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Abstract—Proof assistants such as Coq are used to construct
and check formal proofs in many large-scale verification projects.
As proofs grow in number and size, the need for tool support
to quickly find failing proofs after revising a project increases.
We present a technique for large-scale regression proof selection,
suitable for use in continuous integration services, e.g., Travis CI.
We instantiate the technique in a tool dubbed 1C0Q. 1COQ tracks
fine-grained dependencies between Coq definitions, propositions,
and proofs, and only checks those proofs affected by changes
between two revisions. ICOQ additionally saves time by ignoring
changes with no impact on semantics. We applied 1C0Q to track
dependencies across many revisions in several large Coq projects
and measured the time savings compared to proof checking from
scratch and when using Coq’s timestamp-based toolchain for
incremental checking. Our results show that proof checking with
1C0Q is up to 10 times faster than the former and up to 3 times
faster than the latter.

I. INTRODUCTION

Verification projects based on construction and certifica-
tion of formal proofs inside proof assistants have reached a
hitherto unprecedented scale. Large projects take two main
forms: formalizations of mathematical theories and programs
with accompanying proofs of correctness at the level of
executable code [23]. The former includes the proofs of the
four-color theorem [27] and the Feit-Thompson odd order
theorem in Coq [28], and a proof of the Kepler conjecture in
HOL Light [29]; the latter includes the certified seL4 operating
system kernel in Isabelle/HOL [35], and the CompCert C
compiler in Coq [38].

Using proof assistants has advantages with respect to scal-
ability, modularity, and reliability compared to using more
automated methods based only on model checking or SMT
solving [23]. On the other hand, proof assistants are more
human resource intensive to use than model checkers, and
come with less tool support than what is available to program-
mers using mainstream programming languages. Specifically,
Wenzel has recently noted the need for more systematic tool
support to maintain repositories of formal proofs [61].

Large verification projects based on proof assistants are
similar to regular software projects in that (a) the end goal is
a software artifact with certain properties, (b) developers use
an integrated development environment (IDE) to write code,
which is then checked by a tool and submitted to a version
control system shared with others. Evidence from earlier un-
dertakings indicate that such projects require engineering effort
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similar to, or beyond, some of the most complex software
projects; for example, the proof of the odd order theorem in
Coq was a six-year effort of a team of 15 people, resulting in
170,000 lines of code [40].

We believe that proper tool support for large-scale proof
engineering using proof assistants is an important and growing
concern [34]. In particular, it is important to quickly find
and report errors in evolving Coq and Isabelle/HOL projects.
However, just as for large projects in, e.g., Java, determining
the errors caused by a particular change can be a time-
consuming process. For instance, the Coq correctness proofs
of an implementation of the Raft distributed consensus pro-
tocol [41] are around 50k lines in total [63] and take more
than 30 minutes to check from scratch on a computer with an
Intel Core i7 4th generation processor. Potentially, a Coq user
has to wait all this time to find out whether a change in some
definition makes a seemingly unrelated proof fail.

Until recently, all proof assistants in the LCF family,
including Isabelle/HOL and Coq, relied on user interaction
through a read-eval-print loop inherited from their predecessor.
This interaction model effectively prevents event-based user
interaction with proof assistant files inside an IDE, in the
style of Eclipse. Initial work in Isabelle/HOL to address this
problem [60] paved the way for recent architectural changes in
Coq towards a document-oriented interaction model, where the
proof assistant backend asynchronously receives definitions,
proof commands, and proof checking tasks from the user, all
of which may concern disparate parts of a project [7].

In this paper, we show that potential gains in produc-
tivity from Coq’s new interaction model go beyond recent
application inside IDEs [21]. We present 1COQ, a tool for
regression proof selection for large-scale Coq projects, suitable
for use in workflows involving version control and continuous
integration services (CISs), e.g., Travis CI [31], [53]. (CISs run
tests/proofs of a project whenever code of the project changes.
These services have become widely used; Travis CI, one out
of more than 20 available CISs, is used by more than 300k
projects [33].) 1ICOQ works by tracking dependencies between
definitions, propositions, and proofs. When presented with a
set of changes to Coq files, ICOQ uses this knowledge of
dependencies to only check the proofs affected by the changes,
potentially saving significant time in comparison to checking
everything from scratch. In addition, ICOQ saves time by

ASE 2017, Urbana-Champaign, IL, USA
Technical Research

Accepted for publication by IEEE. © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



ignoring changes with no impact on the semantics of files,
e.g., additions of comments or whitespaces.

Our approach is based on a fundamental analogy between
tests and proofs. As Beck has noted in context of extreme
programming [9], a test can be viewed as a method that checks
a partial functional specification of a system. Consequently,
a proposition about a (pure) function in Coq’s logic, along
with its proof, can be viewed as an amalgamation of many—
possibly an infinite number of—tests. For example, changing
the definition of a function in a Coq file can potentially
impact many proofs, analogously to how changes in Java
programs affect tests in a test suite. Using this analogy,
1ICOQ mirrors previous work in regression testing for main-
stream programming languages, in particular techniques for
lightweight regression test selection, which have been shown
to significantly lower the cost of running test suites, and hence
find errors more quickly [10], [18], [24], [37], [42], [43], [46],
[47], [52], [64]. Such tools have recently been adopted by
many large open-source Java projects. ICOQ opens the door for
similar benefits to accrue to developers of large Coq projects.

Nevertheless, proofs and tests are also different in several
important ways. First, the proof of one claim typically depends
on other claims; tests are typically completely independent
of other tests. Second, function definitions, claims, and proof
scripts are often interspersed in Coq files; test code is seldom
interspersed with program code. Third, Coq proof checking is
done in the same environment as the processing of definitions
and even computation; executing tests is usually done com-
pletely separately from code compilation. We overcome these
three challenges by leveraging Coq’s newly-added toolchain
for asynchronous proof processing [7].

To evaluate 1COQ, we applied it on the version control
histories of several Coq developments, including three large-
scale projects, and measured the time savings compared to
proof checking from scratch (typical use in continuous inte-
gration systems) and incremental proof checking using Coq’s
timestamp-based toolchain (typical command-line use). Our
results show that processing proofs with 1COQ is up to 10x
faster than the former, and up to 3x faster than the latter.

