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Abstract—As the Internet of Things (IoT) penetrates ever
more application domains, many IoT-based systems are in-
creasingly becoming more complex, versatile and resource-rich,
and need to serve one or more applications with diverse and
changing goals. These systems face new challenges in dynamic
goal management due to a combination of limited shared re-
sources, and multiple goals that may not only conflict with each
other, but which may also change dynamically. We motivate
the need for hierarchical, dynamic goal management for this
class of complex IoT systems and substantiate our arguments
with case studies from two application domains: patient health
monitoring and Cyber-Physical Production Systems (CPPSs).

I. INTRODUCTION
Goal management may be necessary if a system has to

pursue more than one goal, and it is necessary in one of two
situations: either the system has several conflicting goals,
or it has several non-conflicting goals, but limited resources
force it to prioritize some goals over others.

A. Resource management
Goal management is distinct from, but tightly intertwined

with resource management. In many IoT based systems
dynamic resource management is a hard problem, because
the problem space is vast even if only few resources are
considered, and because time and other resources are very
limited for the management task itself. Consequently, dy-
namic resource management is almost always handled with
heuristics because optimal solutions are elusive. As a case in
point Rahmani et al. [21] consider the mapping problem in
a many-core SoC, and show that researchers have proposed
a variety of different heuristics, with none of them being
superior in all cases. One heuristic maximizes the overall
system throughput [11], one maximizes throughput under
given thermal constraints [16], and a third maximizes the
system’s lifetime [10]. In IoT systems the problem is even
harder because an SoC is only one among many components
and due to their distributed nature which makes centralized
solutions infeasible. Moreover, consider the diversity of
resources that have to be managed: computing devices like
CPUs and DSPs, interface HW like antennas and MAC
modules, special purpose engines for encryption, video,
image and audio processing, memories and buffers, etc.
These resources are typically allocated to a task under tight
constraints depending on the availability of liquid resources
such as energy, power, bandwidth, computing time, storage
capacity, etc. Liquid resources are either given as bounds

not to to be crossed, or are optimization objectives to be
minimized or maximized.

Goals are, explicitly or implicitly, derived from application
requirements and are orchestrated through resource manage-
ment strategies. Examples of application goals are maximiza-
tion of task throughput, meeting real-time requirements, or
minimization of power consumption. Very often goals are
combinations of the above like meeting deadlines, maxi-
mizing throughput while minimizing power consumption.
These combinations can be considered attempts to reconcile
conflicting goals at design time by formulating heuristics that
balance these goals. This avoids dynamic goal management
but may still require dynamic resource management because
the system may change state dynamically, e.g., tasks com-
mence and end dynamically, resources are depleting, etc.

B. Dynamic Goal Management
Reconciling all application requirements into one balanc-

ing goal at design time avoids the run-time burden but may
cause inefficient over-design, because it cannot take into
account information only available during system operation.

If application requirements are diverse and poorly pre-
dictable, dynamic goal management is often preferable. For
instance Roca et al. [22] describe a generic, fog based
infrastructure that serves multiple IoT applications. Their
targets are Ultra Large Scale Systems (ULSS) such as
smart cities [1], and autonomous terrestrial, aerial or marine
vehicles [9]. In these scenarios applications dynamically
come and go and different applications have different goals.
Dynamic goal management usually means that general prin-
ciples are applied that guide the resolution of application
goals that either are in conflict or that compete for shared re-
sources [22]. For instance, such a principle may be to support
applications to meet their respective goals while minimizing
energy consumption and maximizing system lifetime. To
facilitate the resource arbitration process, Aazam et al. [2]
develop a resource estimation technique, that dynamically
predicts the applications’ need for resources to improve the
resource allocation process.

The dynamics of applications is one motivation for dy-
namic goal management; another reason is the change of
states during the lifetime of a system. Specifically, aging,
wear out and the occurrence of permanent HW faults lead
to decreasing performance and reduced availability of re-
sources. Adapting goal and resource management strategies
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to the lifetime phases can greatly improve the utility. For
instance Haghbayan et al. [10] demonstrated a doubling of
system lifetime due to a sensible core allocation algorithm
that models aging effects.

C. Hierarchical Goal Management
Goals can be divided into sub-goals, which can be pursued

in parallel or in sequence. E.g. For instance if a system
has the overall goal to meet requirements for each incoming
application, this overall goal is naturally broken down into
sub-goals, one for each application, with a higher level goal
manager to coordinate these subgoals.

