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The Internet of Things (IoT) paradigm holds significant promises for remote health monitoring systems. Due

to their life- or mission-critical nature, these systems need to provide a high level of availability and accu-

racy. On the one hand, centralized cloud-based IoT systems lack reliability, punctuality and availability (e.g.,

in case of slow or unreliable Internet connection), and on the other hand, fully outsourcing data analytics to

the edge of the network can result in diminished level of accuracy and adaptability due to the limited compu-

tational capacity in edge nodes. In this paper, we tackle these issues by proposing a hierarchical computing

architecture, HiCH, for IoT-based health monitoring systems. The core components of the proposed system

are 1) a novel computing architecture suitable for hierarchical partitioning and execution of machine learn-

ing based data analytics, 2) a closed-loop management technique capable of autonomous system adjustments

with respect to patient’s condition. HiCH benefits from the features offered by both fog and cloud computing

and introduces a tailored management methodology for healthcare IoT systems. We demonstrate the effi-

cacy of HiCH via a comprehensive performance assessment and evaluation on a continuous remote health

monitoring case study focusing on arrhythmia detection for patients suffering from CardioVascular Diseases

(CVDs).
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1 INTRODUCTION

There is a growing demand for dependable autonomous health monitoring services for patients
suffering from acute diseases [56]. The main function of automated health monitoring sys-
tems is to detect medical emergencies and patient health deterioration early enough, as rapid
response (i.e., from a few seconds to a few minutes) is instrumental to implement effective
countermeasures [45, 53]. Thanks to recent advancements in Internet of Things (IoT) technolo-
gies, it is possible to develop remote monitoring services with 24/7 availability for early-detection
and preventive purposes.
The IoT paradigm envisions a network scenario where objects (e.g., sensors) are connected and

uniquely identified over the global communication infrastructure [9]. Within the healthcare sec-
tor, IoT architectures can be decomposed into three main layers [3], as shown in Figure 1. At the
first layer, data collection is performed by distributed and mobile sensors. At the second layer,
gateways and access points provide continuous connectivity and conventional services such as
protocol conversions. These two layers are located at the vicinity of the monitored person. Dif-
ferent communication protocols such as Wi-Fi and Bluetooth LE are often used at this layer to
communicate with sensors [54]. In a traditional (i.e., client-server cloud-based) architecture for
remote health monitoring, gateways only act as a relay between sensors and remote servers. The
third layer consists of cloud resources interconnected to the local edge layers through multi-hop
networks. The cloud layer stores and process the sensory data to extract information, and possibly
generate notifications as a form of actuation. A broad range of data analytics, machine learning
and artificial intelligence algorithms have been implemented at this layer to provide a wide spec-
trum of services [16]. For instance, the cloud can serve as a pre-processing layer for data whose
extracted content is eventually post-processed by experts (e.g., health providers). Alternatively,
the extracted information can be stored for later actions (e.g., health coaching) [41, 47].
The cloud-based IoT architecture can provide acceptable performance and reliability to support

non-safety and latency critical applications. Examples of such services are several commercial and
smart city applications [16]. However, remote patient monitoring systems necessitate a higher
degree of dependability, accessibility, and robustness. Therefore, a straightforward extension of
the classic client-server model used in the Internet to encompass “things” is not suitable for a
large class of IoT applications, among which lies that at the focus of this investigation.
Important issues which interests traditional cloud-based architectures is the occurrence of dis-

connection from the core network or bandwidth and latency variations. Clearly, these issues can
have a severe negative impact on remote health monitoring services, where the end-user is of-
ten a patient with critical and time-sensitive needs. For instance, in emergency situations, a delay
in establishing a connection may lead to fatal consequences for the patient. In addition, remote
monitoring of several patients over time can overload storage and processing capabilities of the
cloud, as well as generate an excessive load (i.e., big data) to communication networks, possibly
disrupting existing services [13, 37]. Although producing a large volume of data is inevitable in
many IoT applications, intelligent pre-processing techniques at the edge can significantly mitigate
the volume of the generated data as well as the stress to the network infrastructure.
Alternative approaches propose the use of an intermediate Fog computing layer [15] capable of

data processing to enhance reliability and efficiency of the IoT architecture. An intelligent use of
such resource can lead to performance sufficient to meet the stringent requirements of healthcare
applications. The fog layer is equipped with (limited) computational capacity, which enables the
system to locally provide basic, and yet critical, services, and locally controlled distributed systems.
Thus, to implement reliable healthcare applications and services, there is the need for effective and
application-centric methodologies to map computational and resource management tasks across
the layers of the IoT architecture. In our context, an effective model can leverage the available
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Fig. 1. IoT-based system for remote patient monitoring.

resources and manage flow of data within the system from sensors to computational resources, as
well as the reverse flow of control.
In this paper, we present a hierarchical fog-assisted computing architecture, HiCH, for remote

IoT-based patient monitoring systems featuring autonomous data management and processing at
the edge. We first show that the conventional Observe-Decide-Act (ODA) control strategy [38]
is not capable of fully exploiting the features offered by the fog computing paradigm, and then,
propose to exploit and customize the concept of MAPE-K autonomic computing – with adaption
control loops – introduced by IBM [33] as a more efficient alternative. The main contributions of
this paper are as follows:

• Wepropose a hierarchical computing architecture and amethodology to efficiently partition
and accommodate the existing machine learning methods for fog-enabled healthcare IoT
systems.

