
ICOQ: Regression Proof Selection for

Large-Scale Verification Projects

Ahmet Celik

University of Texas at Austin

Austin, TX-78712, USA

ahmetcelik@utexas.edu

Karl Palmskog

University of Illinois at Urbana-Champaign

Urbana, IL-61801, USA

palmskog@illinois.edu

Milos Gligoric

University of Texas at Austin

Austin, TX-78712, USA

gligoric@utexas.edu

Abstract—Proof assistants such as Coq are used to construct
and check formal proofs in many large-scale verification projects.
As proofs grow in number and size, the need for tool support
to quickly find failing proofs after revising a project increases.
We present a technique for large-scale regression proof selection,
suitable for use in continuous integration services, e.g., Travis CI.
We instantiate the technique in a tool dubbed ICOQ. ICOQ tracks
fine-grained dependencies between Coq definitions, propositions,
and proofs, and only checks those proofs affected by changes
between two revisions. ICOQ additionally saves time by ignoring
changes with no impact on semantics. We applied ICOQ to track
dependencies across many revisions in several large Coq projects
and measured the time savings compared to proof checking from
scratch and when using Coq’s timestamp-based toolchain for
incremental checking. Our results show that proof checking with
ICOQ is up to 10 times faster than the former and up to 3 times
faster than the latter.

I. INTRODUCTION

Verification projects based on construction and certifica-

tion of formal proofs inside proof assistants have reached a

hitherto unprecedented scale. Large projects take two main

forms: formalizations of mathematical theories and programs

with accompanying proofs of correctness at the level of

executable code [23]. The former includes the proofs of the

four-color theorem [27] and the Feit-Thompson odd order

theorem in Coq [28], and a proof of the Kepler conjecture in

HOL Light [29]; the latter includes the certified seL4 operating

system kernel in Isabelle/HOL [35], and the CompCert C

compiler in Coq [38].

Using proof assistants has advantages with respect to scal-

ability, modularity, and reliability compared to using more

automated methods based only on model checking or SMT

solving [23]. On the other hand, proof assistants are more

human resource intensive to use than model checkers, and

come with less tool support than what is available to program-

mers using mainstream programming languages. Specifically,

Wenzel has recently noted the need for more systematic tool

support to maintain repositories of formal proofs [61].

Large verification projects based on proof assistants are

similar to regular software projects in that (a) the end goal is

a software artifact with certain properties, (b) developers use

an integrated development environment (IDE) to write code,

which is then checked by a tool and submitted to a version

control system shared with others. Evidence from earlier un-

dertakings indicate that such projects require engineering effort

similar to, or beyond, some of the most complex software

projects; for example, the proof of the odd order theorem in

Coq was a six-year effort of a team of 15 people, resulting in

170,000 lines of code [40].

We believe that proper tool support for large-scale proof

engineering using proof assistants is an important and growing

concern [34]. In particular, it is important to quickly find

and report errors in evolving Coq and Isabelle/HOL projects.

However, just as for large projects in, e.g., Java, determining

the errors caused by a particular change can be a time-

consuming process. For instance, the Coq correctness proofs

of an implementation of the Raft distributed consensus pro-

tocol [41] are around 50k lines in total [63] and take more

than 30 minutes to check from scratch on a computer with an

Intel Core i7 4th generation processor. Potentially, a Coq user

has to wait all this time to find out whether a change in some

definition makes a seemingly unrelated proof fail.

Until recently, all proof assistants in the LCF family,

including Isabelle/HOL and Coq, relied on user interaction

through a read-eval-print loop inherited from their predecessor.

This interaction model effectively prevents event-based user

interaction with proof assistant files inside an IDE, in the

style of Eclipse. Initial work in Isabelle/HOL to address this

problem [60] paved the way for recent architectural changes in

Coq towards a document-oriented interaction model, where the

proof assistant backend asynchronously receives definitions,

proof commands, and proof checking tasks from the user, all

of which may concern disparate parts of a project [7].

In this paper, we show that potential gains in produc-

tivity from Coq’s new interaction model go beyond recent

application inside IDEs [21]. We present ICOQ, a tool for

regression proof selection for large-scale Coq projects, suitable

for use in workflows involving version control and continuous

integration services (CISs), e.g., Travis CI [31], [53]. (CISs run

tests/proofs of a project whenever code of the project changes.

These services have become widely used; Travis CI, one out

of more than 20 available CISs, is used by more than 300k

projects [33].) ICOQ works by tracking dependencies between

definitions, propositions, and proofs. When presented with a

set of changes to Coq files, ICOQ uses this knowledge of

dependencies to only check the proofs affected by the changes,

potentially saving significant time in comparison to checking

everything from scratch. In addition, ICOQ saves time by

978-1-5386-2684-9/17 c© 2017 IEEE
ASE 2017, Urbana-Champaign, IL, USA

Technical Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

171

ignoring changes with no impact on the semantics of files,

e.g., additions of comments or whitespaces.

Our approach is based on a fundamental analogy between

tests and proofs. As Beck has noted in context of extreme

programming [9], a test can be viewed as a method that checks

a partial functional specification of a system. Consequently,

a proposition about a (pure) function in Coq’s logic, along

with its proof, can be viewed as an amalgamation of many—

possibly an infinite number of—tests. For example, changing

the definition of a function in a Coq file can potentially

impact many proofs, analogously to how changes in Java

programs affect tests in a test suite. Using this analogy,

ICOQ mirrors previous work in regression testing for main-

stream programming languages, in particular techniques for

lightweight regression test selection, which have been shown

to significantly lower the cost of running test suites, and hence

find errors more quickly [10], [18], [24], [37], [42], [43], [46],

[47], [52], [64]. Such tools have recently been adopted by

many large open-source Java projects. ICOQ opens the door for

similar benefits to accrue to developers of large Coq projects.

Nevertheless, proofs and tests are also different in several

important ways. First, the proof of one claim typically depends

on other claims; tests are typically completely independent

of other tests. Second, function definitions, claims, and proof

scripts are often interspersed in Coq files; test code is seldom

interspersed with program code. Third, Coq proof checking is

done in the same environment as the processing of definitions

and even computation; executing tests is usually done com-

pletely separately from code compilation. We overcome these

three challenges by leveraging Coq’s newly-added toolchain

for asynchronous proof processing [7].

To evaluate ICOQ, we applied it on the version control

histories of several Coq developments, including three large-

scale projects, and measured the time savings compared to

proof checking from scratch (typical use in continuous inte-

gration systems) and incremental proof checking using Coq’s

timestamp-based toolchain (typical command-line use). Our

results show that processing proofs with ICOQ is up to 10×
faster than the former, and up to 3× faster than the latter.

We make the following contributions:

⋆ Technique: We propose regression proof selection (inspired

by regression test selection), a technique that can substan-

tially reduce proof checking time for evolving verification

projects. To the best of our knowledge, this is the first

application of research in regression testing to the domain

of formal proofs. Our insight is that due to simpler language

features in proof assistants than in imperative languages

(e.g., Java), regression proof selection can straightforwardly

collect fine-grained dependencies, which are used to identify

proofs to recheck at each project revision.

⋆ Tool: We implemented regression proof selection in a tool,

dubbed ICOQ, which supports Coq projects. We provide a

version of our tool on the following URL: http://cozy.ece.

utexas.edu/icoq.

⋆ Evaluation: We performed an empirical study to measure

the effectiveness (in terms of both number of executed

proofs and proof checking time) of regression proof selec-

tion using ICOQ. We used several open-source Coq projects,

including three large-scale projects.

