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sifier. Our experimental results demonstrate 
the feasibility of the proposed classification 
method.
Keywords: dictionary learning; traffic clas-
sication; multimedia traffic; K-singular value 
decomposition; quality of service

I. INTRODUCTION

With the development of various Internet mul-
timedia applications, cross-layer optimization 
of network resource allocation for enhanced 
user experiences has attracted considerable 
interests in the research community [1-8].

On the other hand, Internet Service Pro-
viders (ISPs) need to consider different Qual-
ity-of-Service (QoS) requirements for data, 
voice and video applications because users 
need better, more personalized services. How-
ever, due to the heterogeneity of the definition 
of QoS/service classes with different levels 
of granularity for various types of multimedia 
traffic, ISPs still have difficulties guaranteeing 
the end-to-end QoS of multimedia services by 
allocating proper network resources, especially 
when they target high-bandwidth applications 
such as video streaming [9-12]. Granularity, 
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cepts in various major benchmarks [17], clas-
sification performance should be improved by 
using dictionary learning models in the QoS 
domain.

In this paper, we define seven QoS catego-
ries with newly discovered features and pro-
pose a characteristic-based method which will 
classify Internet multimedia traffic by utilizing 
a modified K-Singular Value Decomposition 
(K-SVD) method. The K-SVD will learn the 
dictionary so that it can classify various Inter-
net multimedia traffic with appropriate differ-
entiating granularity of multimedia services by 
considering QoS requirements. By analyzing 
multimedia flows in a large-scale, real world 
network, we find that the new QoS-related 
features correlate with the bidirectional rates 
of different streams of Internet multimedia 
traffic. After investigating the sparse nature of 
the QoS of multimedia streams, we extract the 
training dictionary from training samples, uti-
lize a modified K-SVD to learn the dictionary, 
and propose a characteristic-based method to 
classify multimedia traffic. Specifically, our 
main contributions in this paper are summa-
rized as follows:
1)	�by extensive statistical analysis of traffic 

flow data collected from a real world net-
work, we find that downstream/upstream 
rates are suitable for differentiating Internet 
multimedia traffic (e.g., video and game 
traffic) from a QoS perspective;

2)	�based on the sparse property of the QoS 
characteristics, we show that the current 
types of Internet multimedia traffic (e.g., 
video and game traffic) can be classified 
into seven QoS based FAg (QFAg) catego-
ries;

3)	�we propose a modified, K-SVD-based 
Internet multimedia traffic classification 
framework based on the concept of QFAg, 
which improves the classification perfor-
mance significantly by employing a unified 
objective function incorporated with QoS 
features, for which the K-SVD algorithm 
can be utilized to efficiently solve the clas-
sification problem.
The remainder of this paper is organized as 

in particular, should not be used when classi-
fying, existing types of the multimedia traffic 
with new types of multimedia traffic.

For example, video traffic can be further 
classified as Peer-to-Peer (P2P)-based or 
non-P2P-based, each with different dynamic 
characteristics. To efficiently utilize limited 
network resources, it is important to classify 
Internet multimedia traffic using a finer granu-
larity, so that Internet multimedia services can 
be improved with better end-to-end QoS guar-
antee by ISPs. In order to effectively provide 
end-to-end QoS in heterogeneous networks, 
authors in [12] emplyed an Application Ser-
vice Map (ASM) to classify traffic, while traf-
fic was divided into eight Unified Communi-
cation (UC) classes in [13]. In addition, online 
allocation of communication and computation 
resources for different real-time multimedia 
services was considered in [14] to provide an 
optimal service to users.

In order to offer uninterrupted services 
when using a mobile Internet, a Flow Aggre-
gation (FAg) concept was proposed in our pre-
vious work [15], which involved aggregating 
traffic flows with similar QoS requirements 
into a FAg. We show that the FAg may act as a 
bridge to help different network/QoS domains 
along the transmission path understand/trans-
late QoS requirements with a unified view. 
However, how to utilize the FAg in an effec-
tive way is still an unresolved issue. In this 
paper we try to tackle this problem by using 
an appropriate, differentiating granularity of 
multimedia services from a QoS perspective 
to achieve the FAg objective.

To achieve this goal, it is necessary to clas-
sify Internet multimedia traffic into proper 
granularity categories based on QoS related 
characteristics. Most existing traffic classifica-
tion methods focus on a specific application/
protocol but not on QoS related characteristics 
[16]. However, traffic belonging to a single 
QoS class may be from different application 
types and generated by different protocols. 
Considering that the Bag-of-Words (BoW) 
method has been proven to be the most effi-
cient classification scheme for individual con-
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Inter-Arrival Time (IAT), delay, jitter, and 
packet loss [18]. These characteristics are not 
suitable for effectively creating the QoS class-
es because they cannot reflect the differences 
within the QoS classes. For example, packet 
size, frequently described in the literature, is 
an important characteristic, but cannot be used 
to make a distinction between Closed Circuit 
Television (CCTV1) web video and BitTorrent2 
video. Similarly, IAT also needs to be further 
processed before it can be applied to differen-
tiate traffic types [19].

To contrast Skype3 with IPTV4, authors 
in [20]. studied the corresponding statisti-
cal characteristics of IAT and packet size by 
using an interactive mode and packet prop-
erties. Researchers in [21] showed that IAT 
and packet size may affect jitter, packet loss, 
and bandwidth. IAT, packet loss and jitter for 
Skype in UMTS were analyzed in [22]. The 
results indicated that QoS characteristics have 
different distributions in different flow direc-
tions. Researchers in [23] indicated that, in 
online gaming, there were obvious differenc-
es between downstream and upstream video 
traffic. However, related works only provided 
a simple comparison as opposed to QoS clas-
sification. Researchers in [24] proposed a flow 
aggregation method, which can effectively re-
duce the number of flows. Further research in 
[25] indicated that statistical characteristics of 
flow aggregation can be used to identify relat-
ed traffic streams. Researchers in [26] tried to 
aggregate flows at the host/port level, but no 
implementation details were given. Reference 
[27] showed that flow could be aggregated 
based on some common characteristics to re-
duce the network operating costs.

Different from our works, the authors in 
[36] considered different classes of video 
flows, but focused on scheduling execution 
time in Wireless Multimedia Sensor Net-
work(WMSN). The authors in [37] focused on 
flow control to balance delivery fairness and 
efficiency over Heterogeneous Wireless Net-
works (HWNs). The authors in [38] presented 
an online unsupervised learning classification 
of pedestrians and vehicles for video surveil-

follows. Section II presents related work in the 
literature. Section III introduces the setup of 
our data collection from a real world network 
and presents the dataset. Section IV analyzes 
the related typical QoS characteristics, selects 
new QoS characteristics for differentiating 
Internet multimedia traffic streams, and pres-
ents the definition of the QoS class for Internet 
multimedia traffic. Section V develops a QoS 
class recognition framework based on modi-
fied K-SVD for Internet multimedia traffic and 
Section VI analyzes its complexity. Experi-
mental results are given in Section VII, and 
Section VIII concludes the paper.

II. RELATED WORK

The International Telecommunication Union 
(ITU), the Internet Engineering Task Force 
(IETF), and some other standard organi-
zations, as well as network providers have 
stipulated a large number of typical QoS char-
acteristics of Internet multimedia traffic [11]. 
For example, ITU-T Recommendation G.1010 
primarily adopts error tolerance, delay and jit-
ter, and packet loss as QoS criteria. IETF uses 
bandwidth, delay and jitter, and packet loss 
to classify services into IntServ and DiffServ 
models. The Third Generation Partnership 
Project (3GPP) defines four QoS classes based 
on delay. IEEE 802.11e selects a maximum 
contention window, a minimum contention 
window, and an arbitration inter-frame space 
to classify the traffic classes. IEEE 802.16m 
adopts maximum sustained rate, maximum 
latency tolerance, jitter tolerance, etc. The 
classifications using these models are not ideal 
for existing networks. In particular, the online 
game traffic with various genres currently 
occupies the majority of network resources, 
especially in Asian countries. However, little 
research has been done using current QoS 
models for online games.

