Figure 3, lines 34 - 50) computes the set of pro-

cesses transitively spawned from the given command and computes

the checksum of each dependency accessed by at least one process.

Initially, RTSLinux inds transitive closure of processes from the

process that started the given command (line 37). To compute the

transitive closure, RTSLinux uses process map, which was created

during the execution. Note that it is necessary to ind only pro-

cesses that are spawned (transitively) from the given command,

because there can be many other processes running in parallel,

which are not related to the user command. Even more, there could

be other processes running other tests in parallel. We discuss sev-

eral aspects of parallel test execution in Section 6. Computing the

checksum of each dependency of each process is similar to the

checksum computation that was described in Section 3.1. As before,

RTSLinux uses the user deined function (if provided) for com-

puting the checksum. Additionally, in collection phase, RTSLinux

provides an extension point where the user can provide a ilter to

exclude some dependencies, e.g., temp iles and directories.

3.4 System Integration

We implemented RTSLinux as a loadable kernel module [6] and

made only a few modiications to the Linux kernel [48]. We have

tested our changes with several versions of the Linux kernel: from

version 3.13.11-ckt39 (Apr 2016) to version 4.4.40 (Jan 2017). We

had to change only ive lines of code in our module to enable it to

work across all Linux versions in the tested range. (Speciically, an

argument to do_execve function was moved to a struct, so we had

to adjust one of our wrapper functions.) We note, however, that

other changes (e.g., addition of a new system call) could lead to a

much higher maintenance cost.

RTSLinux implementation includes all the functions shown in

Figure 3 and a number of wrapper functions for the existing system

Regression Test Selection Across JVM Boundaries ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

calls. The user can invoke either the top level function Run, or invoke

independently IsTestAffected and StoreDeps functions.

The Run function provides a mechanism to collect dependen-

cies for any command (e.g., an arbitrary bash script) and skip the

execution of the same command in the future if no dependency

has changed [23]. (The Run is similar to Fabricate [32] and Mem-

oize [59] build systems, except that RTSLinux runs as part of the

OS; we discuss other diferences in Section 7.) As an example, to

enable RTSLinux when executing tests with Maven [56], instead

of running mvn test the user should run rtslinux mvn test. The

rtslinux command implements the Run function, thus it executes

the command and collects dependencies only if the set of depen-

dencies (collected in the previous run) has been afected. However,

collecting dependencies for a test command that executes all tests,

is likely to be imprecise because any change to any dependency of

any test would trigger the execution of all tests in the future.

To improve precision, the user can run one test per process; most

popular build systems (e.g., [1, 39, 56]) provide options to spawn a

new process for each test.

IsTestAffected and StoreDeps can be used by developers of build

systems to check if a test should be executed before starting a test

and saving dependencies for the test after it was executed. We

integrated RTSLinux with Maven.

An alternative implementation: In addition to RTSLinux, we

implemented our technique in another tool, called RTSFab, which

works in user space (i.e., runs outside the operating system’s ker-

nel). Our motivation was to explore and compare the overheads

of various approaches for collecting test dependencies. RTSFab is

implemented on top of Fabricate [32], a build system with dynamic

dependencies that uses strace to collect accessed iles [10].

4 EVALUATION

We assess the usability of RTSLinux by answering the following

research questions:

RQ1: How efective is RTSLinux, i.e., what is the reduction in

testing time and the number of executed tests?

RQ2: What are the beneits/drawbacks of dependency detection

across JVM boundaries (as implemented in RTSLinux) compared to

a single-JVM RTS (as implemented in Ekstazi, a recently developed

RTS tool for Java). Speciically:

RQ2.1 (Eiciency): Does RTSLinux achieve as much reduction

in total testing time and number of executed tests?

RQ2.2 (Safety): How many more dependencies are discovered

by RTSLinux?

RQ3: What is the overhead of RTSFab (a naive implementation of

our technique running in user space) compared to RTSLinux?

The main objective of our evaluation is to show that (1) RT-

SLinux is as efective as the state-of-the art, and (2) detecting ile-

based dependencies at the system level is beneicial. Additionally, by

comparing RTSLinux to RTSFab, we provide an initial assessment

of the importance of implementing our technique in kernel space

instead of in user space. Although RTSFab may not be the most

eicient possible implementation running in user space, we believe

it provides a good starting point for seeking an implementation

Require: project - a project under study

Require: tool - an RTS tool under study

1: function ExperimentProcedure(project, tool)

2: Clone(project.url)

3: Checkout(project.sha)

4: for all ρ ∈ Last20Revisions(project) do

5: project.sha← ρ

6: Checkout(project.sha)

7: if Build(project) == FAILED then

8: continue

9: end if

10: test_results← Test(project)

11: StoreAvailable(project, test_results)

12: Integrate(project, tool)

13: selected← Select(project)

14: test_results, deps← Test(project, selected)

15: StoreSelected(project, tool, test_results, deps)

16: end for

17: end function

Figure 5: Experiment procedure

running in user space that is as eicient and as easy to integrate

with the existing build systems as RTSLinux is.

We irst describe the setup of our study (Section 4.1) and then

answer the research questions (Section 4.2). Section 4.3 includes

additional case studies, including an experiment in using RTSLinux

with a Python project.

4.1 Study Setup

4.1.1 Projects. Table 1 lists the projects used in this evaluation,

sorted by test execution time. This list includes projects from recent

studies on regression testing [18, 20, 37, 41], as well as a number of

new projects containing tests that escape the JVM by spawning pro-

cesses and/or making native calls. Although not all of the projects

used in previous studies require RTSLinux’s cross-JVM capabilities,

they still serve as fair benchmarks for evaluating RTSLinux on its

own merit (RQ1) and comparing it to Ekstazi in terms of eiciency

(RQ2.1). We required that each project is available on GitHub and

builds with Maven, which simpliied our experiment infrastructure.