• We customize, enhance, and map IBM’s MAPE-K model for the proposed architecture to
better manage system resources.

• We present a closed-loop management technique featuring an adaptive data transmission
solution based on patient’s conditions.

• We demonstrate a full system implementation for continuous remote health monitoring
case study focusing on arrhythmia detection for patients suffering from CardioVascular
Diseases (CVDs).

The rest of the paper is organized as follows. Section 2 outlines background and related work
for this research. We detail our proposed approach, HiCH, in Section 3. In Section 4, we demon-
strate a full system prototype and evaluate HiCH via a case study. In Section 5, we briefly discuss
advantages, limitations and future work of HiCH. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK

In this section, we first briefly survey contemporary IoT-based health monitoring systems pub-
lished in the literature. We then describe the computing models typically deployed in IoT systems.

2.1 IoT Architecture and Fog Computing

IoT-enabled systems for health monitoring are typically designed to provide health applications
such as early-detection and prediction for users (e.g., patients and health providers) by implement-
ing data collection from patients, data transmission and data analytics. These scheme are broad in
scope, ranging from simple to complex monitoring systems. In simple IoT-based monitoring sys-
tems, only data collection, transmission and visualization for the users are implemented, and no
decision nor analytics concerning patient’s health condition is reported [7]. Hence, these simple
IoT-based monitoring systems are insufficient for ubiquitous monitoring that demands the addi-
tional capabilities of analytics and decision-making.
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Similarly, there are various medical cyber-physical system (MCPS) solutions designed to
autonomously actuate tasks w.r.t the sensor data and local decision making. Instances are artificial
pancreas for insulin injection regulation [27] and a brain machine interfaces [57]. Such solutions
are mostly restricted to typical data processing techniques (e.g., peak detection) using local
computational capacity. Therefore, they do not use heavy data analytics such as complex learning
algorithms for predictions mainly due their resource constraints.
On the other hand, more complex monitoring systems augment intelligent services using data

analytic methods varying from rule-based method to different learning algorithms [32]. Cloud-
based services are conventionally responsible for these analytics. In such systems, medical data is
collected from the individual via sensors; the data is delivered to cloud servers through a gateway;
and extracted information and awareness regarding individual’s conditions are shared with users
(e.g., health providers). Several IoT-based architectures have been proposed for remote monitor-
ing using this model. Some examples are ECG monitoring systems using wearable devices [10,
41, 52], Early Warning Score (EWS) systems for health deterioration detection [5, 11] and remote
physiological parameter monitoring [21, 25, 26, 28, 30]. Unfortunately, these systems critically rely
on uninterrupted Internet connections during monitoring; loss of (or degraded access to) Internet
connections during monitoring may result in loss of important services such as emergency sit-
uation notification and abnormality prediction. Therefore, remote health monitoring with fully
cloud-based services run a risk of having flaws in case of patient health deterioration.
In addition to cloud-based IoT systems, there are IoT architectures enabled by fog computing

concepts. Fog computing [14, 49] is the concept of extending the cloud computing paradigm to
the edge of the network and has been recently proposed to enable new types of services such
as local computation, storage, and control for IoT systems. One approach to realize this concept,
in particular for the healthcare domain, is by forming an intermediary layer of networked smart
gateways between sensors and the cloud [50]. Fog computing offers a variety of advantages to
IoT-based applications from both user and system perspectives. Geographic diversity, improved
privacy, enhanced reliability and latency reduction are among these benefits [17, 20, 55, 58].
In fog-based architectures, gateway devices perform local data processing along with data trans-

mission to cloud servers. Several research studies have investigated fog computing for health mon-
itoring systems. In these systems, different analytics such as feature extraction [43] and data pro-
cessing methods [18, 19, 23] are pushed to the fog layer. Moreover, fog computing enables resource
management at the local layer, however themanagement techniques aremostly limited tomethods
with low computation costs such as rule-based methods [2, 6]. Although these fog-based systems
offer notable benefits for remote health monitoring systems, their functionality is bounded due to
the limited computational capacity at the edge nodes. Therefore, powerful machine learning algo-
rithms for local decision making cannot be implemented in the fog. Furthermore, the performance,
Quality of Service (QoS) and Quality of Experience (QoE) of the system might be degraded since
these fog-based algorithms may not as powerful/sophisticated as cloud-based ones.
In sum, ubiquitous health monitoring applications need to provide a high level of quality in

attributes such as availability and accuracy, most of which cannot be satisfied by the aforemen-
tioned systems. Although both cloud-based and fog-based architectures provide benefits for the
monitoring, their applications are insufficient due to their architectural limitations. In this regard,
a new architecture is needed to overcome the limitations while leveraging the best features of-
fered by both schemes. This could be achieved by amalgamating both computing paradigms and
partitioning the health analytics in a hierarchical behavior. Moreover, a management technique
enabled by learning algorithms is required to adjust system behavior with respect to the analyt-
ics and based on the context. We overcome these issues in our HiCH approach by presenting an
autonomic computing model for the IoT architecture as described next.
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Fig. 2. IBM’s MAPE-K model [33].