We make the following contributions:

* Technique: We propose regression proof selection (inspired
by regression test selection), a technique that can substan-
tially reduce proof checking time for evolving verification
projects. To the best of our knowledge, this is the first
application of research in regression testing to the domain
of formal proofs. Our insight is that due to simpler language
features in proof assistants than in imperative languages
(e.g., Java), regression proof selection can straightforwardly
collect fine-grained dependencies, which are used to identify
proofs to recheck at each project revision.

* Tool: We implemented regression proof selection in a tool,
dubbed 1C0Q, which supports Coq projects. We provide a
version of our tool on the following URL: http://cozy.ece.
utexas.edu/icoq.

* Evaluation: We performed an empirical study to measure
the effectiveness (in terms of both number of executed
proofs and proof checking time) of regression proof selec-
tion using ICOQ. We used several open-source Coq projects,
including three large-scale projects.

II. CoQ BACKGROUND

The Coq proof assistant can be viewed as, on the one
hand, a small and powerful purely functional programming
language, and on the other hand, a system for specifying
properties about programs and proving them. Coq is based
on a constructive type theory called the Calculus of Inductive
Constructions (CIC) [44]. In CIC, both programs and propo-
sitions about programs are types inhabited by ferms, in effect
putting program construction and proving on the same footing.
Via a frontend, e.g., emacs with Proof General [5], a user
interactively constructs tentative proof terms for propositions
(assertions) using operations called factics, and the final result
is only accepted after Coq’s type checker was run successfully
by the backend on the term. Barring use of inconsistent
axioms and frontend issues, the user need only trust that
the comparatively small type checking kernel is correctly
implemented and compiled to trust the results. The interactive
proof development process in Coq is illustrated in Figure 1.

Co
tactics N 4 v’
1. . proof term -7
user logic engine type checker
I~
subgoals X

Fig. 1. Coq interactive proof development overview

Definitions of functions and lemmas processed by Coq are
written in the Gallina language, and reside in files ending in
.v. The standard Coq batch proof processing (“compilation’)
tool, coqgc, takes a .v file as input and produces a .vo file
as output that contains full binary representations of processed
Gallina constructs, including proofs. If the proofs are large
and complex, .vo files can be tens of megabytes large [39].
Since files may depend on other files, checking all proofs in a
Coq project requires some form of dependency analysis. The
standard cog_makefile tool generates a Makefile which,
by default, calls the cogdep tool for this purpose [16].
cogdep builds a dependency graph for all input files based
on simple syntactic analysis of Require commands (similar
to import statements in Java) in files, which indicate direct
dependency at the file level. When proof checking is then
performed via the Makefile, the generated dependency graph
is used to compile . v files in some allowed order, possibly in
parallel. The generated Makefile also enables timestamp-based
incremental processing of Coq projects, which is known to be
limited [19], [25].

Figure 2 shows the content of three example Gallina
files, where a simple function on lists of natural numbers
is defined, specified, and proved correct. Alternate.v
contains definitions used in the two other files, and these
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Alternate.v
Export ListNotations.

Require Export List.

Fixpoint alternate 11 12 : list nat :=
match 11 with
| [] => 12 | hl :: tl =>
match 12 with
[ [] => hl :: tl | h2 :: t2 => hl :: h2 :: alternate tl t2
end
end.

Inductive alt : list nat -> list nat -> list nat -> Prop :4

| alt_nil : forall 1, alt [] 1 1
| alt_step : forall a 1 tl t2,
alt 1 tl t2 -> alt (a :: tl) 1 (a :: t2).

Lemma alt_alternate :
forall 11 12 13, alt 11 12 13 -> alternate 11 12 = 13.

Proof.

induction 11; intros.

— inversion H. subst. simpl. reflexivity.

— destruct 12; simpl; inversion H; inversion H4; auto.
apply IH11 in H9. rewrite H9. reflexivity.

Qed.

AltLem.v

Require Import Alternate.

Lemma alt_exists :
Proof.
induction 11; intros;

forall 11 12, exists 13, alt 11 12 13.

destruct 12.

- exists []. apply alt_nil.
- exists (n :: 12). apply alt_nil.
- exists (a :: 11). apply alt_step. apply alt_nil.

- specialize (IH11l 12). destruct IH11.
repeat apply alt_step. auto.
Qed.

exists (a :: n :: X).

Alternatelem.v
Require Import Alternate.

Lemma alternate_alt :
forall 11 12 13, alternate 11 12 = 13 -> alt 11 12 13.

Proof.

induction 11; simpl; intros.

- rewrite H. apply alt_nil.

— destruct 12; subst; apply alt_step; try apply alt_nil.
apply alt_step. apply IH11l. reflexivity.

Qed.

Lemma alternate_correct :

forall 11 12 13, alternate 11 12 = 13 <-> alt 11 12 13.
Proof.
intros; split;
Qed.

[apply alternate_alt | apply alt_alternate].

Fig. 2. Coq Gallina file examples

dependencies are found by cogdep. The dependency data
is used to generate a Makefile that calls cogc to produce
.vo files; if Alternate. v is subsequently modified in any
way after compilation, the other files will also be automat-
ically recompiled when running make. On the other hand,
modification of the other files does not trigger recompilation
of Alternate.v.

In effect, the cogdep tool produces a coarse-grained de-
pendency graph of a Coq development at the level of .v
files, as shown in Figure 3(a) for the example Gallina files;
dashed arrows indicate dependencies on files from Coq’s
standard library, which are usually disregarded. Internally, Coq
maintains a fine-grained dependency graph at the level of
constants, reminiscent of the graph shown in Figure 3(b).

In each Coq file, the commands between Proof. and
Qed. are proof scripts comprised of tactic calls along with
bullets to indicate goal structure. Proof scripts instruct Coq
how to build a proof term. Tactics can be pipelined and may

perform sophisticated and time-consuming search operations,
splitting of goals, and term rewriting. Ultimately, tactics pro-
duce a proof ¢ in Coq’s term syntax, of which a fragment is
shown in Figure 4. For example, the beginning of the proof
of alt_alternate can be represented as

Const(Lambda(11, App(list,nat), App(list_ind, ...)))

where list and nat are the Ind terms for the algebraic
datatypes for polymorphic lists and natural numbers, respec-
tively, and 1ist_ind is the Const term for a list induction
principle.

