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Abstract MYB transcription factors play an important role

in regulating key plant developmental processes involving

defense, cell shape, pigmentation, and root formation.

Within this gene family, sequences containing an R2R3

MYB domain are the most abundant type and exhibit a wide

diversity of functions. In this study, we identify 559 R2R3

MYB genes using whole genome data from four species of

Solanaceae and reconstruct their evolutionary relationships.

We compare the Solanaceae R2R3 MYBs to the well-char-

acterized Arabidopsis thaliana sequences to estimate func-

tional diversity and to identify gains and losses of MYB

clades in the Solanaceae. We identify numerous R2R3

MYBs that do not appear closely related to Arabidopsis

MYBs, and thusmay represent clades of genes that have been

lost along the Arabidopsis lineage or gained after the

divergence of Rosid and Asterid lineages. Despite differ-

ences in the distribution of R2R3 MYBs across functional

subgroups and species, the overall size of the R2R3

subfamily has changed relatively little over the roughly 50

million-year history of Solanaceae. We added our informa-

tion regarding R2R3 MYBs in Solanaceae to other data and

performed a meta-analysis to trace the evolution of sub-

family size across land plants. The results reveal many shifts

in the number of R2R3 genes, including a 54 % increase

along the angiosperm stem lineage. The variation in R2R3

subfamily size across land plants is weakly positively cor-

related with genome size and strongly positively correlated

with total number of genes. The retention of such a large

number of R2R3 copies over long evolutionary time periods

suggests that they have acquired new functions and been

maintained by selection. Discovering the nature of this

functional diversity will require integrating forward and

reverse genetic approaches on an -omics scale.

Introduction

In plants, the majority of genes belong to multigene families,

which can vary up to three orders of magnitude in size

(Zhang 2003; Guo 2013). For example, the anthocyanin

pathway enzyme, dihydroflavonol-reductase, comprises a

small family of up to three copies, whereas the F-Box pro-

teins involved in substrate recognition possess hundreds of

copies, with over 600 in rice and Arabidopsis (Yang et al.

2008). While some of the differences in family size may

reflect methodological approaches to gene discovery and

classification (Frech and Chen 2010), much of this variation

is likely attributable to historical differences in rates of gene

duplication and retention of duplicate copies across families

(Clegg et al. 1997; Adams and Wendel 2005).

This study focuses on the R2R3 subfamily of MYB

transcription factors, a group particularly notable for its
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expansion in plants. MYBs are a large class of transcription

factors found in all eukaryotic organisms and characterized

by one or more repeats of the MYB domain (Lipsick 1996;

Kranz et al. 2000). Each repeat forms a helix-turn-helix

structure, and studies in the human c-MYB indicate that the

C-terminal a-helix directly binds to the major DNA groove

(Ogata et al. 1996). In many cases, MYBs interact with

other proteins, e.g., WD40 and bHLH proteins, in order to

regulate their target genes (Grotewold et al. 1994; Ramsay

and Glover 2005).

The R2R3 MYBs form the largest subfamily of MYB

transcription factors in plants, although the number of R2R3

copies varies fivefold across taxa (Feller et al. 2011; Du et al.

2012). R2R3 MYBs are diagnosable by their two imperfect

MYB repeats that follow the R2 and R3 structure of the

c-MYB (Kranz et al. 2000). In Arabidopsis, this group of

MYB genes performs a wide array of functions, including

specification of epidermal cell fate (Oppenheimer et al.

1991;Wada et al. 1997), regulation of flavonoid biosynthesis

(Mehrtens et al. 2005), and response to environmental and

hormonal cues (Urao et al. 1996; Abe et al. 1997). Given the

diversity of R2R3s, the subfamily has been subdivided into

23 subgroups based on phylogenetic relationships and

function in Arabidopsis (Romero et al. 1998; Kranz et al.

2000; Stracke et al. 2001; Dubos et al. 2010).

Beyond Arabidopsis, the phylogenetic and functional

diversity of R2R3 MYBs has begun to be explored in a

range of taxa across angiosperms (cucumber, Li et al. 2012;

apple, Cao et al. 2013; salvia, Li and Lu 2014; popular,

rice, maize, switchgrass, Zhao and Bartley 2014). The

tomato family offers a particularly interesting system for

tracing the diversification of R2R3 MYBs because of the

relatively large number of available genomes (Potato

Genome Sequencing Consortium 2011; Bombarely et al.

2012; Tomato Genome Consortium 2012; Kim et al. 2014)

and knowledge of the key roles of these MYBs in mor-

phological and biochemical phenotypes (Borovsky et al.