Typical classification methods utilize 
different features to construct classifiers for 
differentiating the specific types of traffic or 
protocols. These features include protocol, 
port, payload, packet/flow size, flow duration, 

1 http://www.cntv.cn/.
2 http://www.bittorrent.
com/.
3 http://skype.gmw.cn/.
4 http://iptv.cntv.cn/.
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multimedia traffic flows with a natural granu-
larity.

The datasets are collected from 25 kinds of 
multimedia traffic flows, each being 30 min-
utes long, on a machine with an AMD 2.10 
GHz AthlonTM X2 DualCore QL-64 proces-
sor during day/night time in Spring 2014. We 
ran these traffic streams at the hosts several 
times and collected the traffic flows. When 
one of these is running, other applications are 
stopped. Each application flow is identified 
by a five-tuple: (source/destination IP address, 
source/destination port, and protocol). If their 
duration is longer than 0.1 second, they are 
marked as sub-flows (Usually one traffic flow 
has many sub-flows). Control packets were 
dropped from the raw data, leaving only the 
raw data to be analyzed. The types of multi-
media traffic flows are summarized in Table 
1.5

lance, but not Internet multimedia. They ex-
tracted the moving objects with their features 
from the original video, but not QoS charac-
teristics. The authors in [39] detailed a novel 
approach to solve the assignment problem of 
finding optimum thresholds for axle-based ve-
hicle classifiers. The authors in [40] proposed 
a bilevel feature extraction-based text mining 
that integrates features extracted at both syntax 
and semantic levels with the aim to improve 
the fault classification performance.

Traffic identification is an automatic clas-
sification process, and many methods have 
achieved good results as for example, K-SVD, 
Hidden Markov Model (HMM) [28], Support 
Vector Machine (SVM) [29], and Bayesian 
network based classification methods [30]. 
K-SVD, especially, has advantages over other 
algorithms in convergence rate and adaptabil-
ity to complex data structure [31]. Based on 
the existing research work on K-SVD [31], 
this paper proposes a modified K-SVD algo-
rithm for Internet multimedia traffic QoS class 
recognition. The proposed algorithm utilizes 
sparse coding to learn the dictionary, reduces 
the dimension of characteristics, and improve 
the accuracy of recognition.

III. DATASET PREPARATION

Since there are no suitable datasets available in 
which the multimedia traffic is classified into 
different categories according to QoS related 
characteristics, we capture the typical Internet 
multimedia traffic from a campus network 
to build a basic dataset with Wireshark [32]. 
After processing the raw data, the following 
statistical characteristics were obtained:
1)	�average upstream rate (Mbps): the amount 

of data per second sent to a server by cli-
ents; and

2)	�average downstream rate (Mbps): the 
amount of data per second sent to clients 
from the server.
We analyze the statistical characteristics of 

different types of Internet multimedia traffic. 
With the appropriate combination of QoS 
characteristics, we aim to differentiate Internet 

5 http ://www. icq.com; 
h t t p : / / w w w. Q Q. c o m ; 
h t t p : / / c n . m s n . c o m / ; 
http://dota.uuu9.com/; 
http://www.dota2.com.cn; 
http://lol.qq.com/; http://
xyq.163.com/;  http://
nz.qq.com/;
http://donkey4u.com/; 
http://www.emule.org.
cn/; http://www.uusee.
com/; PPStream is a net-
work television software; 
http://dl .xunlei .com/; 
http://www.sopcast.cn; 
http://tvants.en.softonic.
com/; PPLive is a live p2p 
TV application; http://
ppmate.com/.

Table I  Components of the dataset
Category Typical Multimedia Traffic Data volume (GB)

Real-time
interactive
video

ICQ 16.128

QQ 16.128

MSN 16.128

Online
gaming

Dota 0.692

Dota2 3.203

Lol 1.592

Dreams Western adventure 1.285

Against War 1.285

Real-time
streaming
media

eDonkey 104.48

Emule 104.36

UUSee 31.2

PPStream 50.49

Tudou video (standard-definition) 8.1327

Youku video (standard-definition) 8.5114

Tudou video (high definition) 13.3597

Youku video (high definition) 13.5831

BBC Web video 14.2819

CCTV Web video 14.3264

Xunlei 104.76

BitTorrent 104.81

SOPCast 31.2

TVAnt 31.2

Skype 3.1914

PPlive 52.02

PPMate 50.49
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IV. SELECTION OF TYPICAL QoS 
RELATED CHARACTERISTICS AND 
CLASSIFICATION OF QoS CATEGORIES

Downstream/upstream rates embody differ-
ences of QoS resource requirements of traffi c 
in time, space and direction, for the following 
reasons.
1)  Validity: rate represents the number of 

bytes per second, and indicates the rela-
tionship between packet/fl ow size and time. 
Considering that the majority of traffic 
fl ows have direct requests to the bandwidth 
resources, it seems to be more effective to 
classify traffic with downstream/upstream 
rates.

2)  Generality: downstream/upstream rates em-
body the resource requirements of traffi c in 
different directions. Considering that new 
QoS classes should effectively cover and 
differentiate the existing QoS classes, we 
choose downstream/upstream rates to be 
consistent with most international standards 
to some extent.

3)  Availability: since a typical QoS model pro-
vides operations of two directions for band-
width allocation, downstream/upstream 
rates can be obtained easily. For example, 
broadcast operates the downstream and the 
Base Station (BS) controls the upstream by 

In order to construct a clear display, we 
select data of 14 types of video and gaming 
traffic, and compute the corresponding nor-
malized byte volume, the normalized average 
IAT, and the normalized average packet size. 
The results are shown in Fig. 1. By analyzing 
the QoS characteristics of the dataset, we fi nd 
that:
1)  different types of traffi c streams are notably 

different in data volume, e.g., Youku video 
Standard-Defi nition video (SD) has a small-
er byte volume than Youku High-Defi nition 
(HD) video;

2)  online games have a smaller byte volume 
and average packet size;

3)  online games generally have larger average 
IAT since there are a lot of human computer 
interactions and local operations in online 
games.
It is necessary to further study QoS charac-

teristics of multimedia traffic for obtaining a 
more suitable QoS class.

In addition, a lot of QoS related characteris-
tics show locality to corresponding transform 
domain based on the above analysis results 
and [41]. According to [42],[43], locality can 
bring sparsity, which inspires that we can uti-
lizes locality to defi ne new QoS categories and 
sparsity to classify QoS categories for typical 
multimedia traffi cs.

Fig. 1  The columnar distribution of 14 types of traffi c related characteristics

normalized byte volume normalized average IAT normalized average packet size
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Dreams Western adv.Dreams Western adv.Dreams Western adv.Dreams Western adv.
dota2
QQ
dota
BBC Web video
CCTV Web video
SOPCast
Youku video (SD)
Youku video (HD)
Skype
PPStream
lol
PPlive
Xunlei



China Communications • September 2017 207

specifi c normalization equation is as follows:

 r i Ni u, = ≤ ≤
R
R

max

i u, , 1 ,  (1)

 r i Ni d, = ≤ ≤
R
R

max

i d, , 1 ,  (2)

where Ri u,  denotes the upstream rate of traffi c 
flow i, ri u,  is the corresponding normalized 
rate; Ri d,  denotes the downstream rate of traf-
fi c fl ow i, ri d,  is the corresponding normalized 
rate; N represents the number of traffi c fl ows; 
and Rmax  denotes the maximum value between 
Rm u,  and Rm d, , which is defi ned as

R R R m Nmax m m u m d= = …max , , 1,2, , .{ } , ,{ }  (3)
In order to understand all the captured traf-

fi c streams, we plot the normalized logarithmic 
value of downstream/upstream rates in Fig. 2. 
The x-axis is the normalized downstream rate 
and the y-axis is the normalized upstream rate. 
For easy reading, Fig. 2 plots one out of every 
ten points. From Fig. 2, we can compare the 
distributions of normalized logarithmic value 
of downstream and upstream rates for all cap-
tured traffi c. The entire distribution plane can 
be clearly divided into seven different zones, 
as shown in Fig. 2.

From the distribution of downstream/up-
stream rates shown in Fig. 2, the traffi c fl ows 
can be broadly classified into the following 
seven distinct categories from the QoS level 
perspective: broadcast standard-defi nition vid-

allocating resources to the traffic streams 
according to their QoS requirements in Wi-
MAX.

