Regression Test Selection Across JVM Boundaries

Ahmet Celik, Marko Vasic
University of Texas at Austin (USA)
{ahmetcelik,vasic}@utexas.edu

ABSTRACT

Modern software development processes recommend that changes
be integrated into the main development line of a project multiple
times a day. Before a new revision may be integrated, developers
practice regression testing to ensure that the latest changes do not
break any previously established functionality. The cost of regres-
sion testing is high, due to an increase in the number of revisions
that are introduced per day, as well as the number of tests devel-
opers write per revision. Regression test selection (RTS) optimizes
regression testing by skipping tests that are not affected by recent
project changes. Existing dynamic RTS techniques support only
projects written in a single programming language, which is unfor-
tunate knowing that an open-source project is on average written
in several programming languages.

We present the first dynamic RTS technique that does not stop
at predefined language boundaries. Our technique dynamically
detects, at the operating system level, all file artifacts a test depends
on. Our technique is, hence, oblivious to the specific means the
test uses to actually access the files: be it through spawning a new
process, invoking a system call, invoking a library written in a
different language, invoking a library that spawns a process which
makes a system call, etc. We also provide a set of extension points
which allow for a smooth integration with testing frameworks
and build systems. We implemented our technique in a tool called
RTSLINUX as a loadable Linux kernel module and evaluated it on
21 Java projects that escape the JVM by spawning new processes or
invoking native code, totaling 2,050,791 lines of code. Our results
show that RTSLINUX, on average, skips 74.17% of tests and saves
52.83% of test execution time compared to executing all tests.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging; Software evolution;

KEYWORDS

Regression test selection, language-agnostic

ACM Reference format:

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017.
Regression Test Selection Across JVM Boundaries. In Proceedings of 2017
11th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17), 12 pages.
https://doi.org/10.1145/3106237.3106297

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3106297

Aleksandar Milicevic
Microsoft (USA)
almili@microsoft.com

Milos Gligoric
University of Texas at Austin (USA)
gligoric@utexas.edu

1 INTRODUCTION

To check that recent project changes do not break any established
functionality developers practice regression testing—running avail-
able tests against the new changes. Although immensely important,
regression testing often comes at a high cost [17, 22, 27, 52, 64].
Google recently reported that the company runs more than 70 mil-
lion tests daily and the testing cost increases quadratically: both the
number of revisions per day and the number of tests per revision
increase linearly [3, 79].

Background: Regression test selection (RTS) optimizes regression
testing by skipping tests that are not affected by recent project
changes (i.e., changes between two given revisions) [19, 27-29, 37,
66, 67, 69, 70, 77, 79, 84-86]. To determine which tests are affected,
dependencies on various source artifacts must be established and
maintained for each test throughout the life cycle of a program.
Before tests are executed, only those tests whose dependencies are
invalidated by the recent changes are selected.

An RTS technique typically has to make two big choices re-
garding tracking dependencies: (1) what kind of dependencies to
track (e.g., at what granularity level), and (2) how to track them
(e.g., statically or dynamically). This leads to a whole spectrum of
techniques, which all greatly vary in safety and precision: a safe
technique always selects all affected tests, while a precise technique
does not select any unaffected test [71].

In this paper, we consider Java projects that are either multilin-
gual (i.e., make native calls via JNI) or span across multiple JVMs (by
spawning multiple Java processes). We argue that the existing RTS
techniques are not well suited for this class of projects. To address
their shortcomings, we propose a novel RTS technique based on
dynamic (system-level) file and process monitoring.

Problem: Existing dynamic RTS techniques [14, 21, 37, 67, 69, 71,
77, 86] are all language-specific (i.e., unable to observe dependencies
that span across languages), making them unsafe for multilingual
projects. Recent studies found that an open-source project is written
in five programming languages on average [57, 68].

Existing static RTS techniques, on the other hand, are imprecise.
Due to common limitations of static analyses, such techniques
must typically overapproximate the set of dependencies [51, 61,
81, 82]. Examples include Google’s continuous integration system
TAP [3, 26, 79] and Microsoft’s CloudBuild [31], which only track
dependencies between projects. Assume, for example, a new method
is added to a commonly used collections library; in such a setting,
all tests of all dependent projects must be rerun, even though none
of them are effectively affected by that change.

Technique: We present the first dynamic language-agnostic RTS
technique, dubbed RTSLINUX. RTSLINUX collects dependencies at
the file level granularity. To do so, RTSLINUX integrates with the OS
kernel (via a loadable kernel module [6]), where it intercepts all rele-
vant process- and file-related system calls. The benefits of such tight

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

integration with the operating system are twofold: (1) it enables
RTSLINUX to precisely observe all dynamic dependencies, no matter
which part of the test’s process tree creates them, and (2) keeps the
overhead to a minimum. Finally, RTSLINUX provides primitives and
extension points for easy integration with testing frameworks and
build systems, as well as for further (domain-specific) improvements
of the technique’s precision.

Evaluation: We evaluated RTSLINUX on 420 revisions of 21 pop-
ular open-source projects. Our evaluation has the following main
objectives: (1) evaluate RTSLINUX s effectiveness in its own right (in
terms of the reduction in testing time), (2) evaluate the added ben-
efits of the key novelty behind RTSLiNux—dependency detection
across JVM boundaries—comparing to an RTS tool for Java-only
projects, and (3) provide initial assessment of the significance of
kernel-level integration.

We measured the effectiveness in terms of the reduction in the
end-to-end testing time and in terms of the number of skipped tests.
Our results show that RTSLINUX, on average, reduces testing time
by 52.83% and skips 74.17% of tests (compared to RetestAll i.e.,
executing all tests at each project revision).

To measure the added benefit, we compared RTSLiNUX to Ek-
stazi [35-37], a recent RTS technique that collects dynamic file
dependencies for Java projects, but fails to collect dependencies
created from child processes or from JNI calls to code that does
not compile to Java bytecode. We compared the two techniques in
terms of safety, i.e., the percent of dependencies that are missed by
Ekstazi, and in terms of reduction in number of tests and testing
time. Our findings show Ekstazi is less safe, as it collects only (on
average) 16.99% of accessed files collected by RTSLINUX. Despite
being safer than Ekstazi, RTSLINUX achieves comparable savings,
both in the number of tests skipped and the overall testing time.

2 MOTIVATING EXAMPLES

We motivate our work with two sample unit tests taken from popu-
lar open-source projects: Hadoop [2] and Ant [1]. The first sample
test illustrates the case when code written in multiple languages is
executed in the same process. The second sample test illustrates the
case when code written in a single language is executed in multiple
processes. In neither of these two cases (or combinations thereof)
the existing RTS techniques provide safety. We discuss the issues
faced by the existing techniques and briefly describe our proposed
technique to overcome the challenges.

2.1 Multiple Languages and a Single Process

Figure 1 shows a test that invokes C code from Java code; the test
is from the Apache Hadoop project [2] (Git SHA: fe6c1bd7), a pop-
ular map-reduce framework. The testSnappyNullPointerException
test method (which is declared in TestSnappyCompressorDecompress-
or. java) invokes (line 7) compress method (declared in SnappyComp-
ressor. java), which in turn invokes (line 13) compressBytesDirect
(a native method also declared in SnappyCompressor. java). The im-
plementation of the native method is in Java_compressBytesDirect
function (written in C and implemented in SnappyCompressor.c).
Java uses the Java Native Interface (JNI) to invoke the native code [47,
53]. Note that JNI does not spawn a new process but executes the
native code in the same process as the Java Virtual Machine (JVM).