2004; Pattanaik et al. 2010). For example, R2R3 MYBs are

important regulators of shoot-branching development in

tomato (Solanum lycopersicum) (Busch et al. 2011). In

Nicotiana benthamiana, an R2R3 MYB induces production

of phenylpropanoid-polyamine conjugates that provide

defense against herbivory (Kaur et al. 2010). Multiple

R2R3 MYBs are responsible for differences in flower

pigmentation across species of Petunia, Iochroma, and

Nicotiana, and play a role in the evolution of plant–polli-

nator interactions (Quattrocchio et al. 1999; Smith and

Rausher 2011; Hermann et al. 2013).

Existing research suggests that the overall number of

R2R3 MYBs present in Solanum is similar to other Asterid

angiosperms (Zhao et al. 2014). However, little is known

about the size of the R2R3 subfamily in other important

Solanaceae species. In the present study, we apply

bioinformatic and statistical phylogenetic approaches to

reconstruct the expansion of the R2R3 MYB subfamily

across angiosperms as a whole and within the Solanaceae

in particular. This work builds on publicly available gen-

omes in Solanaceae (Potato Genome Sequencing Consor-

tium 2011; Bombarely et al. 2012; Tomato Genome

Consortium 2012; Kim et al. 2014), an unpublished draft

genome for Iochroma cyaneum (Gates et al. unpublished)

as well as studies of R2R3 MYBs in other taxa (Matus

et al. 2008; Cao et al. 2013). Specifically, we aim to

address three major questions: First, how does the size and

diversity of functional groups in Solanaceae compare to

that present in Arabidopsis? Second, after combining our

Solanaceae data with information from other plant gen-

omes, does the R2R3 MYB subfamily show consistent

increases in copy number (i.e., are new duplicates of

R2R3s generally retained) across the phylogeny? Finally,

how much of the variation in R2R3 gene subfamily size

across land plants is explained by differences in genome

size? To our knowledge, this study represents the first

attempt to reconstruct ancestral R2R3 gene subfamily sizes

and statistically estimate MYB gains and losses across the

phylogeny. Collectively, these analyses will provide both a

broad-scale picture of the evolution of this gene subfamily

during land plant history as well as a detailed look at the

shifts in functional diversity of R2R3 MYBs within the

economically important Solanaceae.

Methods

Taxon Sampling Within Solanaceae

The Solanaceae includes many species cultivated as crops

(e.g., tomato, potato, chili pepper, eggplant, tobacco) and

ornamentals (e.g., Petunia, Nicotiana, Iochroma). Cur-

rently, there are approximately 2700 recognized species in

the family, nearly half of which fall into the genus Solanum

(Hunziker 2001; Särkinen et al. 2013). With the recent

addition of three hot pepper genomes and three more

resequenced Nicotiana genomes, there are nine publicly

available genomes within the Solanaceae: S. lycopersicum

(tomato) (Tomato Genome Consortium 2012), Solanum

tuberosum (potato) (Potato Genome Sequencing Consor-

tium 2011), N. benthamiana (Bombarely et al. 2012), three

Nicotiana tabacum (tobacco) (Sierro et al. 2014), and three

different varieties of Capsicum annuum (chili pepper) (Kim

et al. 2014; Albert and Chang 2014). For identification of

Solanaceae R2R3 MYBs, we used the S. lycopersicum, S.

tuberosum, and N. benthamiana genomes available as well

as a draft assembly of the I. cyaneum genome (described

below). These species are distributed across the two sub-

families (Solanoideae and Nicotianoideae) of the large
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X = 12 clade (Olmstead et al. 2008) and thus span both

shallow and relatively deep divergences (8 million years

ago (Ma) for the two Solanum spp. to 24 Ma for Solanum

versus Nicotiana (Särkinen et al. 2013)). In addition to

being a sister to the rest of the selected Solanaceae species,

N. benthamiana is a polyploid (Knapp et al. 2004; Bom-

barely et al. 2012; Wang and Bennetzen 2015) while I.

cyaneum, S. lycopersicum, and S. tuberosum are diploids.

Although C. annuum was not included in our phylogenetic

analyses because its genome became available only

recently, we did estimate the number of R2R3 MYBs in

this species to trace changes in gene subfamily size across

Solanaceae and land plants overall (see below).