Columns in Table 1 designate project name, GitHub repository

URL, latest revision (SHA) used in the study, number of lines of code

(LOC) (as measured with sloccount), number of Maven modules,

total number of iles, total number of test classes, test execution

time for all test classes for a single project revision, and the way in

which (at least some) tests escape the JVM they run in (Processes -

spawns subprocesses, Native Calls - has native calls, Files - accesses

external iles, e.g., txt iles); for projects that escape the JVM via

both subprocesses and JNI, we mark them only as łProcessesž in the

table, because that is the more interesting case from RTSLinux’s

perspective. For each project, we evaluated our selection technique

over 20 revisions (such that the latest of these revisions is the one

reported in the SHA column); we report the averages in the second

and third to last columns in Table 1.

The last two rows show the total (
∑
) and average (Avg.) values

for each column (if appropriate). In summary, our evaluation spans

across 420 revisions of 21 projects, totaling 2,050,791 lines of code.

4.1.2 Experiment Procedure. Figure 5 provides the procedure

that we used to collect data for the analysis for a single project.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

Table 1: Projects Used in the Evaluation

Project URL [https://github.com/] SHA LOC
#Maven

modules
#Files

#Test

classes

Test

time [s]

Escape

method

la4j vkostyukov/la4j.git 358be77e 13390 1 147 22.85 14.68 N/A

ScribeJava fernandezpablo85/scribe-java.git 5175a416 7613 5 219 20.00 14.85 N/A

Bukkit Bukkit/Bukkit.git f210234e 32555 1 762 38.00 21.66 N/A

ZT-Exec zeroturnaround/zt-exec 36654400 2938 1 104 18.45 25.04 Processes

Crypto apache/commons-crypto.git dc1769ed 5079 1 140 24.00 27.94 Native Calls

Retroit square/retroit ec0635c6 12331 16 202 30.75 28.74 Files

Codec apache/commons-codec.git 535bd812 17625 1 299 48.00 31.72 Files

Vectorz mikera/vectorz.git 425109e2 52096 1 414 70.50 38.98 N/A

Lang apache/commons-lang.git 17a6d163 69014 1 381 133.50 41.21 Files

Net apache/commons-net.git 4450add7 26928 1 315 42.00 65.13 Files

Conig apache/commons-coniguration.git 8dddebf1 64341 1 642 162.30 66.05 Files

IO apache/commons-io.git e8c1f057 27186 1 302 91.00 89.10 Files

OkHttp square/okhttp d854e6d5 48783 18 344 59.40 101.72 Files

ClosureC google/closure-compiler.git 283d8161 284131 7 1548 309.30 190.41 Native Calls

Dropwizard dropwizard/dropwizard.git 1e40fef4 37914 34 969 232.00 328.84 Processes

CloudStack apache/cloudstack.git 56a35265 572503 104 7585 292.00 335.42 Processes

Tika apache/tika 9cf82589 96220 15 1936 227.65 370.08 Processes

Math apache/commons-math.git 471e6b07 174832 1 1501 431.00 376.46 Files

Guava google/guava.git 061da3b3 244083 5 1737 401.00 424.66 Files

Metron apache/incubator-metron 29646550 57720 28 1507 145.00 462.28 Processes

Activiti activiti/activiti.git b2eba94b 203509 7 5523 312.35 879.99 Processes
∑

N/A N/A 2050791 250 26577 3111.05 3934.96 N/A

Avg. N/A N/A 97656.71 11.90 1265.57 148.14 187.37 N/A

In the irst step (line 2), we clone the project and then (line 3)

checkout the latest revision used in the study (SHA column in

Table 1). Next, we iterate over the last 20 project revisions (lines 4 -

16), starting from the oldest revision and moving towards newer

revisions. We consider only project revisions that are on the master

branch, because many projects run regression tests only against

those revisions. In each iteration of the loop, we build the project

and skip the revision if the build fails. If the build is successful, we

execute the available tests and save the results. To force each test

to run in a separate JVM (which is a common practice [18]), we run

mvn test -DforkCount=1 -DreuseForks=false . Note that mvn test

runs several build phases (including the compilation phase) prior

to running the tests. We will use Eavailable to denote this end-to-

end test execution time and N available to denote the number of

available tests.

In the next step, the procedure (line 12) integrates RTSLinux

by enabling our module in the Linux kernel and including the

RTSLinuxMaven plugin into the project under study. The tests are

then selected based on the dependencies collected in the previous

run and those tests are executed (line 14). Finally, the procedure

stores the results and newly collected dependencies for the executed

tests (line 15). We will use Esel to denote end-to-end time to select

tests, execute those tests, and collect dependencies; we will use

N sel to denote the number of selected tests.

Using the collected data, we compute test selection ratio as S =

N sel /N available * 100, and savings in terms of end-to-end time as

T = Esel / Eavailable * 100. Savings in terms of end-to-end time

(compared to RetestAll) is the key metric for measuring the beneits

of an RTS technique [37]. To be consistent with prior studies, we

also report test selection ratio; the saving in terms of the number

of tests is a metric independent of the machine used for running

the experiments.

4.1.3 Execution Platform. We run all experiments on a 4-core

Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 16GB of RAM,

running (our version of) Ubuntu 14.04 LTS. Similar to several recent

studies [37, 41, 72], we used multiple versions of Java (Oracle JDK

7u72 and 8u60), which was necessary because several projects (e.g.,

Lang) do not work with newer Java versions.

4.2 Answers to Research Questions

4.2.1 RQ1: How Efective is RTSLinux. Table 2 shows the main

results for RTSLinux. Columns 2-5 are explained in Section 4.1.2;

Column 6 denotes the total number of dependencies used by tests

(we counted dependencies that are in the project under study, the

local Maven cache, or executable iles used by tests). The last two

rows show the summary values (where appropriate) and average

values computed over all projects. We discuss the right-hand part

(Ekstazi) of the table in the next section.