2.2 Computing Models

The computation model plays an important role in IoT systems to efficiently implement various
analytics at different architectural layers. Therefore, to enhance different system characteristics, it
is crucial to identify, customize, and map a proper computing model to IoT system tiers (i.e., sensor
network, gateway, and cloud). Depending on the application, different computing models can be
utilized for this purpose.
The conventional Observe-Decide-Act (ODA) management strategy [38] is an existing popular

model that is composed of three parts: to manage data collection (Observe), to analyze data and
exploit knowledge (Decide) and to implement suitable actions (Act). Due to its centralized nature
for analytics and decision making, this model is well-suited for cyber physical systems (CPS) with
local computation capacity at the sensor network or centralized cloud-based IoT systems; however
it cannot fully exploit available resources in distributed or hierarchical computing systems.
MAPE-K is an alternative computing model introduced by IBM [33]. MAPE-K provides

automated management components for computational units and specifies system behaviors. The
architecture for MAPE-K model is specified in four different computing components: Monitor,
Analyze, Plan, and Execute with access to a partially or fully shared knowledge base (see Figure 2).
Monitor collects data coming from different resources (i.e., sensors). It is the closest computing

component to the sensing fabric. It can also track and determine events that need to be analyzed.
Analyze provides data analytics to model situations. Data pattern, prediction techniques and meta-
data are exploited in this component. Plan is in charge of selecting or generating a procedure for
the system w.r.t. the inputs received from the Analyze component. This procedure can be either a
single command or a complicated plan. Finally, Execute provides necessary changes in the system,
to implement procedures generated in Plan component and in general to adjust the behavior of
the system.
In this work, we address the reliability, efficiency, and management issues in the existing health

monitoring systems by leveraging the concept of MAPE-K and proposing a novel partitioning
strategy to hierarchically compute data analytics and manage system resources. Our approach
aims at exploiting the best of both worlds, cloud and fog computing.

3 HICH: THE PROPOSED SYSTEM

In this section, we present HiCH, a hierarchical computing architecture tailored for fog-enabled
IoT systems and designed to leverage the benefits of fog and cloud computing paradigms for re-
mote health monitoring. HiCH offers a new computing and management model with two major
contributions:
1. HiCH partitions the health data analytics into two parts: the centralized part located in the

cloud, and the distributed part running on fog nodes. In contrast to traditional approaches that
use a centralized computing core in the cloud or fog tier, we propose a hierarchical autonomic
healthcare system where the computation and knowledge are distributed across different tiers.
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Fig. 3. Enhanced MAPE-K model.

This hierarchical computing scheme enables partitioning of analytics and decision making
between the fog and cloud, thereby significantly enhancing the availability, response time and
robustness of health monitoring services at the edge. The edge devices (e.g., gateways) are
augmented with a high degree of intelligence to provide local monitoring and notification when
the cloud connectivity is unavailable or unstable.
2. HiCH deploys a closed-loop system management technique tuned to the patient’s conditions

(i.e., context). These conditions could be defined according to the patient’s medical parameters,
activities and surrounding environments. The approach can be used to manage different system
resources, although in this paper we only focus on trafficmanagement to control data transmission
from the fog to the cloud.
To clarify the functionality and definitions of the architecture, we present and exemplify differ-

ent components of HiCH via a case study. Below, we first describe our case study of a continuous
remote health monitoring system.

3.1 Case Study

Our case study focuses on arrhythmia detection in ECG monitoring for patients suffering from
CVDs, as an exemplar of a continuous remote healthmonitoring usingHiCH. The deployed system
uses a typical single-channel ECGwith 250 samples per second, a Microcontroller Unit (MCU), and
a wireless transmitter integrated as a sensor node. In the setup, we consider 10-second windows
for ECG signals, and the transmission (from fog to cloud) period of 1 minute.

3.2 Architecture

The HiCH architecture incorporates the concept of MAPE-K and fog and cloud computing
paradigms in remote health monitoring systems, enabling hierarchical partitioning and execution
of machine learning algorithms across these computing layers.
As discussed in Section 2.2, MAPE-K model includes 4 computing components, each sharing the

system knowledge. To enable hierarchical computing, MAPE-K components need to be properly
mapped into the three layers of the IoT system. Furthermore, to fulfill the desired closed-loop
behavior for resource management, we propose an enhanced MAPE-K model in which a new
component System Management is integrated (See Figure 3).
The four MAPE-K components are enabled with feedback in the model. The feedback received

from Execute, System Management is used to periodically tune the computing components with
respect to the inputs and the computations in the model.
We distribute and map the 5 components of the enhanced MAPE-K into a 3-tier IoT-based sys-

tem. Figure 4 illustrates the architecture. The idea is to i) map the heavy training procedures in
the cloud while outsourcing the trained hypothesis (e.g., classifier) to the fog nodes to be able to
operate in a standalone way, ii) periodically update the hypothesis at the fog, and iii) exploit the
knowledge at the edge to enhance resource management via closed-loop control. The blue arrows
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Fig. 4. HiCH: Our proposed IoT-based architecture.

in Figure 4 show the closed-loop behavior: the flow of action to the user and the flow of feedback
to the system through the sensors.
Monitor is the first computing component in HiCH located in the sensor layer. This component

is a bridge between sensors and other units. Analyze is the only computing component located in
the cloud to process andmodel complex monitoring conditions. The component receives data from
System Management. The data contains various information regarding patient health conditions
and presumably his surrounding contexts. Analyze derives a hypothesis function (i.e., model) from
the data and transfers it to Plan.