4)  Robustness: the dynamic network status 
has an obvious effect on QoS character-
istics. Considering that the time intervals 
between the upstream and downstream data 
transmissions are very short, downstream/
upstream rates seems to be affected by 
the same set of network factors. The ratio 
between the downstream/upstream rates 
seems to be insusceptible to the interference 
caused by changes in network status.
Therefore, downstream/upstream rates are 

selected to classify multimedia traffic in this 
paper since they can be an effective classifi ca-
tion feature.

Since the network status is influenced by 
many known (such as routing and user’s active 
degree) and unknown factors that affect the 
related QoS characteristic, traffic acquisition 
should be carried out in a longer time span. 
The inherent relationship is quite complex and 
will be left to our future work.

To obtain good statistical characteristics, 
our experiments was continued for a period 
of four months to collect the traffi c data. The 
maximum value of downstream/upstream rates 
is chosen to normalize all traffic rates. After 
normalization, the relative value is used to dis-
tinguish between different types of traffi c. The 

Fig. 2  The distributions of normalized logarithmic value of downstream/upstream rates (Mbps) for seven QoS categories
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mode.
WV is designated for web video traffic 

using the HTTP protocol, in which the HTTP 
server delivers the web objects embedded in 
the web page. For this class, the downstream 
rate is larger than the upstream rate since the 
video traffic embedded in HTTP has very few 
instructions to be transmitted in upstream 
direction. WV has similar downstream and up-
stream rates for different traffic flows since it 
maintains a stable rate and period of transmis-
sion.

TSV is ideal for traffic with the hybrid P2P 
model, which often perform near-optimally 
in terms of uplink bandwidth utilization, and 
download time except under certain extreme 
conditions. The traffic often generates a sig-
nificant amount of upload traffic and presents 
high packet length values. The Hybrid P2P 
model is currently one of the most common 
models for streaming video on the Internet, 
by which traffic is usually started by enabling 
multiple concurrent TCP connections, and the 
data is transmitted bidirectionally from multi-
ple P2P nodes at the same time. Multiple tasks 
performed simultaneously generally have a 
longer concurrent transmission time. Peers 
not only download content from the server but 
also serve it to other peers. Peers often can 
download more than they upload to the net-
work when high bandwidth peers are present. 

eo (BSDV), broadcast high-definition video 
(BHDV), web video (WV), trade style video 
(TSV), barter style video (BSV), interactive 
video (IV), and game class (GC). The cor-
responding relationships are shown in Table 
2. To clearly describe the relationships, we 
divided the normalized value of downstream/
upstream rates into five grades (extra small, 
small, medium, large, extra large), which are 
represented by numbers 1, 2, 3, 4, and 5, re-
spectively. A larger number represents a higher 
grade with more stringent QoS requirements.

BSDV represents live standard-definition 
video multimedia traffic such as multimedia 
teleconferencing and video phone traffic. This 
class can achieve grade 1 for the upstream rate 
and grade 2 in downstream rate. The distribu-
tion of traffic characteristics is concentrated, 
and the amount of data generated is not siz-
able.

BHDV represents live high-definition video 
multimedia traffic of high fidelity with tradi-
tional live traffic characteristics such as high 
quality video conferencing. Different from 
BSDV, this class has a larger downstream rate 
than BSDV does since high definition video 
has a larger volume data than standard defi-
nition video, and can be classified as the 3rd 
grade for the downstream rate. BHDV and 
BSDV have little difference in the upstream 
rate since they adopt the same transmission 

Table II  Proposed new QoS classes
Zone QoS Class Multimedia Traffic Downstream rate Upstream rate Description 

1 BSDV
VoD, video phone, online 
video

Small Extra small
Condensed distribution of downstream/upstream rates; 
large ratio of downstream/upstream rates 

2 BHDV High quality Video, VoD Middle Extra small Similar with BSDV in condensed distribution and ratio 

3 WV
BBC Web video, CCTV 
Web video

Extra large Small
Large ratio downstream/upstream rates;  largest span in 
the distribution of downstream rate 

4 TSV
Xunlei, BitTorrent, Emule, 
Fileguri

Large Middle
Large span in the distribution of downstream rate; mid-
dle ratio downstream/upstream rates 

5 BSV
Sopcast, TVAnt, PPlive, 
Skype, PPMate, PPStream, 
SinaLive, Coolstreaming

Large Extra large
Large span in the distribution of upstream rate; small 
ratio of downstream to upstream rate; more dispersed 
distribution of downstream/upstream rates 

6 IV ICQ, QQ, MSN Middle Middle
Condensed distribution of downstream/upstream rates; 
the downstream rate is similar with upstream rate 

7 GC
Multiplayer
Interactive
Gaming

Extra small Extra small
Condensed distribution of downstream/upstream rates; 
middle ratio of downstream to upstream rate 
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client.
In typical QoS models, video traffic flows 

are usually placed into one category without 
considering that video traffic flows with differ-
ent transmission modes (P2P, HTTP, C/S, and 
Broadcast) have obvious difference in QoS 
requirements. Moreover, video traffic with the 
same transmission mode and content also have 
different QoS requirements due to different 
display standards. Utilizing a distinct QoS 
classification scheme, this paper evaluates the 
above traffic characteristics in a new QoS clas-
sification framework. We are not simply creat-
ing QoS classes according to traffic types, but 
are refining existing QoS classification based 
on the actual distribution of characteristics in 
downstream and upstream rates of multimedia 
traffic. The newly proposed QoS class is more 
convenient for network resource management. 
For example, an Internet Service Provider 
(ISP) can allocate corresponding bandwidth 
resources for one kind of data flow according 
to their common QoS requirements.

V. QoS CLASS CLASSIFICATION 
FRAMEWORK BASED ON MODIFIED 
K-SVD

The proposed framework in this paper is 
illustrated in Fig. 3. In Fig. 3, QoS charac-
teristics are extracted from traffic data. Since 
QoS characteristics have various parameter 
types, they need be preprocessed. After pre-
processing, the core QoS characteristics of 
Internet multimedia traffic are obtained and 
mapped into QoS-Word, which denotes the 
specific QoS local pattern. According to the 
Bag-of-Words (BoW) model [17], bag-QoS-
words, which employ a vector consisting of 
the weighted counts are constructed. Internet 
multimedia traffic can be described by a dic-
tionary (codebook) constructed with bag-QoS-
words.

Since K-SVD does not consider charac-
teristic differences of data structures, the 
over-complete dictionary, trained by K-SVD, 
cannot provide detailed characteristics of data 
structures. By introducing a characteristics-set 

This class is not sensitive to delay and band-
width, and the upstream rate can be classified 
as grade 2 and the downstream rate as grade 4.

BSV is designated to traffic with typical 
P2P live traffic characteristics. In the traffic 
streams, there are more nodes available to ob-
tain data from other nodes and provide data to 
other nodes. Since this class can preserve user 
satisfaction by using an adaptive multi-rate to 
guarantee QoS requirements, this class has a 
larger span than TSV in the distribution of the 
upstream rate, making the downstream rate 
far smaller than the upstream rate. The distri-
bution of downstream and upstream rates is 
more dispersed since longer traffic delay and 
jitter can be tolerated. BSV can be classified 
as having a grade 5 in upstream rate and grade 
4 downstream rate.

IV is intended for live multimedia traffic 
that has a strict interactive response time with 
the highest class priority such as ICQ, QQ and 
MSN. IV has a very condensed distribution 
of downstream and upstream rates, and the 
downstream rate is similar to the upstream 
rate. The traffic belonging to this class has 
little data fluctuation and bidirectional sym-
metrical data transmission. GC is designated 
for game data transmission including anima-
tion and real-time voice or video delivery to 
the players with very high fidelity. The traffic 
belonging to this class is different from other 
live traffic, and may adopt the Client/Server 
(C/S) or hybrid P2P mode. They generally 
have much smaller packet size and shorter 
inter-arrival time. This class needs more strin-
gent QoS requirements regarding interactive 
action. Because they often have stored a lot of 
data when traffic software is installed, most of 
the data transmitted between server and client 
is instruction data with smaller packet size 
during playing, which results in the smallest 
values of data rate.

