Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season

Malte F. Stuecker1,2, Cecilia M. Bitz1, and Kyle C. Armour1,3

1Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
2Cooperative Programs for the Advancement of Earth System Science (CPAESS), University Corporation for Atmospheric Research (UCAR), Boulder, Colorado, USA
3School of Oceanography, University of Washington, Seattle, Washington, USA

Key Points:

\begin{itemize}
 \item Record low Antarctic sea ice extent in 2016 austral spring can be related to two rare events
 \item First was anomalously long quasi-stationary persistence of El Niño-induced SST anomalies in the eastern Ross, Amundsen, and Bellingshausen Seas
 \item Second was unforced SAM variability driving warm SSTs and sea ice decline in most of the remaining Southern Ocean sectors
\end{itemize}

Corresponding author: Malte F. Stuecker, stuecker@atmos.washington.edu
Abstract

The 2016 austral spring was characterized by the lowest anomalous Southern Hemisphere (SH) sea ice extent seen in the observational record (1979-present) and coincided with anomalously warm surface waters surrounding most of Antarctica. Two distinct processes contributed to this event: Firstly, the extreme El Niño event peaking in December-February (DJF) 2015/16 contributed to pronounced extra-tropical SH sea-surface temperature and sea ice extent anomalies in the eastern Ross, Amundsen, and Bellingshausen Seas that persisted in part until the following 2016 austral spring. Secondly, internal unforced atmospheric variability of the Southern Annular Mode promoted the exceptional low sea ice extent in November-December 2016. These results suggest that a combination of tropically-forced and internal SH atmospheric variability contributed to the unprecedented sea ice decline during the 2016 austral spring, on top of the slow background changes expected from greenhouse gas and ozone forcing.

1 Introduction

The low Antarctic sea ice extent initiated in austral spring 2016 was truly exceptional [Turner et al., 2017], well exceeding three standard deviations of the observed 1979-2016 ice extent (Fig. 1a) and with anomalously low sea ice concentrations everywhere except in some parts of the Ross Sea and Indian Ocean sector (Fig. 1c). The low sea ice extent was accompanied by anomalously warm sea-surface temperatures (SSTs) over much of the Southern Ocean (Figs. 1b, 2b). This episode was unanticipated given long-term trends of Antarctic sea ice increase and Southern Ocean surface cooling over recent decades [Parkinson and Cavalieri, 2012; Meehl et al., 2016; Armour et al., 2016; Purich et al., 2016]. Key questions are thus: what atmospheric and oceanic conditions led to this unprecedented event; and what does it portend for the future of Antarctic sea ice?

The long-term increase in Antarctic sea ice over recent decades has been suggested to have been driven, at least in part, by a positive trend in the Southern Annular Mode (SAM) due to ozone depletion over the late 20th century [Thompson and Solomon, 2002; Marshall et al., 2014; Armour and Bitz, 2015]. Observational support for this mechanism is found in the correlations between SAM, SST, and Antarctic sea ice on interannual and shorter timescales: a positive SAM drives cooling and sea ice expansion through enhanced Ekman advection of cold surface waters northward [Thompson and Solomon, 2002; Hall and Visbeck, 2002; Sen Gupta and England, 2006; Ferreira et al., 2015; Kostov et al., 2017].
Eventually – on longer timescales – this enhanced northward Ekman transport is expected
to lead to upwelling of warmer subsurface waters from below the mixed layer and thus lead
to sea ice decline [Ferreira et al., 2015; Kostov et al., 2017]. While the large-scale wind
changes associated with SAM anomalies are primarily zonal, it has been shown that SAM
changes also exhibit a non-annular component (especially in the Amundsen Sea Low re-

gion), and these meridional wind anomalies have been linked to sea ice changes [e.g., Turner
et al., 2009; Holland and Kwok, 2012; Haumann et al., 2014]. An additional process that
has been proposed to explain the long-term sea ice increase is enhanced freshwater flux from
Antarctic ice shelf melt [Bintanja et al., 2013], however it is unclear whether enhanced fresh-
water flux into the Southern Ocean could have driven a sea ice expansion as significant as
the observed [Swart and Fyfe, 2013; Pauling et al., 2016]. It is also possible that multi-
decadal variability of the ice-ocean system has contributed to the sea ice increase as well
[e.g., Polvani and Smith, 2013].