Our results show that RTSLinux reduces test execution time for

all projects. In the best case (for the Net project) time to execute

tests is decreased to only 13.52% (of RetestAll time). In the worst

case (for the ClosureC project) time to execute tests is decreased

to 85.12%. On average, across all projects, test execution time is

decreased to 47.17%. Similarly, RTSLinux leads to substantial re-

duction in terms of the number of executed tests. In the best case

(for the Config project), RTSLinux selects only 7.94% of available

tests. In the worst case (for the Vectorz project), RTSLinux selects

64.32% of available tests. We can observe that there are signiicant

Regression Test Selection Across JVM Boundaries ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 2: Test Execution Time and Test Selection Ratio for RTSLinux and Ekstazi

Project RTSLinux Ekstazi

Time Tests Deps Time Tests Deps

Esel [s] T [%] N sel S[%] # Esel [s] T [%] N sel S[%] # [%]

la4j 10.82 73.76 12.70 55.57 861 10.56 71.96 12.70 55.57 298 34.61

ScribeJava 6.79 45.72 1.65 8.25 764 6.51 43.82 1.65 8.25 83 10.86

Bukkit 6.25 28.88 3.20 8.42 1723 6.01 27.75 3.20 8.42 457 26.52

ZT-Exec 14.61 58.35 7.95 43.08 1046 14.18 56.63 7.95 43.08 81 7.74

Crypto 11.93 42.69 6.05 25.20 752 10.43 37.32 4.65 19.37 79 10.50

Retroit 14.63 50.92 8.85 28.78 15082 14.56 50.66 8.85 28.78 559 3.70

Codec 7.27 22.92 4.25 8.85 1363 7.00 22.07 4.25 8.85 144 10.56

Vectorz 31.66 81.22 45.35 64.32 1257 31.05 79.64 45.35 64.32 379 30.15

Lang 15.14 36.74 17.35 12.99 1757 14.84 36.01 17.35 12.99 604 34.37

Net 8.80 13.52 3.45 8.21 773 8.44 12.96 3.45 8.21 196 25.35

Conig 17.22 26.07 12.90 7.94 5281 15.98 24.20 12.90 7.94 689 13.04

IO 33.06 37.11 18.10 19.89 1335 25.48 28.60 12.25 13.46 286 21.42

OkHttp 79.08 77.74 25.70 43.26 10745 77.63 76.31 25.25 42.50 686 6.38

ClosureC 162.09 85.12 164.80 53.28 7075 153.75 80.74 164.80 53.28 2416 34.14

Dropwizard 155.04 47.14 44.60 19.22 318493 109.43 33.27 41.35 17.82 1102 0.34

CloudStack 270.55 80.65 66.40 22.73 189878 221.83 66.13 60.70 20.78 3758 1.97

Tika 153.10 41.36 52.35 22.99 71404 104.24 28.16 40.25 17.68 1300 1.82

Math 114.02 30.28 101.75 23.60 4732 113.06 30.03 101.75 23.60 1938 40.95

Guava 86.17 20.29 57.55 14.35 13771 83.39 19.63 56.70 14.13 5145 37.36

Metron 159.86 34.58 20.70 14.27 206994 79.53 17.20 13.80 9.51 1138 0.54

Activiti 489.54 55.63 116.50 37.29 41418 440.86 50.09 116.50 37.29 1873 4.52
∑

1847.63 N/A 792.15 N/A 896504 1548.76 N/A 755.65 N/A 23211 N/A

Avg. 87.98 47.17 37.72 25.83 42690.66 73.75 42.53 35.98 24.56 1105.28 16.99

diferences in reduction in terms of the number of tests and time.

Recall (Section 4.1) that we measure end-to-end time for the entire

build (as developers would do when running their tests) rather than

measuring only test execution time; therefore, we tend to observe

smaller savings for projects where build phases (e.g., compilation)

take longer than test execution.

4.2.2 RQ2.1: How Does RTSLinux Compare to Ekstazi in Terms

of Eficiency. Table 2 (right) shows the results for Ekstazi, including

time taken to execute selected tests (Column 7), time to run selected

tests normalized by RetestAll (Column 8), the average number of

selected tests (Column 9), test selection ratio (Column 10), number

of dependencies (Column 11), and number of dependencies normal-

ized by RTSLinux dependencies (Column 12). The last two rows

show the total and average values.

In summary, test selection ratio is 25.83% and 24.56%, and exe-

cution time is decreased to 47.17% and 42.53% for RTSLinux and

Ekstazi, respectively. It is expected that RTSLinux takes longer to

execute tests, because it captures more dependencies than Ekstazi

(as discussed in the next section), which may lead to more tests

being afected per run and higher cost for computing checksums.

Although test selection ratio is the same for most of the projects,

we can observe diferences in several cases, e.g., IO (19.89% vs. 13.46%).

Such a diference can happen for two reasons: (1) tests create direc-

tories and/or iles that are not removed when test execution inishes,

and (2) Ekstazi misses to collect some iles that are modiied be-

tween revisions. We illustrate these two cases using the IO project.

Many tests in the IO project create the test directory in the root of

the project, but they do not remove the directory upon completion.

Consider a test t that creates the test directory. When the test

inishes, RTSLinux computes the checksum of the test directory

(which is non-empty at this point). At the next project revision

(under the assumption that we are running tests on a continuous

integration service (CIS) [11, 46], e.g., Travis CI, which always does

a clean build), RTSLinux will compute the checksum for the test

directory and ind that the checksum is diferent from before, thus

RTSLinux will select t every time for the execution. (Note that the

same problem can happen even if developers do not use CIS, but

multiple tests use the same test directory that is not cleaned [18].)

This problem happens for several other projects including Config

and ClosureC; observe that the test selection ratio in the table is the

same for these two projects because we automatically insert code

to cleanup project repository prior to computing the checksum. As

mentioned before, another reason for the diference in test selection

ratio is the diference in the set of dependencies. We observed that

several tests in IO (e.g., DirectoryFileComparatorTest) traverse all

iles from the root of the project; whenever any of these iles change

RTSLinux selects tests for the execution, while Ekstazi misses to

select these tests.