GC has the smallest values of downstream 
and upstream rates among the seven catego-
ries, since only a small amount of game data 
is sent to the client by the server that performs 
heavy-weight computations, and only the 
player’s actions are sent to the server by the 
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highly effi cient with an effective sparse coding 
[34]. For reducing the objective values of the 
Dictionary Learning (DL) problem, K-SVD 
mainly repeats two steps: (i) sparse representa-
tions and (ii) updating the dictionary. Regard-
ing the step of sparse representations, based on 
the well-defined dictionary, the sparse repre-
sentations are computed by means of a pursuit 
method [34]. When updating the dictionary, 
both atoms and their coeffi cients are updated 
simultaneously. The algorithm continuously 
optimizes the dictionary and sparse coeffi cient 
until the termination condition is met.

It is an inherent issue of DL with the 
K-SVD algorithm to solve the following opti-
mization problem.

min , . . , ,{ , } 0 0D X F i{‖ ‖ ‖ ‖Y DX s t x T i− ≤ ∀2 }  (5)
where Y y= { }i i

N
=1  denotes  a  sample  se t , 

X x= { }i i
N
=1  is a sparse coefficient matrix cor-

responding to its sample set vector Y, which 
contains the coefficients of the dictionary 
with xi  being its ith column vector, D is an 
over-completed dictionary matrix with dk  
being its kth column vector, which leads to 
sparse representations and can be designed by 
adapting its content to fi t a given set of signal 
examples. T0  stands for the sparsity of vector 
xi , which is the nonzero element bounded in 
vector xi . ‖‖• F  represents the Frobenius norm 
and ‖‖• 0  corresponds to the 0  norm.

Based on [44], the K-SVD algorithm alter-
nates between sparse representations of the 
examples based on the current dictionary and 
an update process for the dictionary atoms so 
as to better fi t the data. The update of the dic-
tionary columns is done jointly with an update 
the sparse representation coeffi cients related to 
it, resulting in accelerated convergence [44]. 
By utilizing K-SVD algorithm to fi nd the best 

from a training sample, a modifi ed K-SVD is 
employed to efficiently learn the over-com-
pleted dictionary constructed with bag-QoS-
words. Through combining given probe traffi c 
flows, QoS class classification models are 
obtained with a characteristic-based classifi ca-
tion scheme. Multimedia traffic flows can be 
classifi ed into a corresponding QoS category/
class with a linear SVM classifier. The pro-
posed method can address the problems that 
challenged many traditional methods of im-
proving QoS requirements.

5.1 QoS model parameters of K-SVD 
algorithm

Based on [33], we assume that each of the 
QoS parameters adopts a real number or 
can be parameterized by a real number. Let 
X ∈M N×  denote a set of N column traffic 
vectors xn ∈

M , which is the only descrip-
tion of the nth traffic in the M-dimensional 
real number Euclidian space M , and con-
sists of M corresponding QoS parameters. 
Let D d d= …[ 1, , K ] , dk ∈

M K× , for all k, and 
K M> , be an over-completed dictionary with 
K characteristics (atoms) for a sparse represen-
tation of X.

The goal of sparse modeling is to learn a 
reconstructive dictionary D by solving the fol-
lowing objective function:

 
( , )

s t T n

A D X DA

. ,.‖ ‖α

= −

n

arg m

0 0≤ ∀
{ , }A D

i

,

n{‖ ‖2
F},

 (4)

where  ‖‖• F  i s  a  F roben iu s  no rm and 
A = … ∈[ , , ]α α1 N 

K N×  is called a sparse coding 
of X for a fi xed D, which can be obtained by 
employing a K-SVD algorithm.

The K-SVD algorithm directly generalizes 
the K-means algorithm, which is simple and 

Traffiaffiaf c data

Traffiaffiaf c 
classification

Extracting QoS 
characteristics 

Obtaining QoS 
class model 

QoS characteristics 
preprocessing 

Template-based 
classification scheme

Constructing 
bag-QoS-words

Learning 
dictionary 

Fig. 3  The fl owchart of the proposed QoS Class classifi cation framework
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i n g  v e c t o r  w h e n  s a m p l e  { }yi  
is represented by atom dk ,  and 
ωk T= ≤ ≤ ≠{i i K x i|1 , ( ) 0k }  as the in-
dex value of non-zero entries in the 
vector x iT

k ( ) . Assuming that N× | |ωk  
matrix Ωk  has ones at the ( ( ), )ωk i i
th entries and zeros elsewhere, 
x xR T k

k k= Ω  and E Ek k k
R = Ω . Eq. (6) can 

be transformed as follows:
     ‖ ‖ ‖ ‖E d x E d xk k k T k k k RΩ − Ω = −k R k . � (7)

	 2)	� SVD decomposes matrix Ek
R  as 

E U Vk
R T= ∆ , in order to select both 

the maximum singular value and its 
corresponding singular vector for up-
dating atom dk  and sparse vector xR

k , 
respectively. U is an N unitary matrix 
and its 1 st column is used to update 
dk . V is an | |ωk  unitary matrix and 
∆  is a diagonal matrix. xR

k  is updated 
with the 1 st column of V multiplied 
by ∆(1,1) .

Step 3.	� Repeat Steps 1 and 2. The iterations 
will continue until the termination 
condition is met by a certain thresh-
old or a maximum number of itera-
tions.

5.2 Dictionary learning in modified 
K-SVD algorithm

By formulating a new objective function by 
combining the original objective function and 
construction error, the problem of sparse rep-
resentation of QoS classes can be addressed 
by solving the following new optimization 
problem for dictionary construction.
( , ) arg minA D X DA T DC* 2 2= − + −

{ , , }A D T
‖ ‖ ‖ ‖2 2η � (8)

	
relax
≈ −arg min

{ , }A D*
‖ ‖X DA* * 2

2 � (9)

	 s. ,t.  &‖ ‖αn
*

0 ≤ ∀T n � (10)

	 X X T* = ( , )η � (11)

	 A A C* = ( , ),η � (12)

where η  denotes the relative weight indi-
cating the contribution between training 
sample reconstruction and characteristic-set 
reconstruction, T ∈M L×  is the character-

dictionary, we can represent the data samples 
as sparse compositions. According to [44], the 
K-SVD procedure is given in detail as follows.
Step 0.	� This step is the initialization phase. 

Based on analysis results from cap-
tured dataset, we choose the classical 
QoS parameters and their combina-
tions (including the downstream/up-
stream rates) with obvious difference 
degree as elements. After preprocess-
ing the captured dataset (such as nor-
malization), we generate a dictionary 
D by well-defined and holds it as 
constant. Meanwhile, we set J =1 .

Step 1.	� This is the sparse representation step. 
K-SVD initializes dictionary D by 
a random or well-defined dictionary 
matrix and holds it as a constant. Ac-
cording to predefined dictionary D, 
K-SVD algorithm calculates sparse 
representations xi  for each sample 
vector yi  with objective function (5) 
by means of the pursuit method in 
[34].

Step 2.	� In this step, we start to update the 
dictionary. Based on sparse coeffi-
cient xi  obtained from the previous 
step, the K-SVD algorithm corrects 
the dictionary matrix column by col-
umn. Assuming to correct atom dk

, the K-SVD algorithm isolates it by 
the following penalty term from the 
objective function (5).

	

Y DX Y d x− = −2

F

= − −

= −

 
 
 

E d x

Y d x d x

k k T

∑
j

K

=

j j k= ≠

1

∑
1,

K

k

j T

2

F

j

,

j T k T

2

F

j k

2

F

� (6)

where xT
j  stands for the jth row in vector Y, 

and Ek  denotes the error caused by the kth 
atom removed.

In order to meet the sparsity constraint by 
ensuring most of the elements are zeros in the 
new vector xT

k , the K-SVD algorithm rectifies 
matrix Ek  as follows:
	 1)	� Define x iT

k ( )  as the correspond-
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After obtaining LCFC features by utilizing 
the dictionary learned by the modified K-SVD 
dictionary learning method (as described in 
the last section), the detailed description of 
characteristic-based classification scheme is 
given in the following.
Step 1.	� Select n traffic flows per class ran-

domly from traffic data for generating 
a set of characteristic-sets.