Another break down of goals into sub-goals is based on the
observation that goals can be achieved in different ways. For
instance to obtain the position of a node, GPS coordinates
can be requested or sequences of acceleration data can be
tracked. Only one of these goals needs to be achieved, but we
do not know in advance, which one can deliver the necessary
information with the required precision or on time, both goals
may be spawned. If both goals complete successfully, their
results can be combined to obtain a precision or reliability,
which is beyond the ability of each individual method.

In the domain of autonomous agents goal models and
strategies for planning have been extensively studied, which
we briefly outline in section II. We argue that this also
becomes relevant for a class of IoT systems, that

• host and serve a set of applications which are diverse
and are not known at design time; or

• have a number of shared resources and constraints on
their usage; or

• there are choices on how to accomplish the applications’
and the system’s goals.

In Section III and IV we substantiate this claim with exam-
ple cases from the domains of patient health monitoring and
production systems. The examples illustrate the presence of
various goals which are hierarchically organized, and which
in some cases conflict with each other. The conflict arises
either due to limited resources (in the patient monitoring
case) or due to inherently conflicting local and global goals
(in the distributed production system case).

II. BACKGROUND AND RELATED WORK

Goals and hierarchical goal structures are key in driving
problem solving, comprehension, and learning, making them
essential for autonomous and self-aware systems [7]. In
this context, Goal-Following Autonomy (GFA) is defined as
hardware/software agents that can agree to take a goal from a
user (or another entity) and can automatically accomplish the
goal by carrying out a sequence of actions in its environment
[7]. Goal-Driven Autonomy (GDA) goes beyond the abilities
offered by GFA and is defined as a “reflective model of
goal reasoning that controls the focus of an agent’s planning
activities by dynamically resolving unexpected discrepancies
in the world state, which frequently arise when solving tasks
in complex environments” [14]. Goal Formulation (GF) and
Goal Selection (GS) are the essential components of GDA.
GF is defined as the ability to generate new goals considering

the discrepancies and explanations, while GS decides on
which goals the system will pursue next. There are two
prerequisites for these functions: Discrepancy Detection and
Explanation; where the former is in charge of monitoring
the system and the environment for anomalies, and the latter
attempts to generate explanations for detected discrepancies
[14].

Research on goal formulation and management has been
done in the context of artificial agents [6], [18], [25] which
mainly focus on providing the capability to nominate top-
level goals, and managing the nominated goals by prioritizing
them. However, requirements and restrictions of resource-
constrained IoT devices necessitate customized, light-weight,
and minimally conflicting approaches which consider the
priority, significance, objectives and requirements of each ap-
plication, while holistically coupling the overlapping and/or
contradicting objectives of different applications to satisfy
the system constraints.

There have been also attempts in the system-on-chip (SoC)
resource management domain to exploit the concept of self-
awareness [15] and its embodied goal management property
through presenting light-weight autonomous resource man-
agement methods. In [8], Dutt el al. study the concept of
self-awareness in SoCs and present the key properties of
self-aware systems such as desirability scale, goals, purpose,
expectations, etc. The Autonomic SoC platform (ASoC) [5]
is an example of attempts in the smart SoC domain which is
based on the organic computing paradigm, however, in this
platform, the desirability scale and the goals are implicitly
coded in the rules, and an explicit dynamic goal manage-
ment mechanism is not deployed. The same shortcoming
applies to the other platforms in the same domain such
as CyberPhysical Systems-on-Chip (CPSoC) [23] and SElf-
awarE Computing framework (SEEC) [13]. In CPSoC, the
goal hierarchy and goal management is in a very primitive
form and the desirability scale is implicitly encoded within
the goals. In SEEC, the goal formulation and management
is assigned to the application.

III. IOT-BASED HEALTH MONITORING

As a first example to demonstrate the significance of
dynamic goal management, we present IoT-based health
monitoring systems, where a certain level of Quality of
Experience (QoE) is required, posing dynamic conditions
under heterogeneous constraints. These monitoring systems
consist of three main layers: sensing layer, fog/edge layer
[19] and cloud layer (see Figure 1) [20], for which various
objectives such as energy, accuracy, or bandwidth should be
met. However, such objectives are contradictory in certain
circumstances due to limited shared resources. In the follow-
ing, two conflicting goals at the sensor layers (i.e., fog-sensor
cross-layer) and two conflicting goals at fog layer (fog-cloud
cross-layer) are studied.
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Fig. 1. IoT-based health monitoring architecture