II. COQ BACKGROUND

The Coq proof assistant can be viewed as, on the one

hand, a small and powerful purely functional programming

language, and on the other hand, a system for specifying

properties about programs and proving them. Coq is based

on a constructive type theory called the Calculus of Inductive

Constructions (CIC) [44]. In CIC, both programs and propo-

sitions about programs are types inhabited by terms, in effect

putting program construction and proving on the same footing.

Via a frontend, e.g., emacs with Proof General [5], a user

interactively constructs tentative proof terms for propositions

(assertions) using operations called tactics, and the final result

is only accepted after Coq’s type checker was run successfully

by the backend on the term. Barring use of inconsistent

axioms and frontend issues, the user need only trust that

the comparatively small type checking kernel is correctly

implemented and compiled to trust the results. The interactive

proof development process in Coq is illustrated in Figure 1.

user logic engine type checker

Coq
tactics

subgoals

proof term

Fig. 1. Coq interactive proof development overview

Definitions of functions and lemmas processed by Coq are

written in the Gallina language, and reside in files ending in

.v. The standard Coq batch proof processing (“compilation”)

tool, coqc, takes a .v file as input and produces a .vo file

as output that contains full binary representations of processed

Gallina constructs, including proofs. If the proofs are large

and complex, .vo files can be tens of megabytes large [39].

Since files may depend on other files, checking all proofs in a

Coq project requires some form of dependency analysis. The

standard coq_makefile tool generates a Makefile which,

by default, calls the coqdep tool for this purpose [16].

coqdep builds a dependency graph for all input files based

on simple syntactic analysis of Require commands (similar

to import statements in Java) in files, which indicate direct

dependency at the file level. When proof checking is then

performed via the Makefile, the generated dependency graph

is used to compile .v files in some allowed order, possibly in

parallel. The generated Makefile also enables timestamp-based

incremental processing of Coq projects, which is known to be

limited [19], [25].

Figure 2 shows the content of three example Gallina

files, where a simple function on lists of natural numbers

is defined, specified, and proved correct. Alternate.v

contains definitions used in the two other files, and these

172

Alternate.v

Require Export List. Export ListNotations.

Fixpoint alternate l1 l2 : list nat :=

match l1 with

| [] => l2 | h1 :: t1 =>

match l2 with

| [] => h1 :: t1 | h2 :: t2 => h1 :: h2 :: alternate t1 t2

end

end.

Inductive alt : list nat -> list nat -> list nat -> Prop :=

| alt_nil : forall l, alt [] l l

| alt_step : forall a l t1 t2,

alt l t1 t2 -> alt (a :: t1) l (a :: t2).

Lemma alt_alternate :

forall l1 l2 l3, alt l1 l2 l3 -> alternate l1 l2 = l3.

Proof.

induction l1; intros.

- inversion H. subst. simpl. reflexivity.

- destruct l2; simpl; inversion H; inversion H4; auto.

apply IHl1 in H9. rewrite H9. reflexivity.

Qed.

AltLem.v

Require Import Alternate.

Lemma alt_exists : forall l1 l2, exists l3, alt l1 l2 l3.

Proof.

induction l1; intros; destruct l2.

- exists []. apply alt_nil.

- exists (n :: l2). apply alt_nil.

- exists (a :: l1). apply alt_step. apply alt_nil.

- specialize(IHl1 l2). destruct IHl1. exists (a :: n :: x).

repeat apply alt_step. auto.

Qed.

AlternateLem.v

Require Import Alternate.

Lemma alternate_alt :

forall l1 l2 l3, alternate l1 l2 = l3 -> alt l1 l2 l3.

Proof.

induction l1; simpl; intros.

- rewrite H. apply alt_nil.

- destruct l2; subst; apply alt_step; try apply alt_nil.

apply alt_step. apply IHl1. reflexivity.

Qed.

Lemma alternate_correct :

forall l1 l2 l3, alternate l1 l2 = l3 <-> alt l1 l2 l3.

Proof.

intros; split; [apply alternate_alt | apply alt_alternate].

Qed.

Fig. 2. Coq Gallina file examples

dependencies are found by coqdep. The dependency data

is used to generate a Makefile that calls coqc to produce

.vo files; if Alternate.v is subsequently modified in any

way after compilation, the other files will also be automat-

ically recompiled when running make. On the other hand,

modification of the other files does not trigger recompilation

of Alternate.v.

In effect, the coqdep tool produces a coarse-grained de-

pendency graph of a Coq development at the level of .v

files, as shown in Figure 3(a) for the example Gallina files;

dashed arrows indicate dependencies on files from Coq’s

standard library, which are usually disregarded. Internally, Coq

maintains a fine-grained dependency graph at the level of

constants, reminiscent of the graph shown in Figure 3(b).

In each Coq file, the commands between Proof. and

Qed. are proof scripts comprised of tactic calls along with

bullets to indicate goal structure. Proof scripts instruct Coq

how to build a proof term. Tactics can be pipelined and may

perform sophisticated and time-consuming search operations,

splitting of goals, and term rewriting. Ultimately, tactics pro-

duce a proof t in Coq’s term syntax, of which a fragment is

shown in Figure 4. For example, the beginning of the proof

of alt_alternate can be represented as

Const(Lambda(l1,App(list, nat),App(list_ind, . . .)))

where list and nat are the Ind terms for the algebraic

datatypes for polymorphic lists and natural numbers, respec-

tively, and list_ind is the Const term for a list induction

principle.

Coq version 8.5, the first stable release to include archi-

tectural changes to support a document-oriented interaction

model [7], introduced the option to quick-compile .v files to

the binary .vio format, a process which avoids checking (and

emitting representations of) proofs that have been indicated as

opaque by ending with Qed. Only the type (assertion) of an

opaque identifier such as alt_alternate, i.e., not the body

term, can be referenced in other parts of a Coq development,

whence type checking of all such terms can normally be per-

formed in complete isolation. Specifically, .vio files contain

proof-checking tasks, which can be performed individually by

issuing a coqc command referencing the task identifier. A

Coq user can depend on more rapidly produced .vio files in

lieu of .vo files in most developments, but must then assume

that all proofs are correct.

For example, the lemma alternate_correct

(AlternateLem.v) in the Coq development in Figure 2

depends on the types (assertions) of alternate_alt and

alt_alternate, but not their proofs; consequently, the

proof of alternate_correct need not be re-checked

if only the proof of alt_alternate is changed. In this

case, the sole required action is to re-check the proof of

alt_alternate, which can be accomplished by first

quick-compiling Alternate.v and then running the single

proof-checking task in Alternate.vio. Figure 5 illustrates

the possible workflows for Alternate.v made possible by

Coq’s document-oriented model.

Coq uses a notion of sections to organize common assump-

tions made in a collection of lemmas, say, that equality on

type A is decidable (A_eq_dec). A lemma may reference

one or more such assumptions, which then become quantified

variables that must be instantiated when the lemma is refer-

enced outside of the section. However, by default, Coq only

determines the used section variables of a lemma when the

end of the section is reached. This means that the final type

(assertion) of the section lemma is not known when considered

in isolation, whence its proof cannot be immediately checked

as an asynchronous task. To get around this problem, Coq

allows section lemmas to be annotated with the assumptions

they use (e.g., Proof using A_eq_dec). The required

annotations can be derived from metadata produced by Coq

during compilation of source files to .vo files [51], and then

inserted back into the source files. In the evaluation of our

technique, we used this approach to add annotations to all

revisions of the projects under study as a separate initial step.