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

1 // TestSnappyCompressorDecompressor.java
2 void testSnappyNullPointerException() {
3 SnappyCompressor compressor =

new SnappyCompressor();
byte[] bytes = BytesGenerator.get(1024 « 6);
compressor.setInput(bytes, 0, bytes.length);
compressor.compress(null, 0, 0);

-}

IR RS

9

10 // SnappyCompressor.java

11 int compress(byte[] b, int off, int len) {...
12 // Compress data

13 n = compressBytesDirect();
14 compressedDirectBuf.limit(n);
15 uncompressedDirectBuf.clear();

16 ..}

17 native int compressBytesDirect();

19 // SnappyCompressor.c K
20 JNIEXPORT jint JNICALL Java_compressBytesDirect (]NIEnV§
env, jobject thisj) {
2 .}
Figure 1: An example test from the Hadoop project that in-
vokes C code from Java (without spawning a new process)

The existing dynamic RTS techniques are unsafe in this scenario.
For example, Ekstazi would collect dependencies only on classes
that are loaded in the JVM (i.e., TestSnappyCompressorDecompressor-
.class and SnappyCompressor.class) but it would not collect the
dependency on libhadoop. so that contains the compiled code for
SnappyCompressor. c. Similarly, techniques that collect dependen-
cies on executed methods, e.g., TestTube [21], would detect meth-
ods written in Java (i.e., testSnappyNullPointerException, compress,
and compressBytesDirect) and would miss functions written in C
(i.e., function Java_compressBytesDirect).

Our proposed technique, RTSLINUX, is, by design, oblivious to the
specificities of JNI. As such, it collects all dependencies introduced
by the JVM loading whatever files it needs to execute JNI calls.
RTSLiNUX only needs to be informed (by a build system or a testing
framework) when each test starts and finishes; no changes to the
project under test are needed.

2.2 A Single Language and Multiple Processes

Figure 2 shows a test that spawns a new Java process; the test is
taken from the Ant project [1] (Git SHA: c50b683c), a popular build
system for Java.

The testForkedCapture test method (declared in JUnitTaskTest
class) checks the correctness of the JUnit task [4] with “fork” set to
true (meaning that Ant should execute the test in a newly spawned
JVM rather than the same one that Ant is already running in).

In the setup of the test, a build script to be executed by Ant is
specified (line 3); the build script contains a target with a JUnit
task in it. The test first sets the “fork” option to true (line 6) and
then executes said target (line 7). The execution continues through
the implementation of the build system (line 10) until it eventually
spawns a new JVM where the requested JUnit task executes the
tests found in the Printer class (line 16).

The existing RTS techniques would only collect dependencies
within the JVM of JunitTaskTest and would miss dependencies in-
troduced from the spawned processes. For example, Ekstazi would

Regression Test Selection Across JVM Boundaries

1 // JUnitTaskTest.java
2 public void setUp() {
3 buildRule.configureProject("src/etc/testcases/taskdefs/
optional/junit.xml");

.

5 public void testForkedCapture() throws IOException {

6 buildRule.getProject().setProperty("fork”, "true");

7 buildRule.executeTarget("capture");

8 ..}

4

BuildFileRule.java — Project.java — Target.java —
11 Task.java — DispatchUtils java-..

&
13 <!—— src/etc/testcases/taskdefs/optional/junit.xml ——>
14 <target name="capture" depends="setUp">...

15 <junit fork="${fork}">

16 <test name="org.apache.tools.ant...optional junit.Printer"
17 RV
18 </junit>

19 </target>

Figure 2: An example test from the Ant project that spawns
a new JVM to execute tests in the Printer class

collect dependencies on JUnitTaskTest,BuildFileRule, Project, Task,
Target, and DispatchUtils .class files, but not Printer.class (ul-
timately failing to select testForkedCapture if the Printer class is
modified, impacting the regression testing safety). RTS techniques
which collect fine-grained dependencies (e.g., TestTube [21] or
FaultTracer [86]) face the same issue.

RTSLiNux, automatically tracks the entire process tree of the test
(rather than a single process at a time), and collects dependencies
on all files accessed by either the root process or any of its children
processes. Given the example in Figure 2, therefore, RTSLINUX col-
lects the same dependencies as Ekstazi as well as the dependencies
introduced by the spawned process, i.e., the Printer.class file.

3 TECHNIQUE

This section describes the details of RTSLiNux. We describe the
common phases performed by traditional RTS techniques, present
the way RTSLINUX performs those phases, discuss a mechanism that
a user can utilize to alter the behavior of the technique, and present
the integration of RTSLINUX with the existing testing frameworks
and build systems.

RTS techniques typically include three phases: analysis, execu-
tion, and collection [37]. The analysis phase checks, for each test, if
any of the previously collected dependencies have been affected by
the recent changes. If a test is not invalidated by the changes, the
test is not executed. (Tests for which dependencies have not previ-
ously been collected are always selected.) The execution phase runs
selected tests. The collection phase collects dependencies for each
test; these dependencies are used in the analysis phase of the sub-
sequent project revision. The execution and collection phases are
frequently interleaved, i.e., collection is done during test execution
rather than in a separate run.

Figure 3 shows the three phases as performed by RTSLINUX.
Function Run (line 1) takes as input a command to execute and
functions defined by the user that can alter RTSLINUX’s behavior
(as discussed later in this section). The given command can be an
arbitrary Unix command; in the context of this paper, that command

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Require: cmd - user command to execute
Require: userFuns - functions defined by the user
1: function Run(cmd, userFuns)
2: if ISTESTAFFECTED(cmd, userFuns) then

3 processMap < EMPTY_MAP

4 pid « EXECUTETEST(cmd, processMap)

5: StoreDEPS(cmd, pid, userFuns, processMap)
6 end if

7: end function

8: function ISTESTAFFECTED(cmd, userFuns)

9: if HAsDEPENDENCIES(cmd) then
10: for all proc € SETOFPROCEssES(cmd) do
11: for all dep € SETOFDEPSs(proc) do
12: nsum « userFuns.cksum(proc.type, dep.path)
13: if nsum = NONE then
14: nsum « SysCksuMm(dep.path)
15: end if

16: if nsum # dep.cksum then

17: return TRUE

18: end if

19: end for
20: end for
21: return FALSE
22: end if

23: return TRUE
24: end function

25: function SYSTEMEXECUTE(syscall, processMap)

26: if SPAWNSNEWPROCESs(syscall) then

27: processMap < (syscall.currentProc, syscall.newPid)
28: else if AccessesFILEs(syscall) then

29: for all dep € syscall.getAccessedFiles() do

30: SETOFDEPS(syscall.currentProc) < dep

31: end for

32: end if

33: end function

34: function SToREDEPS(cmd, pid, userFuns, processMap)
35: processes = 0
36: for all proc € {p | pid’ s.¢. pid’ = p.pid A

37: pid" € TransITIVECLOSURE(pid, processMap) } do
38: processes & proc

39: for all dep € SETOFDEPs(proc) do

40: if userFuns.includeln(dep) then

41: dep.cksum «

42: userFuns.cksum(proc.type, dep.path)
43: if dep.cksum = NONE then

44: dep.cksum « SysCxsum(dep.path)
45: end if

46: end if

47: end for

48: end for

49: SETOFPROCESSES(cmd) « processes

50: end function

Figure 3: Analysis, execution, and collection phases as per-
formed by RTSLiNnUx

will always execute a test. If any dependency of the given command
is affected (line 2), then RTSLINUX executes the command and stores
(in the current working directory) new dependencies for the given
process id (line 5). We next describe the details of the three phases.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

User Applications
User
Space
GNU C Library (glibc)
GNU/
: | RTSLinux |
Linux T
| System Call Interface | Kernel
erne
! Space
| Kernel |
I
| Architecture Dependent Kernel Code |

Hardware Platform

Figure 4: Integration of RTSLINUX in the Linux software
stack. RTSLINUX wraps system calls that manage processes
and files

3.1 Analysis Phase

Analysis phase (Figure 3, lines 8 - 24) checks if the given com-
mand/test is affected or not; the utility function HasDependencies
checks if there are dependencies associated with the given com-
mand and the current working directory. As stated earlier, if there
are no dependencies associated with the command (e.g., command
has not been executed before or its meta-data was removed), the
command is always affected (line 23). If dependencies are present,
then RTSLiNUx checks if any dependency of the given command is
affected since the latest run (lines 10 - 20). The set of dependencies
for a given command includes all dependencies collected (in the
previous run) by any process that was spawned by the command.

To check if a dependency file is modified or not (line 16), RT-
SLiNux compares the checksum of the current version of the file
and the checksum that was computed at the end of the prior exe-
cution of the same command. By default, RTSLINUX computes the
checksum of the entire file or (file names in a) directory.

