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Pursuit—evasion problems involving two pursuers and one evader are presented and analyzed. Two distinct
scenarios differing in the type of information that the pursuers have about the evader’s strategy are analyzed. The first
scenario involves pursuers that have access to the evader’s position and velocity at each instant of time, and
consequently they follow a constant-bearing strategy. In the second scenario, it is assumed that the pursuers have only
information about the evader’s instantaneous position, and they follow a pure-pursuit strategy. In both these
scenarios, the evader has information about the pursuers’ location at every instant of time, and in addition, it also
knows their pursuit strategy. The evading strategies maximizing capture time in both scenarios are studied under an
optimal control framework. The two scenarios are further analyzed assuming that there is only one active pursuer.
Such a case arises when the two pursuers follow a relay pursuit strategy.

I. Introduction

HE seminal work of Isaacs on differential games paved the way

for the study of pursuit—evasion (PE) problems [1]. In [1], the
focus was on two-player PE games, but some techniques to study
multiplayer PE games were also briefly discussed. Following [1],
many researchers took an interest in multiplayer PE games, motivated
by applications such as collision avoidance [2], cooperative
surveillance [3], and defense and security systems [4—6]. An extensive
amount of literature is now available, and a recent survey on zero-sum
PE games with multiple agents is available in [7].

Evasion from a group of pursuers is a subset of the class of
multiplayer PE games. Classical results include those of Pshenichnyi
[8], who provided a sufficient condition for successful evasion from a
group of homogeneous pursuers, Blagodatskikh [9], and Chernous’ko
[10], among many others. Specifically, Chernous’ko showed that an
evader can avoid point capture from any number of pursuers having a
lower speed. The PE differential game involving many pursuers and
one evader has also been investigated subject to fixed terminal time,
integral constraints, and different payoff models [11,12].

The study of multiplayer PE games has been revitalized in recent
years owing to the growing interest in general multi-agent systems.
Obtaining closed-form optimal strategies for the players for this class
of games using Hamilton—Jacobi-Isaacs equation formulations is
elusive, owing to the curse of dimensionality. Jang and Tomlin
proposed some control strategies obtained from direct differentiation
of a given value function, but these strategies are suboptimal [13]. An
extension to this problem, which assumes that the evader is more agile
than the pursuers, was studied by Zak [14]. Oyler et al. [15] studied
planar PE games in the presence of obstacles by constructing dominant
regions for each player. Some limitations of capturing a faster evader
were proposed, and a heuristic group pursuit strategy was presented in
[16,17]. In another version of the group pursuit problem, a group of
faster, yet less agile, pursuers against a slower, but more agile, evader
was solved by Bopardikar et al. [18]. Group pursuit problems
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involving general dynamics were studied in [19-22]. A probabilistic
variant of group pursuit problems was investigated in [23] using a
greedy policy. The analysis was later used to study some heuristic
strategies in the case of games with incomplete information [24]. Last,
relay group pursuit using dynamic Voronoi diagrams was studied
in [25,26].

The two-pursuer/one-evader problem has been previously discussed
by Kelley in [27], where some aspects of two-on-one team tactics were
identified. Bhattacharya and Hutchinson analyzed the problem subject
to visibility constraints and provided approximate schemes to
construct the set of initial pursuer configurations from which capture is
guaranteed [28]. The differential game involving two pursuers and one
evader with linear dynamics and quadratic cost was investigated for
Nash equilibrium solutions in [29]. Partitions of the state space were
identified and categorized, which are similar to the degenerate and the
nondegenerate regions discussed later on in this paper. A linear
differential game formulation restricting the motion of the players to a
straight line with the two pursuers coordinating to reduce the miss
distance was extensively studied by several researchers [30-32]. An
algorithm to numerically construct level sets of the value function with
fixed final time was also discussed in [33]. The two-pursuer/one-
evader problem was previously analyzed by considering a nonconvex
payoff of the distance between the evader and the two pursuers [34].

A case of two identical inertial pursuers (second-order dynamics)
pursuing a noninertial evader (first-order dynamics) was studied by
Levchenkov and Pashkov [35]. Hagedorn and Breakwell considered
the problem of a faster evader that must pass between two
pursuers [36]. The stochastic version of the two-pursuer/one-evader
differential game was discussed by Yavin [37]. Finally, a version of
the relay pursuit problem discussed in this paper was previously
presented by Sun and Tsiotras, along with a suboptimal strategy [38].