Coq version 8.5, the first stable release to include archi-
tectural changes to support a document-oriented interaction
model [7], introduced the option to quick-compile .v files to
the binary . vio format, a process which avoids checking (and
emitting representations of) proofs that have been indicated as
opaque by ending with Qed. Only the type (assertion) of an
opaque identifier such as alt_alternate,i.e., not the body
term, can be referenced in other parts of a Coq development,
whence type checking of all such terms can normally be per-
formed in complete isolation. Specifically, . vio files contain
proof-checking tasks, which can be performed individually by
issuing a cogc command referencing the task identifier. A
Coq user can depend on more rapidly produced .vio files in
lieu of . vo files in most developments, but must then assume
that all proofs are correct.

For example, the lemma alternate_correct
(Alternatelem.v) in the Coq development in Figure 2
depends on the types (assertions) of alternate_alt and
alt_alternate, but not their proofs; consequently, the
proof of alternate_correct need not be re-checked
if only the proof of alt_alternate is changed. In this
case, the sole required action is to re-check the proof of
alt_alternate, which can be accomplished by first
quick-compiling Alternate.v and then running the single
proof-checking task in Alternate.vio. Figure 5 illustrates
the possible workflows for Alternate.v made possible by
Coq’s document-oriented model.

Coq uses a notion of sections to organize common assump-
tions made in a collection of lemmas, say, that equality on
type A is decidable (A_eqg_dec). A lemma may reference
one or more such assumptions, which then become quantified
variables that must be instantiated when the lemma is refer-
enced outside of the section. However, by default, Coq only
determines the used section variables of a lemma when the
end of the section is reached. This means that the final type
(assertion) of the section lemma is not known when considered
in isolation, whence its proof cannot be immediately checked
as an asynchronous task. To get around this problem, Coq
allows section lemmas to be annotated with the assumptions
they use (e.g., Proof using A_eqg_dec). The required
annotations can be derived from metadata produced by Coq
during compilation of source files to .vo files [51], and then
inserted back into the source files. In the evaluation of our
technique, we used this approach to add annotations to all
revisions of the projects under study as a separate initial step.
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Fig. 3. Coarse- vs. fine-grained dependency graphs for example Coq development

t == Var(x) | Prod(n,t,t'") | Lambda(n,t,c) | App(c,ca) |
Const(c) | Ind(4) | Construct(es) | Fix(f) | ...

Fig. 4. Coq term syntax fragment
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Alternate.v proof script

Alternate.vio
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Fig. 5. Coq workflows for Alternate.v

III. TECHNIQUE

This section describes our proof selection technique. We
first describe its phases at a high level, then details on the
lower-level steps, and finally our implementation in the 1COQ
tool. The key idea is to incrementally build and analyze
both coarse-grained and fine-grained dependency graphs to
produce the minimal set of proofs that need to be checked
after a change has been made to a project. The advantage of
our technique compared to the timestamp-based incremental
processing of files stems from that, generally, checking a few
proofs in isolation spread out across a development takes much
less time and effort than checking all proofs in all affected
source files.

A. Phases

Roughly, our technique follows the three phases of a typical
regression test selection technique [64]: an initial analysis
phase that locates proofs affected by recent changes, followed
by an execution phase that checks the selected proofs, followed
by a final collection phase which produces dependencies for
the next revision. We assume that both the file-level and
lemma-level dependencies and checksums of the last revision
of the project are available at the start of the initial phase.
Analysis phase: First, for each source file in the project,
we check whether its checksum is still the same since the
last revision. Then, we perform file-level dependency analysis
and build an up-to-date coarse-grained dependency graph that
includes checksums, with changed files marked. This graph is
then used to quick-compile the changed source files, allowing
us to compute checksums of the term representations of
individual definitions and lemma statements that may have

changed. At the same time, we also determine the proof
tasks available in each changed source file, and compute the
checksum of each proof script associated with a proof task.
Using our knowledge of proof tasks and checksums for fine-
grained entities, we obtain a fine-grained dependency graph
where each modified entity is marked, and from which recently
removed entities are purged.

By going through all modified entities in the fine-grained
dependency graph, we then calculate the transitively impacted
entities, and mark them in the graph. The set of proof tasks
to execute is then precisely the tasks associated with the set
of modified and impacted entities. Note that this process
of discovering impacted proofs is similar to the process of
“invalidating the upward transitive closure” in some build
systems, e.g., Bazel [8].

Execution phase: Given the list of proof tasks and their
associated source files and binary quick-compiled files from
the previous phase, we emit the commands for checking
those tasks. After each command is executed, we note the
dependencies of the proof on other lemmas and definitions;
this information is only available when the proof term has
actually been constructed and stored in memory.

Collection phase: This phase finds the dependencies of all
modified definitions and lemmas by extracting them from
the quick-compiled files and combining the results with the
proof dependencies obtained in the previous phase. We use
these dependencies to build a complete up-to-date fine-grained
dependency graph that includes checksums. We then store this
graph as a file, to be used in the analysis phase of the next
project revision.

Running example: We exemplify our technique for Coq
using the code in Figure 2. Assume that we integrated 1COQ
in the project at revision vl. At that revision, we compute
the checksums of all .v files, run cogdep on them, and
build the graph shown in Figure 3(a); no checksums existed
in revisions prior to vl and therefore the current values are
considered different by definition. Since all file checksums
are different, we quick-compile all files into .vio files and
compute all the checksums for all definitions and lemma
statement terms. Then, we note the proof tasks in each file and
compute checksums for the associated proof scripts. Again,
all checksums are different by definition, so we check the
proofs of all lemmas (alt_alternate, alt_exists,
alternate_alt, and alternate_correct). From the
corresponding proof terms, and the terms for alternate and
alt, we construct the graph in Figure 3(b) and add checksums
for all nodes. The graphs and checksums are then stored for
future use.
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Fixpoint alternate (11 12 : list nat) : list nat :=
match 11, 12 with

I, —=>12 1| _, [1 =>11

| hl :: tl, h2 :: t2 => hl :: h2 :: alternate tl t2
end.