Genome Assembly for Iochroma cyaneum

As part of efforts to expand our knowledge about genomic

diversity across the Solanaceae (including noncrop spe-

cies), we constructed a low-coverage genome of I. cya-

neum, an Andean shrub that is being developed as a model

for floral evolution (Smith and Baum 2006; Smith and

Rausher 2011). We sampled a single individual of an

accession first cultivated by William D’Arcy at the Mis-

souri Botanical gardens (voucher: Smith, 265 (WIS)). For

this genome, we sequenced four lanes of standard genomic

libraries of 400-bp fragments, and two lanes of mate pair

sequencing of 2- and 5-kb libraries, respectively. All lanes

were sequenced on an Illumina Hi-Seq 2000 through the

Weill Cornell Genomics Facility (http://corefacilities.weill.

cornell.edu/genomics.html). All Illumina libraries were

sequenced as 100-bp paired end reads. All sequences were

first quality checked with FastQC (http://www.bioinfor

matics.babraham.ac.uk/projects/fastqc/), and we removed

contaminating sequences and bases with quality scores less

than q = 30 with fastq-mcf (https://code.google.com/p/ea-

utils/wiki/FastqMcf). For trimming of the internal junction

adapters in the mate pair library, we used a custom Perl

script that is available upon request. We used SOAP2 (Li

et al. 2008) for de novo assembly and gap closing using

sequences from four standard libraries and two mate pair

libraries for scaffolding of the assembled contigs. We

varied kmer sizes in assembly from 21–63, with 63 giving

the best assembly statistics. As assembly errors and arti-

facts were a concern, especially in such a large gene family

with multiple highly conserved motifs, we supplemented

our low-copy genome with an I. cyaneum transcriptome.

To construct the transcriptome, we used a Trinity (Grabherr

et al. 2011) de novo assembly on floral RNA sequences that

were sequenced on � lane of an Illumina Hi-Seq 2000 at

the University of Missouri’s genomics core facility (https://

web.rnet.missouri.edu/biotech/dnacore/). Because the

Iochroma sequences came from two independent raw

datasets (genome and transcriptome), we ensured that we

were not including technical duplicates as separate genes

by collapsing any sister sequences (I.cyaneum sequences

more closely related to another I. cyaneum sequence than

nearest N. benthamiana, S. lycopersicum, S. tuberosum

sequence) into a single sequence unless both of those

sequences originated from the genome build.

Identification of R2R3 MYBs in Solanaceae

In order to assess MYB divergence within the Solanaceae,

we used sequences from three publicly available genomes

as well as our I. cyaneum genomic resources. We down-

loaded protein sequences and coding sequences for N.

benthamiana, S. tuberosum and S. lycopersicum from

solgenomics.net (Bombarely et al. 2011). We used an

ab initio genomic scan approach to identify coding

sequences and putative gene-containing regions as well as

their respective amino acid translations for the I. cyaneum

low-coverage genome and transcriptome using Augustus

2.7 with default settings (Stanke and Morgenstern 2005).

We filtered these complete coding sequence datasets using

a tailored bioinformatic pipeline. First, we trained an HMM

profile for the 126 published A. thaliana R2R3 MYBs by

aligning the amino acid sequences with ClustalX (Larkin

et al. 2007) and then constructed the HMM profile using

the program HMMER (http://hmmer.janelia.org) with

default parameter values. We used an e-value cutoff of 1e-

60 as it represented a discrete break in the bimodally dis-

tributed e-values output by HMMer. We tested the accu-

racy of this method by applying our same HMM profile to

the Mimulus guttatus amino acid sequences that should

contain approximately 119 R2R3 MYBs (Feller et al.

2011). Without changing any settings or the criteria for

inclusion based on e-value output from our above HMM

search,M. guttatus amino acid sequences were estimated to

contain 114 R2R3 MYBs. Thus, our pipeline produces

similar estimates of gene subfamily members as previous

studies and is suitable for the downstream comparative

genomic analyses.

Phylogenetic Inference for Solanaceae R2R3 MYBs

We created a phylogenetic tree for R2R3 MYBs from

Solanaceae and A. thaliana (At) in order to identify clades

that are closely related to the established At functional

subgroups (Stracke et al. 2001). We aligned amino acid

sequences using both ClustalX (Larkin et al. 2007) and

MAFFT (Katoh et al. 2002), and chose the ClustalX

alignment as it gave a better reconstruction of the con-

served R2R3 domain and a less gappy alignment. We also

checked the alignment by eye to remove any likely pseu-

dogenes with substantial insertions or deletions within the

R2R3 MYB domains. We used PAL2NAL (Suyama et al.
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2006) to align the CDS sequences exactly following the

aligned protein sequences. We constructed a maximum

likelihood tree based on the nucleotide alignment using

RAxML (Stamatakis 2006) with a GTR?G?I model and

estimated clade support using 100 rapid bootstrap repli-

cates. We also inferred amino acid phylogeny using

RAxML with the PROTGAMMAJTT model and estimated

clade support with 100 rapid bootstrap replicates. Since

there is no clear outgroup to the R2R3 MYB gene family,

both trees were midpoint rooted using the phangorn R

package (Schliep 2011). We assigned Solanaceae sequen-

ces and clades to the R2R3 MYB subgroups defined by

Stracke et al. (2001) if they were more closely related to At

sequences than to other Solanaceae sequences and formed

a clade with high support ([70 %). Solanaceae sequences

with no closely related At sequences were not placed in any

functional subgroup; these may represent cases in which

the ancestral gene lineage was lost in Arabidopsis or new

lineages were gained along the Asterid lineage that con-

tains Solanaceae.