Over the coming century, greenhouse gas (GHG) driven warming of the Southern
Ocean, though muted relative to global mean warming [Armour et al., 2016], is projected
to eventually drive a slow decline in Antarctic sea ice [Armour and Bitz, 2015]. This long-
term ice loss may also be enhanced by slow ozone recovery, to the extent that it induces

SAM changes that reduce the anticipated trend toward more positive SAM associated with
GHG forcing [Thompson et al., 2011; Smith et al., 2012]. In any case, abrupt changes in the
Antarctic sea ice cover are not expected due to slowly-varying forcing [Armour et al., 2011],
suggesting that natural variability may have made a substantial contribution to the observed
sea ice decline in austral spring 2016.

On inter-seasonal to decadal timescales, climate variability in the tropics has been
shown to strongly affect the Antarctic sea ice cover [e.g., Yuan, 2004; Turner, 2004; Stam-
merjohn et al., 2008; Ding, et al., 2011; Simpkins et al., 2012; Li et al., 2014; Nuncio and
Yuan, 2015; Meehl et al., 2016; Purich et al., 2016; Kohyama and Hartmann, 2016], thus
creating the potential for short-term changes to oppose long-term climate trends. However,
the relative importance of different tropical climate modes – such as the El Niño-Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD) – as well as the spatial details and
seasonal modulation of the different teleconnection patterns are all still areas of active re-
search and debate. One pathway for ENSO to affect the SH high latitudes is via tropical
forced atmospheric Rossby wave propagation [Karoly, 1989] – the so-called Pacific South
America (PSA) pattern. These ENSO-induced extra-tropical teleconnections form an atmo-
spheric bridge [Lau and Nath, 1996; Li, 2000; Stuecker et al., 2015a], which enables ENSO to influence the remote extra-tropical oceans via anomalous heat and momentum fluxes. Indeed, it has been shown using slab ocean model experiments that these teleconnections can affect Southern Ocean SSTs [Li, 2000], which could then initiate high-latitude air-sea coupled dynamics, for instance via the Antarctic circumpolar wave mechanism [White and Peterson, 1996; Cai and Baines, 2001].

Recently, it has been shown that tropical forcing associated with the negative phase of the Interdecadal Pacific Oscillation (IPO) resulted in a deepening of the Amundsen Sea Low and corresponding local sea ice expansion in the eastern Ross and Amundsen Seas and a decrease in the Bellingshausen Sea [Meehl et al., 2016; Purich et al., 2016] – an Antarctic dipole [Yuan, 2000] of sea ice concentration and SST anomalies. Moreover, decadal trends in Central Pacific (CP) warming have been invoked to explain the recent warming over continental West Antarctica [Ding, et al., 2011]. In addition to zonally asymmetric Rossby wave propagation, ENSO can also influence the SH high-latitudes via its relationship with the SAM [L’Heureux and Thompson, 2006; Fogt and Bromwich, 2006; Stammerjohn et al., 2008; Ding et al., 2012]. In the austral summer season, approximately 25% of temporal SAM variability can be attributed to tropical ENSO forcing [L’Heureux and Thompson, 2006]. However, it seems that the zonal location of the tropical ENSO forcing can cause differing impacts on the SAM [Ding et al., 2012]. Further complicating this picture is the fact that the ENSO-SAM relationship appears to be non-stationary on decadal timescales, which might be due to internal SAM variability and/or external forcings such as ozone [Fogt and Bromwich, 2006]. An attribution of these processes is complicated by the fact that both SAM and PSA project on the Amundsen Sea Low circulation.

During austral summer 2015/16 one of the largest El Niño events in the observational record occurred, which was followed by a weak La Niña that developed in austral winter-spring 2016. This raises the question of whether the aforementioned mechanisms involving ENSO played a role in the observed record low sea ice extent during austral spring 2016?