4.2.3 RQ2.2: How Does RTSLinux Compare to Ekstazi in Terms

of Safety. We ind that Ekstazi collects only 16.99% of dependencies

collected by RTSLinux (see the last row in the last column in Ta-

ble 2). Therefore, Ekstazi is less safe than RTSLinux. Despite these

diferences in the set of dependencies, the reduction in test execu-

tion time by RTSLinux and Ekstazi is similar, which demonstrates

that RTSLinux is eicient.We observed, for RTSLinux, that projects

with many Maven modules have high number of dependencies; the

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

Table 3: Overhead Introduced by RTSLinux, Ekstazi, and

RTSFab for the First Revision Compared to RetestAll

Project RetestAll RTSLinux Ekstazi RTSFab

[s] [%] [%] [%]

la4j 17.15 14.16 14.95 44.29

Bukkit 21.41 15.53 18.17 44.74

Codec 25.18 19.62 22.26 59.73

Vectorz 39.57 17.84 15.69 50.64

Lang 40.44 26.69 36.20 66.26

Net 65.42 5.43 4.83 88.62

Conig 66.49 25.61 25.07 82.78

IO 90.19 8.02 7.66 23.87

Math 374.82 10.20 12.60 39.96

ZT-Exec 23.49 11.00 10.26 137.84

Crypto 27.90 9.84 11.21 34.13

Avg. 72.00 14.90 16.26 61.16

number of modules is reported in Table 1. This high number of

dependencies happens because Java searches for a class ile in all

modules on the classpath prior to searching in third party libraries.

Note that RTSLinux collects even iles that are non-existent (and

assigns a special lag to them), because adding such iles can afect

test execution.

4.2.4 RQ3: What is the Overhead of RTSFab (our Technique Im-

plemented in User Space) Compared to RTSLinux. Table 3 shows, for

each project, time to run all tests (repeated values from Table 1), and

overhead of RTSLinux, Ekstazi, and RTSFab when all tests are run

(which happens for the irst revision). Table 3 includes only single

module projects, because RTSFab currently supports only those

projects. On average, RTSLinux, Ekstazi, and RTSFab introduce

14.90%, 16.26%, and 61.16% overhead, respectively. We can conclude

that RTSFab is signiicantly less eicient than RTSLinux. A more

eicient way to implement our technique in user space could still

exist (e.g., using FUSE); this question is left for future work.

Additionally, we can conclude that the collection phase of RT-

SLinux introduces lower overhead than that of Ekstazi, but it takes

more time to compute checksums (due to larger number of collected

dependencies). The latter conclusion is supported by Tables 2 and 3.

We can see that for the irst project revision (when computation of

checksums is done only once after tests were executed) RTSLinux

introduces lower overhead. However on average across 20 revisions,

when checksums are computed both during the analysis phase and

collection phase, RTSLinux introduces slightly higher overhead.

4.3 Case Studies

We performed several case studies to further evaluate RTSLinux

and test its correctness. Speciically, we checked if RTSLinux gives

the expected results for our motivating examples (Section 2), tried

several interesting tests from various projects, and evaluated the

beneits of RTSLinux when applied to a Python project.

4.3.1 Multiple Languages and a Single Process. Section 2.1 in-

troduced a test, from the Hadoop project, which is written in mul-

tiple languages. Recall that the test is executed in a single pro-

cess. Our goal is to conirm that RTSLinux collects necessary de-

pendencies. (We did not use Hadoop in our experiments in Sec-

tion 4.2 due to long RetestAll time and limited resources.) In our

study, we executed only the testSnappyNullPointerException test

described in Section 2.1 and we collected dependencies with RT-

SLinux and Ekstazi. RTSLinux collected 870 dependencies (includ-

ing libhadoop.so, which contains the compiled C code) while Ek-

stazi collected only 99 dependencies (not including libhadoop.so).

4.3.2 A Single Language and Multiple Processes. Section 2.2 in-

troduced a test from the Ant project that spawns subprocesses.

(We did not include Ant in our benchmark projects in Section 4.2

because it does not build with Maven.) As for Hadoop, we executed

only the test method of interest (testForkedCapture); as expected,

RTSLinux collected Printer.class (among 617 dependencies) while

Ekstazi didn’t (among 218 dependencies).

4.3.3 Additional Cases. We have also checked correctness of

RTSLinux on a few hand-picked interesting tests that either use

JNI or spawn subprocesses. Table 4 shows these tests and compares

number of dependencies collected by RTSLinux (#Deps) and per-

cent of those dependencies collected by Ekstazi (Deps [%]). We

manually conirmed that expected dependencies are collected by

RTSLinux. For example, JavaCPP spawns a subprocess that runs

a g++ compiler (and depends on .h iles) and PySonar2 spawns a

process that runs Python code (and depends on .py iles).

4.3.4 A Python Project. Being implemented at the system level

and not tied to Java at all, RTSLinux can be applied to a project

written entirely in a non-JVM language. Although this paper pri-

marily focuses on predominantly Java projects, here we discuss our

experience of applying RTSLinux to pendulum [7], the most popular

Python project on GitHub (based on the number of stars).

The pendulum project comes with 514 test methods and includes

a custom py.test command used to run them. Because tests for this

project take negligible time, we measured only test selection ratio.

We modiied py.test to integrate RTSLinux; next, we followed

the same procedure as for other projects (Figure 5). On average,

RTSLinux reduced the number of executed tests to 61.45%. In terms

of the number of selected tests, however, RTSLinux selected most

of them in 12 out of 20 revisions. The main reason for such high

selection rate is the small size of the project, so many tests end up

importing most of the source .py iles (unlike in Java, the import

statement in Python evaluates the target .py ile, and, thus, creates

a dependency even if nothing from it gets used by the test).

Our motivation for including a Python project was to show that

our technique readily generalizes to other languages; we do not

mean, however, to imply that the empirical evaluation results from

Section 4.2 do too. To make such a claim, a much larger collection

of non-Java projects would have to be included. Further research is

also necessary to explore ways of improving precision of RTSLinux

for Python (and other languages).