RTSLINUX provides an extension mechanism, which allows the
user to specify a customized function for computing the checksums
(line 12). The custom function accepts two arguments: the type
of the process that accesses the dependency and the path to the
dependency. Based on the type of the process and the type of the
file, the user can adjust the computation of the checksum. For
example, if a process parses an XML file, the user may exclude
comments from all XML files. In such cases, the command would
not be selected if the changes are only in the comments of XML
files. Note that computing the checksum is application dependent;
RTSLINUX provides a function that ignores debug info in .class files
if these files are accesses from a JVM. The extension mechanism for
the checksum can also be used to implement hierarchical checksum,
i.e., a user can first check the size of the file and then check the
content only if the size is the same.

3.2 Execution Phase

In RTSLINUX, collection happens for every executed process. Unlike
most existing dynamic RTS techniques, RTSLINUX does not require

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

changes to either sources or binaries of the project under test to
enable collection of dependencies.

Figure 4 shows the integration of RTSLINUX in the Linux OS.
Specifically, RTSLiNUX implements wrappers [33] for each system
call available in Linux that manages the set of running processes
(e.g., fork) or accesses the file system (e.g., open). After starting
the execution of the command (line 4 in Figure 3), system calls
go through RTSLINUxX wrappers. Specifically our SystemExecute
function (line 25 in Figure 3) is invoked from the wrappers. The
function checks if the system call is spawning a new process or if it
accesses any file or directory on the file system. If the call spawns
a new process, RTSLINUX updates the mapping of processes to
include that the current process is spawning a new process; the
map is used later to reconstruct the process tree, which is used to
find all transitively spawned processes from the given process id.
On the other hand, if the system call accesses a file or a directory,
RTSLiNux updates the set of dependencies of the current process.
Note that this phase only creates the mapping among processes
and collects dependencies, but does not compute the checksum of
dependencies or associate dependencies with the command being
executed. We separated the two phases to enable the user to collect
dependencies for any part of the process tree and to entirely ignore
dependencies for some commands if necessary.

3.3 Collection Phase

Collection phase (Figure 3, lines 34 - 50) computes the set of pro-
cesses transitively spawned from the given command and computes
the checksum of each dependency accessed by at least one process.
Initially, RTSLiNUX finds transitive closure of processes from the
process that started the given command (line 37). To compute the
transitive closure, RTSLINUX uses process map, which was created
during the execution. Note that it is necessary to find only pro-
cesses that are spawned (transitively) from the given command,
because there can be many other processes running in parallel,
which are not related to the user command. Even more, there could
be other processes running other tests in parallel. We discuss sev-
eral aspects of parallel test execution in Section 6. Computing the
checksum of each dependency of each process is similar to the
checksum computation that was described in Section 3.1. As before,
RTSLiNUx uses the user defined function (if provided) for com-
puting the checksum. Additionally, in collection phase, RTSLINUX
provides an extension point where the user can provide a filter to
exclude some dependencies, e.g., temp files and directories.

3.4 System Integration

We implemented RTSLINUX as a loadable kernel module [6] and
made only a few modifications to the Linux kernel [48]. We have
tested our changes with several versions of the Linux kernel: from
version 3.13.11-ckt39 (Apr 2016) to version 4.4.40 (Jan 2017). We
had to change only five lines of code in our module to enable it to
work across all Linux versions in the tested range. (Specifically, an
argument to do_execve function was moved to a struct, so we had
to adjust one of our wrapper functions.) We note, however, that
other changes (e.g., addition of a new system call) could lead to a
much higher maintenance cost.

RTSLINUX implementation includes all the functions shown in
Figure 3 and a number of wrapper functions for the existing system

Regression Test Selection Across JVM Boundaries

calls. The user can invoke either the top level function Run, or invoke
independently IsTestAffected and StoreDeps functions.

The Run function provides a mechanism to collect dependen-
cies for any command (e.g., an arbitrary bash script) and skip the
execution of the same command in the future if no dependency
has changed [23]. (The Run is similar to Fabricate [32] and Mem-
oize [59] build systems, except that RTSLINUX runs as part of the
OS; we discuss other differences in Section 7.) As an example, to
enable RTSLINUX when executing tests with Maven [56], instead
of running mvn test the user should run rtslinux mvn test. The
rtslinux command implements the Run function, thus it executes
the command and collects dependencies only if the set of depen-
dencies (collected in the previous run) has been affected. However,
collecting dependencies for a test command that executes all tests,
is likely to be imprecise because any change to any dependency of
any test would trigger the execution of all tests in the future.

To improve precision, the user can run one test per process; most
popular build systems (e.g., [1, 39, 56]) provide options to spawn a
new process for each test.

IsTestAffected and StoreDeps can be used by developers of build
systems to check if a test should be executed before starting a test
and saving dependencies for the test after it was executed. We
integrated RTSLINUX with Maven.

An alternative implementation: In addition to RTSLINUX, we
implemented our technique in another tool, called RTSFaB, which
works in user space (i.e., runs outside the operating system’s ker-
nel). Our motivation was to explore and compare the overheads
of various approaches for collecting test dependencies. RTSFAB is
implemented on top of Fabricate [32], a build system with dynamic
dependencies that uses strace to collect accessed files [10].

4 EVALUATION

We assess the usability of RTSLINUX by answering the following
research questions:

RQ1: How effective is RTSLINUX, i.e., what is the reduction in
testing time and the number of executed tests?

RQ2: What are the benefits/drawbacks of dependency detection
across JVM boundaries (as implemented in RTSLINUX) compared to
a single-JVM RTS (as implemented in Ekstazi, a recently developed
RTS tool for Java). Specifically:

RQ2.1 (Efficiency): Does RTSLINUX achieve as much reduction
in total testing time and number of executed tests?

RQ2.2 (Safety): How many more dependencies are discovered
by RTSLINUX?

RQ3: What is the overhead of RTSFAB (a naive implementation of
our technique running in user space) compared to RTSLINUX?
The main objective of our evaluation is to show that (1) RT-
SLINUX is as effective as the state-of-the art, and (2) detecting file-
based dependencies at the system level is beneficial. Additionally, by
comparing RTSLINUX to RTSFAB, we provide an initial assessment
of the importance of implementing our technique in kernel space
instead of in user space. Although RTSFAB may not be the most
efficient possible implementation running in user space, we believe
it provides a good starting point for seeking an implementation

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Require: project - a project under study

Require: tool - an RTS tool under study
1: function EXPERIMENTPROCEDURE(project, tool)
2: CroNE(project.url)

3 CHECKOUT(project.sha)

4 for all p € LAsT20REVISIONS(project) do

5 project.sha « p

6: CHECKOUT(project.sha)

7 if BuiLp(project) == FAILED then

8 continue

9 end if

10: test_results « TEsT(project)

11: STOREAVAILABLE(project, test_results)

12: INTEGRATE(project, tool)

13: selected « SELECT(project)

14: test_results, deps < TEsT(project, selected)
15: STORESELECTED(project, tool, test_results, deps)
16: end for

17: end function
Figure 5: Experiment procedure

running in user space that is as efficient and as easy to integrate
with the existing build systems as RTSLINUX is.

We first describe the setup of our study (Section 4.1) and then
answer the research questions (Section 4.2). Section 4.3 includes
additional case studies, including an experiment in using RTSLINUX
with a Python project.

4.1 Study Setup

4.1.1 Projects. Table 1 lists the projects used in this evaluation,
sorted by test execution time. This list includes projects from recent
studies on regression testing [18, 20, 37, 41], as well as a number of
new projects containing tests that escape the JVM by spawning pro-
cesses and/or making native calls. Although not all of the projects
used in previous studies require RTSLINUX’s cross-JVM capabilities,
they still serve as fair benchmarks for evaluating RTSLINUX on its
own merit (RQ1) and comparing it to Ekstazi in terms of efficiency
(RQ2.1). We required that each project is available on GitHub and
builds with Maven, which simplified our experiment infrastructure.

Columns in Table 1 designate project name, GitHub repository
URL, latest revision (SHA) used in the study, number of lines of code
(LOC) (as measured with sloccount), number of Maven modules,
total number of files, total number of test classes, test execution
time for all test classes for a single project revision, and the way in
which (at least some) tests escape the JVM they run in (Processes -
spawns subprocesses, Native Calls - has native calls, Files - accesses
external files, e.g., txt files); for projects that escape the JVM via
both subprocesses and JNI, we mark them only as “Processes” in the
table, because that is the more interesting case from RTSLINUX’s
perspective. For each project, we evaluated our selection technique
over 20 revisions (such that the latest of these revisions is the one
reported in the SHA column); we report the averages in the second
and third to last columns in Table 1.