A. Resource Allocation at Sensing Layer (Fog-Sensor Inter-
play)

In remote patient monitoring systems (which are tar-
geting mostly out-ot-hospital patients), the sensory part
often consists of a wearable sensor network attached to
the patient body for collecting and transmitting biomedi-
cal signals wirelessly. A gateway device in the fog layer
receives patient’s data and performs some local operations
(e.g. filtering, fusion, compression, encryption, local stor-
age/diagnosis/notification) and then transfers the necessary
parts to the cloud server for long-term storage and pro-
cessing. The limitations in size and weight in wearables
necessitate these sensors to be powered by small and light-
weight batteries which consequently limits the available
energy at the sensor layer. In IoT-based remote patient mon-
itoring, the continuity/frequency of monitoring, detection,
and notification services depends on the available energy at
the sensor layer, making sensing and transmission energy-
efficiency a crucial challenge.

A prevalent solution for this problem is adjusting sensor
device parameters (e.g., sampling rate, sensor selection,
device sleep duration) according to patient/context/system
situation. In such solutions, sensor device has several work-
ing modes where each mode has its own power consumption
profile. The most power-hungry mode provides the highest
accuracy and resolution for the recorded data, while other
modes consume less power by lowering the sampling rate
and/or putting the device into sleep mode for certain peri-
ods of time. The following are two approaches among the
existing resource management approaches for managing the
resources at the sensor layer:

1) Accuracy-aware Monitoring:
Problem and Objective: For out-of-hospital patients,

the monitoring of health status is needed to be prioritized
according to the significance of medical/activity events. The
system needs to pay the highest attention to most adverse
events and consider the highest priority for most efficient
and accurate measurement mode in the sensor node. It should
also meet the acceptable accuracy level when the patient is
in the most medically stable situation.

Solution: A health monitoring system is proposed by
Anzanpour et. al. [3] that uses a personalized model to tune
system parameters to achieve a precise view of patient state.
The self-awareness core is implemented in the fog layer to
update an Attention core to prioritize the attention value
according to patient health status and patient context/activity.

Fig. 2. Accuracy-aware IoT-based health monitoring

In their solution, the Attention core shares more resources
for highest accuracy when the patient is at higher emergency
levels, and when the patient is in the safe and stable condition
it updates system configuration to stay at minimum sampling
frequency mode without compromising the accuracy (See
Figure 2).

This system only considers the situation of the patient as
a goal for enhancing the accuracy of the monitoring system,
while other states of the system (e.g., current available
battery/energy budget at sensor nodes) are not considered.

2) Energy/Availability-aware Monitoring:
Problem and Objective: Power failure in sensor nodes

due to limited available energy resources causes a failure
in the health monitoring system and possibly irreversible
damages for risky patients. Several system-driven parameters
should be enhanced while data is exchanged between the
sensor layer and the fog layer. The system not only needs
to consider the accuracy and precision of the monitoring
process, but also should keep track of the available level
of energy and accessibility to alternative energy sources in
view. For instance, if the battery level of a sensor node is low
and it is not possible to recharge/replace the battery for the
next couple of hours, the system may choose to prioritize the
availability of the service by compromising the frequency of
data sampling and transmission (higher accuracy vs. longer
availability of the service).

Solution: An energy/availability-aware monitoring solu-
tion can provide system-driven enhancements by paying
more attention to system-related events and assigning a
higher priority to these working modes which keep the
system in the most stable state. The attention core updates
system configuration for higher recording resolution and
shortest system sleep time when the system has more energy
at hand and closer to alternative energy sources. It also
prioritizes battery endurance in the sensor node by switching
the system to more low-power working modes when the
battery is going to be exhausted or other energy sources are
out of patient’s reach.

The goal of such system would be increasing the duration
of monitoring availability while the frequency/accuracy of
health monitoring signals needs to be compromised.

B. Resource Allocation at Fog Layer (Fog-Cloud Interplay)

Bandwidth optimization and Quality of Service (QoS)
guarantee are two fog-cloud cross-layer goals which may
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Fig. 3. Hierarchical IoT-based health monitoring system with cloud-fog
bandwidth optimization

potentially conflict in certain circumstances due to limited
shared resources.

1) Bandwidth Optimization:
Problem and Objective: Disconnection from cloud

servers and bandwidth variations are prevalent issues in fog
devices, interrupting continuous health monitoring applica-
tions. These problems cause negative impact in health mon-
itoring applications where high communication latency may
lead to irreversible damages for high-risk patients with time-
sensitive demands. Moreover, transmission of raw data to the
cloud burdens network resources and cloud storage capabili-
ties. To address this issue, health analytics are proposed to be
distributed into fog and cloud layers, enabling the fog layer to
independently operate in case of low bandwidth in particular
for mobile gateways with varying bandwidth availability. In
this architecture, the fog layer needs to adaptively alleviate
data transmission, while preserving accuracy and resolution
of the system.