173

(a) List.v

Alternate.v

AltLem.v AlternateLem.v

(b) alternate alt

alt_alternate alternate_alt

alt_existsalternate_correct

Fig. 3. Coarse- vs. fine-grained dependency graphs for example Coq development

t ::= Var(x) | Prod(n,t,t′) | Lambda(n,t,c) | App(c,ca) |

Const(c) | Ind(i) | Construct(cs) | Fix(f) | . . .

Fig. 4. Coq term syntax fragment

Alternate.v

coqccoqc -quick

Alternate.voAlternate.vio

coqc -check-vio-tasks

alt_alternate

proof script

alt_alternate

proof

alt_alternate

proof task

Fig. 5. Coq workflows for Alternate.v

III. TECHNIQUE

This section describes our proof selection technique. We

first describe its phases at a high level, then details on the

lower-level steps, and finally our implementation in the ICOQ

tool. The key idea is to incrementally build and analyze

both coarse-grained and fine-grained dependency graphs to

produce the minimal set of proofs that need to be checked

after a change has been made to a project. The advantage of

our technique compared to the timestamp-based incremental

processing of files stems from that, generally, checking a few

proofs in isolation spread out across a development takes much

less time and effort than checking all proofs in all affected

source files.

A. Phases

Roughly, our technique follows the three phases of a typical

regression test selection technique [64]: an initial analysis

phase that locates proofs affected by recent changes, followed

by an execution phase that checks the selected proofs, followed

by a final collection phase which produces dependencies for

the next revision. We assume that both the file-level and

lemma-level dependencies and checksums of the last revision

of the project are available at the start of the initial phase.

Analysis phase: First, for each source file in the project,

we check whether its checksum is still the same since the

last revision. Then, we perform file-level dependency analysis

and build an up-to-date coarse-grained dependency graph that

includes checksums, with changed files marked. This graph is

then used to quick-compile the changed source files, allowing

us to compute checksums of the term representations of

individual definitions and lemma statements that may have

changed. At the same time, we also determine the proof

tasks available in each changed source file, and compute the

checksum of each proof script associated with a proof task.

Using our knowledge of proof tasks and checksums for fine-

grained entities, we obtain a fine-grained dependency graph

where each modified entity is marked, and from which recently

removed entities are purged.

By going through all modified entities in the fine-grained

dependency graph, we then calculate the transitively impacted

entities, and mark them in the graph. The set of proof tasks

to execute is then precisely the tasks associated with the set

of modified and impacted entities. Note that this process

of discovering impacted proofs is similar to the process of

“invalidating the upward transitive closure” in some build

systems, e.g., Bazel [8].

Execution phase: Given the list of proof tasks and their

associated source files and binary quick-compiled files from

the previous phase, we emit the commands for checking

those tasks. After each command is executed, we note the

dependencies of the proof on other lemmas and definitions;

this information is only available when the proof term has

actually been constructed and stored in memory.

Collection phase: This phase finds the dependencies of all

modified definitions and lemmas by extracting them from

the quick-compiled files and combining the results with the

proof dependencies obtained in the previous phase. We use

these dependencies to build a complete up-to-date fine-grained

dependency graph that includes checksums. We then store this

graph as a file, to be used in the analysis phase of the next

project revision.

Running example: We exemplify our technique for Coq

using the code in Figure 2. Assume that we integrated ICOQ

in the project at revision v1. At that revision, we compute

the checksums of all .v files, run coqdep on them, and

build the graph shown in Figure 3(a); no checksums existed

in revisions prior to v1 and therefore the current values are

considered different by definition. Since all file checksums

are different, we quick-compile all files into .vio files and

compute all the checksums for all definitions and lemma

statement terms. Then, we note the proof tasks in each file and

compute checksums for the associated proof scripts. Again,

all checksums are different by definition, so we check the

proofs of all lemmas (alt_alternate, alt_exists,

alternate_alt, and alternate_correct). From the

corresponding proof terms, and the terms for alternate and

alt, we construct the graph in Figure 3(b) and add checksums

for all nodes. The graphs and checksums are then stored for

future use.

174

Fixpoint alternate (l1 l2 : list nat) : list nat :=

match l1, l2 with

| [], _ => l2 | _, [] => l1

| h1 :: t1, h2 :: t2 => h1 :: h2 :: alternate t1 t2

end.

Fig. 6. Modified Coq function definition in Alternate.v

Suppose that the developer of the example Coq project

rewrites the definition of the function alternate to the

one in Figure 6; this change leads to a new revision v2 of

the project. At the file level, the checksum of Alternate.v

becomes different from before. However, coqdep reveals that

the file dependency graph is still the same as in Figure 3(a).

Since the other .v files depend on Alternate.v, we

compile all .v files into .vio files in some order allowed by

the graph. After then computing checksums of terms (using

Alternate.vio) and proof scripts (using Alternate.v),

we conclude that only (the body of) alternate has been

modified. Using this information and the graph in Fig-

ure 3(b), we determine that the proofs of alt_alternate,

alternate_alt, and alternate_correct are im-

pacted and must be checked. Consequently, we run the com-

mands to check these proofs (while alt_exists is not

checked, because it was not impacted).

After each proof checking task has completed, we note

that no dependencies in the proofs have changed. Finally, we

extract and analyze dependencies from the only modified non-

proof term (alternate), confirming that the graph in Fig-

ure 3(b) is up-to-date after the new checksum for alternate

has been added.

B. ICOQ Components and Workflow

Our current implementation of the technique is written in

OCaml, Java, and bash. We developed a number of separate

Coq tools and plugins. Since Coq developments are not

upwards or downwards compatible in general, we target Coq

version 8.5 to support the largest range of project revision

histories susceptible to asynchronous proof checking; we ex-

pect no fundamental issues with supporting 8.6 and future

Coq versions. Our tools and plugins can also be used (and

be useful) outside the context of ICOQ.

coq-depends plugin: To extract dependencies from

compiled Coq files (.vo and .vio), we adapted and

extended previous work on the coq-dpdgraph Coq

plugin [2], which builds dependency graphs for given

identifiers or modules (files). In essence, the derived plugin,

called coq-depends, traverses a Coq term abstract syntax

tree (AST), and records the globally unique (“kernel”) name

of all referenced identifiers it encounters, such as those

of inductive types, lemmas, and functions. By performing

the dependency extraction at the level of ASTs in the Coq

backend, our tool is isolated from complexities at the Gallina

level, such as custom notations and implicit arguments.

In contrast to coq-dpdgraph, coq-depends does not

perform recursive dependency extraction, and supports .vio

files, which do not contain the proofs of opaque identifiers

that coq-dpdgraph expects to be present. The plugin

makes no distinction between depending on an identifier of

a lemma or function that is inside the scope of a project or

outside it. In particular, if there is a dependency on a lemma

in the Coq standard library, which is normally assumed to

be stable across revisions, it must be filtered out from the

plugin output to be excluded from analysis. For example,

from the proof term for the lemma alt_alternate

described in section II, coq-depends extracts the

set of kernel names {Alternate.alt, Alternate.alternate,

Coq.Init.Datatypes.list, Coq.Init.Datatypes.list_ind, . . . }.