Plan is placed in the fog layer to enable local decision making that determines the patient’s con-
dition. The decision making is enabled by receiving the hypothesis from Analyze and continuous
sensory data. The sensor data are received through System Management. Execute is the second
computing component in the fog layer to set system behaviors during monitoring. Finally, System
Management is the third component in the Fog layer to locally manage the system configurations.
It determines the current state of the system considering previous states and the decision received
regarding the patient condition. In this architecture, we only allocate data transmission (i.e., band-
width) management to this component although it can be extended to cover other types of system
resources (e.g., energy).
In the following, we present the role of each component in the architecture, and exemplify them

via our case study.

3.2.1 Monitor. TheMonitor component is shown in Figure 5(a). It includes an Analog-to-Digital
Converter (ADC) to convert sensor analog outputs to digital parameters and signals. Moreover, a
Microcontroller Unit (MCU) is integrated to enable data aggregation in a local data storage and
data pre-processing such as noise filtering and normalization. Finally, the data are packetized and
periodically transmitted to System Management. The packet size and the transmission period de-
pend on the data type collected by sensors.
In our case study, a sensor node including a digitized single-channel ECG, a Microcontroller

Unit (ATmega328P), and a wireless transmitter (RN42) is used.

3.2.2 Analyze. According to the type of sensor data, different machine learning algorithms can
be chosen for data analytics in theAnalyze component (Figure 5(b)). Since the generated hypothesis
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Fig. 5. Major components of HiCH.

function (model) needs to be executed at the edge in the Plan, the limited processing power and data
storage capacity of the gateways at the edge needs to be considered in the proposed techniques.
To indicate the functionality in HiCH, we assume a simple supervised learning model [1] in

Analyze. To this end, we define h as a hypothesis function in a hypothesis set (h ∈ H ) to satisfy:

h : X → Y (1)

where X ∈ Rd represents the input space including n samples with d attributes and Y is output
space that is a vector of patient or context conditions. To simplify the model, we consider an output
vector with two possible outcomes, that is, normal and emergency conditions. However, the model
can be extended to provide multi-class classifications (more details in [42]).
Let us consider a classifier h inferred by a linear machine learning method (e.g., perceptron or

linear support vector machine):

h(x ) = sдn(wTx + b) (2)

where sдn(.) is a sign function, x is the input with d attributes, b is a bias value andw is a weight
vector inferred by the learning algorithm from the training data. From Equation (2), we observe
that the computational complexity of performing a prediction with hypothesis h is O (d ) in both
space and time, since it requires storing thed-dimensional vectors x andw inmemory and carrying
out an inner product between them.
Nonlinear classifiers may also be fitted to HiCH depending on their time and space complexity.

However, some nonlinear classifiers are inappropriate for this architecture. For instance, instance-
based learning methods such as K-Nearest Neighbor (KNN) cannot be used in this architecture as
the training set would need to be stored in the fog layer, and hence the space complexity would
be O (dn), where n denotes the number of training data.
In the Analyze component, x and y are constructed in Training Data (Figure 5(b)). Since sensor

data defined in specific time-windows are heterogeneous (e.g., various signals and parameters),
we must extract attributes for each time-window. x is created using the extracted attributes from
sensor data and other attribute vectors from History Data and Plan feedback. In this manner, h is
learned and personalized during the monitoring not only from current sensory data but also from
patient history and system feedback (i.e., possible errors). Moreover, y as the output labels are
generated using user feedback (e.g., daily reports in occurred events) and other calibrated devices
(e.g., medical and hospital devices).
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Fig. 6. (a) and (b) indicates collected ECG cycles. (c) represents a cycle with different temporal features.

h is generated in Learning Algorithm using x and y from Training Data and possible hypotheses
from the Hypothesis Set (see Figure 5(b)). In this system, the learning is divided into two parts. At
the system initialization phase, h is generated with recorded history data. At runtime, h is updated
during the monitoring with new data.
h is stored in Final Hypothesis and subsequently is sent to Plan for local decision making. More-

over, values such as the intensity of emergency events are sent to History Data for future learning.
In our case study, the Training Data unit is responsible for denoising the input signal by

using a bandpass filter with the range of 3−45 Hz. Then, ECG cycles are identified by segmenting
each window based on RR peaks. To this end, we use the Biosppy toolbox [34] in Python.
Figures 6(a) and 6(b) provide examples of normal ECG cycles (60 cycles) and abnormal ECG cycles
affected by arrhythmia (67 cycles) referring to a one minute period. To better illustrate the ECG
cycle differences, the detected peaks are aligned. As shown in the figures, when abnormality is not
present, the signal is almost unchanged across ECG cycles. In contrast, the signals corresponding
to arrhythmia present significant variations across ECG cycles.
Moreover, Training Data extracts 5 features in the temporal domain [36] for each ECG cycle. The

features include QRS complex duration, T wave duration, RR interval, PR interval and ST segment.
One ECG cycle in temporal domain is illustrated in Figure 6(c). To extract temporal features, we
implement cross-correlation between each cycle and a Triangular signal, defined as:

( f ∗ д) (τ )def=
∫ ∞

−∞
f ∗ (t )д(t + τ )dt (3)

where f is the ECG cycle, and д is a Triangular signal defined by:

x (t ) =
⎧⎪⎨
⎪
⎩

0 |t | ≥ 1

A[1 − |t |
T
] |t | < 1

(4)

whereT is the signal length that in our case equals to a QRS complex length, andA is the amplitude
that in our case is a QRS complex amplitude. Using this cross-correlation, we utilize the two signals
similarities for detecting peaks in each ECG cycle.
We use linear Support Vector Machine (SVM), a supervised machine learning algorithm, to dis-

tinguish between the binary hypothesis (normal vs. arrhythmia). The algorithm is selected because
of its low computation cost compared to other alternatives such as neural network backpropaga-
tion in which more values (i.e., weights for different layers) should be stored in Plan. Moreover,
the algorithm represents an acceptable binary classification on the data (see Section 4.3).
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Fig. 7. Abnormality detection implemented in the Plan.

The implemented SVM classifier uses the hypothesis function defined by Equation (2) by stor-
ing the vector of primal variablesw along with the constant b and then sending it to Plan. Conse-
quently, a single inner product betweenw and x in Plan is deployed, instead of expensive compu-
tations. For more details see [42]. The classifier is implemented using Scikit-learn [46] in Python.

3.2.3 Plan. Similar to the feature extraction approach in Analyze, attributes are extracted from
the sensor data in Test Data unit. Then, Decision Making input, x ′ ∈ Rd including d attributes, is
created (see Figure 5(c)).
The generated hypothesis in Analyze is periodically downloaded to Hypothesis Function unit.

Such feature provides a personalized classifier during the monitoring and subsequently increases
the accuracy. The update period (e.g., daily or weekly) is specified with respect to the types of the
sensor data.
A decision vector is generated from Decision Making unit that indicates the current patient’s

condition. The vector as the Plan output is forwarded to the Execute for system actuation.
In our case study, the incoming ECG signals defined in 10 windows is converted to features in

Test Data unit. Then, the window is classified as normal or abnormal using the current hypothesis
function. Finally, the component sends the label assigned to each window to Execute component.
Figure 7 shows an example where abnormality is detected at the Plan component. Decisions are in-
dicated by the red dots, with an abnormal situation detected between the 600 to 720 second interval.

3.2.4 Execute. Execute fulfills the actuation in the system by forwarding updates to three other
parts in the architecture. First, it updates System Management to apply changes with respect to
the patient condition. Second, it locally notifies patient and health providers about the patient
condition; third, it provide a system feedback for Analyze by sending the decision to the cloud.

3.2.5 System Management. In this architecture, data transmission control is performed by Sys-
tem Management. This component includes 4 different units to receive data from the sensor layer,
to locally store and organize the data and to transmit it to Plan and the remote cloud. Figure 5(d)
indicates the units along with data and command flows.
The sensory data are collected via Receiver and are stored in Data Storage. Data Storage is de-

signed to locally store and organize the data (e.g., data structure), to send a complete set of sensory
data to Plan for local decision making and to implement required data reduction for the transmis-
sion to the cloud. Transmitter sends the data to the remote servers with a reconfigurable transmis-
sion rate with respect to the commands from Management Algorithm.
Management Algorithm is the processing core of this component that receives updates from

Execute. It controls data reduction and data transmission rate via communicatingwithData Storage
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Fig. 8. The state diagram for n = 4 and m = 4. S1:n shows system states while P1:m represents patient’s

conditions.

and Transmitter. We utilize a finite-state machine (FSM) to model Management Algorithm. In the
model, S = [s1, s2, . . . , sn] includes n possible system states where s1 performs the lowest state (i.e.,
the most cost-effective setting with the lowest transmission rate from the fog to the cloud) and sn
represents the highest state (i.e., the most accurate setting with the highest performance). External
input of the FSM defines as P = [p1,p2, . . . ,pm] containing patient conditions where p1 indicates
normal condition and pn represents high-risk condition.
Regarding the current state and the external input, the next state is determined, and subse-

quently system configuration is updated. In the state determination, the system instantly jumps
from a low state to higher ones to enable rapid response to emergency cases. However, it gradually
decreases (one step per iteration) from a high state to lower ones. To indicate the functionality of
the proposed FSM, we represent the state diagram of an example in Figure 8.
In our case study, System Management is a Python process running on gateways and being

responsible for deciding which portion of incoming data should be transferred to the cloud. This is
a part of the local processing which dramatically reduces the external bandwidth from the gateway
device to the cloud. Given that the decision making is implemented in the fog (i.e. Plan), and the
data is transmitted to the cloud (i.e.,Analyze) for updating themodel. Therefore, this data reduction
does not affect the decision making. In other words, in our case, System Management eliminates
redundant features in normal conditions although in abnormal cases, it completely transmits the
data, from which new information could be obtained for the model.
In System Management, data are recorded in two cache storage units defined based on patient’s