Gene Family Evolution Across Angiosperms

In order to place R2R3 gene diversity in Solanaceae into a

broader context, we traced the evolution of subfamily size

across a sample of 14 other land plant lineages. We con-

structed our dataset by adding our counts of gene subfamily

size to the counts published by Feller et al. (2011) as well

as counts from Cucumis sativus, Malus x. domestica, and

Salvia mitorhiza (Li et al. 2012; Cao et al. 2013; Li and Lu

2014). We used the same HMM approach described above

to estimate the number of R2R3 MYBs in C. annuum. The

species tree topology and the depths of internal nodes (in

millions of years) above the family level were taken from

Bell et al. (2010). We used Paterson et al. (2004) to

determine the dates of Poaceae nodes (Zea mays, Sorghum

bicolor, and Oryza sativa), and the divergence times of

major Solanaceae lineages were taken from Wu and

Tanksley (2010). We used the program CAFE (De Bie

et al. 2006) to identify gains and losses of R2R3 MYB gene

copies along the branches of the plant phylogeny. CAFE

estimates changes in gene subfamily size by simulating

branches using a birth/death model and identifies signifi-

cant expansions or contractions in subfamily size (Hahn

et al. 2005). In addition, we used CAFE to identify the

single internal branch with the greatest shift in diversifi-

cation rate. We created a custom script to move across each

internal branch, in each case, fitting a two-rate model (one

background diversification rate and a second rate for the

selected branch and its descendants). The internal branch

resulting in the greatest increase in likelihood was thus

considered to correspond to the strongest shift in diversi-

fication rate across the phylogeny.

To assess whether the number of R2R3 MYBs may be

related to overall changes in genome size or total gene

number (e.g., following polyploidization or segmental

duplications), we performed phylogenetic generalized least

squares (PGLS) (Grafen 1989; Hansen and Martins 1996).

This approach allows us to test whether increases in overall

genome size or gene number explain the large numbers of

MYBs in some taxa, after accounting for phylogenetic

relatedness. For all species except for Salvia miltiorrhiza

and I. cyaneum, we gathered c-values from the Kew

database (data.kew.org/cvalues/). There is currently no

c-value for S. miltiorrhiza in the Kew database. To

approximate the genome size, we used the average c-value

size of the ten other Salvia species that were entered in the

database since there were only modest size differences

between the accessions (mean 0.62; SD 0.19). The c-value

for I. cyaneum was measured with flow cytometry using S.

lycopersicum as the reference. We validated this result by

comparison with the estimated genome size in our draft

genome assembly. We gathered total number of genes from

assembly statistics for all species except I. cyaneum and S.

miltiorrhiza as these species lack a completed reference

genome. After obtaining c-values and gene numbers for all

species, we conducted phylogenetic regressions with PGLS

using the number of R2R3 MYBs as a response variable

and the c-values or gene number as the independent vari-

able. PGLS, implemented in the nlme package (Pinheiro

et al. 2011), generalizes independent contrasts and allows

for a wider range of models of trait evolution. For both

PGLS analyses, we used the Brownian motion model, as

model selection with AIC indicated that the more complex

Ornstein–Uhlenbeck model (Butler and King 2004) did not

provide a significantly better fit.

Results

Phylogenetic Analysis and R2R3 Diversity

in Solanaceae

Our bioinformatics pipeline recovered 559 R2R3 MYBs

across the four Solanaceae genomes analyzed. The

nucleotide alignment used for phylogenetic inference and

raw tree data is available on Dryad (datadryad.org) at

doi:10.5061/dryad.d63t5. The raw I. cyaneum reads will

also be available on Solgenomics.net (Bombarely et al.