Step 2.	� Extract QoS characteristics from traf-
fic data, and preprocess them, includ-
ing quantization and normalization of 
parameter values;

Step 3.	� Calculate the QoS distance between 
the probe traffic and each of the traf-
fic streams in the characteristic-set 
with the core function as follows:

	
J K r pP i

ri = = −

r ii = = …

( , ) exp ,

class i, 1,2, ,

 
 
 

‖ ‖r p
2
i

σ
−

2 � (18)

		�  where J p
ri  is the QoS distance of the 

probe traffic p and characteristic-set 
traffic ri  ( ri  is the ith traffic of char-
acteristic-subset r), and K r p( , )i  is 
Radial Basis Function (RBF).

Step 4.	� According to (18), we now average 
row by row for obtaining the final 
representation of the network traffic 
for classification to reduce the dimen-
sionality of the QoS distance matrix.

   Z J r ip p i
r = = = …mean , class i, 1,2, . 

 
 
∑
i

K

=1

ri � (19)

Step 5.	� Based on (19), the represented feature 
is normalized and SVM is selected to 
classify the traffic.

	 Z p =
‖ ‖Z

Z

p

p

2

. � (20)

VI. COMPLEXITY ANALYSIS

To further analyze the efficiency of the pro-
posed modified-K-SVD method, we study the 
time complexity of the proposed method. As 
described in Section V, the proposed method 
is constructed using the K-SVD approach. The 
dictionary learning problem in the proposed 
modified-K-SVD is casted as a regularized 

istic-set for traffic, C∈K L×  is the sparse 
coding of T. Note that the optimization of 
min{ , , } 2 2A D T‖ ‖ ‖ ‖X DA T DC− + −2 2η  in (8) is re-
laxed to a simpler form (9).

Applying K-SVD to update dk  and the kth 
row in A is represented by aT

k  at a time. As-
suming that E X d ak j T= −( )∑

j k≠

j , aT
j  and Ek  rep-

resent the result of discarding the zero entries 
in aT

j  and Ek , respectively, dk  and aT
k  can be 

obtained by solving hte following problem:

	 ( , ) .d a E d ak T k k T F 

k k= − argmin
{ , }d ak T

k
‖ ‖

2
� (13)

After  performing SVD for  Ek ,  i .e . , 
U V EΣ =T SVD( )k , we obtain dk  and aT

k  as:
	 d Uk = (:,1) � (14)

	 a VT
k = Σ(1,1) (:,1). � (15)

Lastly, the non-zero values in aT
k  are replaced 

with aT
k .

Here, we formulate the problem of classi-
fying the Internet multimedia traffic with QoS 
features into a unified objective function con-
structed with the original objective function 
and reconstruction error. Obviously, it is a typ-
ical optimization problem that can be resolved 
efficiently with the K-SVD algorithm, while 
the classification performance could be signifi-
cantly improved.

5.3 Locality constrained coding of 
QoS characteristics

All QoS characteristics in this paper are cod-
ed with Locality Constrained Feature Coding 
(LCFC) based on [31].

The LCFC method needs to satisfy the fol-
lowing constraint:

min exp
{ }H

  
 
  
‖ ‖Y BH H− + ⋅ ∗2

2 γ  
 
 

dist( , )
σ
Y B

2

2

�(16)

	 s.t. 1 1 ,T h ii = ∀ , � (17)
where Y is a vector to be encoded, B is a 
dictionary, H is the coding obtained through 
LCFC, ∗  denotes the element-wise multi-
plication, dist( , )⋅ ⋅  is the Euclidean distance, 

and exp 
 
 

dist( , )
σ
Y B  is the weight vector for 

different codes, which is used to measure the 
relationship between each element and its cor-
responding columns in dictionary B.
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SVM, Naive Bayes and K-NN in terms of 
accuracy, precision, Recall and F1-measure 
as showed in Tables 5 and 6, and Fig. 4 in the 
following section.

VII. EXPERIMENTAL RESULTS AND 
DISCUSSIONS

In this section, we focus our experiments on 
classifying multimedia traffic based on QoS 
characteristics from a QoS class perspective. 
We generate the datasets by capturing popu-
lar Internet multimedia traffic from a campus 
network. The datasets include 26 natural cate-
gories of multimedia traffic, which are divided 
into seven QoS classes as shown in Table 4.

Different from that of the existing works 
[28]-[30], our novel research issue is to effec-
tively utilize QoS characteristics to classify 
traffic into the appropriate QoS class.

In simulations, we process the raw data 
captured by the Wireshark software tool, while 
the following characteristics are obtained, 
including protocol, port, payload, packet/
flow size, flow duration, arrival time, IP ad-
dress, and etc. After analyzing their statistical 
characteristics including average upstream 
rate, average downstream rate, byte volume, 

least-squares problem, where sparsity and 
regularization terms are used. Following [45]-
[48], in the training phase, since updating the 
coding coefficient for each sample is a tradi-
tional sparse coding problem, the correspond-
ing time complexity for each traffic is approx-
imately ( )M K2  , where  ≥1.2  is a constant, 
M represents the feature dimensionality of the 
sample and K denotes the number of dictio-
nary atoms. The time complexity of all N sam-
ples is ( )NM K2  . The time complexity of 

updating the dictionary atoms is ( )∑
c

C

=1
M N K , 

where C is the number of traffic classes and 
Nc  is the number of training samples of class 
c. The overall time complexity of the proposed 

method is ( )INM K IMN K2  +∑
c

C

=1
 , where I is 

the number of the iterations.
According to [49], the time complexity of 

the HMM method is (3 )QT , where Q is the 
number of states in the model and T denotes 
the number of symbols in the observation. 
Referring to [50], the time complexity of the 
SVM method is ( )N 3 , where N is the num-
ber of training samples. Referring to [51], the 
time complexity of the Naive Bayes method 
is ( )Nn , where N is the total number of 
samples and n stands for the number of fea-
tures selected for the model. Referring to [52], 
the time complexity of the K-NN method is 
( )mTL , where m is the number of feature 
selected from the original feature set, T is the 
number of samples in the test set, and L de-
notes the number of samples in the train.

In this paper, the experiments are imple-
mented with Matlab running in ThinkStation. 
The training time of the proposed method is 
about 8 hours. We compare our method against 
HMM, SVM, Naive Bayes and K-NN in terms 
of the average computation time for classify-
ing one testing traffic. The average compu-
tational time of HMM, SVM, Naive Bayes, 
K-NN, and the proposed modified-K-SVD 
methods are given in Table 3. The time com-
plexity of the proposed modified-K-SVD 
method is the highest among HMM, SVM, 
Naive Bayes, and K-NN. However, the pro-
posed method is more competitive than HMM, 

Table III  Average computation times
HMM SVM Naive Bayes K-NN Modified-K-SVD 

43.1s 85.9s 17.5s 48.4s 671.3s

Table IV  Components of the experimental dataset

QoS Class Traffic type
Number of 

Traffic Flows
Data Amount 

(GB) 

1 BSDV Tudou, Youku video(SD) 100 1.05

2 BHDV Tudou, Youku video(HD) 100 2.12

3 WV
BBC Web video, CCTV Web 
video

100 2.06

4 TSV
Xunlei, BitTorrent, eDonkey, 
Emule

100 8.39

5 BSV
Sopcast,  TVAnt, UUSee, 
Skype, PPlive, PPStream, 
PPMate

100 4.87

6 IV ICQ, QQ, MSN 100 4.78 

7 GC
dota, dota2, lol,  Dreams 
Western adventure, Against 
War

100 1.21
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formula as follows:

	 P =
TP FP

TP
+

, � (22)

where TP denotes the total number of sam-
ples which are distinguished correctly by the 
classifier and are the correct samples indeed, 
and FP denotes the total number of samples 
which are distinguished correctly by the clas-
sifier and are the incorrect samples indeed.
3)	�Recall (R). It is expressed by the formula as 

follows:

	 R =
TP FN

TP
+

, � (23)

where FN denotes the total number of sam-
ples which are distinguished incorrectly by the 
classifier and are the correct samples indeed.
4)	�F1-measure ( F1 ) [35]. It is represented by 

the formula as follows:

	 F1 =
2
P R
×
+
PR . � (24)

The experimental results are presented in 
Table 5. We can see that our method achieves 
the best performance among all the methods 
and has higher classification accuracy than the 
next best result by nearly 3.43%. Since Naive 
Bayes, HMM, and SVM are affected by the 
training dataset in the learning stage, they are 
dependent on the dataset’s specific character-
istics, and have different recognition effects 
for different traffic streams belonging to the 
same QoS class. For example, BitTorrent has 
a higher accuracy than eDonkey for Naive 
Bayes although both of them belong to TSV. 
SVM has a very poor recognition performance 
for PPlive, but has an extremely good perfor-
mance for BitTorrent and eDonkey. PPStream 
has higher classification accuracy than Sop-
cast in HMM. Since K-NN only calculates the 
“nearest” neighbor samples, the recognition 
performance is also influenced by training set 
samples in the classification process.