Here, to filter out unnecessary dependencies, it suffices to

exclude names with the prefix “Coq.”.
coq-ast plugin: To compare Coq identifiers across

project revisions, we developed a plugin for computing short

summaries (digests) of Coq term ASTs that capture the

structure of the trees. We use a technique for computing

summaries based on cryptographic hashes that was shown to

be effective at programming language syntax fingerprinting by

Chilowicz et al. [14]. More specifically, letting C be a hashing

function, · the string concatenation operation, t a term AST

with root node r and child trees t1, . . . ,tn, and V a function

from AST nodes to strings, Chilowicz et al. define a hash

function HC such that HC(t) = C(V (r) ·HC(t1) · . . .·HC(tn)).
Note that this function, which we implemented in OCaml with

C = MD5, is linear in the number of nodes in the tree.

The function V is defined in an obvious way based on

the syntax in Figure 4; as an example, Figure 7 shows a

fragment of the AST of the proof of alt_alternate in

Alternate.v where V has been applied to each node. To

keep ASTs as shallow as possible, we do not unfold bodies of

referenced inductive types or constants, and simply use their

(unique) kernel names.

Const

Lambda

Name l1 App App

Ind list Ind nat Const list_ind . . .

Fig. 7. AST with string values of nodes for example Coq term

coqdigest tool: Since we cannot compute digests of

ASTs of opaque identifiers without actually performing all

the proof-checking work (that we are trying to skip), we use

digests of the actual proof scripts (“tactic soups”) in the .v

files. From the standard coqdoc tool which translates .v files

into documentation, we derived a tool dubbed coqdigest

that extracts the proof scripts of opaque lemmas while ignoring

sequences of characters that do not affect semantics, and

returns the MD5 hash of the results. The tool also notes

whether a lemma is admitted, i.e., whether an identifier with

an unfinished proof is assumed as complete for the rest of the

development; this is a common device used in early phases of

verification projects.

For example, when parsing AlternateLem.v from Fig-

ure 2, coqdigest determines that there are two proof tasks

175

file dep
graph

new
revision

identifier
dep graph

impacted
.v files

.v file
checksums

impacted
proofs

.vio files

identifier
checksums

checking
commands

identifier
deps

new
identifier
dep graph

Fig. 8. Toolchain workflow

in the file, one for the lemma alternate_alt and one for

the lemma alternate_correct. For the latter specifically,

coqdigest computes the MD5 hash of the proof script
intros; split; [apply alternate_alt | apply alt_alternate].

coqc dependency extraction extension: A proof term for a

proof task in a .vio file is only available when the proof task

completes. Yet, to properly update the identifier dependency

graph for the next revision, all dependencies must be extracted

from such terms. Consequently, we extended the coqc tool

with an additional command that, when given a .vio file,

its associated .v file, and a proof task, checks the task and

then outputs all the dependencies in the proof term using

the technique from coq-depends. Due to how the proof

checking interface works in Coq 8.5, accessing the proof term

is only possible when the proof is complete, i.e., has not

been admitted. For this reason, ICOQ ignores checking proofs

of admitted lemmas, although changes in their statement

(type) can lead to checking of other proofs that depend on

them. Since our coqc extension only uses the existing proof

checking facilities, it does not affect the soundness of Coq.

Dependency graph builder and analyzer: We implemented

our own dependency graph builder and dependency analysis

in Java. The resulting program reads files (mostly in JSON

format) output by the Coq tools and plugins, as well as JSON

representations of dependency graphs from previous revisions,

and finally writes the updated dependency graphs to disk.

Toolchain workflow: If all proofs in a .v file need to be

checked, compiling a .vo file is usually significantly faster

than first producing a .vio file and then executing all proof

tasks. Consequently, we compile all .v files in the initial

revision of a project into .vo files, and via those, extract

dependencies directly from both proofs and definitions.

For subsequent revisions, the toolchain workflow (illustrated

in Figure 8) follows the general steps of the technique outlined

in section III-A. First, the Java program reads the JSON

representations of the file-level and identifier-level dependency

graphs from the last revision. Then, it computes checksums

of all .v files in the revision, runs coqdep on changed files,

parses the output, and updates the file-level dependency graph.

Using the graph, the program calls coqc to quick-compile all

impacted files into .vio files. Then, it runs coqdigest on

all new and changed .v files, and coq-ast on their .vio

counterparts, obtaining (via parsing of JSON files) checksums

for all identifiers and a list of proof tasks. This is sufficient

to enable marking all impacted identifiers in the dependency

graph. From the updated graph, the program obtains and runs

all proof tasks associated with impacted identifiers using the

TABLE I
VERIFICATION PROJECTS USED IN THE EVALUATION

Project URL SHA LOC #Revisions

CTLTCTL [17] ac57a84f 601 10
InfSeqExt [32] 5a52a76f 1756 10
StructTact [50] 8f1bc10a 2496 10
WeakUpTo [57] e570e6dc 1819 10
Flocq [22] 4161c990 24786 24
UniMath [54] 5e525f08 43049 24
Verdi [55] 15be6f61 53939 24
∑

N/A N/A 128446 112
Avg. N/A N/A 18349.42 16

extended coqc command, and then parses and incorporates

the JSON output into the fine-grained dependency graph.

Finally, it uses coq-depends to obtain the dependencies

of all impacted non-proof identifiers, writing the up-to-date

graph to disk along with the file-level graph.

IV. EVALUATION

To assess the usability of ICOQ on large verification

projects, we answer the following research questions:

RQ1: How effective is ICOQ (compared to the state-of-the-

art techniques), i.e., what is the reduction in the number of

checked proofs?

RQ2: How effective is ICOQ in terms of the proof checking

time in a continuous integration environment?

RQ3: How effective is ICOQ in terms of the proof checking

time outside a continuous integration environment (i.e., for

verification on a user’s machine)?

We run all experiments on a 4-core Intel Core i7-6700 CPU

@ 3.40GHz with 16GB of RAM, running Ubuntu 14.04 LTS.

A. Verification Projects Under Study

Table I shows the list of projects used in our study; all

projects are publicly available, all but one on GitHub [3]. We

selected projects based on (a) public availability of their re-

vision history during principal development, (b) compatibility

of their revision history with Coq 8.5, (c) their size and pop-

ularity, and (d) our familiarity with their codebases; the latter

was necessary for a successful experimental setup. For each

project, we list the name, reference the repository location,

and show the last revision/SHA we used for our experiments,

the number of lines of Coq code (LOC) for the last revision

(as reported by cloc [1]), and the number of revisions for the

experiments. Based on projects’ characteristics, we say that the

first four projects are micro-benchmarks, and the other three

projects are large-scale proof developments.

Verdi and Verdi Raft: Verdi is a framework for verification

of implementations of distributed systems [62]. While the

framework is not currently tied to any one particular verifi-

cation project, it was initially bundled with a verified imple-

mentation of the Raft distributed consensus protocol [63]. We

consider revisions from Mar to Jun 2016, before Verdi and the

Raft implementation were separated. Each revision comprises

over 50k LOC, making Verdi one of the largest publicly

176

available software verification projects. Many Verdi proofs use

extensive custom tactic-based automation; the resultant long

proof-checking time was one of the initial motivations for

developing ICOQ.

UniMath: UniMath is a comprehensive library of for-

malized mathematics based on the univalent interpretation,

suggested by Voevodsky, of the types in Coq as so-called

homotopy types rather than mathematical sets [56]. The

revisions of UniMath under study are from Jan to Mar 2016,

and each consist of more than 43k LOC.