2011) upon publication. For tomato, our pipeline recovered

very similar estimates of R2R3 MYBs as in a previous

study (Zhao et al. 2014). Using the same tomato genome

build, Zhao et al. found 121 R2R3 MYBs, 119 of which

corresponded to full-length coding sequences. Our pipeline

also found 119 complete sequences. Even though the

Iochroma draft genome has a lower N50 score and lower
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coverage than the published genomes (Table 1), we

recovered a similar number of R2R3 genes (110) as in

other X = 12 clade Solanaceae (range 111–119). N. ben-

thamiana is a recent polyploid (Leitch et al. 2008), but the

number of copies (171) is much less than twice the number

in the other Solanaceae, which are all diploids. It is pos-

sible that the count for Nicotiana may represent an

underestimate if homeologous copies were collapsed dur-

ing genome assembly or were not included in gene models

due to loss of expression (Coate and Doyle 2010). It is

more likely, however, that copies have been lost through

diploidization. Most Nicotiana polyploids are n = 48, but

N. benthamiana is n = 38, suggesting that it has lost ten

chromosomes. Also, the N. benthamiana genome is 40 %

smaller than other polyploids like N. tabacum and N. rus-

tica (Wang and Bennetzen 2015).

The maximum likelihood phylogeny of the 559 R2R3

MYBs from the four Solanaceae genomes resolves many

major clades within the gene subfamily (Fig. 1). Across the

tree, 81 % of nodes had 70 % or greater bootstrap support

(S1 Fig.). Most clades recover a similar topology to the

species tree, which places the two Solanum species (potato

and tomato) together, and I. cyaneum and N. benthamiana

as successive sister species. We also observed apparent

Solanaceae-specific and species-specific duplications

within functional groups. For example, AtMYB37 and

AtMYB38, members of the S14 subgroup, are sister to 16

Solanaceae sequences, which are grouped into three clades,

each showing the expected species tree relationships.

By including At sequences, we putatively assigned 236

of the 559 Solanaceae sequences to 14 of the 23 functional

subgroups. For example, subgroup S16 comprises three

copies in Arabidopsis that appear to be involved in light

signaling and hypocotyl elongation (Dubos et al. 2010).

These At S16 sequences fall into a well-supported clade

with seven Solanaceae sequences, which were thus puta-

tively assigned to this functional group (S1 Fig., Table S1).

Two At subgroups (S12 and S15) did not have any Sola-

naceae orthologs. For two At subgroups, there are likely

Solanaceae orthologs, but we could not propose any

assignments because of low bootstrap support. In addition,

several subgroups (S10/S11/S24 and S18/S20) did not

appear as monophyletic groups (are shown merged in

Fig. 1). Thus we outlined the larger clade, but did not

provide clade-by-clade assignments for Solanaceae

sequences within the larger clades.

Subgroup assignments were largely robust to the choice

of protein or DNA sequence in phylogeny reconstruction.

All well-supported functional group clades (BS[ 70 %)

that we identified in the DNA sequence phylogeny were

also present in the protein phylogeny (S2 Fig.), and nine of

these 14 clades received strong support. Backbone rela-

tionships varied, but this was anticipated given the rela-

tively low support for these nodes. One relationship that is

well supported in the DNA phylogeny but not present in

the protein phylogeny is the sister group relationship

between subgroups S5 and S6. These two subgroups are

highly similar in function as they regulate different

upstream (S5) and downstream (S6) sections of the

anthocyanin/flavonol pathway. In the protein tree, S5 and

S6 form a paraphyletic grade, while in the DNA phylogeny

they appear as a clade. Previous phylogenies support the

latter pattern (Kranz et al. 1998; Stracke et al. 2001; Li and

Lu 2014), suggesting that DNA phylogeny may be more

reliable for resolving these shallow intersubgroup

relationships.

Despite the lack of resolution in some parts of the phy-

logeny, we detected interesting patterns where it was pos-

sible to associate Solanaceae sequences with functionally

categorized At sequences. Among the well-supported 14

subgroups, subgroup 14, involved in regulating growth and

organ formation (Dubos et al. 2010), contained the largest

number of total copies in Solanaceae (Table S1, Fig. 2). This

subgroup is also one of the largest subgroups in At with six

genes. With the highest total number of R2R3 MYBs, Ni-

cotiana also had the greatest number of genes in all of the

subgroups except subgroups S6, S7, and S18, where it had

fewer sequences than one or more of the other sampled taxa

(Fig. 2, Table S1). Looking across subgroups, we observed

wide variation in functional content across species. While

the numbers of genes in some subgroups are relatively

constant across the species (e.g., S9, S23; Fig. 2), others are

enriched in particular taxa (e.g., S14), and others are entirely

absent from some taxa (e.g., S5, S6 in potato).