conditions (i.e., normal and abnormal). Figure 9 shows the control flowchart in the System Man-

agement. We define W as the number of windows in a transmission period, and Q as the portion
of data that will be transmitted if the patient’s condition is normal. In the considered setup, the
window length is 10 second, and the transmission period is 1 minute; so W is 6. The flowchart
indicates a loop over each window in the transmission period. In this loop, the cache storage A
stores every window of data irrespectively of the conditions, and cache storage B stores only Q

window(s) of data whether patient’s condition is normal in the current transmission period. At
the end of each iteration, System Management sends the data in cache A to the cloud if at least one
abnormal window is detected, otherwise it sends the data in cache B.

4 SYSTEM DEMONSTRATION AND EVALUATION

In this section, we present a typical use-case for HiCH where continuous monitoring of ECG sig-
nals is used to detect possible arrhythmia. The detection of arrhythmia triggers a notification to
the person under monitoring and health providers. In this case study, HiCH is compared with a
baseline IoT system introduced in Section 4.1.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 174. Publication date: September 2017.



174:12 I. Azimi et al.

Fig. 9. The flowchart for data transmission from the fog to the cloud.

Fig. 10. The IoT-based system modeled by ODA.

4.1 The Baseline IoT System

As discussed in Section 2, there are various IoT-based remote health monitoring systems (e.g.,
cloud-based and fog-based) that can be selected as a baseline for performance and efficiency com-
parisons. We consider the conventional and centralized ODA- and cloud-based IoT architecture as
the baseline in this study. The baseline IoT system is illustrated in Figure 10.

In this architecture, health data is first collected from the sensor layer. The data is then transmit-
ted to the cloud through an access point, (i.e., gateway device). Afterwards, incoming data is stored
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Table 1. The Gateway Devices’ Specifications

Jetson-TK1 HP Compaq 8200 Elite
Processor Quad-core Cortex A15 + 192 CUDA cores Quad-core Core i3 2100

Architecture ARMv7-A Intel Core
Speed 2.33 GHz 3.10 GHz
RAM 2 GB 16GB

External Storage 16 GB fast eMMC 250GB SATA HDD

and analyzed in the cloud layer to provide actions for the system and notifications for users. In
this architecture, no significant computing resources are placed in the gateway and the computing
core is centralized in the remote server. The computing core in this architecture can be modeled
by ODA control strategy in which Observe is placed in the sensor layer and Decide and Act are
placed in the cloud, as shown in Figure 10.

4.2 Setup

For the training and test medical data, we utilize “Long-Term ST Database” available on Phys-
iobank [29, 35]. Since we use existing data, we emulate the sensing part by transmitting the pre-
recorded data from the MicroSD card of the sensor node. We use ATmega328P micro-controller
[8] to read the pre-recorded data, which is then sent to an RN-42 Bluetooth module [40] through
serial link.
From the available data set, we select a period of 5 hours from a healthy patient along with

5 hours from an individual suffering from a CVD. The samples are used to train a data analysis
module in the Analyze component. A test data set is also created to assess the performance of
the remote classifier whose task is to detect abnormalities. In the test data set, we simulate an
emergency scenario by introducing ECG data corresponding to arrhythmia at a random point
within a normal ECG signal. To facilitate the analysis, we divide the signal into windows of
10 seconds.
For the fog layer, we use single-board computers. Specifically, Linux-based computing boards

are selected to run an Apache server and Python code for the data processing at the fog. In this case
study, we used an NVIDIA Jetson-TK1 [44] board and an HP Compaq 8200 Elite Linux machine,
each of which presents different characteristics. The HP Compaq 8200 Elite is powered by a Quad-
core Corei3 2100 CPU and 16GB RAM, which provides much better performance compared to
Jetson-TK1 platform. Table 1 indicates the platforms’ specifications.

At the fog layer, a Python service is responsible for receiving data from sensor nodes via a Blue-
tooth module using the serial communication port. The Python service is also developed to store
and process the data. An Apache server is programmed in the gateway for transmitting data to the
cloud. The fog device uses TCP protocol to establish a wireless communication link to the cloud
server. In order to implement the adaptive behavior which is the core of the proposed architecture,
the System Management has a set of transmission rates which can be dynamically selected while
relaying the data. The rate is controlled concerning normality or abnormality detection in Plan

component.
In the baseline IoT system, the gateway sends all the data to the cloud using TCP protocol, and

waits for the acknowledgment from the cloud server. The cloud server is a Linode VPS (virtual
private server) [39] with two 2.50GHz Intel Xeon CPU(E5-2680 v3), 4GB memory and SSD storage
drive running Apache web server on Ubuntu Linux.
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Table 2. Normalized Confusion