The last two rows show the total (3}) and average (Avg.) values
for each column (if appropriate). In summary, our evaluation spans
across 420 revisions of 21 projects, totaling 2,050,791 lines of code.

4.1.2 Experiment Procedure. Figure 5 provides the procedure
that we used to collect data for the analysis for a single project.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

Table 1: Projects Used in the Evaluation

Project URL [https://github.com/] SHA LOC :11\:33; #Files c’;;ess:s ﬁ:::;s] iict;z Z
la4j vkostyukov/la4j.git 358be77e 13390 1 147 22.85 14.68 N/A
ScribeJava fernandezpablo85/scribe-java.git 5175a416 7613 5 219 20.00 14.85 N/A
Bukkit Bukkit/Bukkit.git £210234e 32555 1 762 38.00 21.66 N/A
ZT-Exec zeroturnaround/zt-exec 36654400 2938 1 104 18.45 25.04 Processes
Crypto apache/commons-crypto.git dc1769ed 5079 1 140 24.00 27.94 Native Calls
Retrofit square/retrofit ec0635c6 12331 16 202 30.75 28.74 Files
Codec apache/commons-codec.git 535bd812 17625 1 299 48.00 31.72 Files
Vectorz mikera/vectorz.git 425109e2 52096 1 414 70.50 38.98 N/A
Lang apache/commons-lang.git 17a6d163 69014 1 381 133.50 41.21 Files
Net apache/commons-net.git 4450add7 26928 1 315 42.00 65.13 Files
Config apache/commons-configuration.git ~ 8dddebf1 64341 1 642 162.30 66.05 Files
10 apache/commons-io.git e8c1f057 27186 1 302 91.00 89.10 Files
OkHttp square/okhttp d854e6d5 48783 18 344 59.40 101.72 Files
ClosureC google/closure-compiler.git 283d8161 284131 7 1548 309.30 190.41 Native Calls
Dropwizard dropwizard/dropwizard.git le40fef4 37914 34 969 232.00 328.84 Processes
CloudStack apache/cloudstack.git 56235265 572503 104 7585 292.00 335.42 Processes
Tika apache/tika 9cf82589 96220 15 1936 227.65 370.08 Processes
Math apache/commons-math.git 471e6b07 174832 1 1501 431.00 376.46 Files
Guava google/guava.git 061da3b3 244083 5 1737 401.00 424.66 Files
Metron apache/incubator-metron 29646550 57720 28 1507 145.00 462.28 Processes
Activiti activiti/activiti.git b2eba94b 203509 7 5523 312.35 879.99 Processes
> N/A N/A 2050791 250 26577 3111.05 3934.96 N/A
Avg. N/A N/A 97656.71 11.90 1265.57 148.14 187.37 N/A

In the first step (line 2), we clone the project and then (line 3)
checkout the latest revision used in the study (SHA column in
Table 1). Next, we iterate over the last 20 project revisions (lines 4 -
16), starting from the oldest revision and moving towards newer
revisions. We consider only project revisions that are on the master
branch, because many projects run regression tests only against
those revisions. In each iteration of the loop, we build the project
and skip the revision if the build fails. If the build is successful, we
execute the available tests and save the results. To force each test
to run in a separate JVM (which is a common practice [18]), we run
mvn test -DforkCount=1 -DreuseForks=false . Note that mvn test
runs several build phases (including the compilation phase) prior
to running the tests. We will use £20#Lable t denote this end-to-
end test execution time and N @?4ilable 14 denote the number of
available tests.

In the next step, the procedure (line 12) integrates RTSLINUX
by enabling our module in the Linux kernel and including the
RTSLINUX Maven plugin into the project under study. The tests are
then selected based on the dependencies collected in the previous
run and those tests are executed (line 14). Finally, the procedure
stores the results and newly collected dependencies for the executed
tests (line 15). We will use &€/ to denote end-to-end time to select
tests, execute those tests, and collect dependencies; we will use
N3¢l to denote the number of selected tests.

Using the collected data, we compute test selection ratio as S =
Nsel j yavailable « 100 and savings in terms of end-to-end time as
T = &3¢l j gavailable « 100 Savings in terms of end-to-end time
(compared to RetestAll) is the key metric for measuring the benefits
of an RTS technique [37]. To be consistent with prior studies, we

also report test selection ratio; the saving in terms of the number
of tests is a metric independent of the machine used for running
the experiments.

4.1.3 Execution Platform. We run all experiments on a 4-core
Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 16GB of RAM,
running (our version of) Ubuntu 14.04 LTS. Similar to several recent
studies [37, 41, 72], we used multiple versions of Java (Oracle JDK
7u72 and 8u60), which was necessary because several projects (e.g.,
Lang) do not work with newer Java versions.

4.2 Answers to Research Questions

4.2.1 RQI: How Effective is RTSLiNux. Table 2 shows the main
results for RTSLiNUx. Columns 2-5 are explained in Section 4.1.2;
Column 6 denotes the total number of dependencies used by tests
(we counted dependencies that are in the project under study, the
local Maven cache, or executable files used by tests). The last two
rows show the summary values (where appropriate) and average
values computed over all projects. We discuss the right-hand part
(Ekstazi) of the table in the next section.

Our results show that RTSLINUX reduces test execution time for
all projects. In the best case (for the Net project) time to execute
tests is decreased to only 13.52% (of RetestAll time). In the worst
case (for the ClosureC project) time to execute tests is decreased
to 85.12%. On average, across all projects, test execution time is
decreased to 47.17%. Similarly, RTSLINUX leads to substantial re-
duction in terms of the number of executed tests. In the best case
(for the Config project), RTSLINUX selects only 7.94% of available
tests. In the worst case (for the Vectorz project), RTSLINUX selects
64.32% of available tests. We can observe that there are significant

Regression Test Selection Across JVM Boundaries

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 2: Test Execution Time and Test Selection Ratio for RTSLinux and Ekstazi

Project RTSLiNUX Ekstazi
Time Tests Deps Time Tests Deps
&€ells] 7% N3¢ S[%] # &sells] 7% Nl S[%] # (%]

la4j 10.82 73.76 12.70 55.57 861 10.56 71.96 12.70 55.57 298 34.61
ScribeJava 6.79 45.72 1.65 8.25 764 6.51 43.82 1.65 8.25 83 10.86
Bukkit 6.25 28.88 3.20 8.42 1723 6.01 27.75 3.20 8.42 457 26.52
ZT-Exec 14.61 58.35 7.95 43.08 1046 14.18 56.63 7.95 43.08 81 7.74
Crypto 11.93 42.69 6.05 25.20 752 10.43 37.32 4.65 19.37 79 10.50
Retrofit 14.63 50.92 8.85 28.78 15082 14.56 50.66 8.85 28.78 559 3.70
Codec 7.27 2292 4.25 8.85 1363 7.00 22.07 4.25 8.85 144 10.56
Vectorz 31.66 81.22 4535 64.32 1257 31.05 79.64 4535 64.32 379 30.15
Lang 15.14 36.74 17.35 12.99 1757 14.84 36.01 1735 12.99 604 34.37
Net 8.80 13.52 3.45 8.21 773 8.44 12.96 3.45 8.21 196 25.35
Config 17.22 26.07 12.90 7.94 5281 15.98 24.20 12.90 7.94 689 13.04
10 33.06 37.11 18.10 19.89 1335 2548 28.60 12.25 13.46 286 2142
OkHttp 79.08 77.74 25.70 43.26 10745 77.63 76.31 25.25 42.50 686 6.38
ClosureC 162.09 85.12 164.80 53.28 7075 153.75 80.74 164.80 53.28 2416 34.14
Dropwizard 155.04 47.14 44.60 19.22 318493 109.43 33.27 4135 17.82 1102 0.34
CloudStack 270.55 80.65 66.40 22.73 189878 221.83 66.13 60.70 20.78 3758 1.97
Tika 153.10 41.36 52.35 22.99 71404 104.24 28.16 40.25 17.68 1300 1.82
Math 114.02 30.28 101.75 23.60 4732 113.06 ~ 30.03 101.75 23.60 1938 40.95
Guava 86.17 20.29 57.55 14.35 13771 83.39 19.63 56.70 14.13 5145 37.36
Metron 159.86 34.58 20.70 14.27 206994 79.53 17.20 13.80 9.51 1138 0.54
Activiti 489.54 55.63 116.50 37.29 41418 440.86 50.09 116.50 37.29 1873 4.52
> 1847.63 N/A 792.15 N/A 896504 | 1548.76 N/A 755.65 N/A 23211 N/A
Avg. 87.98 47.17 37.72 25.83 42690.66 73.75 42.53 3598 2456 1105.28 16.99

differences in reduction in terms of the number of tests and time.
Recall (Section 4.1) that we measure end-to-end time for the entire
build (as developers would do when running their tests) rather than
measuring only test execution time; therefore, we tend to observe
smaller savings for projects where build phases (e.g., compilation)
take longer than test execution.