Table 1 Assembly descriptions and sources for four genomes used to characterize R2R3 diversity in Solanaceae

Taxon Total Length (GB) Scaffolds and Contigs N50 length Coverage Citation

Solanum lycopersicum 0.74 12 – NA Tomato Genome Consortium (2012)

Solanum tuberosum 0.73 649 1,318,000 849 Potato Genome

Sequencing Consortium (2011)

Nicotiana benthamiana 2.46 602,802 29,049 639 Bombarely et al. (2012)

Iochroma cyaneum 3.23 1,029,317 17,952 779 Gates et al. unpubl.
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Analysis of R2R3 MYB Subfamily Evolution Across

Terrestrial Plants

The CAFE analyses indicated that 20 branches (7 internal

and 13 terminal) have experienced significant shifts in

R2R3 gene subfamily size when compared to null distri-

butions generated under a constant birth–death process

(Fig. 3). Estimates of ancestral gene subfamily size

revealed that the largest expansion occurred on the branch

leading to Glycine max where gene subfamily size

increases from 156 to 288 (Fig. 3). The greatest reduction

in gene subfamily occurs on the branch leading to Cucumis

sativus where the number of copies shifts from 156 to 55.

Overall, of the 20 branches with significant changes, 11 are

expansions and nine are contractions (Fig. 3). We also

iterated a partitioned model across all internal branches that

allowed a single shift in diversification rate. The parti-

tioned analysis placed the optimal position for the single-

rate shift at the branch leading to eudicots (v2 test = 378,

p\ 0.0001). The background rate (outside of eudicots) and

rate within eudicots were 0.0024 and 0.0087 gains?los-

ses/gene/million years, respectively.

As a random birth/death process appears to be a poor

predictor of gene family size, we used phylogenetic com-

parative methods (PGLS) to investigate whether differences

in genome size or total gene number predict the variation.

The PGLS analyses supported a significant positive rela-

tionship between the number of R2R3 MYBs and genome

size (T18 = 2.12, p = 0.0496) and with the total number of

genes (T16 = 3.76, p = 0.0021) (Fig. 4). These positive

relationships are consistent with the presence of lineages

where repeated shifts in genome size are associated with

Fig. 1 Summary of maximum

likelihood tree for Solanaceae

R2R3 MYBs. All clades

collapsed to triangles represent

strongly supported nodes

(BS[ 70 %). White triangles

contain Solanaceae sequences

that are closely related to A.

thaliana functional subgroup

members (S1 Fig) and are

putatively assigned to those

subgroups (Table S1). Blue

clades contain Solanaceae

sequences that are closely

related to some At sequences,

but were not assigned to a

functional group either because

those clades have low support

(S1 Fig.), have At sequences

whose function is unclassified

(Dubos et al. 2010), or comprise

a mixture of sequences from

multiple subgroups (e.g., S10/

11/24 in the figure). Red clades

did not contain any At

sequences (see also S1 Fig.).

Outside of the collapsed clades,

any branches with greater than

70 % bootstrap support are

indicated with an asterisk
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concordant changes in the number of R2R3 MYBs (e.g.,

monocots: Oryza, Sorghum, and Zea, Fig. 3). The tighter

relationship between total gene number and R2R3 MYB

family size may reflect that some variation in genome size

(e.g., the large genome of Z. mays) is due to fluctuations in

repetitive content. Examination of a scatterplot of the data

(Fig. 4) also reveals a number of outliers (e.g., Populus tri-

chocarpa, Glycine max, Physcomitrella patens), which

contain far more or far fewer R2R3 MYBs than expected,

given their genome size and their total number of genes.

These provide interesting candidates for follow-up studies

examining the possible functional changes associated with

expansions and contractions of R2R3 MYB diversity.

Discussion

Functional R2R3 Diversity in Solanaceae

Phylogenetic analyses allowed us to pinpoint taxon-specific

gains and losses of MYB copies in Solanaceae, which may

be tied to the changes in functional diversity. We found

two A. thaliana clades with no Solanaceae orthologs:

subgroups S12 and S15. Of these two subgroups, subgroup

S15 is of interest because it contains three important

transcriptional activators of root hair formation and tri-

chome development: WER, GL1, and MYB23 (Lee and

Schiefelbein 1999; Kirik et al. 2005). Functional analyses

using heterologous expression suggest that S15 MYBs

from A. thaliana fail to elicit the same trichome responses

outside of the Brassicaceae (Payne et al. 1999). Thus, our

findings support the hypothesis that trichome formation is

analogous between Brassicaceae and Solanaceae and

involves different transcriptional elements in these taxa

(Serna and Martin 2006).

By comparing the evolutionary relationships of Sola-

naceae MYBs to sequences from A. thaliana, we can also

identify clades that lack A. thaliana relatives and therefore

serve currently unknown functional roles. For instance, we

find a well-supported clade of 14 Solanaceae sequences

that is closely related to the S5, S6, and S7 subgroups, but

contains no A. thaliana members (S1 Fig.). The S5, S6, and

Fig. 2 R2R3 MYB subgroup content of four Solanaceae species. The

phylogenetic relationships among the MYB subgroups (tree on the

left) follow Fig. 1. The relationships among the four taxa are shown at

the top. The subgroup names follow the naming scheme illustrated in

Fig. 2 of Stracke et al. (2001). Some subgroups that could not

definitively be delimited (e.g., S10/11/24) are not included since

specific clade members could not be delimited and counted
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Fig. 3 Evolution of R2R3 gene

subfamily size across land

plants. Number of R2R3 MYB

genes in each sampled taxon

is shown at the tips; genome

sizes appear in parentheses after

species names. Branch lengths

are in units of time, but

compressed (jagged line)

between 150 and 350 MYA.