Matrix

Predicted Value
True TN = 0,97 FP = 0,03
Value FN = 0,01 TP = 0,99

4.3 Accuracy Assessment

We first validate the outcomes of the proposed architecture. To assess the accuracy of detection at
the cloud, we use the k-fold cross-validation technique [1], where we set k to 10, the defined train-
ing set of 10 hours is partitioned into 10 sub-periods where in each experiment, 9 sub-samples are
considered as training data and 1 as validation data. The overall accuracy is equal to 0,936 (±0,055).
Although the portion of ECG signals with arrhythmia might be less than normal ones in practical
experiments, we utilized training set with almost equal portions of normal and abnormal ECG data
to obtain unbiased results.
In addition to the validation performed using training data set from the same patients, we cross-

validate the performance of the system using test data from 4 new patients, whereas the classifier
is trained using data from the previous patients. Using the true values and the estimated values,
we have the normalized confusion matrix indicated in Table 2, whose F1score is also calculated as:
0,98. However, we remark that different implementations of the classifier may produce different
results.
In consequence, the algorithm performed an acceptable classification to distinguish between

normal and abnormal ECG cycles.

4.4 Performance Evaluation

Next, we assess HiCH in comparison with the baseline IoT system from two different perspectives:
(i) we consider response time, and (ii) we evaluate data traffic (bandwidth utilization) in both
systems.

4.4.1 Response Time. We now focus on response latency, a critical metric to measure system
response to alert the user in case of emergency. Dividing time latency into data transmission time
and computation time, we have:

a) Data transmission time from the sensor node to the gateway device
b) Data transmission time from the gateway device to the cloud
c ) Notification transmission time from the cloud to the gateway device
d ) Notification transmission time from the gateway device to the patient (i.e., a node placed

in the sensor layer)

and

α ) Computation time for data analytics in the cloud
β ) Computation time for data analytics in the fog

Therefore, the baseline IoT system’s latency is calculated as a + b + α + c + d while the latency
for HiCH is a + β + d (Figure 11).
In our case study, the ECG data sampling rate is 250 samples per second while each sample is 3

bytes. Considering the recording time for a window (10 seconds in our case) and the header, the
sensor node should send 8000 bytes (7500 bytes of data + 500 bytes header) per transmission to
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Fig. 11. Response time in the baseline IoT and HiCH.

Table 3. Latency (b + c) between the Gateway Devices and Server with

Different Connection Networks

Wi-Fi 4G 3G GPRS

Spec. (Ping, DL,
UL)

2ms
30Mb/s
15Mb/s

20ms
4Mb/s
3Mb/s

100ms
750kb/s
250kb/s

500ms
50kb/s
20kb/s

b + c (ms) 125±17 147±16 405±23 3686±4

the gateway. The transmission module (i.e., RN-42 Bluetooth) in the sensor node takes 651 ms to
transmit 8000 bytes using 115200 bit/s baud rate. Therefore, a = 651ms .
Moreover, sending a 500-bytes notification header using the same module and baud rate takes

43 ms (d = 43 ms). In contrast with {a and d}, {b and c} are not fixed values and depend on the
available network specification. Table 3 shows {b + c} values forWi-Fi, 4G, 3G and GPRS networks,
each of which has different latency (i.e., ping time), download and upload speeds. These values
were obtained from data transmission for 1 hour monitoring.
The computation time in our case study is measured as follows: α equals (22 ± 3ms), and β

(using different boards) equals: (27 ± 2ms) using HP and (65 ± 3ms) using Jetson-TK1. Given that
Plan has the most computation burdens compared to the two other components at the edge. The
response time for the systems are shown in Figure 12. The respond time for the baseline systems
(illustrated with violet bars) depends on the network transmission rate while the response time
in HiCH system (illustrated with red bars) relies on the computational capacity of the gateway
device. Compared to the baseline IoT systems, HiCH reduces the response time when using any of
the gateway devices. This improvement is particularly significant when the connection provided
by the network is weak or lost. However, we remark that gateway device specification is important
in this system. To this end, we also tested HiCH on a less powerful edge device, Raspberry Pi Zero
device [51], and obtained the response time of 1414ms .

4.4.2 Bandwidth Utilization and Storage. Next we evaluate the bandwidth savings in our system
compared to the baseline IoT system, by assessing data transmission from the gateway to the cloud
and data storage in the cloud.
We use the cache size to estimate the required bandwidth to transmit the data and the required

memory to store the data in the cloud. Table 4 shows the traffic handled by the SystemManagement

as a function of the parameter Q (i.e., the portion of data that will be transmitted if the patients
condition is normal). The obtained values indicates a significant reduction in the bandwidth uti-
lization over a 1 hour monitoring period if Q is small. This data traffic reduction is 82% if Q is 1.
Note that if Q is set to 6, all the data is transmitted to the cloud, so it can be considered the same
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Fig. 12. Response time for different approaches.

Table 4. Data Traffic for 1 Hour Monitoring with Different Q

Data to be transferred Data description TCP overhead Total traffic

Q to the cloud (KB) (KB) (KB) (KB)

1 439 29 13 481

2 879 29 25 933

3 1318 29 37 1384

4 1756 29 49 1836

5 2197 29 61 2287

6 2636 29 73 2738

situation as in the baseline system. This reduction becomes more significant when the number and
resolution of monitored vital signs or patient activities is increased.
Similarly, Table 5 indicates the volume of stored data in the cloud for 1 hour monitoring (with

8 minutes abnormality). The volume of data during abnormality detection does not change with
varyingQ , due to the maximum transmission rate. However, the stored data in normal condition is
remarkably reduced. This reduction of unnecessary data transmission becomes particularly more
significant in long-term health monitoring scenarios where large amounts of health data need to
be stored in the cloud for every patient.