Solution: A hierarchical computing architecture for IoT-
based health monitoring is proposed [4] to partition machine
learning methods into fog and cloud computing resources,
enabling fog-based data analytics in a standalone way (see
Figure 3). Therefore, health applications operate acceptably
in case of poor connection between the fog device and cloud
server. Moreover, this hierarchical architecture provides a
closed-loop technique to adaptively manage the data traffic
based on patients conditions while the accuracy is preserved.
As a result, the bandwidth is saved up to 83% by removing
unnecessary data transmission.

2) Quality of Service (QoS) Guarantee:
Problem and Objective: In fog computing, certain com-

putation tasks are offloaded to edge devices (e.g., smart
gateways), providing a high-level of punctuality, reliability
and availability. However, such a fog device faces issues
in delivering a satisfactory QoS, when massive number of
sensor nodes are assigned to them (e.g., several sensor nodes
enter their coverage region due to their mobile nature). In
such scenario, response time becomes highly unpredictable
and decision making is significantly delayed. Therefore, there
is a need for solutions to guarantee QoS in the fog layer
by optimizing computational resources utilization, mitigating
overloads, and subsequently minimizing response time.

Solution: An intelligent work allocation and load bal-
ancing algorithm can provide a tradeoff between fog and

cloud resource utilization, considering the connected sen-
sor nodes and data volume. As the number of connected
users increases, the fog device decreases local computation
activity and transfer the computations to the cloud layer to
preserve an acceptable processing time. Consequently, the
transmission rate is increased, transferring health analytics
and decision making to the cloud servers. This algorithm
guarantees a satisfactory QoS in the system as well as
reducing latency and improving power characteristics in
mobile fog devices.

There is a conflict between these two goals. The first
solution minimizes data transmission between the fog de-
vices and the cloud layer enabling local computation and
preserving the accuracy in case of poor connection. However,
the second goal guarantees QoS at the edge in case of
numerous connected users, mitigating fog-based overloads
by transferring data analytics to the cloud. This leads to a
higher data transmission between the fog devices and the
cloud server.

IV. DISTRIBUTED CYBER-PHYSICAL PRODUCTION
SYSTEMS

The second example to highlight the need for dynamic
resource management covers the use case of the Industrial
Internet of Things. The growing dominance of the Internet
has brought IoT to many industrial applications [17]. A
CPPS, a specific type of Cyber-Physical Systems, is built
upon the collaboration of software and physical components
which uses data processing, information and communication
technology as well as manufacturing technology to facilitate
the process of production in a given industry. Distributed
design solutions promise to overcome the challenges of cen-
tralized architectures and improve the robustness, flexibility
and efficiency of the future CPPSs [12]. In a distributed
manner, the concept of an Autonomous Cooperating Object
(ACO) is defined as a computational core attached to a group
of physical components, each of which has a legacy control
unit. An ACO and its respective physical components alto-
gether are called an entity which communicates with other
entities in a given CPPS through the network connection
[24].

Aside from enormous development in distributed CPPS,
some challenges are still in progress [24]. The first challenge
to name is self- and context-awareness for data acquisition
and interpretation of local situation. With the increasing
complexity of current and future CPPSs in both size and
functionality, the diagnosis, prognosis, monitoring and self-
maintenance are becoming more necessary to improve the
robustness of the system and reduce downtime. Autonomous
mitigation and decision making is another challenge when
the complexity of the system is increasing and effective real
time actions are required. The third challenge here is dy-
namic entity clustering and self-configuration which enables
the current system to adapt to the changing environment and
network and communication errors. All these challenges need
to be addressed to manage the goals of the CPPS efficiently
and reliably. In the rest of this section, we review some of the
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example problems and how hierarchical goal management
can resolve these issues optimally.

A. Resource Allocation
Entities which operate on the shop-floor interconnected

with scalable IoT-based integration middleware carry in-
formation about themselves, monitor locally their environ-
ment and communicate with each other to run dynamic
production processes. The large system is a community
of self-configurable interacting ACOs which need to form
clusters dynamically and allocate their resources pursuing
their individual goals and the global goals of the system as
defined by the Manufacturing Execution System (MES).