Fig. 6. Modified Coq function definition in Alternate.v

Suppose that the developer of the example Coq project
rewrites the definition of the function alternate to the
one in Figure 6; this change leads to a new revision v2 of
the project. At the file level, the checksum of Alternate.v
becomes different from before. However, cogdep reveals that
the file dependency graph is still the same as in Figure 3(a).
Since the other .v files depend on Alternate.v, we
compile all . v files into .vio files in some order allowed by
the graph. After then computing checksums of terms (using
Alternate.vio)and proof scripts (using Alternate.v),
we conclude that only (the body of) alternate has been
modified. Using this information and the graph in Fig-
ure 3(b), we determine that the proofs of alt_alternate,
alternate_alt, and alternate_correct are im-
pacted and must be checked. Consequently, we run the com-
mands to check these proofs (while alt_exists is not
checked, because it was not impacted).

After each proof checking task has completed, we note
that no dependencies in the proofs have changed. Finally, we
extract and analyze dependencies from the only modified non-
proof term (alternate), confirming that the graph in Fig-
ure 3(b) is up-to-date after the new checksum for alternate
has been added.

B. 1CoQ Components and Workflow

Our current implementation of the technique is written in
OCaml, Java, and bash. We developed a number of separate
Coq tools and plugins. Since Coq developments are not
upwards or downwards compatible in general, we target Coq
version 8.5 to support the largest range of project revision
histories susceptible to asynchronous proof checking; we ex-
pect no fundamental issues with supporting 8.6 and future
Coq versions. Our tools and plugins can also be used (and
be useful) outside the context of 1C0OQ.

cog-depends plugin: To extract dependencies from
compiled Coq files (.vo and .vio), we adapted and
extended previous work on the cog-dpdgraph Coq
plugin [2], which builds dependency graphs for given
identifiers or modules (files). In essence, the derived plugin,
called cog-depends, traverses a Coq term abstract syntax
tree (AST), and records the globally unique (“kernel”’) name
of all referenced identifiers it encounters, such as those
of inductive types, lemmas, and functions. By performing
the dependency extraction at the level of ASTs in the Coq
backend, our tool is isolated from complexities at the Gallina
level, such as custom notations and implicit arguments.
In contrast to cog-dpdgraph, cog-depends does not
perform recursive dependency extraction, and supports .vio
files, which do not contain the proofs of opaque identifiers
that cog-dpdgraph expects to be present. The plugin

makes no distinction between depending on an identifier of
a lemma or function that is inside the scope of a project or
outside it. In particular, if there is a dependency on a lemma
in the Coq standard library, which is normally assumed to
be stable across revisions, it must be filtered out from the
plugin output to be excluded from analysis. For example,
from the proof term for the lemma alt_alternate
described in section II, cog-depends extracts the
set of kernel names {Alternate.alt,Alternate.alternate,
Coq.Init.Datatypes.list,Coq.Init.Datatypes.list_ind, ... }.
Here, to filter out unnecessary dependencies, it suffices to
exclude names with the prefix “Coq.”.

cog-ast plugin: To compare Coq identifiers across
project revisions, we developed a plugin for computing short
summaries (digests) of Coq term ASTs that capture the
structure of the trees. We use a technique for computing
summaries based on cryptographic hashes that was shown to
be effective at programming language syntax fingerprinting by
Chilowicz et al. [14]. More specifically, letting C be a hashing
function, - the string concatenation operation, ¢ a term AST
with root node r and child trees t4,...,t,, and V' a function
from AST nodes to strings, Chilowicz et al. define a hash
function He such that He(t) = C(V(r)-He(t1) .. .- He(tn))-
Note that this function, which we implemented in OCaml with
C = MDS5, is linear in the number of nodes in the tree.

The function V is defined in an obvious way based on
the syntax in Figure 4; as an example, Figure 7 shows a
fragment of the AST of the proof of alt_alternate in
Alternate.v where V has been applied to each node. To
keep ASTs as shallow as possible, we do not unfold bodies of
referenced inductive types or constants, and simply use their
(unique) kernel names.

[1nd 1ist][Ind nat] [Const list_ind|

Fig. 7. AST with string values of nodes for example Coq term

cogdigest tool: Since we cannot compute digests of
ASTs of opaque identifiers without actually performing all
the proof-checking work (that we are trying to skip), we use
digests of the actual proof scripts (“tactic soups”) in the .v
files. From the standard cogdoc tool which translates . v files
into documentation, we derived a tool dubbed cogdigest
that extracts the proof scripts of opaque lemmas while ignoring
sequences of characters that do not affect semantics, and
returns the MDS5 hash of the results. The tool also notes
whether a lemma is admitted, i.e., whether an identifier with
an unfinished proof is assumed as complete for the rest of the
development; this is a common device used in early phases of
verification projects.

For example, when parsing AlternateLem. v from Fig-
ure 2, cogdigest determines that there are two proof tasks
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in the file, one for the lemma alternate_alt and one for
the lemma alternate_correct. For the latter specifically,
cogdigest computes the MDS5 hash of the proof script
intros; split; [apply alternate_alt | apply alt_alternate].

coqgc dependency extraction extension: A proof term for a
proof task in a . vio file is only available when the proof task
completes. Yet, to properly update the identifier dependency
graph for the next revision, all dependencies must be extracted
from such terms. Consequently, we extended the cogc tool
with an additional command that, when given a .vio file,
its associated .v file, and a proof task, checks the task and
then outputs all the dependencies in the proof term using
the technique from cog-depends. Due to how the proof
checking interface works in Coq 8.5, accessing the proof term
is only possible when the proof is complete, i.e., has not
been admitted. For this reason, ICOQ ignores checking proofs
of admitted lemmas, although changes in their statement
(type) can lead to checking of other proofs that depend on
them. Since our cogc extension only uses the existing proof
checking facilities, it does not affect the soundness of Coq.

Dependency graph builder and analyzer: We implemented
our own dependency graph builder and dependency analysis
in Java. The resulting program reads files (mostly in JSON
format) output by the Coq tools and plugins, as well as JSON
representations of dependency graphs from previous revisions,
and finally writes the updated dependency graphs to disk.