In QoS class classification, different QoS 
classes may utilize the same protocol, such as 
BSDV, BHDV, TSV and BSV classes all being 
able to use P2P mode, and the same QoS class 
may access different protocols, such as GC 
using both P2P and C/S modes. Since Naive 

Inter-arrival Time (IAT), delay, jitter, the 
different combination of QoS characteristics 
(such as sub-flows), the different transforms 
corresponding to characteristics (such as Dis-
crete Fourier Transform ) and etc. We extract 
QoS characteristics with obvious difference 
from above characteristics (including down/
up-stream rate) and preprocess them including 
quantization and normalization of parameter 
value to obtain corresponding parameter val-
ues. After the dictionary is constructed with an 
excess quantity of bag-QoS-words, Locality 
Constrained Feature Coding (LCFC) features 
of QoS classes are extracted. Referring to [31], 
we set the dictionary size to be 100 by using 
an SVM classifier. We randomly partition the 
dataset into 50 training traffic flows per class 
and the rest into testing traffic flows. Then, we 
evaluate our method according to new QoS 
classes introduced in Table 2.

In order to evaluate the effectiveness of our 
method, in combination with selected charac-
teristics, we generate a characteristics vector 
to label the original Internet multimedia traffic 
flow. On a Matlab platform, we compare our 
method against HMM [28], SVM [29], Naive 
Bayes and K-Nearest Neighbor (K-NN) [30] 
in terms of accuracy, precision, Recall, and 
F1-measure. The results are obtained from 50 
runs.

The following performance metrics are 
used in the experimental evaluation.
1)	�Accuracy (Ac). For the given test datasets, 

accuracy is determined by finding the ratio 
of the number of samples correctly classi-
fied by the classifier to the total number of 
samples.

	 Ac =
SUM
TPΣ , � (21)

where TPΣ  denotes the number of samples 
correctly classified by the classifier, and SUM 
represents the total number of samples in the 
dataset.
2)	�Precision (P) [35]. It is represented by the 

Table V  Comparison of traffic classification methods in terms of accuracy
Classification Method Proposed method Naive Bayes HMM SVM K-NN

Accuracy (%) 98.29 88 89.71 94.86 92.85
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framework based on the concept of QFAg. 
Based on statistical analysis of multimedia 
flows collected from a large-scale, real net-
work, we defined seven QoS categories with 
features of downstream/upstream rates. By in-
vestigating the sparsity property of the multi-
media streaming QoS characteristic, this paper 
utilized a modifi ed K-SVD to train dictionary 
extracted from training samples. By learning 
a characteristic-set to obtain sparse represen-
tation for multimedia traffic, we proposed a 
characteristic-based method to classify multi-
media traffi c. Experimental results reveal that 
the proposed method can improve the perfor-
mance significantly compared to other state-
of-the-art methods.
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Bayes, HMM, SVM and K-NN are used to 
classify specific protocols that are not of the 
QoS class, they have poor performance in QoS 
class classification due to the existing iden-
tification error rate, in which some traffic is 
classifi ed with an inappropriate QoS class with 
the same protocol, as in the exampling traffi c 
belonging to the BSDV class being classifi ed 
as traffic of the BHDV class, and traffic be-
longing to the BHDV class being classifi ed as 
traffi c of the BSDV class. This is because the 
difference between BSDV and BHDV classes 
is not very obvious as SD and HD standards 
constantly change in network.

In Table 6, we can see that our method 
clearly has higher precision performance than 
the other four methods. This is because our 
method considers the dispersion of characteris-
tics caused by network dynamics, helps reduce 
their influence, and improves the precision 
performance. In the same way, our method 
improves F1-measure performance (shown in 
Fig. 4). Our method appears to have a higher 
F1-measure value than other methods. In par-
ticular, the fi ve classifi cation methods have the 
same precision regarding traffi c belonging to 
the GC class, but our method has a higher val-
ue in Recall than that of other methods since 
some traffi c with dispersive QoS characteris-
tics are divided into other QoS classes when 
using Naive Bayes, HMM, SVM and K-NN.

Unlike existing work [28]-[30], our method 
takes into account feature selection from the 
point of view of QoS class, which can effec-
tively improve the classification accuracy. In 
the proposed method, downstream/upstream 
rates reflect the essential QoS characteristics 
of multimedia traffi c and help improve recog-
nition accuracy. As a result, with our method, 
it is possible to obtain potential QoS patterns 
to improve the classifi cation performance.

VIII. CONCLUSIONS

This paper addressed the problem of effective 
classifying multimedia traffic with a suitable 
granularity, and presented a modifi ed K-SVD 
Internet multimedia traffic identification 

Table VI  Comparison of traffi c classifi cation methods in terms of precision
Classifi cation 

Method
BSDV BHDV WV TSV BSV IV GC

Proposed method 0.9796 0.9608 1 0.9608 0.98 1 1

Naive Bayes 0.8125 0.7885 0.9574 0.8333 0.8654 0.92 1

HMM 0.8511 0.8113 0.9583 0.8654 0.8846 0.9216 1

SVM 0.9167 0.8846 0.9796 0.9231 0.96 0.98 1

K-NN 0.8980 0.8824 0.96 0.92 0.9038 0.94 1
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Fig. 4  Comparison of traffi c classifi cation methods in term of F1-measure



China Communications • September 2017216

[10]	� S. Mao, S. S. Panwar, and Y. T. Hou, “On optimal 
traffic partitioning for multipath transport,’’ in  
Proc. IEEE INFOCOM 2005, Miami, FL, Mar. 2005, 
pp. 2325-2336.

[11]	� Q.M. Qadir, A.A. Kist, and Z. Zhang, “A novel 
traffic rate measurement algorithm for Quality 
of Experience-Aware video admission control,’’  
IEEE Transactions on Multimedia, vol. 17, no. 5, 
pp. 711-722, May 2015.

[12]	� R. Misun, Y. Kim Youngmin, and H. Park, “Sys-
tematic QoS class mapping framework over 
multiple heterogeneous networks,’’ in  Proc. 8th 
International Conference on Next Generation 
Teletraffic and Wired/Wireless Advanced Net-
working, St. Petersburg, Russia, Sept. 2008, pp. 
212-221.

[13]	� A. Elnaka and Q.H. Mahmoud, “QoS traffic map-
ping for a multi-participant session in unified 
communications networks,’’ in  Proc. 26th IEEE 
Canadian Conference on Electrical and Comput-
er Engineering, Regina, Canada, May 2013, pp. 
1-5.

[14]	� J. Liao, P.A. Chou, C. Yuan, Y. Hu, and W. Zhu, 
“Online allocation of communication and com-
putation resources for real-time multimedia 
services,’’  IEEE Transactions on Multimedia, vol. 
15, no. 3, pp. 670-683, Apr. 2013.

[15]	� Z.-J Wang, Y.-N. Dong, and X. Wang, “A dynamic 
service class mapping scheme for different QoS 
domains using flow aggregation,’’  IEEE Systems 
Journal, vol. 9, no. 4, pp. 1299-1310, Dec. 2014.

[16]	� J. Zhang, C. Chen, X. Yang, W. Zhou, and X. 
Yong, “Internet traffic classification by aggre-
gating correlated naive Bayes predictions,’’  IEEE 
Transactions on Information Forensics and Secu-
rity, vol. 8, no. 17, pp. 5-15, Jan. 2013.