2 Observed conditions leading to 2016 sea ice decline

In light of the above dynamical drivers of Antarctic sea ice variability, we next consider the large-scale atmospheric and oceanic conditions that set the stage for the unprecedented sea ice decline in austral spring of 2016. We focus specifically on the months leading
up to and including November-December 2016 (ND2016), during which the record low 2016 austral spring and summer sea ice extent first became exceptionally pronounced. The previous austral summer season (2015/16) was characterized by an extreme El Niño (Fig. 2a), exhibiting anomalously warm SSTs in the Central and Eastern equatorial Pacific. The amplitude of the 2015/2016 El Niño was comparable to the two largest previous events in 1982/83 and 1997/98 (Fig. 2c,e), and thus we use those events as a reference against which to compare the evolution of atmospheric and oceanic conditions.

During their DJF peak phase, each of these El Niño events exhibited an anomalous sea level pressure (SLP) pattern that resembled a PSA wave train originating from tropical diabatic forcing (Fig. 2a,c,e). These characteristic atmospheric circulation patterns were accompanied by SST anomalies across all SH oceanic basins (Fig. 2a,c,e) that were remarkably consistent (including anomalously warm SSTs within the eastern Ross and Amundsen Seas), suggesting an atmospheric bridge mechanism [Lau and Nath, 1996; Li, 2000] as a cause for some of this commonality. By the following austral spring seasons, La Niña conditions, characterized by anomalous cold SSTs in the Central and Eastern equatorial Pacific, were prevalent for all three events. Yet, importantly, the magnitude of La Niña was significantly smaller for ND2016 than for the ND1998 post El Niño austral spring season and of similar magnitude to the ND1983 La Niña (Fig. 2b,d,f). Sea ice concentration anomalies that are largely consistent with these SST anomalies also occur (Fig. S1), which can be explained by the strong coupling between SST and sea ice concentrations. Therefore, remote tropical forcing that either affects SST or sea ice concentrations will initiate coupled feedback processes between these two variables. Here we mostly emphasize the SST anomalies because they extend beyond the sea ice edge and can be followed through the summer, when Antarctic sea ice extent is normally very low.

Another major difference between ND2016 and the other post El Niño austral springs is the phase of SAM: while ND1983 and ND1998 have a positive SAM and relatively cool (compared to ND2016) SSTs around Antarctica (as is typical for La Niña conditions), ND2016 exhibits an opposite pattern with negative SAM and warm SSTs over most of the Southern Ocean (Figs. 2b,d,f,3a). In fact, the negative SAM during ND2016 well exceeded one standard deviation (Fig. 3a).

From these results, it appears that differences between tropical forcing and SAM among these three events have contributed to their strikingly different SLP and SST patterns over the
SH, and thus their very different sea ice behaviors in the austral spring following the strong
El Niños. We thus hypothesize that the unprecedented low sea ice extent in ND2016 arose
from a confluence of rare atmospheric and oceanic conditions. In particular, anomalously
warm SSTs within the eastern Ross and Amundsen Seas, generated by the preceding 2015/16
El Niño, persisted strongly through ND2016, perhaps due to the relatively weak La Niña in
that year. Additionally, a pronounced negative SAM anomaly in ND2016 – the opposite from
what is typical during La Niña, and thus likely due to internal variability – drove warming
and sea ice decline around the rest of Antarctica in combination with other unforced atmos-
pheric variability [Turner et al., 2017]. These conditions, compared to those typical of a
post strong El Niño year, are shown schematically in Fig. 4a,b. In what follows, we turn to
numerical general circulation model simulations to further illustrate these proposed mecha-
isms.