Toolchain workflow: If all proofs in a .v file need to be
checked, compiling a .vo file is usually significantly faster
than first producing a .vio file and then executing all proof
tasks. Consequently, we compile all .v files in the initial
revision of a project into .vo files, and via those, extract
dependencies directly from both proofs and definitions.

For subsequent revisions, the toolchain workflow (illustrated
in Figure 8) follows the general steps of the technique outlined
in section III-A. First, the Java program reads the JSON
representations of the file-level and identifier-level dependency
graphs from the last revision. Then, it computes checksums
of all .v files in the revision, runs cogdep on changed files,
parses the output, and updates the file-level dependency graph.
Using the graph, the program calls cogc to quick-compile all
impacted files into .vio files. Then, it runs cogdigest on
all new and changed .v files, and cog-ast on their .vio
counterparts, obtaining (via parsing of JSON files) checksums
for all identifiers and a list of proof tasks. This is sufficient
to enable marking all impacted identifiers in the dependency
graph. From the updated graph, the program obtains and runs
all proof tasks associated with impacted identifiers using the

TABLE 1
VERIFICATION PROJECTS USED IN THE EVALUATION
Project URL SHA LOC #Revisions
CTLTCTL [17] ac57a84f 601 10
InfSeqExt [32] 5a52a76f 1756 10
StructTact [50] 8f1bc10a 2496 10
WeakUpTo [57] e570e6dc 1819 10
Flocq [22]  4161¢990 24786 24
UniMath [54] 5e525f08 43049 24
Verdi [55] 15be6f61 53939 24
> N/A N/A 128446 112
Avg. N/A N/A 18349.42 16

extended cogc command, and then parses and incorporates
the JSON output into the fine-grained dependency graph.
Finally, it uses cog-depends to obtain the dependencies
of all impacted non-proof identifiers, writing the up-to-date
graph to disk along with the file-level graph.

IV. EVALUATION
To assess the usability of 1ICOQ on large verification
projects, we answer the following research questions:

RQ1: How effective is ICOQ (compared to the state-of-the-
art techniques), i.e., what is the reduction in the number of
checked proofs?

RQ2: How effective is 1COQ in terms of the proof checking
time in a continuous integration environment?

RQ3: How effective is 1COQ in terms of the proof checking
time outside a continuous integration environment (i.e., for
verification on a user’s machine)?

We run all experiments on a 4-core Intel Core i7-6700 CPU
@ 3.40GHz with 16GB of RAM, running Ubuntu 14.04 LTS.
A. Verification Projects Under Study

Table I shows the list of projects used in our study; all
projects are publicly available, all but one on GitHub [3]. We
selected projects based on (a) public availability of their re-
vision history during principal development, (b) compatibility
of their revision history with Coq 8.5, (c) their size and pop-
ularity, and (d) our familiarity with their codebases; the latter
was necessary for a successful experimental setup. For each
project, we list the name, reference the repository location,
and show the last revision/SHA we used for our experiments,
the number of lines of Coq code (LOC) for the last revision
(as reported by cloc [1]), and the number of revisions for the
experiments. Based on projects’ characteristics, we say that the
first four projects are micro-benchmarks, and the other three
projects are large-scale proof developments.

Verdi and Verdi Raft: Verdi is a framework for verification
of implementations of distributed systems [62]. While the
framework is not currently tied to any one particular verifi-
cation project, it was initially bundled with a verified imple-
mentation of the Raft distributed consensus protocol [63]. We
consider revisions from Mar to Jun 2016, before Verdi and the
Raft implementation were separated. Each revision comprises
over 50k LOC, making Verdi one of the largest publicly
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available software verification projects. Many Verdi proofs use
extensive custom tactic-based automation; the resultant long
proof-checking time was one of the initial motivations for
developing 1COQ.

UniMath: UniMath is a comprehensive library of for-
malized mathematics based on the univalent interpretation,
suggested by Voevodsky, of the types in Coq as so-called
homotopy types rather than mathematical sets [56]. The
revisions of UniMath under study are from Jan to Mar 2016,
and each consist of more than 43k LOC.

Flocq: Flocq is a Coq library that formalizes floating-point
arithmetic in several representations [13], e.g., as described in
the IEEE-754 standard. Flocq is used in the CompCert verified
C compiler to reason about programs which use floating-point
operations [12]. We considered revisions of Flocq from Jan to
Mar 2016, each consisting of more than 22k library LOC.

B. Variables

Independent variables: We manipulate two independent
variables: proof checking techniques and the development
environment. Regarding the proof checking techniques, we
use (a) Coq’s timestamp-based toolchain that we described
in Section II (we refer to this technique as coq_makefile),
and (b) 1COQ that implements regression proof selection.

Our development environments include CI-Env and LO-
Env. CI-Env describes an environment that uses a Continuous
Integration Service (CIS) to check proofs. Note that a CIS
checks proofs in a clean environment for each revision. LO-
Env describes an environment where developers use their
local machines to check proofs. Note that file timestamps are
preserved in the latter case, but not in the former.

Dependent variables: Our dependent variables measure the
effectiveness of proof selection techniques at reducing the
amount of effort required to reproof modified programs. To do
this we compute the proof selection percentage and measure
the proof checking time. The proof selection percentage is
derived from the ratio of selected proofs to the total number
of available proofs executed by coq_makefile in the CI-
Env environment. We use P*¢ to denote this variable. Proof
checking time is measured as the end-to-end time that includes
all phases (described in detail in Section III) of our proof
selection technique.