5 THREATS TO VALIDITY

External: The projects used in our study may not be representative.

To mitigate this threat, we used popular open-source projects that

vary in size, number of authors, number of revisions, number of

tests, application domain, and ways their tests escape from JVM.

Furthermore, several projects used in our study were used in recent

work on regression testing [37].

Regression Test Selection Across JVM Boundaries ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 4: Case Studies with Native Calls and Sub-Processes

Project URL [https://github.com/] SHA Test name Escape method
RTSLinux

#Deps

Ekstazi

Deps [%]

Zeppelin apache/zeppelin 63294785 org.apache.zeppelin.integration.AuthenticationIT Processes 775 1.03

Ratis apache/incubator-ratis 7e71a2e0 org.apache.ratis.server.storage.TestRaftStorage Native Calls 1294 2.16

JavaCPP bytedeco/javacpp b41028b9 org.bytedeco.javacpp.AdapterTest Processes 449 14.47

PySonar2 yinwang0/pysonar2.git dc6d8f10 org.yinwang.pysonar.TestRefs Processes 784 20.28

We performed experiments with projects mostly written in Java

(although RTSLinux is, in theory, more broadly applicable). Our

main motivation for this work were projects that escape from JVM.

In the future, we plan to evaluate RTSLinux and develop necessary

extensions for projects written in other languages.

We performed our experiments on 20 revisions per project. The

results could difer if we chose diferent number of revisions or

another time frame. For projects used in a previous evaluation of

Ekstazi [37], we used the same revisions as reported in that study.

For other projects, added in this study, we used the latest revisions

available at the time of our experiments.

The overhead introduced by the collection phase may difer for

other Linux kernel versions. Although we tested RTSLinux with

several Linux versions, we have not measured the time for each

version. Considering that the version 4 was introduced only to

avoid high version numbers [5], we do not expect that our results

would difer on a few latest releases of the kernel.

Internal: Implementation of RTSLinuxmay contain bugs that may

impact our conclusions. To mitigate this threat, we wrote a number

of tests, manually inspected the output of several examples, and

compared the outputs of Ekstazi and RTSLinux. We also compared

RTSLinux and RTSFab, which should always have the same test

selection ratio.

Construct: We compared RTSLinux only with Ekstazi, although

many other RTS techniques have been proposed in the past (Sec-

tion 7). We justify our decision with two reasons. First, other exist-

ing RTS techniques collect ine-grained dependencies (e.g., meth-

ods, statements, basic blocks, elements of the extended control-

low graphs, etc.) and they are less safe than Ekstazi. Ekstazi also

compares favorably with the existing RTS techniques in terms of

end-to-end regression testing time [37]. Second, to the best of our

knowledge, Ekstazi is the only publicly available RTS tool (for Java)

at the moment.

6 DISCUSSION

Dependent tests: Some test suites may have order dependencies

among tests, e.g., if test t1 executes before test t2, then t2 passes,

otherwise it fails. Therefore, if RTSLinux selects only test t2 for the

execution, the test would fail if the test t1 is not selected. RTSLinux,

as other RTS tools, does not reason about order dependencies among

tests. However, because RTSLinux requires that each test (or group

of tests speciied by a developer) executes in a separate process,

there cannot be a problem due to order dependencies on values in

the main memory. Still, there could be a problem if tests share state

on the disk.We believe that RTSLinux can be a base for a framework

for detecting such dependencies. Using RTSLinux we were able

to detect bugs (when a test does not clean the state on disk) in IO,

Config, and ClosureC; our patches were recently accepted by IO and

Config developers [24, 25].

Flaky tests: Flaky tests are tests that non-deterministically pass

and fail for the same project revision [30, 54, 60, 62, 80, 87]. There are

a number of sources of non-determinism, including GUI events, net-

working, concurrency, etc. Similar to the existing RTS techniques,

RTSLinux collects dependencies only for one possible execution; if

a test is not selected, then the previous execution trace is still feasi-

ble. Note that this is consistent with existing static RTS techniques

that are used in practice [31, 79].

Parallel execution: RTSLinux supports parallel test execution by

tracking dependencies for each user’s command separate and mon-

itoring the accessed iles/directories by (transitively) spawned pro-

cesses. Note however that RTSLinux does not support distributed

tests (i.e., tests that communicate over network), but only tests that

are executed on a single machine.

One test per JVM: Although running one test (or groups of de-

pendent tests) per JVM can introduce overhead, it is still a common

approach practiced in industry [18]. As a result, RTSLinux its well

in the common development practices and reduces the testing cost

by skipping many tests after code changes.

Detecting iles loaded by JVM in Ekstazi: Ekstazi has a hidden

option to collect iles loaded by JVM, which is untested and disabled

by default. In our experiments, hence, we used the default (stable)

Ekstazi coniguration. In principle, even when collecting all iles

loaded by JVM, Ekstazi still cannot detect ile accesses made from

spawned processes and from native code, making it strictly less

safe than RTSLinux.

7 RELATED WORK

Regression test selection: There has been a lot of work, in the

last three decades, on regression testing [27, 44, 85] and on regres-

sion test selection [19, 28]. Prior work on dynamic RTS techniques

mostly explored ine-grained dependencies, including dependencies

on functions/methods (e.g., [21]), statements (e.g., [71]), basic blocks

(e.g., [77]), and elements of (extended) control low graphs [69, 86].

Recent work introduced Ekstazi [37] that collects dynamic ile de-

pendencies, which we discussed throughout this paper. Unlike the

existing techniques, RTSLinux supports tests that are written in

multiple languages and spawn multiple processes.

Kung et al. [49] introduced the class irewall, a technique that

(statically) identiies modiied set of classes for two project revi-

sions. Skoglund and Runeson proposed an RTS technique based

on the class irewall [73] and later improved the precision of their

technique [74]. Orso et al. [67] combined the class irewall (static

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

technique) and dangerous edge (dynamic technique) to increase

safety and improve precision. Recent work [51] compared static

and dynamic RTS and showed that static techniques tend to be

unsafe and imprecise.