Flocq: Flocq is a Coq library that formalizes floating-point

arithmetic in several representations [13], e.g., as described in

the IEEE-754 standard. Flocq is used in the CompCert verified

C compiler to reason about programs which use floating-point

operations [12]. We considered revisions of Flocq from Jan to

Mar 2016, each consisting of more than 22k library LOC.

B. Variables

Independent variables: We manipulate two independent

variables: proof checking techniques and the development

environment. Regarding the proof checking techniques, we

use (a) Coq’s timestamp-based toolchain that we described

in Section II (we refer to this technique as coq_makefile),

and (b) ICOQ that implements regression proof selection.

Our development environments include CI-Env and LO-

Env. CI-Env describes an environment that uses a Continuous

Integration Service (CIS) to check proofs. Note that a CIS

checks proofs in a clean environment for each revision. LO-

Env describes an environment where developers use their

local machines to check proofs. Note that file timestamps are

preserved in the latter case, but not in the former.

Dependent variables: Our dependent variables measure the

effectiveness of proof selection techniques at reducing the

amount of effort required to reproof modified programs. To do

this we compute the proof selection percentage and measure

the proof checking time. The proof selection percentage is

derived from the ratio of selected proofs to the total number

of available proofs executed by coq_makefile in the CI-

Env environment. We use P sel to denote this variable. Proof

checking time is measured as the end-to-end time that includes

all phases (described in detail in Section III) of our proof

selection technique.

C. Experiment Procedure

Figure 9 illustrates our experiment procedure that collects

the data necessary to answer our research questions. As input,

the procedure accepts one of the projects under study (Table I),

a number of revisions to be used in the experiment, and a

development environment (either CI-Env or LO-Env). In the

initial step (line 2), the procedure clones the project repository

from the URL in Table I. Next, the procedure iterates over the

latest κ revisions, from the oldest to the newest revision. In

each iteration of the loop, the procedure (a) obtains a copy

of the project for the current revision (line 4), (b) configures

the project (as the preparation for the proof checking), and

(c) selects proofs that are affected by changes and checks those

Require: p a project under study
Require: κ the number of revisions
Require: ε a development environment

1: procedure EXPERIMENTPROCEDURE(p,κ,ε)
2: CLONE(p.url)
3: for all ρ ∈ LATESTREVISIONS(κ,p) do
4: CHECKOUT(ρ)
5: CONFIGURE(p)
6: SELECTEXECUTEANDCOLLECT(p)
7: if ε = CI-Env then
8: TOUCHFILES(p)
9: end if

10: end for
11: end procedure

Fig. 9. Experiment procedure

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Revision

%
 o

f
p

ro
o

fs

(a) InfSeqExt

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
Revision

%
 o

f
p

ro
o

fs

(b) StructTact

Fig. 10. Proof selection percentages for two micro-benchmarks

proofs. Finally, if the procedure is simulating the CI-Env, the

timestamps of all files have to be updated.

It is important to observe that we need to save dependency

files for ICOQ between two revisions. Recently, many CISs

have started supporting caching [4], [49], which we can utilize

to store the dependencies. Considering that caching is fast and

ICOQ’s dependency files are small, we do not associate any

overhead with keeping dependencies in the CI environment.

One of the key steps in the experiment procedure is to select

and check proofs (line 6). During this step, our procedure

stores the execution logs, which include the list of selected

proofs and the proof checking time. We analyze these logs in

the following subsection to answer our research questions.

D. Results

We obtained all necessary data by invoking the procedure

in Figure 9 twenty-eight times: one invocation for each project

in Table I, two proof checking techniques (coq_makefile

and ICOQ), and two environments (CI-Env and LO-Env). In

total, we selected and checked proofs on 112 revisions.

RQ1: How effective is ICOQ (compared to the state-of-

the-art techniques), i.e., what is the reduction in the number

of checked proofs?: Figure 10 shows the proof selection

percentage for two (out of four) micro-benchmarks. We can

observe substantial reduction in the number of executed proofs

at many revisions. Overall, across all revisions, we find that

ICOQ executes 226 (on average 22.60) and 398 (on average

39.80) proofs for InfSeqExt and StructTact, respectively. On

the other hand, we find that the coq_makefile technique

executes 1,240 (on average 124.00) and 1,635 (on average

163.50) proofs for InfSeqExt and StructTact, respectively. In

other words, ICOQ reduces the number of checked proofs by

81.78% and 75.66% for InfSeqExt and StructTact, respectively.

177

TABLE II
TOTAL AND AVERAGE NUMBER OF SELECTED PROOFS AND PROOF CHECKING TIME FOR LARGE VERIFICATION PROJECTS

Project
Proofs CI-Env Time [s] LO-Env Time [s]

iCoq Total P
sel coq_makefile iCoq c/i coq_makefile iCoq c/i

Flocq

∑
2164 22482 N/A 888.36 303.71 N/A 297.97 261.62 N/A

Avg. 90.16 936.75 9.62 37.01 12.65 N/A 12.41 10.90 N/A

UniMath

∑
853 17754 N/A 12882.46 3742.88 N/A 3783.52 1692.33 N/A

Avg. 35.54 739.75 4.85 536.76 155.95 N/A 157.64 70.51 N/A

Verdi

∑
4458 65413 N/A 32528.57 3379.37 N/A 8157.45 3130.96 N/A

Avg. 185.75 2725.54 6.80 1355.35 140.80 N/A 339.89 130.45 N/A

Revision iCoq Total P
sel coq_makefile iCoq c/i coq_makefile iCoq c/i

Verdi
(details)

40d0e96f 2748 2748 100.00 1350.26 1375.29 0.98 1355.75 1375.88 0.98
6b8a7d06 0 2748 0.00 1351.02 63.38 21.31 1.07 5.58 0.19
56b15cb5 0 2748 0.00 1353.14 3.47 389.84 0.19 4.00 0.04
9403f6f5 2 2750 0.07 1351.62 148.83 9.08 1347.49 146.63 9.18
112b39b0 0 2750 0.00 1353.29 3.78 357.44 0.17 4.26 0.04
57cf9bb1 0 2750 0.00 1352.39 3.72 363.15 0.18 4.47 0.04
bbf66a54 0 2750 0.00 1349.02 3.71 363.03 0.18 4.43 0.04
46b6be65 0 2750 0.00 1352.35 3.88 348.36 0.18 4.83 0.03
27537ec2 0 2750 0.00 1352.00 3.68 366.99 0.19 4.08 0.04
0f2b8090 0 2750 0.00 1353.03 3.59 376.88 0.17 4.24 0.04
0201fc23 0 2750 0.00 1353.01 3.62 373.65 0.20 4.43 0.04
cad0e753 0 2750 0.00 1353.31 3.82 353.43 0.19 4.40 0.04
2cb92f55 2 2750 0.07 1350.86 147.53 9.15 1346.42 147.20 9.14
21f660c1 3 2697 0.11 1349.63 64.93 20.78 1351.98 10.11 133.60
c28a126c 0 2697 0.00 1350.41 3.80 355.09 0.19 6.15 0.03
57479554 3 2697 0.11 1351.44 64.94 20.81 6.19 8.53 0.72
ade568dc 0 2697 0.00 1345.22 3.61 372.22 0.20 4.10 0.05
997ad0a6 0 2697 0.00 1351.46 3.38 399.72 0.21 4.48 0.04
cee72d1e 3 2697 0.11 1346.28 65.00 20.71 6.14 8.57 0.71
8ee9b856 0 2697 0.00 1352.78 3.64 371.54 0.17 4.10 0.04
d4406a1b 0 2697 0.00 1349.74 3.55 379.46 0.20 4.11 0.05
687a4eaf 1693 2697 62.77 1359.52 1178.12 1.15 1310.31 1169.79 1.12
06a76847 0 2697 0.00 1383.72 3.51 393.32 0.19 4.06 0.04
15be6f61 4 2699 0.14 1413.07 216.59 6.52 1429.29 192.53 7.42

Although we obtained proof selection percentages for the

other two micro-benchmarks (WeakUpTo and CTLTCTL), we

do not show these numbers because the developers of the

projects have not changed any code in the last 10 revisions. As

expected, ICOQ has not selected any proofs for execution. Note

that open-source projects have frequent non-code changes that

have no impact on tests/proofs [24]; these changes can include

changes in documentation and metadata files.