C. Experiment Procedure

Figure 9 illustrates our experiment procedure that collects
the data necessary to answer our research questions. As input,
the procedure accepts one of the projects under study (Table I),
a number of revisions to be used in the experiment, and a
development environment (either CI-Env or LO-Env). In the
initial step (line 2), the procedure clones the project repository
from the URL in Table I. Next, the procedure iterates over the
latest x revisions, from the oldest to the newest revision. In
each iteration of the loop, the procedure (a) obtains a copy
of the project for the current revision (line 4), (b) configures
the project (as the preparation for the proof checking), and
(c) selects proofs that are affected by changes and checks those

Require: p a project under study

Require: x the number of revisions

Require: ¢ a development environment
1: procedure EXPERIMENTPROCEDURE(p,K,¢)
2: CLONE(p.url)

3: for all p € LATESTREVISIONS(k,p) do
4 CHECKOUT(p)

5: CONFIGURE(p)

6: SELECTEXECUTEANDCOLLECT(p)
7: if ¢ = CI-Env then

8: TOUCHFILES(p)

9: end if

10: end for
11: end procedure

Fig. 9. Experiment procedure
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Fig. 10. Proof selection percentages for two micro-benchmarks

proofs. Finally, if the procedure is simulating the CI-Env, the
timestamps of all files have to be updated.

It is important to observe that we need to save dependency
files for ICOQ between two revisions. Recently, many CISs
have started supporting caching [4], [49], which we can utilize
to store the dependencies. Considering that caching is fast and
1C0Q’s dependency files are small, we do not associate any
overhead with keeping dependencies in the CI environment.

One of the key steps in the experiment procedure is to select
and check proofs (line 6). During this step, our procedure
stores the execution logs, which include the list of selected
proofs and the proof checking time. We analyze these logs in
the following subsection to answer our research questions.

D. Results

We obtained all necessary data by invoking the procedure
in Figure 9 twenty-eight times: one invocation for each project
in Table I, two proof checking techniques (coq_makefile
and 1C0Q), and two environments (CI-Env and LO-Env). In
total, we selected and checked proofs on 112 revisions.

RQI: How effective is 1COQ (compared to the state-of-
the-art techniques), i.e., what is the reduction in the number
of checked proofs?: Figure 10 shows the proof selection
percentage for two (out of four) micro-benchmarks. We can
observe substantial reduction in the number of executed proofs
at many revisions. Overall, across all revisions, we find that
1COQ executes 226 (on average 22.60) and 398 (on average
39.80) proofs for InfSeqExt and StructTact, respectively. On
the other hand, we find that the cog_makefile technique
executes 1,240 (on average 124.00) and 1,635 (on average
163.50) proofs for InfSeqExt and StructTact, respectively. In
other words, ICOQ reduces the number of checked proofs by
81.78% and 75.66% for InfSeqExt and StructTact, respectively.
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TABLE I

TOTAL AND AVERAGE NUMBER OF SELECTED PROOFS AND PROOF CHECKING TIME FOR LARGE VERIFICATION PROJECTS

Project Proofs CI-Env Time [s] LO-Env Time [s]
iCoq Total Pl | coq_makefile iCoq cfi | coq_makefile iCoq cfi
Flocq > 2164 22482 N/A 888.36 303.71 N/A 297.97 261.62 N/A
Avg. 90.16 936.75 9.62 37.01 12.65 N/A 12.41 10.90 N/A
UniMath > 853 17754 N/A 12882.46  3742.88 N/A 3783.52  1692.33 N/A
Avg. 35.54 739.75 4.85 536.76 155.95 N/A 157.64 70.51 N/A
Verdi > 4458 65413 N/A 32528.57  3379.37 N/A 8157.45  3130.96 N/A
Avg. 185.75  2725.54 6.80 1355.35 140.80 N/A 339.89 130.45 N/A
Revision | iCoq Total psel | coq_makefile iCoq cfi | coq_makefile iCoq cfi
40d0e96f 2748 2748 100.00 1350.26  1375.29 0.98 1355.75  1375.88 0.98
6b8a7d06 0 2748 0.00 1351.02 63.38 21.31 1.07 5.58 0.19
56b15cb5 0 2748 0.00 1353.14 347 389.84 0.19 4.00 0.04
940316f5 2 2750 0.07 1351.62 148.83 9.08 1347.49 146.63 9.18
112b39b0 0 2750 0.00 1353.29 378  357.44 0.17 4.26 0.04
57cfobbl 0 2750 0.00 1352.39 3.72  363.15 0.18 4.47 0.04
bbf66a54 0 2750 0.00 1349.02 371 363.03 0.18 4.43 0.04
46b6be65 0 2750 0.00 1352.35 3.88  348.36 0.18 4.83 0.03
27537ec2 0 2750 0.00 1352.00 3.68  366.99 0.19 4.08 0.04
0f2b8090 0 2750 0.00 1353.03 3.59 376.88 0.17 4.24 0.04
0201fc23 0 2750 0.00 1353.01 3.62  373.65 0.20 4.43 0.04
Verdi cad0e753 0 2750 0.00 1353.31 3.82 35343 0.19 4.40 0.04
(details) 2cb92£55 2 2750 0.07 1350.86 147.53 9.15 1346.42 147.20 9.14
21f660c1 3 2697 0.11 1349.63 64.93 20.78 1351.98 10.11  133.60
c28al26¢c 0 2697 0.00 1350.41 3.80  355.09 0.19 6.15 0.03
57479554 3 2697 0.11 1351.44 64.94 20.81 6.19 8.53 0.72
ade568dc 0 2697 0.00 1345.22 3.61 372.22 0.20 4.10 0.05
997ad0a6 0 2697 0.00 1351.46 338  399.72 0.21 4.48 0.04
cee72dle 3 2697 0.11 1346.28 65.00 20.71 6.14 8.57 0.71
8ee9b856 0 2697 0.00 1352.78 3.64 371.54 0.17 4.10 0.04
d4406alb 0 2697 0.00 1349.74 3.55  379.46 0.20 4.11 0.05
687adeaf 1693 2697 62.77 135952 1178.12 1.15 1310.31  1169.79 1.12
06a76847 0 2697 0.00 1383.72 3.51  393.32 0.19 4.06 0.04
15be6f61 4 2699 0.14 1413.07 216.59 6.52 1429.29 192.53 7.42

Although we obtained proof selection percentages for the
other two micro-benchmarks (WeakUpTo and CTLTCTL), we
do not show these numbers because the developers of the
projects have not changed any code in the last 10 revisions. As
expected, ICOQ has not selected any proofs for execution. Note
that open-source projects have frequent non-code changes that
have no impact on tests/proofs [24]; these changes can include
changes in documentation and metadata files.