5 DISCUSSION

We now discuss the advantages, limitations and potential of HiCH in remote health monitoring
systems from both user and system perspectives.
From the user perspective, enhancing Quality of Service (QoS) and Quality of Experience (QoE)

are the main targets in HiCH. Cloud-based systems heavily depend on the connectivity between
local devices and the server, and hence, binds the system functionality to the availability of Internet
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Table 5. Data Storage for 1 Hour Monitoring with Different Q

Data in normal Data in abnormal Data stored in the Reduction in

Q cond. (KB) cond. (KB) cloud (KB) data size

1 406 355 761 71%

2 787 355 1142 57%

3 1167 355 1522 43%

4 1549 355 1904 29%

5 1929 355 2284 14%

6 2310 355 2665 0%

connection. HiCH, on the other hand, has no constraint on ubiquitous Internet connection due to
local decision making and notification.
Security is an essential issue in HiCH as well as in every health IoT application since failures

could put lives at risk [50]. We consider our system security as three parts. a) Data transmission
security from the sensor network to the fog: Most wireless transmission protocols are recently
enabled to encrypt data during the transmission. Using Bluetooth protocol, communication starts
with pairing, and subsequently encrypted data is transmitted. In our case study, RN-42 Bluetooth
module transfers data using 128-bit AES-CCM encryption [24]. b) Data transmission security from
the fog to the cloud: In WiFi and LAN networks, data is encrypted in a higher level using Secure
Sockets Layer (SSL) connection as used in our case study. c) Data storage security on the fog and the
cloud: An attribute-based encryption (ABE) algorithm provides several data access levels for stored
data in fog and the cloud. It has been shown that the ABE algorithm is feasible in IoT applications
to hold multi-level data access as well as privacy [4]. Moreover, an end-to-end secure framework
for Fog-enabled IoT-systems has been recently introduced to enable efficient authentication and
authorization while complex security algorithms perform at the edge [48].
Fully local computing systems are bounded to their processing power and data storage, so sen-

sitivity and specificity of these systems are compromised compared to cloud-based systems. In
contrast, HiCH copes with this issue by moving the training phase to the cloud and periodically
updating local decision makers. This enables the remote servers to form personalized models and
leverage patient medical history in the model building.
Moreover, system response time is reduced in HiCH particularly in case of poor connectivity.

This is advantageous to healthcare providers since they can proactively react to possible health
deterioration cases. It should be also noted that the processing power and storage capacity of
fog devices play an important role in determining the efficiency of the HiCH as shown in our
experiment. However, with the current trend of increasing processing power and storage of the
edge devices, the significance of this concern is diminishing.
Another possible limitation in HiCH is the choice of the learning algorithm. As we discussed in

Section 3, some learning algorithms, such as instance-based learning, might not fit within this
system. Hence, in some cases, the accuracy of decisions in HiCH might not be as high as in
cloud-based systems. This concern is mostly application-specific, and the range of HiCH-
compatible algorithms that are widely used nowadays for machine learning is broad.
Moreover, the closed-loop local control enables a dynamic and personalized resource manage-

ment in systems where various configurations can be adjusted with respect to patient’s condi-
tions. In this paper, we only concentrated on the traffic management between the fog to the cloud,
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howeverHiCH can be enriched to considermore holistic resourcemanagement. Our futurework in
this direction will consider personalized energy management to increase the sensors’ battery life.
In addition to the healthcare domain, HiCH can be adapted to other domains, where reliability,

punctuality and availability are important, for instance IoT-based home and environmental moni-
toring applications focusing on early-detection and preventive purposes [9, 31]. Examples are fire
early-detection, environmental disaster prevention and home intrusion detection.Moreover, HiCH
can be tailored for assistive IoT-based services (e.g., assisted living and assisted driving) targeting
people with disability or frailty [12, 22].

6 CONCLUSIONS

Considering the life critical nature of remote health monitoring systems, a high level of availability
and accuracy is required. IoT-based solutions appear to be a viable scheme to deliver availability
and accuracy. However, conventional centralized cloud-based IoT systems need uninterrupted In-
ternet connectivity, which poses challenges in the face of mobility and/or degraded access to the
Internet. On the other hand, fully distributed fog-based IoT systems support untethered operation
but sacrifice accuracy due to the limited computation capacity at the edge. In this paper, we pro-
posed a novel computing architecture, HiCH, for IoT-based health monitoring systems to leverage
the benefits of fog and cloud computing paradigms. The two major contributions of HiCH are:
1) a hierarchical computing architecture for partitioning and execution of machine learning data
analytics; 2) a closed-loop management technique enabled by autonomic system adjustment with
respect to patient’s condition. We evaluated HiCH in comparison with a baseline IoT system and
discussed the advantages and limitations of the proposed architecture in remote health monitoring
systems. Finally, as a proof of concept, we demonstrated a full system implementation targeting
continuous health monitoring for abnormal condition detection using ECG signals.
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