Finally, we show the results for the three largest projects

used in our study. We format the results slightly differently

for several reasons, including a large number of revisions and

a low proof selection percentage that is not appropriate to be

visualized with a bar chart. Table II shows the results; the table

contains two parts, and we discuss each part in turn.

The top part of the table shows result summaries for each

project; the sum and the average values are computed across

24 revisions. The third column shows the number of proofs

selected by ICOQ and the fourth column shows the total

number of proofs at each revision; the fifth column shows

the proof selection percentage. For example, for Verdi, we

find that ICOQ executes a total of 4,458 proofs, while the

existing technique executes 65,413 proofs across the same set

of revisions. In other words, across all revisions, the proof

selection percentage for ICOQ is 7%. Note that the proof

selection percentage is the same regardless of the execution

environment (CI-Env vs. LO-Env).

The bottom part of the table shows detailed results for Verdi.

We show the values for each revision; the revision SHA is

shown in Column 2.
TABLE III

RATIO OF TOTAL TIMES FROM TABLE II

Project CI-Env LO-Env

Flocq 2.92 1.13

UniMath 3.44 2.23

Verdi 9.62 2.60

RQ2: How effective is

ICOQ in terms of the

proof checking time in

a continuous integration

environment?: We used

the three large verifica-

tion projects not only to

obtain a proof selection percentage but also to obtain the proof

checking time. First, we consider the CI-Env development

environment. Recall that in CI-Env, coq_makefile will

always execute all proofs and thus be costly. On the other

hand, ICOQ saves time by only running a subset of all

proofs. Table II shows the proof checking time. Columns 6

and 7 show the proof checking time for CI-Env when using

coq_makefile and ICOQ, respectively. Table III shows the

summaries. In summary, ICOQ reduces the proof checking

time 2.92×, 3.44×, and 9.62× for Flocq, UniMath, and Verdi,

respectively. Note that CI-Env is of the highest importance due

to the proliferation of CISs.

178

Although we also measured proof checking time for micro-

benchmarks, we find that the time savings are insignificant

in those cases due to very fast proof checking. Similar to

regression test selection tools, which inspired our work, we

believe that ICOQ will be most beneficial to large verification

projects with many dependencies and elaborate proofs.

RQ3: How effective is ICOQ in terms of the proof checking

time outside a continuous integration environment (i.e., for

verification on a user’s machine)?: We were curious what

savings could be obtained with ICOQ in the LO-Env devel-

opment environment. As when obtaining our answer to the

previous question, we measured the proof checking time for

large verification projects. Columns 9 and 10 in Table II

show time for coq_makefile and ICOQ, respectively. We

can see that coq_makefile can save some proof checking

time in LO-Env, i.e., whenever changes do not affect code.

However, even if a change has minimal effect on code (e.g., in

revision 9403f6f5 for Verdi), coq_makefile runs (almost)

all proofs. We find (Table III) that ICOQ reduces the proof

checking time 1.13×, 2×, and 3× on average, for Flocq,

UniMath, and Verdi, respectively.

We believe the greater reduction in proof checking time for

Verdi is primarily due to its many long-running proofs and

opaque constants (that end in Qed.). In contrast, UniMath

contains many non-opaque constants whose processing cannot

be deferred during quick compilation, and nearly all proofs in

Flocq have a relatively short running time.

V. DISCUSSION

Safety: In a regression testing context, a test selection tech-

nique is safe when, for every possible change to a project, the

technique never omits to run a test affected by the change [47].

Analogously, a proof selection technique is safe whenever no

necessary proof checking task is ever omitted. ICOQ currently

gives no formal guarantee of safety in this sense; a proof of

safety would have to reason about Coq’s toolchain, which is

certainly possible at an abstract level, but difficult to do at

the level of code. Nevertheless, verifying safety for a proof

selection algorithm for Coq and Gallina is arguably more

straightforward than doing so for a test selection algorithm

for an object-oriented language with elaborate semantics (e.g.,

Java), which may include complicated features such as dy-

namic class loading.

Tactic language dependencies: ICOQ currently does not

perform parsing and dependency analysis of custom tactics

defined in the Ltac language that occur in source files. This

means that an isolated change in the definition of a tactic never

results in lemmas whose (unedited) proof scripts contain calls

to that tactic being marked as “changed”, even though the

semantics of such a proof script may have changed. Analysis

of Ltac definitions is a planned future extension of ICOQ.

Similar concerns as for Ltac hold for custom Coq language

extensions written in OCaml that are used in some projects.

Universe constraints: Sozeau and Tabareau recently intro-

duced support for generic Coq definitions that can be used

across universes of types [48]. However, Coq’s toolchain for

asynchronous proof processing ignores universe constraints,

since such constraints must be checked for consistency at the

global level [51]. Consequently, Coq projects that make heavy

use of universe polymorphism are not good targets for ICOQ.

Parameterized modules: A Coq module encapsulates a

collection of definitions and lemmas in a namespace. A

parameterized module, or functor, takes modules with a certain

signature as input, and can contain lemmas involving types in

its parameters. Consequently, the file that contains the functor

has corresponding proof tasks for those lemmas. However, no

identifiers are exposed at the global level until the functor is

fully instantiated with argument modules, eluding coq-ast.

This problem can be solved, e.g., by conservatively compiling

the file to a .vo file, checking all proofs. However, functors

appear to be used rarely outside of the standard library; of

the projects under study only Verdi uses them, and in a

minimalistic way. Hence, we omitted support for functors in

the initial version of ICOQ.

Overhead: ICOQ introduces several sources of overhead

compared to LCF-style top-down processing of .v files into

.vo files. One source is quick compilation and task-based

proof checking itself, which is performed in independent

phases and requires book-keeping for lemmas and proofs.

Additionally, ICOQ requires computing a fine-grained depen-

dency graph and checksums to discover the impact of changes

to a development. Consequently, ICOQ may not be suitable

to use in small-scale projects, since the overhead can make

regression proof selection as a whole take longer to complete

than straightforward compilation to .vo files; similar conclu-

sions were drawn for regression test selection [24].

VI. THREATS TO VALIDITY

External: Our results may not generalize to all Coq projects.

To mitigate this threat, we used several micro-benchmarks and

three large projects. The large projects use different feature sets

of Coq and target verification of disparate application domains.

We used 24 revisions per project (for large projects), from

segments in the version histories with active development that

were straightforward to compile with Coq version 8.5, the

first version with asynchronous proof-checking support and the

stable version available when we started development of ICOQ.

Our findings could differ for longer sequences of revisions

and different segments in software histories. The number of

revisions was determined by the setup cost and recent studies

of regression testing techniques [24].

Internal: Our implementation of ICOQ, as well as our

evaluation infrastructure, may contain bugs. To mitigate this

threat, we did extensive testing of our code and code reviews.