3 Simulating the sea ice response to major modes of climate variability

To further investigate the respective roles of tropical ENSO forcing and internal SAM
variability in shaping the ND2016 SH atmospheric circulation and SST patterns, we perform
simulations with two coupled general circulation models (GCMs). In the first experiment
(using the CM2.1 model [Delworth et al., 2006]), we prescribe a repeating cycle of ENSO
– El Niño followed by La Niña – in the tropical Eastern Pacific, while allowing for full dy-
amical air-sea coupling everywhere else [Stuecker et al., 2017] (an ensemble of 28 cycles;
see Methods and Fig. S2a,b), allowing us to isolate and identify the anomalous SLP and SST
response to tropical ENSO forcing over the Southern Ocean. Note that this model setup also
allows us to capture the ENSO-induced climate variability in the other basins, such as the
IOD [Stuecker et al., 2017], which has been shown to also influence Antarctic climate vari-
ability [Nuncio and Yuan, 2015]. In the second experiment (using the CESM1 model [Gent
et al., 2011]), we add ENSO-neutral years between El Niño and La Niña to investigate the
persistence of El Niño-induced SST anomalies in the Southern Ocean (an ensemble of 29 cy-
cles; see Methods and Fig. S2a,c). Here we focus mostly on the model-simulated SST signal
given the close relationship between SSTs and sea ice concentrations seen in the observa-
tions (Fig. 1b,c) [Smith et al., 2008; Comiso et al., 2017] and in model experiments [Ferreira
et al., 2015], and the fact that models usually exhibit smaller biases in simulating SST com-
pared to sea ice concentrations.
First, we compare the model El Niño peak DJF ensemble mean response of the first experi-
ment (Figs. 2g,i,S1g) with the three observed El Niño events (Fig. 2a,c,e). The model
captures the atmospheric circulation and SST anomaly features remarkably well. Note that
the simulated SST anomalies (Fig. 2g) and sea ice concentration anomalies (Figs. 2i,S1g)
are highly negatively correlated poleward of 60°S (the centered spatial pattern correlation
coefficient attains a value of -0.98 (significant at the 95% confidence level for 2 degrees of
freedom) for the DJF peak ensemble mean response in areas where the model climatologi-
cal sea ice concentrations are above 15%). Near Antarctica, the SST response is character-
ized by a pronounced zonal dipole structure between the eastern Ross and Amundsen Seas
(positive) and the Bellingshausen Seas (negative; Fig. 2g). This Antarctic dipole is part of a
large-scale SST anomaly pattern in the Southern Pacific. Additionally, we observe the trop-
ical Indian Ocean basin warming [Xie et al., 2009] together with a meridional SST anomaly
dipole to the south of the African continent. Furthermore, a clear meridional tripole SST
anomaly structure is evident in the Atlantic basin. In contrast, the ND La Niña composite
(Figs. 2h,j,S1h) is characterized by nearly opposite patterns (again SST anomalies and sea
ice concentration anomalies are highly negatively correlated poleward of 60°S with a cen-
tered spatial pattern correlation coefficient of -0.87 (significant at the 95% confidence level
for 4 degrees of freedom) in areas where the model climatological sea ice concentrations are
above 15%). Both the slightly different seasonality (ND vs DJF) as well as nonlinearities in
ENSO-induced impacts [Stuecker et al., 2015a,b] might explain the small differences in the
forced responses between DJF El Niño and ND La Niña. One of these seasonal differences
is the ENSO-induced IOD signal in the tropical Indian Ocean that peaks right before the ND
season [Stuecker et al., 2017], which is subsequently replaced by basin-wide Indian Ocean
warming in the DJF season.

Both ND1998 and ND1983 (Fig. 2d,f) have a high similarity (ND1998 more than
ND1983) with the model ND La Niña composite (Fig. 2h), including the large-scale SST
pattern and the positive phase of SAM. In contrast, ND2016 (Fig. 2b) exhibits high-latitude
SLP and SST features that resemble more the model El Niño pattern (Fig. 2g). It comprises
the El Niño-like zonal Antarctic SST anomaly dipole, a negative SAM, and anomalously
warm SSTs in most other Antarctic sectors. Next we investigate the reason why during the
2016/17 La Niña we observe an El Niño-like zonal Antarctic dipole together with a zonally
quasi-symmetric warming around the rest of Antarctica in ND2016. Our hypothesis is that
the relative contributions of (i) the absence of a strong quasi-instantaneous SH response to
tropical La Niña forcing, (ii) a quasi-stationary persistence of Antarctic dipole SST anomalies induced by tropical El Niño forcing during the previous austral summer, and (iii) internal unforced SAM variability largely determined the ND2016 Southern Ocean SST and sea ice response. Next we explore the relative role of these processes for the observed ND2016 event.