Inferred ancestral gene

subfamily sizes are indicated at

nodes. Significant increases or

decreases in R2R3 subfamily

size according to the CAFE

analysis are indicated with bold

and dashed lines, respectively.

Asterisks indicate polyploidy

events from, except for N.

benthamiana (Bombarely et al.

2012) and M.x domestica (Jung

et al. 2012)

Fig. 4 Relationship between the number of R2R3 MYBs and aspects

of genome size. Gene family size is regressed against genome size (c-

values) on the left and against the number of genes in the genome on

the right. Each point is a species in the analysis. Genus names are

abbreviated from Fig. 3 (either first letter if unique or multiple letters

if not). Trendlines are from the PGLS regression analysis (see text)
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S7 genes regulate the synthesis of flavonoids, a group of

specialized metabolites including anthocyanin pigments,

tannin precursors, and other stress-response compounds

(Winkel-Shirley 2002). Although additional functional

studies would be required, the uncategorized clade of

Solanaceae sequences may serve a similar role in flavonoid

regulation. Phylogenetic affinities of this and other Sola-

naceae R2R3 MYBs in clades without A. thaliana members

(Fig. 1, S1 Fig.) can serve as a starting point for examining

patterns of expression and mutant phenotypes.

We also document a relatively stable gene subfamily

size of between 110 and 119 members within diploid

Solanaceae species that are over 20 million years

diverged (Särkinen et al. 2013; Ng and Smith 2016).

Despite the relative stability in the presence or absence of

subgroup members across species, our survey found evi-

dence of fluctuation in content across R2R3 subgroups

(Fig. 2) that may be related to patterns of phenotypic

diversification within lineages. S. tuberosum and N. ben-

thamiana are the only Solanaceae lineage that have no

sequences for entire subgroups (in S5, S6 for S.tuberosum

and S3 for N. benthamiana; Fig. 2). Not only is subgroup

S6 lacking potato sequences in our analyses, it is also one

of the three subgroups where the polyploid N. ben-

thamiana does not have the most sequences out of the

four surveyed Solanaceae species. Instead, Iochroma has

the largest number of subgroup 6 sequences. This sub-

group shares a common c-terminal motif that is charac-

teristic of genes related to anthocyanin pigment

biosynthesis (Paz-Ares et al. 1987; Quattrocchio et al.

1998; Nakatsuka et al. 2008; Jung et al. 2009; Shang

et al. 2011; Takahashi et al. 2013). In this context, it is

notable that Iochroma also produces a wide diversity of

pigment types and patterns (Smith and Baum 2006; Smith

and Rausher 2011). This presents the interesting possi-

bility that the radiation of flower colors within the

Iochroma may be related to a diversification of tran-

scriptional regulators associated with anthocyanin pro-

duction. Similar lineage-specific effects may explain the

expansion and contraction of other subgroups within dif-

ferent Solanaceae species, despite overall maintenance of

gene subfamily size.

Expansions and Contractions of the R2R3 MYB

Subfamily in Angiosperms

Our results indicate that the size of the R2R3 MYB sub-

family varies dramatically across terrestrial plants, which is

consistent with previous studies (Kranz et al. 2000; Feller

et al. 2011). On mapping R2R3 gene subfamily size onto

the phylogeny, we observed many large expansions and

contractions (Fig. 3). Based on the CAFE analysis, we

inferred that 66 % of the branches show significant changes

in gene subfamily size relative to a constant birth–death

model (Fig. 3). The single strongest shift in diversification

rate of the R2R3 subfamily, a nearly fourfold increase,

occurred along the eudicot stem lineage. This diversifica-

tion shift may relate to the specialization of R2R3 MYBs

for novel functions in angiosperms (Stracke et al. 2001),

similar to other gene families associated with angiosperm-

specific organ development like the APETALA2-like (Kim

et al. 2006) and SEPALATA MADS-Box subfamily (Zahn

et al. 2005). For example, different MYB copies are spe-

cialized for different cell fates, such as trichomes and petal

cells (Ramsay and Glover 2005), and for different loca-

tions, such as petal veins or corolla lobes (Schwinn et al.