In particular, we tested ICOQ on a benchmark set of pairs

of revisions of small Coq developments representing typical

changes to proofs and definitions.

Construct: We implemented proof selection only for a

single proof assistant (Coq). Although our technique should

be applicable to other proof assistants (e.g., Isabelle/HOL),

further work is needed to confirm the applicability.

179

VII. RELATED WORK

Incremental verification: Kurshan et al. [36] consider the

problem of incremental verification of models of systems,

assuming full verification is expensive. They suggest tech-

niques based on hashes of reduced models to avoid performing

re-verification when the required properties still hold in a

changed model. This is similar to smart hashing in regression

testing [24]. Henzinger et al. [30] consider incremental verifi-

cation of safety properties of programs using model checking.

In contrast to regression proving, whose aim is to find failing

proofs quickly, their approach uses previous results to attempt

to automatically overcome instances where a program change

makes verification fail. Bohme et al. [11] introduced partition-

based regression verification that partitions the input space and

gradually performs verification. Godlin and Strichman [26]

define regression verification as establishing the equivalence of

successive, related versions of programs. In effect, regression

verification is a strengthening of regression testing, which can

only provide limited evidence of preserved functionality.

Parallel and asynchronous proof checking: Coq’s 1970s

precursor LCF was based on synchronous, sequential inter-

action between a human prover and the proof tool [60].

This legacy is reflected in Coq’s read-eval-print loop, and

by extension, in the top-down interaction with Coq files in

classic interfaces such as Proof General. Over time, both the

assumption on synchrony and on sequential interaction have

been reconsidered, which enabled us to develop ICOQ.

Support for parallelism in construction and checking of

proofs to exploit multi-core hardware has been addressed

previously in several proof assistants, notably Isabelle [59] and

ACL2 [23], [45]. Isabelle leverages the support for threads

in its “host” compiler, Poly/ML, to spawn proof checking

tasks processed by parallel workers. Using a notion of proof

promises, proofs that require some previous unfinished result

can proceed normally and become finalized when extant

tasks terminate. Isabelle also includes a build system with

integrated support for checking of proofs and management of

parallel workers. ACL2 uses the thread-based parallelism in

LISP systems to, e.g., perform parallel proof discovery and

fine-grained proof case checking. The lack of native threads

in Coq’s host language, OCaml, prevents similar low-cost

fine-grained parallelism [59]. However, more coarse-grained

parallelism is possible at the level of processes.

Parallelism at the task level usually necessitates support for

some form of asynchrony, which can then also be exploited at

the user interface level to provide greater interactivity. Archi-

tectural changes in Isabelle towards a document-oriented asyn-

chronous interaction model were pioneered by Wenzel [60],

resulting in the Prover IDE (PIDE) framework. PIDE defines

an XML-based protocol between a proof assistant backend and

clients such as IDEs. Efforts to bring asynchronous interaction

to Coq were initiated by Wenzel [58] and Barras et al. [6],

resulting in a new Isabelle-inspired document-oriented inter-

action model and support for asynchronous proof processing

in Coq 8.5 [7]. The potential of Coq’s new document model to

improve user productivity was highlighted in an extension to

the Eclipse IDE called Coqoon by Faithfull et al. [21], which

performs fine-grained monitoring of changes to Coq files and

reactively processes modified definitions and proofs.

Regression testing: There has been more than three decades

of work on regression testing techniques [42], [64]. These

techniques were the key inspiration for the work presented

in this paper. Specifically, our work is closely related to

regression test selection (RTS) [10], [18], [24], [37], [42], [43],

[46], [47], [52], [64]. Most of the pioneering work on RTS has

studied techniques that collect, for each test, fine-grained de-

pendencies, e.g,. statements and methods. These techniques are

frequently unsafe (i.e., they may miss to select some affected

tests) for modern programming languages. Recently, Gligoric

et al. [24] introduced Ekstazi, an RTS technique that collects

dynamic file dependencies; Ekstazi is more inclusive than

prior techniques. Interestingly, we have decided to use fine-

grained dependencies for proof selection in ICOQ. Our insight

is that Gallina does not include the language features that make

many RTS techniques unsafe for imperative languages, e.g.,

dependency injection, class inheritance, and macros. To the

best of our knowledge, ICOQ is the first proof selection tool.

Build systems: Our dependency graph is similar to depen-

dency graphs seen in build systems like Google’s Bazel [8]

and Microsoft’s CloudMake [15], [20]. Bazel keeps track of

dependencies on a level of targets. Similarly to how ICOQ

discovers changed proofs and definitions, these modern build

systems discover affected targets by computing checksums of

the files used by the target and then marking all nodes/targets

that depend on the modified node/target.

VIII. CONCLUSIONS

We presented a technique for regression proof selection in

large-scale verification projects, and its implementation for the

Coq proof assistant in the tool ICOQ. In particular, ICOQ is

suitable for use in continuous integration systems to quickly

find failing proofs in rapidly evolving projects. By tracking

fine-grained dependencies, ICOQ avoids checking unaffected

proofs as changes are made to files. Our evaluation shows that

using ICOQ is up to 10× faster than checking all proofs from

scratch (which is typical in a CI setting). ICOQ can also be

used from the command line, as an alternative to the default

Makefile-based toolchain; our evaluation shows that ICOQ is

up to 3× faster in this case. While our implementation is Coq-

specific, our technique works in any setting where it is possible

to separate the processing of source files with proofs scripts

into a fast pre-processing phase and a mostly independent,

potentially time-consuming proof-checking phase.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments;

Talia Ringer and Zachary Tatlock for their feedback on this

work. This work was partially supported by the US National

Science Foundation under Grants Nos. CCF-1438982, CCF-

1566363, and CCF-1652517, and by a Google Faculty Re-

search Award.

180

REFERENCES

[1] cloc - counts blank lines, comment lines, and physical lines of source
code in many programming languages. https://github.com/AlDanial/cloc.

[2] coq-dpdgraph. https://github.com/Karmaki/coq-dpdgraph.

[3] GitHub. https://github.com.

[4] WAD home page. https://github.com/Fingertips/WAD.

[5] D. Aspinall. Proof General: A generic tool for proof development. In
International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, pages 38–43, 2000.

[6] B. Barras, L. del Carmen González Huesca, H. Herbelin, Y. Régis-
Gianas, E. Tassi, M. Wenzel, and B. Wolff. Pervasive parallelism
in highly-trustable interactive theorem proving systems. In Intelligent
Computer Mathematics: MKM, Calculemus, DML, and Systems and

Projects, pages 359–363, 2013.

[7] B. Barras, C. Tankink, and E. Tassi. Asynchronous processing of Coq
documents: From the kernel up to the user interface. In International

Conference on Interactive Theorem Proving, pages 51–66, 2015.

[8] Bazel - Blog. https://bazel.io/blog/.

[9] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[10] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. Regression test
selection techniques: A survey. Informatica (Slovenia), 35(3):289–321,
2011.

[11] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury. Partition-
based regression verification. In International Conference on Software

Engineering, pages 302–311, 2013.

[12] S. Boldo, J. H. Jourdan, X. Leroy, and G. Melquiond. A formally-
verified C compiler supporting floating-point arithmetic. In Symposium

on Computer Arithmetic, pages 107–115, 2013.

[13] S. Boldo and G. Melquiond. Flocq: A unified library for proving
floating-point algorithms in Coq. In Symposium on Computer Arithmetic,
pages 243–252, 2011.