3.1 The Antarctic SST anomaly dipole

Both the observations (Fig. 2a,c,e) and our CM2.1 model experiment (Fig. 2g) demonstrate that a pronounced zonal Antarctic SST anomaly dipole is generated as part of the PSA and SAM response during the peak El Niño phase. Usually this pattern reverses its sign in the following ND season (Fig. 2d,h) due to (i) the SH atmospheric circulation forced by La Niña (Fig. 2h), (ii) thermodynamic damping of the anomalies that were generated by the previous El Niño, and (iii) eastward advection of these SST anomalies by the mean zonal ocean surface currents [e.g., White and Peterson, 1996, also see Fig. 4c-g].

The typical sign reversal of the Antarctic dipole due to these processes (i.e., in 1983 and 1998) is clearly captured by the first model experiment (CM2.1) during La Niña conditions (Fig. 2h). In contrast, the unusual long persistence and quasi-stationary character of the El Niño Antarctic dipole pattern as well as of the SST anomalies in other regions during 2016 become even more evident in the month-to-month evolution of the observed SST anomalies and 850 hPa geopotential height (Z850) anomalies (Fig. 5), and in a Hovmöller plot of Southern Ocean SSTs (Fig. 4c). The Antarctic dipole shows the opposite phase in ND1998 (Fig. 2d) and nearly no signature in ND1983 (Fig. 2f), which clearly highlights the unusual persistence of this pattern in 2016 (Figs. 2b,4c,5). The unusual long persistence in 2016 appears to be due to a combination of (i) the quasi-stationary character of the anomalies and (ii) the smaller amplitude of the 2016 La Niña compared to the 1998 La Niña (Fig. 3a). The El Niño-induced Antarctic dipole quickly decayed in both 1983 (Fig. 4e) and 1998 (Fig. 4d), likely due to a combination of the following processes: (i) thermodynamic damping, (ii) eastward advection of the anomalies as part of the Antarctic circumpolar wave, and (iii) vertical ocean mixing. The detailed atmospheric and oceanic conditions that led to this highly unusual quasi-stationary persistence throughout 2016 need to be addressed in a future study. However, we suggest that the lack of a large La Niña influence on the Southern Ocean in late 2016 enabled this persistence, given that a La Niña-forced SST response in the eastern Ross,
Amundsen, and Bellingshausen Seas (Fig. 2h) would be of opposite sign compared to what occurred in ND2016 (Fig. 2b).

The effect of La Niña on the turnabout of the Antarctic dipole can be seen when comparing the two model experiments: When El Niño is followed by ENSO-neutral conditions (CESM1 experiment) we observe the persistence of an SST anomaly dipole pattern (and corresponding sea ice concentration anomaly dipole) that has been thermodynamically damped and simultaneously advected eastwards by the mean zonal surface ocean currents (Fig. 4f,g), resulting in an opposite phase of the dipole in the original regions (Fig. S3). The effect of La Niña (CM2.1 experiment) then further amplifies this pattern (Fig. 2h). Importantly, the CESM1 model experiment well captures the ENSO-forced Antarctic circumpolar wave that is forced twice during each 6 year experiment cycle (during El Niño and La Niña) and propagates around Antarctica approximately with the same period as the experiment cycle (Fig. 4f,g). Note that some model differences exist in the simulated Southern Ocean SST response to a DJF El Niño forcing between CM2.1 (Fig. 2g) and CESM1 (Fig. S3) outside the Antarctic dipole regions.

The large amplitude of the ND1998 La Niña exhibits a SH response (Fig. 2d) that is very similar to the model ND La Niña composite (Fig. 2h). In contrast, the ND2016 La Niña had a weaker amplitude during the austral spring season (Fig. 3a). It thus appears that the unique SST pattern in the Antarctic dipole sectors during ND2016 can be partly understood as arising from a combination of a strong El Niño followed by a relatively weak La Niña. Next we will examine whether some remaining features of ND2016, particularly the warming around the rest of the Antarctica, can be understood in terms of a differing phase of SAM in ND2016 relative to ND1998 and ND1983.