Most of the existing work on two-pursuer/one-evader problems
either deals with linear dynamics and then tries to optimize miss
distance (with quadratic cost and fixed final time, [30-32]) or
considers formulations involving particular tasks and constraints
[28,35,36]. Though time-optimal solutions for these problems were
briefly investigated in the book by Isaacs [1], to the best of the
authors’ knowledge, there is no rigorous work existing beyond that
discussion. In this paper, time-optimal evading strategies are
investigated for a class of two-pursuer/one-evader problems, which
can be scaled to pursuit-evasion problems involving multiple
pursuers and evaders, thus providing a framework for multiplayer
time-optimal pursuit—evasion games.

A. Motivation

Consider a group of n agents (pursuers) guarding a given area of
interest. The objective of the agents is to pursue and intercept m
(where typically m < n) adversary agents (evaders) that may be
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detected in this area. Relevant questions dealing with this problem are
as follows.

1) Which pursuer(s) should go after which evader(s)?

2) How many pursuers should chase each intruder (evader) to
capture it in the shortest time possible?

3) What is the shortest time to capture, given the fact that the
evaders are intelligent and will try to postpone capture indefinitely?

Answering the previous questions in their most general form
seems to be an intractable undertaking. Solving exactly a multiplayer
dynamic game such as the one considered previously will necessitate
the solution of a high-dimensional partial differential equation,
whose dimensionality increases with the number of players. To
remedy this problem, in this work, we use the following “divide and
conquer” approach that simplifies the problem and leads, in addition,
to decentralized (although likely suboptimal) solutions. Specifically,
we assume that a subset of pursuers is assigned to each evader and
none of these pursuers is reassigned to another evader until capture
occurs. This means that, instead of solving the full multi-agent PE
game involving n pursuers and m evaders, we solve a series of m
many/against-one pursuit—evasion games. These problems are much
easier to solve than the original problem.

The simplest case of the problem of pursuit—evasion with a single
evader is the case of two pursuers against one evader, which is the
objective of this work. The generalization to more than two pursuers
against one evader can be obtained using ideas similar to the ones
introduced in this paper and will be the detailed subject of future
investigation. The basic idea of the proposed methodology is to
determine which of the pursuers is the most critical one and which
pursuer(s) do not affect the outcome of the game and thus may be
eliminated from the analysis of the problem. This leads to the notions
of degenerate and nondegenerate regions for each PE game. The
determination of these regions is a key aspect toward the solution of
multiplayer games because they delineate the regions in which one
pursuer acting alone can capture the evader without the help of its
teammates, from the regions in which some form of cooperation/
coordination between the pursuers is necessary for optimal capture.

In this work, we assume that both pursuers are faster than the
evader, and they follow simple navigation laws (pure pursuit or
constant bearing). The rationale behind this assumption is the
following. First, under the assumption that the pursuers are faster than
the evader, pure-pursuit or a constant-bearing strategy guarantees
capture. Second, these two strategies highlight the information that a
pursuer has to capture the evader. A constant-bearing (CB) strategy is
known to be efficient when a pursuer knows the instantaneous
position and velocity of an evader [39]. On the other hand, an
individual pursuer that is able to access only the evader’s
instantaneous position can, at best, employ a pure-pursuit (PP)
strategy [39]. Furthermore, both of these strategies are easy to
execute, and they have been implemented in various defense and
security systems. For a more detailed discussion on navigation laws
based on different information structures, the reader may peruse [40].

Decomposition strategies of multiplayer games as the ones
providing the motivation of this work have been previously
introduced in [25,26]. In those references, “regions of influence”
characterized by Voronoi-like partitions were used to decompose the
game into a sequence of one-versus-one pursuit—evasion games. In
the resulting so-called “relay—pursuit” strategy, only a single pursuer
goes after the target, whereas all other pursuers remain stationary.
From an application point of view, these strategies result in a tradeoff
between time and resources. For instance, employing more than one
pursuer may reduce capture time, but the deployment of more
pursuers require additional resources (e.g., fuel, communication
bandwidth, etc). In the last part of this paper, we extend our work to
such cases, namely, where one of the two pursuers is stationary,
motivated by such relay—pursuit scenarios [26,38].