Finally, we show the results for the three largest projects
used in our study. We format the results slightly differently
for several reasons, including a large number of revisions and
a low proof selection percentage that is not appropriate to be
visualized with a bar chart. Table II shows the results; the table
contains two parts, and we discuss each part in turn.

The top part of the table shows result summaries for each
project; the sum and the average values are computed across
24 revisions. The third column shows the number of proofs
selected by IC0oQ and the fourth column shows the total
number of proofs at each revision; the fifth column shows
the proof selection percentage. For example, for Verdi, we
find that 1COQ executes a total of 4,458 proofs, while the
existing technique executes 65,413 proofs across the same set
of revisions. In other words, across all revisions, the proof
selection percentage for 1COQ is 7%. Note that the proof

selection percentage is the same regardless of the execution
environment (CI-Env vs. LO-Env).

The bottom part of the table shows detailed results for Verdi.
We show the values for each revision; the revision SHA is
shown in Column 2.

RQ2: How effective is
ICOQ in terms of the

TABLE III
RATIO OF TOTAL TIMES FROM TABLE II

. . . Project CI-Env  LO-Env

proof checking time in
. . , Flocq 2.92 1.13

a continuous integration
environment?: We used UniMath 3.44 223
the three large verifica- Verdi 9.62 2.60

tion projects not only to

obtain a proof selection percentage but also to obtain the proof
checking time. First, we consider the CI-Env development
environment. Recall that in CI-Env, cog makefile will
always execute all proofs and thus be costly. On the other
hand, 1COQ saves time by only running a subset of all
proofs. Table II shows the proof checking time. Columns 6
and 7 show the proof checking time for CI-Env when using
cog_makefile and ICOQ, respectively. Table III shows the
summaries. In summary, 1COQ reduces the proof checking
time 2.92x, 3.44x, and 9.62x for Flocq, UniMath, and Verdi,
respectively. Note that CI-Env is of the highest importance due
to the proliferation of CISs.
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Although we also measured proof checking time for micro-
benchmarks, we find that the time savings are insignificant
in those cases due to very fast proof checking. Similar to
regression test selection tools, which inspired our work, we
believe that ICOQ will be most beneficial to large verification
projects with many dependencies and elaborate proofs.

RQ3: How effective is 1COQ in terms of the proof checking
time outside a continuous integration environment (i.e., for
verification on a user’s machine)?: We were curious what
savings could be obtained with ICOQ in the LO-Env devel-
opment environment. As when obtaining our answer to the
previous question, we measured the proof checking time for
large verification projects. Columns 9 and 10 in Table II
show time for cogq_makefile and ICOQ, respectively. We
can see that cog_makefile can save some proof checking
time in LO-Env, i.e., whenever changes do not affect code.
However, even if a change has minimal effect on code (e.g., in
revision 9403f6f5 for Verdi), cog_makefile runs (almost)
all proofs. We find (Table III) that ICOQ reduces the proof
checking time 1.13x, 2x, and 3x on average, for Flocq,
UniMath, and Verdi, respectively.

We believe the greater reduction in proof checking time for
Verdi is primarily due to its many long-running proofs and
opaque constants (that end in Qed.). In contrast, UniMath
contains many non-opaque constants whose processing cannot
be deferred during quick compilation, and nearly all proofs in
Flocq have a relatively short running time.

V. DISCUSSION

Safety: In a regression testing context, a test selection tech-
nique is safe when, for every possible change to a project, the
technique never omits to run a test affected by the change [47].
Analogously, a proof selection technique is safe whenever no
necessary proof checking task is ever omitted. ICOQ currently
gives no formal guarantee of safety in this sense; a proof of
safety would have to reason about Coq’s toolchain, which is
certainly possible at an abstract level, but difficult to do at
the level of code. Nevertheless, verifying safety for a proof
selection algorithm for Coq and Gallina is arguably more
straightforward than doing so for a test selection algorithm
for an object-oriented language with elaborate semantics (e.g.,
Java), which may include complicated features such as dy-
namic class loading.

Tactic language dependencies: 1COQ currently does not
perform parsing and dependency analysis of custom tactics
defined in the Ltac language that occur in source files. This
means that an isolated change in the definition of a tactic never
results in lemmas whose (unedited) proof scripts contain calls
to that tactic being marked as “changed”, even though the
semantics of such a proof script may have changed. Analysis
of Ltac definitions is a planned future extension of 1COQ.
Similar concerns as for Ltac hold for custom Coq language
extensions written in OCaml that are used in some projects.

Universe constraints: Sozeau and Tabareau recently intro-
duced support for generic Coq definitions that can be used
across universes of types [48]. However, Coq’s toolchain for

asynchronous proof processing ignores universe constraints,
since such constraints must be checked for consistency at the
global level [51]. Consequently, Coq projects that make heavy
use of universe polymorphism are not good targets for 1COQ.

Parameterized modules: A Coq module encapsulates a
collection of definitions and lemmas in a namespace. A
parameterized module, or functor, takes modules with a certain
signature as input, and can contain lemmas involving types in
its parameters. Consequently, the file that contains the functor
has corresponding proof tasks for those lemmas. However, no
identifiers are exposed at the global level until the functor is
fully instantiated with argument modules, eluding cog-ast.
This problem can be solved, e.g., by conservatively compiling
the file to a .vo file, checking all proofs. However, functors
appear to be used rarely outside of the standard library; of
the projects under study only Verdi uses them, and in a
minimalistic way. Hence, we omitted support for functors in
the initial version of 1C0Q.

Overhead: 1COQ introduces several sources of overhead
compared to LCF-style top-down processing of .v files into
.vo files. One source is quick compilation and task-based
proof checking itself, which is performed in independent
phases and requires book-keeping for lemmas and proofs.
Additionally, 1COQ requires computing a fine-grained depen-
dency graph and checksums to discover the impact of changes
to a development. Consequently, ICOQ may not be suitable
to use in small-scale projects, since the overhead can make
regression proof selection as a whole take longer to complete
than straightforward compilation to . vo files; similar conclu-
sions were drawn for regression test selection [24].