[17]	� S. Samanta and B. Chanda, “Space-time facet 
model for human activity classification,’’  IEEE 
Transactions on Multimedia, vol. 16, no. 6, pp. 
1525-1535, Oct. 2014.

[18]	� S.-H. Yoon, J.-S. Park, M.-S. Kim, C. Lim, and J. 
Cho, “Behavior signature for big data traffic 
identification,’’ in  Proc. 2014 International Con-
ference on Big Data and Smart Computing (BIG-
COMP), Bangkok, Thailand, Jan. 2014, pp. 261-
266.

[19]	� M. Jaber, R.G. Cascella, and C. Barakat, “Can we 
trust the inter-packet time for traffic classifica-
tion?’’ in  Proc. IEEE ICC 2011, Kyoto, Japan, June 
2011, pp. 1-5.

[20]	� N.M. Markovich and U.R. Krieger, “statistical 
analysis and modeling of peer-to-peer multi-
media traffic,’’  Next Generation Internet, LNCS 
5233, pp. 70-97, Springer-Verlag: Berlin Heidel-
berg, 2011.

[21]	� N.M. Markovich and U.R. Krieger, “Statistical 
characterization of QoS aspects arising from 
the transport of Skype VoIP flows,’’ in  Proc. First 
International Conference on Evolving Internet, 
Cannes/La Bocca, France, Aug. 2009, pp. 9-14.

(NO. 61401004, 61271233, 60972038), Plan 
of introduction and cultivation of university 
leading talents in Anhui (No.gxfxZD2016013), 
the Natural Science Foundation of the High-
er Education Institutions of Anhui Province, 
China (No. KJ2010B357), Startup Project of 
Anhui Normal University Doctor Scientific 
Research (No.2016XJJ129), the US Nation-
al Science Foundation under grants CNS-
1702957 and ACI-1642133, and the Wireless 
Engineering Research and Education Center at 
Auburn University.

References
[1]	� Z. He, S. Mao, and T. Jiang, “A survey of QoE 

driven video streaming over cognitive radio 
networks,’’  IEEE Network, vol. 29, no. 6, pp. 20-
25, Nov./Dec. 2015.

[2]	� Y. Xu and S. Mao, “A survey of mobile cloud 
computing for rich media applications,’’  IEEE 
Wireless Communications, Special Issue on Mo-
bile Cloud Computing, vol. 20, no. 3, pp. 46-53, 
June 2013.

[3]	� Z. He, S. Mao, and S. Kompella, “Quality of Ex-
perience driven multi-user video streaming in 
cellular cognitive radio networks with single 
channel access,’’  IEEE Transactions on Multime-
dia, vol. 18, no. 7, pp. 1401-1413, July 2016.

[4]	� Z. He and S. Mao “Adaptive multiple description 
coding and transmission of uncompressed vid-
eo over 60GHz networks,’’  ACM Mobile Com-
puting and Communications Review (MC2R), vol. 
18, no. 1, pp. 14-24, Jan. 2014.

[5]	� D. Hu and S. Mao, “Streaming scalable videos 
over multi-hop cognitive radio networks,’’  IEEE 
Transactions on Wireless Communications, vol. 
9, no. 11, pp. 3501-3511, Nov. 2010.

[6]	� S. Lin, Y. Wang, S. Mao, S.S. Panwar, “Video 
transport over ad hoc networks using multiple 
paths,’’ in  Proc. IEEE ISCAS 2002, Scottsdale, AZ, 
May 2002, pp. 57-60.

[7]	� S. Mao, X. Cheng, Y. T. Hou, H. D. Sherali, and J. 
H. Reed, “On joint routing and server selection 
for multiple description video in wireless ad 
hoc networks,’’  IEEE Transactions on Wireless 
Communications, vol. 6, no. 1, pp. 338-347, Jan. 
2007.

[8]	� Y. Huang and S. Mao, “Downlink power control 
for multi-user VBR video streaming in cellular 
networks,’’  IEEE Transactions on Multimedia, vol. 
15, no. 8, pp. 2137-2148, Dec. 2013.

[9]	� S. Mao, S. S. Panwar, and Y. T. Hou, “On mini-
mizing end-to-end delay with optimal traffic 
partitioning,’’  IEEE Transactions on Vehicular 
Technology, vol. 55, no. 2, pp. 681-690, Mar. 
2006.



China Communications • September 2017 217

worked Embedded Systems for Enterprise Appli-
cations (NESEA), Perth, Australia, Dec. 2011, pp. 
1-6.

[36]	� L. Zhou, Z. Yang, H. Wang, and M. Guizani, “Im-
pact of execution time on adaptive wireless vid-
eo scheduling,’’  IEEE Journal on Selected Areas 
in Communications, vol. 32, no. 4, pp. 760-772, 
Apr. 2014.

[37]	� C. Xu, Z. Li, J. Li, H. Zhang, and G.-M. Munte-
an, “Cross-layer fairness-driven concurrent 
multipath video delivery over heterogeneous 
wireless networks,’’  IEEE Transactions on Circuits 
and Systems for Video Technology, vol. 25, no. 7, 
pp. 1175-1189, July 2015.

[38]	� Y. He, N. Sang, C. Gao, and J. Han, “Online un-
supervised learning classification of pedestrian 
and vehicle for video surveillance,’’  Chinese 
Journal of Electronics, no. 26, no. 1, pp. 145-151, 
Jan. 2017.

[39]	� N. Bitar, and H.H. Refai, “A probabilistic ap-
proach to improve the accuracy of axle-based 
automatic vehicle classifiers,’’  IEEE Transactions 
on Intelligent Transportation Systems, vol. 18, 
no. 3, pp. 537-544, Mar. 2017.

[40]	� F. Wang, T. Xu, T. Tang, M. Zhou, and H. Wang, 
“Bilevel feature extraction-based text mining for 
fault diagnosis of railway systems,’’  IEEE Trans-
actions on Intelligent Transportation Systems, 
vol. 18, no. 1, pp. 49-58, Jan. 2017.

[41]	� Y.-T. Han and H.-S. Park, “Game traffic classi-
fication using statistical characteristics at the 
transport layer,’’  ETRI Journal, vol. 32, no. 3, pp. 
22-32, Feb. 2010.

[42]	� S. Bu and Y. Zhang, “Single-frame and multi-
frame image super-resolution based on local-
ity-constrained linear coding,’’  Journal of Jilin 
University ( Engineering and Technology Edi-
tion), vol. 43, no. 1, pp. 365-370, Mar. 2013.

[43]	� J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. 
Gong, “Locality-constrained linear coding for 
image classification,’’  IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) 
2010, San Francisco, CA, June 2010, pp. 3360-
3367.

[44]	� M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: 
An algorithm for designing overcomplete dic-
tionaries for sparse representation,’’  IEEE Trans-
actions on Signal Processing, vol. 54, no. 11, pp. 
4311-4322, Nov. 2006.

[45]	� G. Somasundaram, R. Sivalingam, V. Morellas, 
and N, Papanikolopoulos, “Classification and 
counting of composite objects in traffic scenes 
using global and local image analysis,’’  IEEE 
Transactions on Intelligent Transportation Sys-
tems, vol. 14, no. 1, pp. 69-81, Mar. 2013.

[46]	� R. Rubinstein, M. Zibulevsky, and M. Elad, “Ef-
ficient implementation of the K-SVD algorithm 
using batch orthogonal matching pursuit,’’  
Tech. Rep., Dept. Comput. Sci., Technion, Haifa, 
Israel, Apr. 2008.

[22]	� H. Tobias and A. Binzenhofer, “Analysis of Skype 
VoIP traffic in UMTS: End-to-end QoS and QoE 
measurements,’’  Elsevier Computer Networks, 
vol. 52, no. 3, pp. 650-666, Feb. 2008.

[23]	� M. Claypool, D. Finkel, A. Grant, and M. Solano, 
“Thin to win? Network performance analysis of 
the OnLive thin client game system,’’ in  Proc. 
2012 Annual Workshop on Network and Systems 
Support for Games (NetGames), Venice, Italy, 
Nov. 2012, pp. 1-6.

[24]	� M. Sanli, E.G. Schmidt, and H.C. Guran, “A flow 
aggregation method for the scalable and effi-
cient quality of service support in Next Gener-
ation Networks,’’ in  Proc. IEEE GLOBECOM’13, 
Atlanta, GA, Dec. 2013, pp. 2243-2248.