4.2.2 RQ2.1: How Does RTSLiNnux Compare to Ekstazi in Terms
of Efficiency. Table 2 (right) shows the results for Ekstazi, including
time taken to execute selected tests (Column 7), time to run selected
tests normalized by RetestAll (Column 8), the average number of
selected tests (Column 9), test selection ratio (Column 10), number
of dependencies (Column 11), and number of dependencies normal-
ized by RTSLINUX dependencies (Column 12). The last two rows
show the total and average values.

In summary, test selection ratio is 25.83% and 24.56%, and exe-
cution time is decreased to 47.17% and 42.53% for RTSLINUX and
Ekstazi, respectively. It is expected that RTSLINUX takes longer to
execute tests, because it captures more dependencies than Ekstazi
(as discussed in the next section), which may lead to more tests
being affected per run and higher cost for computing checksums.

Although test selection ratio is the same for most of the projects,
we can observe differences in several cases, e.g., 10 (19.89% vs. 13.46%).
Such a difference can happen for two reasons: (1) tests create direc-
tories and/or files that are not removed when test execution finishes,
and (2) Ekstazi misses to collect some files that are modified be-
tween revisions. We illustrate these two cases using the I0 project.
Many tests in the I0 project create the test directory in the root of
the project, but they do not remove the directory upon completion.

Consider a test t that creates the test directory. When the test
finishes, RTSLINUX computes the checksum of the test directory
(which is non-empty at this point). At the next project revision
(under the assumption that we are running tests on a continuous
integration service (CIS) [11, 46], e.g., Travis CI, which always does
a clean build), RTSLinux will compute the checksum for the test
directory and find that the checksum is different from before, thus
RTSLinUx will select t every time for the execution. (Note that the
same problem can happen even if developers do not use CIS, but
multiple tests use the same test directory that is not cleaned [18].)
This problem happens for several other projects including Config
and ClosureC; observe that the test selection ratio in the table is the
same for these two projects because we automatically insert code
to cleanup project repository prior to computing the checksum. As
mentioned before, another reason for the difference in test selection
ratio is the difference in the set of dependencies. We observed that
several tests in I0 (e.g., DirectoryFileComparatorTest) traverse all
files from the root of the project; whenever any of these files change
RTSLINUX selects tests for the execution, while Ekstazi misses to
select these tests.

4.2.3 RQ2.2: How Does RTSLinux Compare to Ekstazi in Terms
of Safety. We find that Ekstazi collects only 16.99% of dependencies
collected by RTSLINUX (see the last row in the last column in Ta-
ble 2). Therefore, Ekstazi is less safe than RTSLINUX. Despite these
differences in the set of dependencies, the reduction in test execu-
tion time by RTSLiNnux and Ekstazi is similar, which demonstrates
that RTSLINUX is efficient. We observed, for RTSLINUX, that projects
with many Maven modules have high number of dependencies; the

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 3: Overhead Introduced by RTSLinux, Ekstazi, and
RTSFaB for the First Revision Compared to RetestAll

Project RetestAll RTSLinux Ekstazi RTSFaB
[s] (%] (%] (%]
la4j 17.15 14.16 14.95 44.29
Bukkit 21.41 15.53 18.17 44.74
Codec 25.18 19.62 22.26 59.73
Vectorz 39.57 17.84 15.69 50.64
Lang 40.44 26.69 36.20 66.26
Net 65.42 5.43 4.83 88.62
Config 66.49 25.61 25.07 82.78
10 90.19 8.02 7.66 23.87
Math 374.82 10.20 12.60 39.96
ZT-Exec 23.49 11.00 10.26 137.84
Crypto 27.90 9.84 11.21 34.13
Avg, 72.00 | 1490 | 1626 | 6116

number of modules is reported in Table 1. This high number of
dependencies happens because Java searches for a class file in all
modules on the classpath prior to searching in third party libraries.
Note that RTSLINUX collects even files that are non-existent (and
assigns a special flag to them), because adding such files can affect
test execution.

4.2.4 RQ3: What is the Overhead of RTSFAB (our Technique Im-
plemented in User Space) Compared to RTSLiNux. Table 3 shows, for
each project, time to run all tests (repeated values from Table 1), and
overhead of RTSLINUX, Ekstazi, and RTSFAB when all tests are run
(which happens for the first revision). Table 3 includes only single
module projects, because RTSFaB currently supports only those
projects. On average, RTSLiNUX, Ekstazi, and RTSFaB introduce
14.90%, 16.26%, and 61.16% overhead, respectively. We can conclude
that RTSFAB is significantly less efficient than RTSLINUX. A more
efficient way to implement our technique in user space could still
exist (e.g., using FUSE); this question is left for future work.

Additionally, we can conclude that the collection phase of RT-
SLiNux introduces lower overhead than that of Ekstazi, but it takes
more time to compute checksums (due to larger number of collected
dependencies). The latter conclusion is supported by Tables 2 and 3.
We can see that for the first project revision (when computation of
checksums is done only once after tests were executed) RTSLINUX
introduces lower overhead. However on average across 20 revisions,
when checksums are computed both during the analysis phase and
collection phase, RTSLINUX introduces slightly higher overhead.

4.3 Case Studies

We performed several case studies to further evaluate RTSLINUX
and test its correctness. Specifically, we checked if RTSLINUX gives
the expected results for our motivating examples (Section 2), tried
several interesting tests from various projects, and evaluated the
benefits of RTSLINUxX when applied to a Python project.

4.3.1 Multiple Languages and a Single Process. Section 2.1 in-
troduced a test, from the Hadoop project, which is written in mul-
tiple languages. Recall that the test is executed in a single pro-
cess. Our goal is to confirm that RTSLINUX collects necessary de-
pendencies. (We did not use Hadoop in our experiments in Sec-
tion 4.2 due to long RetestAll time and limited resources.) In our

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

study, we executed only the testSnappyNullPointerException test
described in Section 2.1 and we collected dependencies with RT-
SLinux and Ekstazi. RTSLINUX collected 870 dependencies (includ-
ing libhadoop.so, which contains the compiled C code) while Ek-
stazi collected only 99 dependencies (not including libhadoop. so).

4.3.2 A Single Language and Multiple Processes. Section 2.2 in-
troduced a test from the Ant project that spawns subprocesses.
(We did not include Ant in our benchmark projects in Section 4.2
because it does not build with Maven.) As for Hadoop, we executed
only the test method of interest (testForkedCapture); as expected,
RTSLINUX collected Printer.class (among 617 dependencies) while
Ekstazi didn’t (among 218 dependencies).

4.3.3 Additional Cases. We have also checked correctness of
RTSLiNUX on a few hand-picked interesting tests that either use
JNI or spawn subprocesses. Table 4 shows these tests and compares
number of dependencies collected by RTSLiNUx (#Deps) and per-
cent of those dependencies collected by Ekstazi (Deps [%]). We
manually confirmed that expected dependencies are collected by
RTSLinux. For example, JavaCPP spawns a subprocess that runs
a g++ compiler (and depends on .h files) and PySonar2 spawns a
process that runs Python code (and depends on .py files).

4.3.4 A Python Project. Being implemented at the system level
and not tied to Java at all, RTSLINUX can be applied to a project
written entirely in a non-JVM language. Although this paper pri-
marily focuses on predominantly Java projects, here we discuss our
experience of applying RTSLINUX to pendulum [7], the most popular
Python project on GitHub (based on the number of stars).