1) Autonomous anomaly mitigation:
Problem and Objective: Each individual ACO in the

large system shall monitor and maintain its health status
by diagnosing and mitigating anomalies. Examples of such
anomalies are the wearing out of a physical component, the
failure of an entity, changes in the speed of a entity, missing
products, false positive product detection, and communica-
tion link failure. In case of a detected anomaly the ACO
should find in real-time a policy to mitigate the problem,
while minimizing the impact on the large performance of
the large system. However, goals and available resources at
the ACO with the anomaly may not be in-line with the goals
of the overall system.

Solution: The ACO evaluates the priority of the problem
periodically and decides whether it should allocate resources
for solving it. The options of actions in the decision-making
unit are represented hierarchically, which enables efficient
problem-solving using reasoning in higher levels of abstrac-
tion. The ACO evaluates the high-level options of actions
under the constraints which the global system goals set on
its resource allocation. Once a compliant option is found, the
ACO retrieves the necessary actions to take by looking at the
lower levels of the action hierarchy.

2) Self-configuration:
Problem and Objective: For several reasons an ACO or a

number of ACOs in the cluster may change their operational
configurations which affects other ACOs. In this case, each
ACO should be able to adapt to changes in its environment
reallocating its resources in collaboration with other ACO to
meet common system goals.

Solution: When an ACO plans an operational change,
e.g., reducing its speed, it performs dependency check and
passes this information to the other ACO of the cluster which
are affected. However, this operational change may be in
conflict with the individual goals of the other ACOs. In such
a case, negotiation is initiated within the cluster to ensure the
optimal operation (i.e., fulfilment of the goals) of the larger
system through communication between the involved ACOs.

B. Conflicting Goals
Under some circumstances, the proposed CPPS is trapped

between local and global conflicts in which the hierarchical
goal management has been defined to improve the efficiency
and robustness:

1) Decision Making:
Problem and Objective: The cognitive and decision

making unit in an ACO attempts to use methods for matching
existing actions to newly detected problems and their causes.
Following this local goal sometimes reduces the safety of the
ACO or the system if an unexpected action is taken.

Solution: In case of confusing in this situation, some
action may be taken from the provided list of MES which
is not in contradiction with other ACOs’ operational goals.
The Hierarchical Goal Management helps decision making
unit to follow its local functionality goals, however it forces
it to consider the global safety goals during the emergency
situations.

2) Negotiation:
Problem and Objective: In case of an operational change,

an ACO could independently make a decision suitable for its
own efficiency as a local goal. The problem with this gaol
fulfilment is the possibility of instability for other ACO(s) or
the global system; for example, increase in the throughput
of an entity may result in traffic jam of items in the next
entity.

Solution: Hierarchical Goal Management necessitates the
negotiation with other ACOs, in which a chain of negotia-
tions from the negotiation-initializer ACO starts toward the
potentially affected ACOs. Finally, the result of negotiation
shows the condition in which the initializer ACO is allowed
to operationally change. This type of management may
reduce the efficiency of some ACOs, however it prevents
the system from severe deficiency.

V. SUMMARY, VISION AND RESEARCH DIRECTIONS

With the ubiquitous deployment of IoT systems across
a wide range of application domains, we are increasingly
frequently faced with challenges of managing multiple, and
often conflicting, goals that change dynamically. Hence,
contemporary approaches that addresses isolated goals are
insufficient for this emerging class of IoT systems that
must dynamically manage complex, competing goals while
addressing heterogeneous models of IoT systems. Goal man-
agement for these systems therefore require new strategies,
models, and algorithms to efficiently coordinate overlapping
and conflicting goals, while meeting desired Quality of
Experience (QoE) for the IoT system.

We believe a hierarchical goal management approach can
manage conflicting and complementary goals to ensure a
satisfactory QoE, handling IoT complexity and resources in
sensing, fog and cloud layers. Such an approach performs
a hierarchy of goals to plan an effective system execution,
considering dynamic runtime changes for goal priorities
and an optimization mechanism to evolve over time. The
approach presented in the two use cases includes: 1) A
predefined subset of goals and subgoals which are dynam-
ically modified, created or removed. 2) A set of dynamic
priorities indicating the importance of each goal at runtime.
3) An update period to periodically fine-tune priority of goals
over time. 4) An inspection function to determine how the
goals and subgoals are satisfied. 5) A goal function planning
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the goals overtime with respect to inputs from inspection
function, systems and users condition. The approach outlined
in this paper is a step towards realizing hierarchical dynamic
goal management for many complex IoT systems, and lays
the foundation for active research to address this challenging
problem.
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