3.2 The Southern Annular Mode

The anomalous SST and SLP regression patterns associated with the SAM agree well between the observations (Fig. 3c) and the CM2.1 model experiment (Fig. 3d), thereby giving us confidence that essential SAM dynamics and their relationship with ENSO are well captured by this model. Note that these SAM patterns also project weakly on the Amundsen Sea Low and the Antarctic dipole SST anomaly dipole. When minimizing internal unforced variability by calculating the model ensemble mean response to the ENSO forcing, we find that the SAM index is highly anti-correlated ($R=-0.82$, statistically significant at the 99%
level) with the ENSO forcing (Fig. 3b). This highly negative correlation between ENSO
forcing and SAM demonstrates that the linear ENSO signal dominates the SAM response in
this particular model and that nonlinear ENSO-induced high-frequency variability [Stuecker
et al., 2015b] likely plays only a second-order role for the simulated SAM (note that while
ENSO explains part of the SAM variance, it is unforced internal variability that dominates
SAM variability in the observations [e.g., L’Heureux and Thompson, 2006]).

Both the observations (Fig. 3a,c) and the simulation (Fig. 3b,d) show that La Niña
events are usually associated with a positive SAM, therefore we suggest that the negative
SAM during ND2016 arose from internal atmospheric variability. In turn, the strongly neg-
ative SAM during ND2016 potentially further contributed to warm SSTs and sea ice decline
around Antarctica and in the eastern Ross and Amundsen Seas (Figs. 3a,c,4b). We empha-
size that positive ice-ocean feedback processes are likely important. For instance, negative
sea ice anomalies can result in positive SST anomalies, which then would favor further sea
ice decline.

3.3 Analogue events in CMIP5

To quantify the uniqueness of the ND2016 sea ice event, we use preindustrial control
experiments from 25 models from the CMIP5 archive and search for analogue events. Our
criteria is similarity to the observed 2016 climate conditions: a strong El Niño needs to be
followed by only a moderate La Niña with large negative SAM in these model simulations
to qualify as an analogue event (see Methods). This combination occurs on 121 occasions in
∼13,000 model years. As an example we show the four of these events that exist in the Nor-
wegian Earth System Model Version 1-M (NorESM1-M, [Bentsen et al., 2013]) preindus-
trial control experiment, of which two have well below negative 1 million km2 sea ice extent
anomalies (Fig. S4). This shows that our mechanism can in principle generate large enough
sea ice concentration anomalies that together with internal sea ice variability could explain
the ND2016 event.

4 Summary and Conclusions

We conclude that two main factors contributed to the extreme low sea ice extent dur-
ing ND2016 (Fig. 1a,c). First, the extreme 2015/16 El Niño induced SST anomalies in the
eastern Ross, Amundsen, and Bellingshausen Seas that remained quasi-stationary and per-
sisted through ND2016 (Figs. 4c,5) despite the concurrent weak La Niña. Second, a strongly negative SAM phase in ND2016 (opposite to what is normally expected for a La Niña, and thus likely due to internal unforced atmospheric variability) resulted in anomalous warming in the Southern Ocean and was thus conducive to the extreme low sea ice extent (Fig. 3a,c), which is supported by our CM2.1 model experiment (Fig. 3b,d). The strongly negative SAM phase in ND2016 was also seen in Antarctic station-based observations [Turner et al., 2017]. Hence, the ND2016 warming pattern (Figs. 1b,2b) can be seen as a combination of two rare factors, which is exemplified by the exceptional character of this event. A summary of these mechanisms is shown as a schematic in Fig. 4a,b. Our results suggest that atmospheric and oceanic conditions drove a significant part of the evolution of large-scale SST and sea ice concentration anomalies in 2016, likely aided by coupled feedbacks between sea ice and the ocean. Given the extreme negative anomalies of this event we expect that unforced sea ice variability likely was a further important contributor.