Several researchers proposed RTS techniques that collect depen-

dencies on external resources [42, 43, 64, 84]. Haraty et al. [42] and

Daou [43] introduced regression testing techniques for database

applications. Willmor and Embury [84] presented a new deinition

of safety that takes into account the interaction of the program

with a database state. Nanda et al. [64] recently proposed an RTS

technique that collects dependencies on non-code elements, such

as coniguration iles and databases. RTSLinux, collects not only

dependencies on coniguration iles and databases but on any ile

accessed by any process (transitively) spawned by the test.

Tracing tools: There are several tools for tracing system calls in

the Linux kernel. The most popular tool for tracing system calls is

the strace tool [10]. Internally, strace uses ptrace system call that

stops the traced process(es) for each call and introduces observable

overhead when many system calls are made by the traced pro-

cess(es) [88]. For example, the execution of du -sh ∼/ is hundreds

of times faster than the execution of strace du -sh ∼/. Another

popular tool available in Linux is perf trace. Although this tool

has much lower overhead than the strace tool, perf trace does

not provide a way to extract the ile names in human readable for-

mat [8]. Other third-party tools are available, including systemtap,

LTTng, and ktap. These tools are more generic than RTSLinux and

require the use of domain speciic languages to specify calls to be

traced. Additionally, our attempt to use systemtapwas unsuccessful

due to incompatibility with recent versions of the Linux kernel.

Build systems andmemoization: Many build systems (including

Ant [1], Make [75], Maven [56], and Gradle [39]) support incremen-

tal execution of a build target, but the incremental computation

is commonly based on statically computed dependencies, which

makes them unsafe. Modern cloud-based build systems [16, 23]

improve safety of incremental builds by keeping the explicit list

of ine-grained dependencies, but require substantial efort by the

users [38] and are rather imprecise [20, 61, 81]. Memoize [59] and

Fabricate [32] collect dynamic dependencies on executed iles by us-

ing the strace command; these systems do not collect dependencies

on accessed iles that do not exist. SCons [9] and Vesta [45] capture

accesses to iles even if the iles do not exist; however SCons does

not support an arbitrary language by default and Vesta requires

that used iles are under revision control. Tup [12] collects dynamic

ile dependencies via FUSE; therefore, Tup currently cannot collect

separate set of dependencies for tests that are running in parallel

processes. Pluto is a build system for Java that dynamically collects

ile dependencies and uses semantic hashing. Regarding memo-

ization, Guo and Engler proposed IncPy [40] that memoizes calls

to functions even if functions access iles. Similar to existing RTS

techniques, IncPy is language-speciic.

RTSLinux was inspired by both the existing build systems and

memoization. However, RTSLinux is complementary to build sys-

tems and can be integrated with any build system to enable RTS, as

long as the build system notiies RTSLinux when each test starts

and inishes; these notiication can be easily added via plugins

that are supported by many existing build systems. RTSLinux also

may reduce the need for build system migration that can be non-

trivial [38, 58, 65, 78].

Provenance-aware systems: Provenance-aware systems provide

meta-data that describe the history of various objects in a system.

Initial work on provenance-aware systems was language-speciic

(e.g., [13]). Recent work explored support for multilingual projects

via libraries [55] (that require manual annotations) and OS log-

ging [63, 76]. Muniswamy-Reddy et al. [63] proposed a technique

that collects meta-data on various abstraction levels. Bates et al. [15]

presented a whole-system provenance-aware technique that col-

lects meta-data for the entire system with negligible overhead, and

Gehani and Tariq introduced support for provenance auditing in

distributed environments [34]. Lee et al. [50] presented an approach

that avoids dependency explosion. RTSLinux (and any other RTS

technique) and the provenance-aware systems have diferent goals,

which is relected in the type of collected meta-data and the way the

meta-data is used. For example, an RTS technique needs to know

when each test starts and inishes.

Continuous integration services: Recent work by Vasilescu et

al. [83] and Hilton et al. [46] showed that continuous integration

services (CISs), such as Travis CI [11], are widely used and im-

prove the productivity of project teams. Currently, more than 300K

projects use Travis CI [46], which is only one out of more than 25

publicly available CISs. CISs are used by projects written in difer-

ent (combination of) programming languages and build languages.

RTSLinux could easily be integrated with a number of CISs that

run Linux based VMs, which would lead to reduction in regression

testing cost for a number of projects.

8 CONCLUSION

We presented a novel regression test selection technique, dubbed

RTSLinux. The key novelty is that RTSLinux supports tests that

escape JVM (e.g., spawn multiple subprocesses). For each test, RT-

SLinux collects all accessed iles by the process running the test

and all spawned subprocesses; the overhead of collection is reduced

by implementing RTSLinux at the system level (as a loadable ker-

nel module). RTSLinux provides extension mechanism for smooth

integration with build systems and testing frameworks. Our results

show that RTSLinux substantially reduces testing time compared

to RetestAll. Additionally, our experiments showed that RTSLinux

achieves similar savings for Java projects as Ekstazi (a regression

test selection tool for JVM languages) while improving the safety.

Althoughmore research is needed to evaluate RTSLinux for various

languages and improve its precision by combining it with language-

speciic techniques, we believe that current savings achieved by

RTSLinux can make a signiicant diference for a large number of

multilingual projects and any continuous integration service.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for help in improving this

paper; Oguz Demir, Nima Dini, Darko Marinov, and John Micco

for their feedback on this work; and Casen Hunger, Nick Kelly, and

Nghia (Tommy) Huynh for providing us access to their hardware.

This research was partially supported by the US National Science

Foundation under Grants Nos. CCF-1566363 and CCF-1652517, and

by a Google Faculty Research Award.