The pendulum project comes with 514 test methods and includes
a custom py. test command used to run them. Because tests for this
project take negligible time, we measured only test selection ratio.
We modified py.test to integrate RTSLINUX; next, we followed
the same procedure as for other projects (Figure 5). On average,
RTSLiNux reduced the number of executed tests to 61.45%. In terms
of the number of selected tests, however, RTSLINUX selected most
of them in 12 out of 20 revisions. The main reason for such high
selection rate is the small size of the project, so many tests end up
importing most of the source .py files (unlike in Java, the import
statement in Python evaluates the target .py file, and, thus, creates
a dependency even if nothing from it gets used by the test).

Our motivation for including a Python project was to show that
our technique readily generalizes to other languages; we do not
mean, however, to imply that the empirical evaluation results from
Section 4.2 do too. To make such a claim, a much larger collection
of non-Java projects would have to be included. Further research is
also necessary to explore ways of improving precision of RTSLINUX
for Python (and other languages).

5 THREATS TO VALIDITY

External: The projects used in our study may not be representative.
To mitigate this threat, we used popular open-source projects that
vary in size, number of authors, number of revisions, number of
tests, application domain, and ways their tests escape from JVM.
Furthermore, several projects used in our study were used in recent
work on regression testing [37].

Regression Test Selection Across JVM Boundaries

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Table 4: Case Studies with Native Calls and Sub-Processes

Project URL [https://github.com/] SHA Test name Escape method RISLivux Ekstazi

#Deps Deps [%]
Zeppelin apache/zeppelin 63294785 org.apache.zeppelin.integration.AuthenticationIT Processes 775 1.03
Ratis apache/incubator-ratis 7e71a2e0 org.apache.ratis.server.storage TestRaftStorage Native Calls 1294 2.16
JavaCPP bytedeco/javacpp b41028b9 org.bytedeco.javacpp.AdapterTest Processes 449 14.47
PySonar2 yinwang0/pysonar2.git dc6d8f10 org.yinwang.pysonar.TestRefs Processes 784 20.28

We performed experiments with projects mostly written in Java
(although RTSLINUX is, in theory, more broadly applicable). Our
main motivation for this work were projects that escape from JVM.
In the future, we plan to evaluate RTSLINUX and develop necessary
extensions for projects written in other languages.

We performed our experiments on 20 revisions per project. The
results could differ if we chose different number of revisions or
another time frame. For projects used in a previous evaluation of
Ekstazi [37], we used the same revisions as reported in that study.
For other projects, added in this study, we used the latest revisions
available at the time of our experiments.

The overhead introduced by the collection phase may differ for
other Linux kernel versions. Although we tested RTSLINUX with
several Linux versions, we have not measured the time for each
version. Considering that the version 4 was introduced only to
avoid high version numbers [5], we do not expect that our results
would differ on a few latest releases of the kernel.

Internal: Implementation of RTSLINUX may contain bugs that may
impact our conclusions. To mitigate this threat, we wrote a number
of tests, manually inspected the output of several examples, and
compared the outputs of Ekstazi and RTSLiNux. We also compared
RTSLinux and RTSFAB, which should always have the same test
selection ratio.

Construct: We compared RTSLiNUx only with Ekstazi, although
many other RTS techniques have been proposed in the past (Sec-
tion 7). We justify our decision with two reasons. First, other exist-
ing RTS techniques collect fine-grained dependencies (e.g., meth-
ods, statements, basic blocks, elements of the extended control-
flow graphs, etc.) and they are less safe than Ekstazi. Ekstazi also
compares favorably with the existing RTS techniques in terms of
end-to-end regression testing time [37]. Second, to the best of our
knowledge, Ekstazi is the only publicly available RTS tool (for Java)
at the moment.

6 DISCUSSION

Dependent tests: Some test suites may have order dependencies
among tests, e.g., if test t1 executes before test t2, then t2 passes,
otherwise it fails. Therefore, if RTSLINUX selects only test t2 for the
execution, the test would fail if the test t1 is not selected. RTSLINUX,
as other RTS tools, does not reason about order dependencies among
tests. However, because RTSLINUX requires that each test (or group
of tests specified by a developer) executes in a separate process,
there cannot be a problem due to order dependencies on values in
the main memory. Still, there could be a problem if tests share state
on the disk. We believe that RTSLINUX can be a base for a framework
for detecting such dependencies. Using RTSLINUX we were able

to detect bugs (when a test does not clean the state on disk) in I0,
Config, and ClosureC; our patches were recently accepted by 10 and
Config developers [24, 25].

Flaky tests: Flaky tests are tests that non-deterministically pass
and fail for the same project revision [30, 54, 60, 62, 80, 87]. There are
anumber of sources of non-determinism, including GUI events, net-
working, concurrency, etc. Similar to the existing RTS techniques,
RTSLiNuUX collects dependencies only for one possible execution; if
a test is not selected, then the previous execution trace is still feasi-
ble. Note that this is consistent with existing static RTS techniques
that are used in practice [31, 79].

Parallel execution: RTSLINUX supports parallel test execution by
tracking dependencies for each user’s command separate and mon-
itoring the accessed files/directories by (transitively) spawned pro-
cesses. Note however that RTSLINUX does not support distributed
tests (i.e., tests that communicate over network), but only tests that
are executed on a single machine.

One test per JVM: Although running one test (or groups of de-
pendent tests) per JVM can introduce overhead, it is still a common
approach practiced in industry [18]. As a result, RTSLINUX fits well
in the common development practices and reduces the testing cost
by skipping many tests after code changes.

Detecting files loaded by JVM in Ekstazi: Ekstazi has a hidden
option to collect files loaded by JVM, which is untested and disabled
by default. In our experiments, hence, we used the default (stable)
Ekstazi configuration. In principle, even when collecting all files
loaded by JVM, Ekstazi still cannot detect file accesses made from
spawned processes and from native code, making it strictly less
safe than RTSLINUX.

7 RELATED WORK

Regression test selection: There has been a lot of work, in the
last three decades, on regression testing [27, 44, 85] and on regres-
sion test selection [19, 28]. Prior work on dynamic RTS techniques
mostly explored fine-grained dependencies, including dependencies
on functions/methods (e.g., [21]), statements (e.g., [71]), basic blocks
(e.g., [77]), and elements of (extended) control flow graphs [69, 86].
Recent work introduced Ekstazi [37] that collects dynamic file de-
pendencies, which we discussed throughout this paper. Unlike the
existing techniques, RTSLINUX supports tests that are written in
multiple languages and spawn multiple processes.

Kung et al. [49] introduced the class firewall, a technique that
(statically) identifies modified set of classes for two project revi-
sions. Skoglund and Runeson proposed an RTS technique based
on the class firewall [73] and later improved the precision of their
technique [74]. Orso et al. [67] combined the class firewall (static

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

technique) and dangerous edge (dynamic technique) to increase
safety and improve precision. Recent work [51] compared static
and dynamic RTS and showed that static techniques tend to be
unsafe and imprecise.

Several researchers proposed RTS techniques that collect depen-
dencies on external resources [42, 43, 64, 84]. Haraty et al. [42] and
Daou [43] introduced regression testing techniques for database
applications. Willmor and Embury [84] presented a new definition
of safety that takes into account the interaction of the program
with a database state. Nanda et al. [64] recently proposed an RTS
technique that collects dependencies on non-code elements, such
as configuration files and databases. RTSLINUX, collects not only
dependencies on configuration files and databases but on any file
accessed by any process (transitively) spawned by the test.

Tracing tools: There are several tools for tracing system calls in
the Linux kernel. The most popular tool for tracing system calls is
the strace tool [10]. Internally, strace uses ptrace system call that
stops the traced process(es) for each call and introduces observable
overhead when many system calls are made by the traced pro-
cess(es) [88]. For example, the execution of du -sh ~/ is hundreds
of times faster than the execution of strace du -sh ~/. Another
popular tool available in Linux is perf trace. Although this tool
has much lower overhead than the strace tool, perf trace does
not provide a way to extract the file names in human readable for-
mat [8]. Other third-party tools are available, including systemtap,
LTTng, and ktap. These tools are more generic than RTSLINUX and
require the use of domain specific languages to specify calls to be
traced. Additionally, our attempt to use systemtap was unsuccessful
due to incompatibility with recent versions of the Linux kernel.