Furthermore, our results demonstrate that some of the Southern Hemisphere SST and SLP features associated with a negative IPO phase (Fig. 1 in Purich et al. [2016]) also emerge on interannual timescales for La Niña conditions (Fig. 2h). For instance, both a negative IPO phase and La Niña conditions force a positive SAM response and a deepening of the Amundsen Sea Low, corresponding to anomalous cooling along Antarctica except the Bellingshausen Sea region (Fig. 3c,d). Previous research demonstrated that the persistence and reemergence of Southern Ocean SST anomaly patterns generate predictability for Antarctic sea ice [e.g., Holland et al., 2013]. Our results confirm that tropical climate variability should provide a predictable component for Southern Hemisphere sea ice area and extent on seasonal to interannual timescales, despite pronounced unforced (and thus unpredictable on timescales beyond weather forecasting) internal variability in this region. Future occurrences of similar extreme events should be rare given the required combination of mechanisms, however they cannot be ruled out given the existence of pronounced internal climate variability in both the tropics and high latitudes. Thus, we expect Antarctic sea ice to regress to the long-term trend in the near future.

5 Methods

We use the Extended Reconstructed Sea Surface Temperature (ERSST) v3b [Smith et al., 2008] dataset for SSTs and the Japanese 55-year Reanalysis (JRA-55) [Kobayashi et al., 2015] for SLP and 850 hPa geopotential height (Z850). The anomalous November-
December SH sea ice extent is obtained from the NSIDC sea ice index version 2 [Fetterer et al., 2016]. The sea ice concentration for ND2016 is the daily near real time DMSP SSMIS passive microwave product product [Cavalieri et al., 1996]. Anomalies were computed with respect to the climatology from the DMSP SSM/I-SSMIS product [Maslanik and Stroeve, 1999]. All anomalies are respective to the 1979-2016 climatology.

The Niño3.4 (N3.4) index is used to characterize ENSO variability. It is defined as the area averaged SST anomalies from 170°W to 120°W and 5°S to 5°N. The SAM index is defined as the normalized first principal component (PC1) of the anomalous monthly Z850 in the extra-tropical Southern Hemisphere (20°S-90°S) [Thompson and Wallace, 2000] for both the observations (explaining 25.3% of the variance) and model experiment (explaining 20.0% of the variance).

We use the GFDL CM2.1 [Delworth et al., 2006] coupled global climate model to conduct a partially-coupled (PARCP) experiment for which a 2.5 year sinusoidal ENSO SST forcing is prescribed in the tropical eastern Pacific with a damping time scale of 5 days [Stuecker et al., 2017]. Outside of this forcing region the atmosphere, ocean, and sea ice are fully coupled (Fig. S2a). The atmosphere and ocean components are general circulation models, which along with the thermodynamic-dynamic sea ice model capture high-latitude ocean-atmosphere-ice interactions. The model is integrated for 140 years and 5 year cycles are composited (n=28). A sinusoidal forcing is chosen (Fig. S2b) because in this case we are able to clearly identify both the linear and nonlinear impacts of ENSO [Stuecker et al., 2015b, 2017]. Further details on the CM2.1 PARCP experimental setup are given in Stuecker et al. [2017]. Importantly, this experimental setup allows us to diagnose the remote impacts of tropical ENSO forcing, while allowing for extratropical ocean-atmosphere-ice coupled dynamics.

We use a second global climate model – CESM 1.2.0 [Gent et al., 2011] with the CAM4 [Neale et al., 2013] atmospheric component (nominally 2° horizontal resolution for the atmosphere and 1° for the ocean and sea ice) – to conduct a similar PARCP experiment (same forcing region and damping time scale as in the CM2.1 experiment; Fig. S2a). The only difference is the time evolution of the forcing, which is chosen so that ENSO-neutral conditions persist for over a year after each El Niño and La Niña event (Fig. S2c). This allows us to estimate the persistence of El Niño-induced Southern Ocean SSTs if no La Niña would follow...
immediately – and vice versa (Fig. S2c). The CESM1 PARCP experiment is integrated for 174 years and 6 years cycles are composited (n=29).