Regression Test Selection Across JVM Boundaries ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

REFERENCES
[1] Ant Home Page. http://ant.apache.org.
[2] Apache Hadoop Home Page. http://hadoop.apache.org.
[3] Build in the Cloud. http://google-engtools.blogspot.com/2011/08/

build-in-cloud-how-build-system-works.html.
[4] JUnit Task. https://ant.apache.org/manual/Tasks/junit.html.
[5] Linus Torvalds - Moving to Linux 4.0. https://plus.google.com/+LinusTorvalds/

posts/jmtzzLiiejc.
[6] Linux Loadable Kernel Module HOWTO. http://tldp.org/HOWTO/

Module-HOWTO.
[7] pendulum - Python datetimes made easy. https://github.com/sdispater/

pendulum.
[8] perf trace & vfs_getname. http://www.spinics.net/lists/linux-perf-users/

msg02975.html.
[9] SCons. http://www.scons.org.
[10] strace - trace system calls and signals. http://linux.die.net/man/1/strace.
[11] Travis CI - Test and Deploy Your Code with Conidence. https://travis-ci.org.
[12] Tup. http://gittup.org/tup.
[13] Elaine Angelino, Daniel Yamins, and Margo I. Seltzer. 2010. StarFlow: A Script-

Centric Data Analysis Environment. In International Provenance and Annotation
Workshop. 236ś250.

[14] Thomas Ball. 1998. On the Limit of Control Flow Analysis for Regression Test
Selection. In International Symposium on Software Testing and Analysis. 134ś142.

[15] AdamBates, Dave Tian, Kevin R. B. Butler, and ThomasMoyer. 2015. Trustworthy
Whole-system Provenance for the Linux Kernel. InUSENIX Conference on Security
Symposium. 319ś334.

[16] Bazel. http://bazel.io/.
[17] Boris Beizer. 1990. Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold

Co., New York, NY, USA.
[18] Jonathan Bell and Gail E. Kaiser. 2014. Unit test virtualization with VMVM. In

International Conference on Software Engineering. 550ś561.
[19] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.

2011. Regression Test Selection Techniques: A Survey. Informatica (Slovenia) 35,
3 (2011), 289ś321.

[20] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build
System with Lazy Retrieval for Java Projects. In International Symposium on
Foundations of Software Engineering. 643ś654.

[21] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A
System for Selective Regression Testing. In International Conference on Software
Engineering. 211ś220.

[22] Pavan Kumar Chittimalli and Mary Jean Harrold. 2007. Re-computing Coverage
Information to Assist Regression Testing. In International Conference on Software
Maintenance. 164ś173.

[23] Maria Christakis, K. Rustan M. Leino, and Wolfram Schulte. 2014. Formalizing
and Verifying a Modern Build Language. In International Symposium on Formal
Methods. 643ś657.

[24] Cleaning directories after each test run, to prevent repository pollution. https:
//github.com/apache/commons-io/pull/13.

[25] Cleaning directories after each test run, to prevent repository pollution. https:
//issues.apache.org/jira/browse/CONFIGURATION-638.

[26] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
Improving Regression Testing in Continuous Integration Development Envi-
ronments. In International Symposium on Foundations of Software Engineering.
235ś245.

[27] Emelie Engström and Per Runeson. 2010. A Qualitative Survey of Regression
Testing Practices. In Product-Focused Software Process Improvement. 3ś16.

[28] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. Journal of Information and Software
Technology 52, 1 (2010), 14ś30.

[29] Emelie Engström, Mats Skoglund, and Per Runeson. 2008. Empirical evaluations
of regression test selection techniques: a systematic review. In International
Symposium on Empirical Software Engineering and Measurement. 22ś31.

[30] Eradicating Non-Determinism in Tests. http://martinfowler.com/articles/
nonDeterminism.html.

[31] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In International Conference
on Software Engineering, Software Engineering in Practice. 11ś20.

[32] Fabricate. https://github.com/SimonAlie/fabricate.
[33] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. 1994. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.
[34] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance Au-

diting in Distributed Environments. In International Middleware Conference.
101ś120.

[35] Milos Gligoric. 2015. Regression Test Selection: Theory and Practice. Ph.D. Disser-
tation. The University of Illinois at Urbana-Champaign.

[36] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In International Conference on Software Engineering, Demo. 713ś
716.

[37] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211ś222.

[38] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman
Narasamdya, and Benjamin Livshits. 2014. Automated Migration of Build Scripts
using Dynamic Analysis and Search-Based Refactoring. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications. 599ś616.

[39] Gradle Build Tool - Modern Open Source Build Automation. http://gradle.org.
[40] Philip J. Guo and Dawson Engler. 2011. Using Automatic Persistent Memoization

to Facilitate Data Analysis Scripting. In International Symposium on Software
Testing and Analysis. 287ś297.

[41] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable test-
ing: detecting state-polluting tests to prevent test dependency. In International
Symposium on Software Testing and Analysis. 223ś233.

[42] Ramzi A. Haraty, Nash’at Mansour, and Bassel Daou. 2001. Regression testing of
database applications. In Symposium on Applied Computing. 285ś289.

[43] Ramzi A. Haraty, Nashat Mansour, and Bassel A. Daou. 2004. Regression test
selection for database applications. Advanced Topics in Database Research 3
(2004), 141ś165.

[44] Jean Hartmann. 2012. 30 Years of Regression Testing: Past, Present and Future.
In Paciic Northwest Software Quality Conference. 119ś126.

[45] Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu. 2002. The Vesta Software
Coniguration Management System. Research Report. http://www.hpl.hp.com/
techreports/Compaq-DEC/SRC-RR-177.pdf.

[46] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Beneits of Continuous Integration in Open-Source
Projects. In Automated Software Engineering. 426ś437.

[47] JNI APIs and Developer Guides. https://docs.oracle.com/javase/8/docs/technotes/
guides/jni.

[48] KernelGitGuide. https://wiki.ubuntu.com/Kernel/Dev/KernelGitGuide.
[49] David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.