2006; Albert et al. 2011). Characterizing R2R3 diversity in

other disparate lineages, such as the magnoliids and

ranunculids, would allow us to pinpoint more exactly the

timing of subfamily expansion and its potential importance

for morphological innovation.

Since the results of the CAFE analyses largely rejected

the ability of a stochastic birth–death process to explain

R2R3 MYB family size fluctuations, we investigated the

possibility that this variation is related to overall changes in

genome size, e.g., due to segmental duplications or changes

in ploidy (Huynen and Van Nimwegen 1998). Our analyses

showed significant relationship between genome size (c-

values) and MYB gene subfamily size using PGLS with a

BM model. This result appears to be driven by clades like

the monocots, where increases in genome size are consis-

tently associated with increases in the number of R2R3

MYBs (Figs. 3, 4). We also analyzed the relationship

between number of genes and theMYB gene subfamily size.

In this analysis, we see a strong positive trend between gene

number and MYB family size and a tighter correlation than

that observed for overall genome size (Fig. 4). This contrast

may be attributed to factors such as repetitive element

proliferation (Hawkins et al. 2006; Vitte and Bennetzen

2006), which can increase genome size without increasing

gene number.

This study contributes to a growing body of literature

that examines how genome content and size vary across

both deep and shallow evolutionary timescales. Previous

studies suggest that the dynamics of gene family evolution

may vary depending on the type of gene (e.g., cell cycle vs.

metabolic pathway genes, (Molina and van Nimwegen

2009)), and the size of other families in the genome

(Huynen and Van Nimwegen 1998). For example, in

prokaryotes, families of transcription factors (TFs) have

been shown to evolve following power laws, where the

number of TFs increases exponentially with the number of

genes in the genome (Molina and van Nimwegen 2009).

Comparative analyses at more recent timescales in plants,

however, show significant stochasticity in transcription

factor family evolution following changes in genome size
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(Schranz and Mitchell-Olds 2006; Barker et al. 2008).

These differences may relate to the selective pressures

acting on the genes in different taxa (Blanc and Wolfe

2004; Seoighe and Gehring 2004; Chapman et al. 2006).

While the number of plant taxa analyzed here (n = 18) is

too small to test laws of genomic evolution (Koonin 2011),

the increasing number of published plant genomes and

transcriptomes (Goodstein et al. 2012; Michael and Jack-

son 2013; Wickett et al. 2014) opens the possibility for

extending such broad-scale genomic analyses to plants in

the near future.

Conclusions

Our comparative analysis of the R2R3 MYBs across

Solanaceae and other plants underscores the dynamic his-

tory of this gene subfamily, both in terms of functional

diversity and size. Within Solanaceae, we documented

significant fluctuations in both the total R2R3 copy number

and subgroup composition across the family. We observed

similar repeated expansions and contractions across land

plants, but with a general trend of higher numbers in

angiosperms. These shifts in subfamily size mirror, to some

extent, the changes in overall genome size, although the

notable exceptions to this pattern (e.g., Cucumis) suggest

that other factors are also at play.

The continuing emergence of new plant genomes will

offer greater opportunities to trace the evolutionary history

of gene families, like MYBs, and to target taxa and gene

copies for further investigation (Brockington et al. 2013).

As demonstrated above, statistical comparative methods

allow us to estimate the number of gains and losses, the

rates of gene subfamily diversification, and the extent to

which these changes are due to fluctuations in overall

genome size. We expect that future studies surveying a

wider range of taxa in a phylogenetic framework will

uncover additional cases of lineage-specific gene subfamily

expansion and contraction.

One major limitation to a phyloinformatic approach to

tracing gene subfamily evolution is the lack of functional

information. The well-studied roles of R2R3 MYBs in

Arabidopsis and other model systems provide starting

points for determining function, and thus far, such pre-

dictions have held for some subgroups, such as the

anthocyanin-regulating R2R3s (e.g., Borovsky et al. 2004;

Yamagishi et al. 2010). In Solanaceae, forward genetic

screens of MYB mutants can be used to confirm function,

as has been done with other classes of genes (Quattrocchio

et al. 1999; Borovsky et al. 2004; Kaur et al. 2010; Pat-

tanaik et al. 2010; Busch et al. 2011; Hermann et al. 2013).

Reverse genetic screens will also be increasingly useful as

transformations, and silencing protocols are readily

available for many Solanaceae crops and model systems

(tomato, tobacco, and petunia) (Huang et al. 2015). The

advances in functional annotations and the growing avail-

ability of publicly available gene ontology databases

should add a new dimension to bioinformatics studies such

as this by allowing for more precise testing of hypotheses

regarding the evolutionary and functional diversification of

R2R3 MYB transcription factors.
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