To investigate the uniqueness of the ND2016 sea ice event, we use 25 model pre-industrial control experiments from the CMIP5 archive and search for analogue events. The criteria that need to be fulfilled to qualify as an analogue are: (i) A large El Niño event (JFM amplitude above the 90% percentile) occurred, (ii) no large La Niña followed (N3.4 no lower than -0.5 °C in OND) by the end of the same year, and (iii) the OND SAM following the El Niño is below one model standard deviation.
Figure 1. (a) Temporal evolution of Antarctic austral spring (November-December mean) anomalous sea ice extent (10^6 km2). (b) Anomalous SST in ND2016 (°C) and (c) anomalous sea ice concentration (%) in ND2016. The sea ice extent (15% sea ice concentration) is indicated by the solid black contour line.
Figure 2. (a)-(f) Southern Hemisphere SST (shading, °C) and SLP (contours, hPa) anomalies for the peak time (December-February: DJF) of the three largest El Niño events and for the following austral spring season (November-December: ND). (g)-(h) Composite mean (n=28) SST (shading, °C) and SLP (contours, hPa) anomalies for DJF El Niño (g) and ND La Niña (h) in the partially-coupled (PARCP) sinusoidal CM2.1 experiment. (i)-(j) Composite mean (n=28) sea ice concentration (shading, %) anomalies for DJF El Niño (i) and ND La Niña (j) in the PARCP sinusoidal CM2.1 experiment. Stippled areas indicate that the anomalous SST (g-h) and sea ice concentrations (i-j) are non-significantly different from zero at the 90% confidence level based on a two-tailed t-test.
Figure 3. (a) Post El Niño year evolution of N3.4 (solid lines, °C) and normalized SAM indices (dashed lines, no units) for 2016 (black), 1998 (orange), and 1983 (cyan). The linear correlation coefficients between N3.4 and SAM for each of these years are given as inserts. (b) N3.4 forcing (solid red line, °C) and composite mean (n=28) normalized SAM index (dashed red line, no unit) for the partially-coupled (PARCP) sinusoidal CM2.1 experiment. (c) Anomalous SST (°C) and SLP (contours, hPa) linear regression coefficients for the observed (1979-2016) normalized Nov-Dec average SAM index. (d) Anomalous SST (°C) and SLP (contours, hPa) linear regression coefficients for the CM2.1 PARCP Nov-Dec average normalized SAM index. Stippled areas indicate that the anomalous SST regression coefficients (c-d) are non-significantly different from zero at the 95% confidence level based on a two-tailed t-test.
La Niña

Antarctic dipole influence from previous El Niño weak influence

warm SST warm SST

Antarctic dipole

30ºS 60ºS 90ºS

0º 30ºE 90ºE 150ºE 150ºW 90ºW 30ºW

(a) Typical Nov-Dec in year(1) after a major El Niño event

(b) Nov-Dec 2016 situation

Antarctic Dipole

2016

d) 1998

e) 1983

f) CESM PARCP

g) CESM PARCP

Hovmöller diagrams for the temporal evolution of anomalous SST in the Southern Ocean (averaged from 70ºS-50ºS) for the decaying El Niño years 2016 (c), 1998 (d), and 1983 (e). (f) The same but for the ensemble mean (n=29) CESM1 PARCP experiment (Fig. S2c). (g) Hovmöller diagram for the temporal evolution of sea ice concentration anomalies in the Southern Ocean (averaged from 70ºS-50ºS) for the ensemble mean (n=29) CESM1 PARCP experiment (Fig. S2c).
Figure 5. Monthly temporal evolution of the 2016 anomalous SST (shading, °C) and 850 hPa geopotential height (contours, m).
Acknowledgments

This research was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Sciences (CPAESS) and with funding from the National Science Foundation through Grant PLR-1341497. We thank two reviewers for their helpful comments. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The model experiment output can be obtained from the corresponding author. The model code to reproduce these experiments can be obtained from:

- https://github.com/mom-ocean/MOM4p1
- http://www.cesm.ucar.edu/models/cesm1.2/

The observational data used in this study can be obtained from:

- https://www1.ncdc.noaa.gov/pub/data/cmb/ersst/v3b/netcdf/
- https://nsidc.org/data

References

Simpkins, G. R., L. M. Ciasto, D. W. J. Thompson, and M. H. England (2012), Seasonal Relationships between Large-Scale Climate Variability and Antarctic Sea Ice Concentration,