1995. Class Firewall, Test Order, and Regression Testing of Object-Oriented
Programs. Journal of Object-Oriented Programming 8, 2 (1995), 51ś65.

[50] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Network and Distributed
System Security Symposium.

[51] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 883ś894.

[52] Hareton K. N. Leung and Lee White. 1989. Insights into regression testing. In
International Conference on Software Maintenance. 60ś69.

[53] Sheng Liang. 1999. Java Native Interface : Programmer’s Guide and Speciication.
Addison-Wesley Longman.

[54] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In International Symposium on Foundations of
Software Engineering. 643ś653.

[55] Peter Macko and Margo Seltzer. 2012. A General-purpose Provenance Library.
In USENIX Conference on Theory and Practice of Provenance. 6ś6.

[56] Apache Maven. https://maven.apache.org.
[57] Philip Mayer and Alexander Bauer. 2015. An Empirical Analysis of the Utilization

of Multiple Programming Languages in Open Source Projects. In International
Conference on Evaluation and Assessment in Software Engineering. 1ś10.

[58] Shane Mcintosh, Bram Adams, and Ahmed E. Hassan. 2012. The Evolution of
Java Build Systems. Empirical Software Engineering 17, 4ś5 (2012), 578ś608.

[59] Memoize. https://github.com/kgaughan/memoize.py.
[60] Atif M.Memon andMyra B. Cohen. 2013. Automated Testing of GUI Applications:

Models, Tools, and Controlling Flakiness. In International Conference on Software
Engineering. 1479ś1480.

[61] Brian S. Mitchell and Spiros Mancoridis. 2006. On the automatic modularization
of software systems using the Bunch tool. Transactions on Software Engineering
32, 3 (2006), 193ś208.

[62] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating
Unit Tests. In International Symposium on Foundations of Software Engineering.
496ś499.

[63] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko,
Diana Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. 2009. Layering
in Provenance Systems. In Conference on USENIX Annual Technical Conference.
10ś10.

[64] Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessan-
dro Orso. 2011. Regression Testing in the Presence of Non-code Changes. In
International Conference on Software Testing, Veriication, and Validation. 21ś30.

[65] Alexander Neundorf. Why the KDE project switched to CMake - and how.
http://lwn.net/Articles/188693.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

[66] Alessandro Orso and Gregg Rothermel. 2014. Software Testing: A Research
Travelogue (2000ś2014). In Future of Software Engineering. 117ś132.

[67] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In International Symposium on Foundations
of Software Engineering. 241ś251.

[68] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A Large Scale Study of Programming Languages and Code Quality in GitHub. In
International Symposium on Foundations of Software Engineering. 155ś165.

[69] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.
Chianti: A Tool for Change Impact Analysis of Java Programs. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 432ś448.

[70] Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. Transactions on Software Engineering 22, 8 (1996), 529ś
551.

[71] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, eicient regression test
selection technique. Transactions on Software Engineering and Methodology 6, 2
(1997), 173ś210.

[72] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-ofs in Test-suite Reduction. In International Symposium
on Foundations of Software Engineering. 246ś256.

[73] Mats Skoglund and Per Runeson. 2005. A case study of the class irewall regres-
sion test selection technique on a large scale distributed software system. In
International Symposium on Empirical Software Engineering. 74ś83.

[74] Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression
Test Selection by Removing the Class Firewall. International Journal of Software
Engineering and Knowledge Engineering 17, 3 (2007), 359ś378.

[75] Peter Smith. 2011. Software Build Systems: Principles and Experience. Addison-
Wesley Professional.

[76] R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, M. Chinni, and E. Zadok. 2009.
Story Book: An Eicient Extensible Provenance Framework. In Workshop on on
Theory and Practice of Provenance. 11:1ś11:10.

[77] Amitabh Srivastava and Jay Thiagarajan. 2002. Efectively Prioritizing Tests in
Development Environment. In International Symposium on Software Testing and
Analysis. 97ś106.

[78] Roman Suvorov, Meiyappan Nagappan, Ahmed E. Hassan, Ying Zou, and Bram
Adams. 2012. An empirical study of build system migrations in practice: Case
studies on KDE and the Linux kernel. In International Conference on Software
Maintenance. 160ś169.

[79] Testing at the speed and scale of Google. http://google-engtools.blogspot.com/
2011/06/testing-at-speed-and-scale-of-google.html.

[80] TotT: Avoiding Flakey Tests. http://googletesting.blogspot.com/2008/04/
tott-avoiding-lakey-tests.html.

[81] Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, and Vahab Mirrokni.
2015. Automated Decomposition of Build Targets. In International Conference on
Software Engineering. 123ś133.

[82] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017.
File-Level vs. Module-Level Regression Test Selection for .NET. In Symposium
on the Foundations of Software Engineering, Industry Track. TO APPEAR.

[83] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous In-
tegration in GitHub. In International Symposium on Foundations of Software
Engineering. 805ś816.

[84] David Willmor and Suzanne M. Embury. 2005. A Safe Regression Test Selection
Technique for Database Driven Applications. In International Conference on
Software Maintenance. 421ś430.

[85] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selec-
tion and Prioritization: A Survey. Journal of Software Testing, Veriication and
Reliability 22, 2 (2012), 67ś120.

[86] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In International Confer-
ence on Software Maintenance. 23ś32.

[87] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivanç Muslu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In International Symposium on Software Testing and Analysis. 385ś
396.

[88] Jörg Zinke. 2009. System call tracing overhead. http://www.linux-kongress.org/
2009/slides/system_call_tracing_overhead_joerg_zinke.pdf.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Multiple Languages and a Single Process
	2.2 A Single Language and Multiple Processes

	3 Technique
	3.1 Analysis Phase
	3.2 Execution Phase
	3.3 Collection Phase
	3.4 System Integration

	4 Evaluation
	4.1 Study Setup
	4.2 Answers to Research Questions
	4.3 Case Studies

	5 Threats to Validity
	6 Discussion
	7 Related Work
	8 Conclusion
	References