VI. THREATS TO VALIDITY

External: Our results may not generalize to all Coq projects.
To mitigate this threat, we used several micro-benchmarks and
three large projects. The large projects use different feature sets
of Coq and target verification of disparate application domains.

We used 24 revisions per project (for large projects), from
segments in the version histories with active development that
were straightforward to compile with Coq version 8.5, the
first version with asynchronous proof-checking support and the
stable version available when we started development of ICOQ.
Our findings could differ for longer sequences of revisions
and different segments in software histories. The number of
revisions was determined by the setup cost and recent studies
of regression testing techniques [24].

Internal: Our implementation of 1C0Q, as well as our
evaluation infrastructure, may contain bugs. To mitigate this
threat, we did extensive testing of our code and code reviews.
In particular, we tested 1COQ on a benchmark set of pairs
of revisions of small Coq developments representing typical
changes to proofs and definitions.

Construct: We implemented proof selection only for a
single proof assistant (Coq). Although our technique should
be applicable to other proof assistants (e.g., Isabelle/HOL),
further work is needed to confirm the applicability.
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VII. RELATED WORK

Incremental verification: Kurshan et al. [36] consider the
problem of incremental verification of models of systems,
assuming full verification is expensive. They suggest tech-
niques based on hashes of reduced models to avoid performing
re-verification when the required properties still hold in a
changed model. This is similar to smart hashing in regression
testing [24]. Henzinger et al. [30] consider incremental verifi-
cation of safety properties of programs using model checking.
In contrast to regression proving, whose aim is to find failing
proofs quickly, their approach uses previous results to attempt
to automatically overcome instances where a program change
makes verification fail. Bohme et al. [11] introduced partition-
based regression verification that partitions the input space and
gradually performs verification. Godlin and Strichman [26]
define regression verification as establishing the equivalence of
successive, related versions of programs. In effect, regression
verification is a strengthening of regression testing, which can
only provide limited evidence of preserved functionality.

Parallel and asynchronous proof checking: Coq’s 1970s
precursor LCF was based on synchronous, sequential inter-
action between a human prover and the proof tool [60].
This legacy is reflected in Coq’s read-eval-print loop, and
by extension, in the top-down interaction with Coq files in
classic interfaces such as Proof General. Over time, both the
assumption on synchrony and on sequential interaction have
been reconsidered, which enabled us to develop 1C0Q.

Support for parallelism in construction and checking of
proofs to exploit multi-core hardware has been addressed
previously in several proof assistants, notably Isabelle [59] and
ACL2 [23], [45]. Isabelle leverages the support for threads
in its “host” compiler, Poly/ML, to spawn proof checking
tasks processed by parallel workers. Using a notion of proof
promises, proofs that require some previous unfinished result
can proceed normally and become finalized when extant
tasks terminate. Isabelle also includes a build system with
integrated support for checking of proofs and management of
parallel workers. ACL2 uses the thread-based parallelism in
LISP systems to, e.g., perform parallel proof discovery and
fine-grained proof case checking. The lack of native threads
in Coq’s host language, OCaml, prevents similar low-cost
fine-grained parallelism [59]. However, more coarse-grained
parallelism is possible at the level of processes.

Parallelism at the task level usually necessitates support for
some form of asynchrony, which can then also be exploited at
the user interface level to provide greater interactivity. Archi-
tectural changes in Isabelle towards a document-oriented asyn-
chronous interaction model were pioneered by Wenzel [60],
resulting in the Prover IDE (PIDE) framework. PIDE defines
an XML-based protocol between a proof assistant backend and
clients such as IDEs. Efforts to bring asynchronous interaction
to Coq were initiated by Wenzel [58] and Barras et al. [6],
resulting in a new Isabelle-inspired document-oriented inter-
action model and support for asynchronous proof processing
in Coq 8.5 [7]. The potential of Coq’s new document model to

improve user productivity was highlighted in an extension to
the Eclipse IDE called Coqoon by Faithfull et al. [21], which
performs fine-grained monitoring of changes to Coq files and
reactively processes modified definitions and proofs.

Regression testing: There has been more than three decades
of work on regression testing techniques [42], [64]. These
techniques were the key inspiration for the work presented
in this paper. Specifically, our work is closely related to
regression test selection (RTS) [10], [18], [24], [37], [42], [43],
[46], [47], [52], [64]. Most of the pioneering work on RTS has
studied techniques that collect, for each test, fine-grained de-
pendencies, e.g,. statements and methods. These techniques are
frequently unsafe (i.e., they may miss to select some affected
tests) for modern programming languages. Recently, Gligoric
et al. [24] introduced Ekstazi, an RTS technique that collects
dynamic file dependencies; Ekstazi is more inclusive than
prior techniques. Interestingly, we have decided to use fine-
grained dependencies for proof selection in ICOQ. Our insight
is that Gallina does not include the language features that make
many RTS techniques unsafe for imperative languages, e.g.,
dependency injection, class inheritance, and macros. To the
best of our knowledge, 1COQ is the first proof selection tool.

Build systems: Our dependency graph is similar to depen-
dency graphs seen in build systems like Google’s Bazel [8]
and Microsoft’s CloudMake [15], [20]. Bazel keeps track of
dependencies on a level of targets. Similarly to how 1C0Q
discovers changed proofs and definitions, these modern build
systems discover affected targets by computing checksums of
the files used by the target and then marking all nodes/targets
that depend on the modified node/target.

VIII. CONCLUSIONS

We presented a technique for regression proof selection in
large-scale verification projects, and its implementation for the
Coq proof assistant in the tool 1COQ. In particular, ICOQ is
suitable for use in continuous integration systems to quickly
find failing proofs in rapidly evolving projects. By tracking
fine-grained dependencies, ICOQ avoids checking unaffected
proofs as changes are made to files. Our evaluation shows that
using ICOQ is up to 10x faster than checking all proofs from
scratch (which is typical in a CI setting). ICOQ can also be
used from the command line, as an alternative to the default
Makefile-based toolchain; our evaluation shows that 1COQ is
up to 3x faster in this case. While our implementation is Coqg-
specific, our technique works in any setting where it is possible
to separate the processing of source files with proofs scripts
into a fast pre-processing phase and a mostly independent,
potentially time-consuming proof-checking phase.
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