Build systems and memoization: Many build systems (including
Ant [1], Make [75], Maven [56], and Gradle [39]) support incremen-
tal execution of a build target, but the incremental computation
is commonly based on statically computed dependencies, which
makes them unsafe. Modern cloud-based build systems [16, 23]
improve safety of incremental builds by keeping the explicit list
of fine-grained dependencies, but require substantial effort by the
users [38] and are rather imprecise [20, 61, 81]. Memoize [59] and
Fabricate [32] collect dynamic dependencies on executed files by us-
ing the strace command; these systems do not collect dependencies
on accessed files that do not exist. SCons [9] and Vesta [45] capture
accesses to files even if the files do not exist; however SCons does
not support an arbitrary language by default and Vesta requires
that used files are under revision control. Tup [12] collects dynamic
file dependencies via FUSE; therefore, Tup currently cannot collect
separate set of dependencies for tests that are running in parallel
processes. Pluto is a build system for Java that dynamically collects
file dependencies and uses semantic hashing. Regarding memo-
ization, Guo and Engler proposed IncPy [40] that memoizes calls
to functions even if functions access files. Similar to existing RTS
techniques, IncPy is language-specific.

RTSLINUX was inspired by both the existing build systems and
memoization. However, RTSLINUX is complementary to build sys-
tems and can be integrated with any build system to enable RTS, as
long as the build system notifies RTSLINUX when each test starts
and finishes; these notification can be easily added via plugins
that are supported by many existing build systems. RTSLINUX also

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

may reduce the need for build system migration that can be non-
trivial [38, 58, 65, 78].

Provenance-aware systems: Provenance-aware systems provide
meta-data that describe the history of various objects in a system.
Initial work on provenance-aware systems was language-specific
(e.g., [13]). Recent work explored support for multilingual projects
via libraries [55] (that require manual annotations) and OS log-
ging [63, 76]. Muniswamy-Reddy et al. [63] proposed a technique
that collects meta-data on various abstraction levels. Bates et al. [15]
presented a whole-system provenance-aware technique that col-
lects meta-data for the entire system with negligible overhead, and
Gehani and Tariq introduced support for provenance auditing in
distributed environments [34]. Lee et al. [50] presented an approach
that avoids dependency explosion. RTSLINUX (and any other RTS
technique) and the provenance-aware systems have different goals,
which is reflected in the type of collected meta-data and the way the
meta-data is used. For example, an RTS technique needs to know
when each test starts and finishes.

Continuous integration services: Recent work by Vasilescu et
al. [83] and Hilton et al. [46] showed that continuous integration
services (CISs), such as Travis CI [11], are widely used and im-
prove the productivity of project teams. Currently, more than 300K
projects use Travis CI [46], which is only one out of more than 25
publicly available CISs. CISs are used by projects written in differ-
ent (combination of) programming languages and build languages.
RTSLINUX could easily be integrated with a number of CISs that
run Linux based VMs, which would lead to reduction in regression
testing cost for a number of projects.

8 CONCLUSION

We presented a novel regression test selection technique, dubbed
RTSLinux. The key novelty is that RTSLINUX supports tests that
escape JVM (e.g., spawn multiple subprocesses). For each test, RT-
SLinux collects all accessed files by the process running the test
and all spawned subprocesses; the overhead of collection is reduced
by implementing RTSLINUX at the system level (as a loadable ker-
nel module). RTSLINUX provides extension mechanism for smooth
integration with build systems and testing frameworks. Our results
show that RTSLINUX substantially reduces testing time compared
to RetestAll. Additionally, our experiments showed that RTSLINUX
achieves similar savings for Java projects as Ekstazi (a regression
test selection tool for JVM languages) while improving the safety.
Although more research is needed to evaluate RTSLINUX for various
languages and improve its precision by combining it with language-
specific techniques, we believe that current savings achieved by
RTSLiINUX can make a significant difference for a large number of
multilingual projects and any continuous integration service.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for help in improving this
paper; Oguz Demir, Nima Dini, Darko Marinov, and John Micco
for their feedback on this work; and Casen Hunger, Nick Kelly, and
Nghia (Tommy) Huynh for providing us access to their hardware.
This research was partially supported by the US National Science
Foundation under Grants Nos. CCF-1566363 and CCF-1652517, and
by a Google Faculty Research Award.

Regression Test Selection Across JVM Boundaries

REFERENCES

(1]
(2]
(3]

[15]

[16
[17]

=
&

[19

[20

[21]

[22]

[23]

[24]
[25]

[26

[27

[28]

[29

[30]

Ant Home Page. http://ant.apache.org.

Apache Hadoop Home Page. http://hadoop.apache.org.

Build in the Cloud. http://google-engtools.blogspot.com/2011/08/
build-in- cloud-how-build- system-works.html.

JUnit Task. https://ant.apache.org/manual/Tasks/junit.html.

Linus Torvalds - Moving to Linux 4.0. https://plus.google.com/+LinusTorvalds/
posts/jmtzzLiiejc.

Linux Loadable Kernel Module HOWTO.
Module-HOWTO.

pendulum - Python datetimes made easy.
pendulum.

perf trace & vfs_getname.
msg02975.html.

SCons. http://www.scons.org.
strace - trace system calls and signals. http://linux.die.net/man/1/strace.

Travis CI - Test and Deploy Your Code with Confidence. https://travis-ci.org.
Tup. http://gittup.org/tup.

Elaine Angelino, Daniel Yamins, and Margo I. Seltzer. 2010. StarFlow: A Script-
Centric Data Analysis Environment. In International Provenance and Annotation
Workshop. 236-250.

Thomas Ball. 1998. On the Limit of Control Flow Analysis for Regression Test
Selection. In International Symposium on Software Testing and Analysis. 134-142.
Adam Bates, Dave Tian, Kevin R. B. Butler, and Thomas Moyer. 2015. Trustworthy
Whole-system Provenance for the Linux Kernel. In USENIX Conference on Security
Symposium. 319-334.

Bazel. http://bazel.io/.

Boris Beizer. 1990. Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold
Co., New York, NY, USA.

Jonathan Bell and Gail E. Kaiser. 2014. Unit test virtualization with VMVM. In
International Conference on Software Engineering. 550-561.

Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.
2011. Regression Test Selection Techniques: A Survey. Informatica (Slovenia) 35,
3(2011), 289-321.

Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. 2016. Build
System with Lazy Retrieval for Java Projects. In International Symposium on
Foundations of Software Engineering. 643-654.

Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. 1994. TestTube: A
System for Selective Regression Testing. In International Conference on Software
Engineering. 211-220.

Pavan Kumar Chittimalli and Mary Jean Harrold. 2007. Re-computing Coverage
Information to Assist Regression Testing. In International Conference on Software
Maintenance. 164-173.

Maria Christakis, K. Rustan M. Leino, and Wolfram Schulte. 2014. Formalizing
and Verifying a Modern Build Language. In International Symposium on Formal
Methods. 643-657.

Cleaning directories after each test run, to prevent repository pollution. https:
//github.com/apache/commons-io/pull/13.

Cleaning directories after each test run, to prevent repository pollution. https:
//issues.apache.org/jira/browse/ CONFIGURATION-638.

Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
Improving Regression Testing in Continuous Integration Development Envi-
ronments. In International Symposium on Foundations of Software Engineering.
235-245.

Emelie Engstrom and Per Runeson. 2010. A Qualitative Survey of Regression
Testing Practices. In Product-Focused Software Process Improvement. 3-16.
Emelie Engstrom, Per Runeson, and Mats Skoglund. 2010. A Systematic Review
on Regression Test Selection Techniques. Journal of Information and Software
Technology 52, 1 (2010), 14-30.

Emelie Engstrém, Mats Skoglund, and Per Runeson. 2008. Empirical evaluations
of regression test selection techniques: a systematic review. In International
Symposium on Empirical Software Engineering and Measurement. 22-31.
Eradicating Non-Determinism in Tests. http://martinfowler.com/articles/
nonDeterminism.html.

Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s Distributed and Caching Build Service. In International Conference
on Software Engineering, Software Engineering in Practice. 11-20.

Fabricate. https://github.com/SimonAlfie/fabricate.

Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.
Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance Au-
diting in Distributed Environments. In International Middleware Conference.
101-120.

Milos Gligoric. 2015. Regression Test Selection: Theory and Practice. Ph.D. Disser-
tation. The University of Illinois at Urbana-Champaign.

http://tldp.org/HOWTO/
https://github.com/sdispater/

http://www.spinics.net/lists/linux-perf-users/

[36

[37

~
2

(64

[65]

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In International Conference on Software Engineering, Demo. 713~
716.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In International Symposium on
Software Testing and Analysis. 211-222.

Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman
Narasamdya, and Benjamin Livshits. 2014. Automated Migration of Build Scripts
using Dynamic Analysis and Search-Based Refactoring. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications. 599-616.

Gradle Build Tool - Modern Open Source Build Automation. http://gradle.org.
Philip J. Guo and Dawson Engler. 2011. Using Automatic Persistent Memoization
to Facilitate Data Analysis Scripting. In International Symposium on Software
Testing and Analysis. 287-297.

Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable test-
ing: detecting state-polluting tests to prevent test dependency. In International
Symposium on Software Testing and Analysis. 223-233.

Ramzi A. Haraty, Nash’at Mansour, and Bassel Daou. 2001. Regression testing of
database applications. In Symposium on Applied Computing. 285-289.

Ramzi A. Haraty, Nashat Mansour, and Bassel A. Daou. 2004. Regression test
selection for database applications. Advanced Topics in Database Research 3
(2004), 141-165.

Jean Hartmann. 2012. 30 Years of Regression Testing: Past, Present and Future.
In Pacific Northwest Software Quality Conference. 119-126.

Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu. 2002. The Vesta Software
Configuration Management System. Research Report. http://www.hpl.hp.com/
techreports/Compagq-DEC/SRC-RR-177.pdf.

Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-Source
Projects. In Automated Software Engineering. 426-437.

JNI APIs and Developer Guides. https://docs.oracle.com/javase/8/docs/technotes/
guides/jni.

KernelGitGuide. https://wiki.ubuntu.com/Kernel/Dev/KernelGitGuide.

David Chenho Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima.
1995. Class Firewall, Test Order, and Regression Testing of Object-Oriented
Programs. Journal of Object-Oriented Programming 8, 2 (1995), 51-65.

Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Network and Distributed
System Security Symposium.

Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection
in Modern Software Evolution. In International Symposium on Foundations of
Software Engineering. 883-894.

Hareton K. N. Leung and Lee White. 1989. Insights into regression testing. In
International Conference on Software Maintenance. 60-69.

Sheng Liang. 1999. Java Native Interface : Programmer’s Guide and Specification.
Addison-Wesley Longman.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In International Symposium on Foundations of
Software Engineering. 643—653.

Peter Macko and Margo Seltzer. 2012. A General-purpose Provenance Library.
In USENIX Conference on Theory and Practice of Provenance. 6-6.

Apache Maven. https://maven.apache.org.

Philip Mayer and Alexander Bauer. 2015. An Empirical Analysis of the Utilization
of Multiple Programming Languages in Open Source Projects. In International
Conference on Evaluation and Assessment in Software Engineering. 1-10.

Shane Mcintosh, Bram Adams, and Ahmed E. Hassan. 2012. The Evolution of
Java Build Systems. Empirical Software Engineering 17, 4-5 (2012), 578-608.
Memoize. https://github.com/kgaughan/memoize.py.

Atif M. Memon and Myra B. Cohen. 2013. Automated Testing of GUI Applications:
Models, Tools, and Controlling Flakiness. In International Conference on Software
Engineering. 1479-1480.

Brian S. Mitchell and Spiros Mancoridis. 2006. On the automatic modularization
of software systems using the Bunch tool. Transactions on Software Engineering
32,3 (2006), 193-208.

Kivang Muslu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating
Unit Tests. In International Symposium on Foundations of Software Engineering.
496-499.

Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko,
Diana Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. 2009. Layering
in Provenance Systems. In Conference on USENIX Annual Technical Conference.
10-10.

Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessan-
dro Orso. 2011. Regression Testing in the Presence of Non-code Changes. In
International Conference on Software Testing, Verification, and Validation. 21-30.
Alexander Neundorf. Why the KDE project switched to CMake - and how.
http://lwn.net/Articles/188693.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

[66]

[67]

[68]

[69

[70]

71

[72

[73]

[74

[75]

[76

[77

Alessandro Orso and Gregg Rothermel. 2014. Software Testing: A Research
Travelogue (2000-2014). In Future of Software Engineering. 117-132.
Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling Regression
Testing to Large Software Systems. In International Symposium on Foundations
of Software Engineering. 241-251.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A Large Scale Study of Programming Languages and Code Quality in GitHub. In
International Symposium on Foundations of Software Engineering. 155-165.
Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004.
Chianti: A Tool for Change Impact Analysis of Java Programs. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications. 432-448.
Gregg Rothermel and Mary Jean Harrold. 1996. Analyzing Regression Test
Selection Techniques. Transactions on Software Engineering 22, 8 (1996), 529—
551.

Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. Transactions on Software Engineering and Methodology 6, 2
(1997), 173-210.

August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-offs in Test-suite Reduction. In International Symposium
on Foundations of Software Engineering. 246—256.

Mats Skoglund and Per Runeson. 2005. A case study of the class firewall regres-
sion test selection technique on a large scale distributed software system. In
International Symposium on Empirical Software Engineering. 74-83.

Mats Skoglund and Per Runeson. 2007. Improving Class Firewall Regression
Test Selection by Removing the Class Firewall. International Journal of Software
Engineering and Knowledge Engineering 17, 3 (2007), 359-378.

Peter Smith. 2011. Software Build Systems: Principles and Experience. Addison-
Wesley Professional.

R. Spillane, R. Sears, C. Yalamanchili, S. Gaikwad, M. Chinni, and E. Zadok. 2009.
Story Book: An Efficient Extensible Provenance Framework. In Workshop on on
Theory and Practice of Provenance. 11:1-11:10.

Amitabh Srivastava and Jay Thiagarajan. 2002. Effectively Prioritizing Tests in
Development Environment. In International Symposium on Software Testing and
Analysis. 97-106.

(78]

[79

(80]

(81

(84

(85]

"%
&

(87

[88

Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric

Roman Suvorov, Meiyappan Nagappan, Ahmed E. Hassan, Ying Zou, and Bram
Adams. 2012. An empirical study of build system migrations in practice: Case
studies on KDE and the Linux kernel. In International Conference on Software
Maintenance. 160-169.

Testing at the speed and scale of Google. http://google-engtools.blogspot.com/
2011/06/testing-at- speed-and-scale- of-google. html.

TotT: Avoiding Flakey Tests. http://googletesting.blogspot.com/2008/04/
tott-avoiding-flakey-tests. html.

Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, and Vahab Mirrokni.
2015. Automated Decomposition of Build Targets. In International Conference on
Software Engineering. 123-133.

Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017.
File-Level vs. Module-Level Regression Test Selection for .NET. In Symposium
on the Foundations of Software Engineering, Industry Track. TO APPEAR.
Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous In-
tegration in GitHub. In International Symposium on Foundations of Software
Engineering. 805-816.

David Willmor and Suzanne M. Embury. 2005. A Safe Regression Test Selection
Technique for Database Driven Applications. In International Conference on
Software Maintenance. 421-430.

Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selec-
tion and Prioritization: A Survey. Journal of Software Testing, Verification and
Reliability 22, 2 (2012), 67-120.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-
inducing program edits based on spectrum information. In International Confer-
ence on Software Maintenance. 23-32.

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivan¢ Muslu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In International Symposium on Software Testing and Analysis. 385—
396.

Jorg Zinke. 2009. System call tracing overhead. http://www.linux-kongress.org/
2009/slides/system_call_tracing_overhead_joerg_zinke.pdf.

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Multiple Languages and a Single Process
	2.2 A Single Language and Multiple Processes

	3 Technique
	3.1 Analysis Phase
	3.2 Execution Phase
	3.3 Collection Phase
	3.4 System Integration

	4 Evaluation
	4.1 Study Setup
	4.2 Answers to Research Questions
	4.3 Case Studies

	5 Threats to Validity
	6 Discussion
	7 Related Work
	8 Conclusion
	References