[14] M. Chilowicz, E. Duris, and G. Roussel. Syntax tree fingerprinting
for source code similarity detection. In International Conference on

Program Comprehension, pages 243–247, 2009.

[15] M. Christakis, K. R. M. Leino, and W. Schulte. Formalizing and
verifying a modern build language. In International Symposium on
Formal Methods, pages 643–657, 2014.

[16] Coq manual: Utilities. https://coq.inria.fr/refman/Reference-Manual017.
html.

[17] CTLTCTL Git repository. https://github.com/coq-contribs/ctltctl.git.

[18] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Journal of Information and Software

Technology, 52(1):14–30, 2010.

[19] S. Erdweg, M. Lichter, and W. Manuel. A sound and optimal incremental
build system with dynamic dependencies. In Conference on Object-

Oriented Programming, Systems, Languages, and Applications, pages
89–106, 2015.

[20] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula. CloudBuild: Microsoft’s
distributed and caching build service. In International Conference on

Software Engineering, Software Engineering in Practice, pages 11–20,
2016.

[21] A. Faithfull, J. Bengtson, E. Tassi, and C. Tankink. Coqoon: An IDE
for interactive proof development in Coq. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 316–331, 2016.

[22] Flocq Git repository. https://scm.gforge.inria.fr/anonscm/git/flocq/flocq.
git.

[23] H. Geuvers. Proof assistants: History, ideas and future. Sadhana,
34(1):3–25, 2009.

[24] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test
selection with dynamic file dependencies. In International Symposium
on Software Testing and Analysis, pages 211–222, 2015.

[25] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen, I. Narasamdya,
and B. Livshits. Automated migration of build scripts using dynamic
analysis and search-based refactoring. In Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 599–616,
2014.

[26] B. Godlin and O. Strichman. Regression verification: proving the equiv-
alence of similar programs. Journal of Software Testing, Verification and
Reliability, 23(3):241–258, 2013.

[27] G. Gonthier. Formal proof—the four-color theorem. Notices of the

American Mathematical Society, 55(11):1382–1393, 2008.
[28] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,

S. Le Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca,
L. Rideau, A. Solovyev, E. Tassi, and L. Théry. A machine-checked
proof of the odd order theorem. In International Conference on
Interactive Theorem Proving, pages 163–179, 2013.

[29] T. Hales, M. Adams, G. Bauer, T. D. Dang, J. Harrison, L. T. Hoang,
C. Kaliszyk, V. Magron, S. McLaughlin, T. T. Nguyen, Q. T. Nguyen,
T. Nipkow, S. Obua, J. Pleso, J. Rute, A. Solovyev, T. H. A. Ta, N. T.
Tran, T. D. Trieu, J. Urban, K. Vu, and R. Zumkeller. A formal proof
of the Kepler conjecture. Forum of Mathematics, Pi, 5, 2017.

[30] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido. Extreme
model checking. In Verification: Theory and Practice, pages 332–358,
2003.

[31] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In
Automated Software Engineering, pages 426–437, 2016.

[32] InfSeqExt Git repository. https://github.com/DistributedComponents/
InfSeqExt.git.

[33] It’s Travis CI’s 5th birthday, let’s celebrate with numbers! https://blog.
travis-ci.com/2016-02-05-happy-fifth-birthday- travis-ci.

[34] G. Klein. Proof engineering considered essential. In International
Symposium on Formal Methods, pages 16–21. 2014.

[35] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
In Symposium on Operating Systems Principles, pages 207–220, 2009.

[36] H. Kurshan, R. H. Hardin, R. P. Kurshan, K. L. Mcmillan, J. A. Reeds,
and N. J. A. Sloane. Efficient regression verification. In International
Workshop on Discrete Event Systems, pages 147–150, 1996.

[37] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An
extensive study of static regression test selection in modern software
evolution. In International Symposium on Foundations of Software
Engineering, pages 583–594, 2016.

[38] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, 2009.

[39] G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Toward a
verified relational database management system. In Symposium on

Principles of Programming Languages, pages 237–248, 2010.

[40] The formalization of the odd order theorem has been completed Septem-
ber 20th 2012. http://www.msr-inria.fr/news/the-formalization-of-the-
odd-order-theorem-has-been-completed- the-20-septembre-2012.

[41] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In USENIX Annual Technical Conference, pages 305–319,
2014.

[42] A. Orso and G. Rothermel. Software testing: A research travelogue
(2000–2014). In Future of Software Engineering, pages 117–132, 2014.

[43] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to
large software systems. In International Symposium on Foundations

of Software Engineering, pages 241–251, 2004.

[44] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the
Calculus of Constructions. In International Conference on Mathematical

Foundations of Programming Semantics, pages 209–228, 1990.

[45] D. L. Rager, W. A. Hunt, and M. Kaufmann. A parallelized theorem
prover for a logic with parallel execution. In International Conference

on Interactive Theorem Proving, pages 435–450, 2013.

[46] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool
for change impact analysis of Java programs. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages
432–448, 2004.

[47] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. Transactions on Software Engineering, 22(8):529–551,
1996.

[48] M. Sozeau and N. Tabareau. Universe polymorphism in Coq. In
International Conference on Interactive Theorem Proving, pages 499–
514, 2014.

[49] Speeding up the build. http://docs.travis-ci.com/user/speeding-up-the-
build.

[50] StructTact Git repository. https://github.com/uwplse/StructTact.git.

[51] E. Tassi. Coq manual: Asynchronous and parallel proof processing.
https://coq.inria.fr/refman/Reference-Manual031.html.

[52] Testing at the speed and scale of Google. http://google-engtools.
blogspot.com/2011/06/testing-at-speed-and-scale-of-google.html.

181

[53] Travis CI. https://travis-ci.org.
[54] UniMath Git repository. https://github.com/UniMath/UniMath.git.
[55] Verdi Git repository. https://github.com/uwplse/verdi.git.
[56] V. Voevodsky. An experimental library of formalized mathematics based

on the univalent foundations. Mathematical Structures in Computer

Science, 25(5):1278–1294, 2015.
[57] WeakUpTo Git repository. https://github.com/coq-contribs/weak-up-to.

git.
[58] M. Wenzel. PIDE as front-end technology for Coq. CoRR,

abs/1304.6626, 2013.
[59] M. Wenzel. Shared-memory multiprocessing for interactive theorem

proving. In International Conference on Interactive Theorem Proving,
pages 418–434, 2013.

[60] M. Wenzel. Asynchronous user interaction and tool integration in
Isabelle/PIDE. In International Conference on Interactive Theorem

Proving, pages 515–530, 2014.
[61] M. Wenzel. Interactive theorem proving from the perspective of

Isabelle/Isar. In All about Proofs, Proofs for All, volume 55 of
Mathematical Logic and Foundations. 2015.

[62] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. Anderson. Verdi: A framework for implementing and formally
verifying distributed systems. In Conference on Programming Language

Design and Implementation, pages 357–368, 2015.
[63] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and

T. Anderson. Planning for change in a formal verification of the Raft
consensus protocol. In Conference on Certified Programs and Proofs,
pages 154–165, 2016.

[64] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. Journal of Software Testing, Verification and

Reliability, 22(2):67–120, 2012.

182

	Introduction
	Coq Background
	Technique
	Phases
	iCoq Components and Workflow

	Evaluation
	Verification Projects Under Study
	Variables
	Experiment Procedure
	Results

	Discussion
	Threats to Validity
	Related Work
	Conclusions
	References