[25]	� G. Thatte, U. Mitra, and J. Heidemann, “Paramet-
ric methods for anomaly detection in aggregate 
traffic,’’  IEEE/ACM Transactions on Networking, 
vol. 19, no. 2, pp. 512-525, Apr. 2011.

[26]	� S. Valenti and D. Rossi, “Identifying key features 
for P2P traffic classification,’’ in  Proc. 2011 IEEE 
International Conference on Communications 
(ICC), Kyoto, Japan, June 2011, pp. 1-6.

[27]	� L. Noirie, E. Dotaro, G. Carofiglio, A. Dupas, P. 
Pecci, D. Popa, and G. Post, “Semantic network-
ing: Flow-based, traffic-aware, and self-man-
aged networking,’’  Bell Labs Technical Journal, 
vol. 14, no. 2, pp. 23-38, Apr. 2009.

[28]	� S. Maheshwari, S. Mahapatra, C.S. Kumar, and K. 
Vasu, “A joint parametric prediction model for 
wireless internet traffic using Hidden Markov 
Model,’’  Springer Wireless Networks, vol. 19, no. 
6, pp. 171-1185, Aug. 2013.

[29]	� J. He, Y. Yang, Y. Qiao, and C. Tang, “Accurate 
classification of P2P traffic by clustering flows,’’  
IEEE/CIC China Communications, vol. 10, no. 11, 
pp. 42-51, Nov. 2013.

[30]	� H. Dibeklioglu, A.A. Salah, T. Gevers, “Recogni-
tion of genuine smiles,’’  IEEE Transactions on 
Multimedia, vol. 17, no. 3, pp. 279-294, Mar. 
2015.

[31]	� Q. Li Qun, H. Zhang, J. Guo, B. Bhanu, and A. 
Le, “Reference-based scheme combined with 
K-SVD for scene image categorization,’’  IEEE 
Signal Processing Letters, vol. 20, no. 1, pp. 67-
70, Jan. 2013.

[32]	� S. Gold, “Hacking on the hoof,’’  IET Engineering 
and Technology, vol. 7, no. 3, pp. 80-83, Apr. 
2012.

[33]	� K. Nahrstedt and J. Smith, “The QoS broker,’’  
IEEE Multimedia, vol. 2, no. 1, pp. 53-67, Mar. 
1995.

[34]	� Z. Zhu, F. Guo, H. Yu, and C. Chen, “Fast single 
image super-resolution via self-example learn-
ing and sparse representation,’’  IEEE Transac-
tions on Multimedia, vol. 16, no. 8, pp. 2178-
2190, Dec. 2014.

[35]	� Z. Yu, G.B. Kil, Y.-D. Choi, and S.-H. Kim, “Traffic 
classification based on visualization,’’ in  Proc. 
2011 IEEE 2nd International Conference on Net-



China Communications • September 2017218

interests include wireless networking, multimedia 
communications and network traffic identification.

Shiwen Mao,  (S ’99-M’04-
SM’09) received his Ph.D. in 
electrical and computer engi-
neering from Polytechnic Uni-
versity, Brooklyn, NY in 2004. 
Currently, he is the Samuel 
Ginn Distinguished Professor 
and Director of Wireless Engi-

neering Research and Education Center at Auburn 
University, Auburn, AL, USA. His research interests 
include wireless networks, multimedia communica-
tions, and smart grid. He is a Distinguished Lecturer 
of IEEE Vehicular Technology Society. He is on the 
Editorial Board of IEEE Transactions on Multimedia, 
IEEE Internet of Things Journal, IEEE Multimedia, 
IEEE/CIC China Communications, among others, and 
a Steering Committee Member of IEEE Transactions 
on Multimedia and IEEE Transactions on Network Sci-
ence and Engineering. He serves as TPC Chair of IEEE 
INFOCOM 2018, Area TPC Chair of IEEE INFOCOM 
2017 and 2016, Technical Program Vice Chair for 
Information Systems (EDAS) of IEEE INFOCOM 2015, 
symposium co-chairs for many conferences, includ-
ing IEEE ICC, IEEE GLOBECOM, ICCCN, among others, 
and Steering Committee Voting Member of IEEE 
ICME and AdhocNets. He is the Chair of IEEE ComSoc 
Multimedia Communications Technical Committee. 
He received the 2015 IEEE ComSoc TC-CSR Distin-
guished Service Award, the 2013 IEEE ComSoc MMTC 
Outstanding Leadership Award, and the NSF CAREER 
Award in 2010. He is a co-recipient of the Best Demo 
Award of IEEE SECON 2017, the Best Paper Awards of 
IEEE GLOBECOM 2016, IEEE GLOBECOM 2015, IEEE 
WCNC 2015, and IEEE ICC 2013, and the 2004 IEEE 
Communications Society Leonard G. Abraham Prize 
in the Field of Communications Systems.

Xinheng Wang, (SM’14) re-
ceived the B.Eng. and M.Sc. de-
grees in electrical engineering 
from Xi’an Jiaotong University, 
Xi’an, China, in 1991 and 1994, 
respectively, and the Ph.D. 
degree in computing and elec-
tronics from Brunel University, 

Uxbridge, U.K., in 2001. He is currently a Professor of 
networks with the School of Computing, University 
of the West of Scotland, Paisley, U.K. His current re-
search interests include wireless networks, Internet 
of Things, converged indoor positioning, cloud com-
puting, and applications of wireless and computing 
technologies for health care. He has close engage-
ment with the industry.

[47]	� R. Ptucha and A.E. Savakis, “LGE-KSVD: Robust 
sparse representation classification,’’  IEEE Trans-
actions on Image Processing, vol. 23, no .4, pp. 
1737-1750, Apr. 2014.

[48]	� X. Shu, J. Tang, G.-J. Qi, Z. Li, Y.-G. Jiang, and 
S. Yan, “Image classification with tailored fine-
grained dictionaries,’’  IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. PP, 
no. 99, pp. 1-1, Sept. 2016.

[49]	� J.R. Deller and R.K. Snider, “Reducing redundant 
computation in HMM evaluation,’’  IEEE Trans-
actions on Speech and Audio Processing, vol. 1, 
no. 4, pp. 465-471, Oct. 1993.

[50]	� H. Chen, P. Tino, and X. Yao, “Probabilistic clas-
sification vector machines,’’  IEEE Transactions 
on Neural Networks, vol. 20, no. 6, pp. 901-914, 
June 2009.

[51]	� D. Ruta, “Robust method of sparse feature se-
lection for multi-label classification with Naive 
Bayes,’’ in  Proc. 2014 Federated Conference on 
Computer Science and Information Systems, 
Warsaw, Poland, Sept. 2014, pp. 375-380.

[52]	� Z.-H. Wang, Z.-S. Hou, Y. Gao, and Q. Liu, “Study 
on scale development of boolean medicine 
data based on the GA and improved k-NN 
algorithm,’’ in  Proc. 2008 International Confer-
ence on BioMedical Engineering and Informatics, 
Sanya, China, May 2008, pp. 367-371.

Biographies
Zaijian Wang, received his 
BE degree (2002) from Anhui 
Polytechnic University, MSc 
degree (2005) from University 
of Science and Technology of 
China, and PhD degree (2015) 
from Nanjing University of 
Posts and Telecommunications. 

His current research interests focus on multimedia 
big data, end-to-end QoS provisioning and wired/
wireless multimedia streaming. He is currently an as-
sociate professor at College of Physics and Electronic 
Information, An’hui Normal University, Wuhu, China.

Yuning Dong (M’07), received 
his B.E and M.E degrees from 
Nanjing University of Posts & 
Telecommunications (NUPT), 
his Ph.D degree from Southeast 
University, all in electrical engi-
neering, and his M.Phil degree 
in Computer Science from The 

Queen’s University of Belfast (QUB). He is currently a 
professor with the College of Communications and 
Information Engineering at NUPT. He was a Brit-
ish Council postdoctoral fellow at Imperial College 
London, 1992-93; a visiting scientist at University of 
Texas, 1993-95; and a research fellow at QUB and 
the University of Birmingham, 1995-98. His research 