B. Problem Statement and Contributions

Motivated by the previous discussion, consider a PE problem with
two pursuers and one evader in the plane. The objective of the
pursuers is that at least one of them enters the evader’s capture zone,

assumed here to be a disk of radius € > 0 centered at the current
position of the evader, whereas the objective of the evader is to avoid
or delay capture as long as possible. The subscripts 1 and 2 will be
used for the two pursuers (P; and P,), whereas the subscript E will be
used for the evader. The equations of motion for all the players
involved in the game are given next:

X; = u; cosb, Vi = u;p sin 6, (1)
)’Cz = U, COS 92, )}2 = U sin 92 (2)
Xg = vcoslg, Vg = vsinfg 3)

where p; = (x1,¥1), p2 = (X2,¥2), and pg = (xg, yg) denote the
positions of pursuer Py, pursuer P,, and the evader E, respectively.
Similarly, 6, 6,, 0 € (—=, x] denote the control inputs of the
players, and u;, u, and v are the speeds (constant) of P, P,, and E,
respectively, with min{u, u,} > v. The game evolves in the six-
dimensional state space, [x;, y;, X2, V2. Xg, Yg| € RC.

Problem: Find the optimal control input for the evader,
0r € (—m,z], that maximizes the time of capture 7. in the
following cases.

1) CB: The two pursuers follow a constant-bearing strategy.

2) PP: The two pursuers follow a pure-pursuit strategy.

3) R-CB: Two identical (#; = u,) pursuers follow a relay pursuit
strategy with the active pursuer employing constant bearing.

4) R-PP: Two identical (u; = u,) pursuers follow a relay pursuit
strategy with the active pursuer employing pure pursuit.

In all these cases, note that the control inputs of the pursuers, 8; and
6,, depend solely on the instantaneous states of the players.

The main contributions of this paper are listed next.

1) The regions of nondegeneracy are identified for CB (Sec. II.A),
PP (Sec. II.B), and R-CB (Sec. IV.A).

2) The optimal evading strategies for CB and PP are identified, and
itis established for the first time that, in both cases, when the problem
is nondegenerate, the solution involves simultaneous capture
(theorems 1, 2).

3) A competitive suboptimal strategy is suggested for PP, and a
comparative study is provided for the case of identical pursuers to
demonstrate this claim.

4) An optimal evading strategy is derived for R-CB, along with the
corresponding switching condition (proposition 3).

The rest of the paper is organized as follows. Section II contains a
discussion on the regions of nondegeneracy observed for both CB
and PP cases. Section III analyzes the optimal strategies of the evader,
obtained by formulating the CB and PP problems in a reduced state
space. A suboptimal evading strategy for PP along with numerical
simulations and a comparative study are also presented in this
section. Section IV provides the results for relay pursuit strategies
(R-CB and R-PP), and Sec. V concludes the paper.

II. Regions of Nondegeneracy

Assuming that each of the pursuers follows either a constant-
bearing strategy or a pure-pursuit strategy, the two-pursuer/one-
evader problem may resultin a degenerate case. A degenerate case is
one in which only one of the pursuers is sufficient to capture the
evader in minimum time. In degenerate problems, the presence of
one of the two pursuers is inconsequential, and the problem can be
treated as a one-against-one PE problem. For instance, if one of the
pursuers (say P,) is very far away from the evader (E), then P, does
not play a role in the solution of the problem, and the evader’s
optimal strategy is a pure evasion from P;. Similarly, if P, is very
close to E then P, dominates, and the optimal evading strategy in
this case will be a pure evasion from P,. However, there exists a
region of initial positions for P, for which a form of coordination
with P, ensues, and an optimal evading strategy (other than pure
evasion from P, or P,) needs to take into consideration the presence
of both pursuers.
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Because we are interested in studying the effects of adding a
second pursuer (P,) to the problem, it follows from the preceding
discussion that, given the initial positions of the first pursuer (P;) and
the evader (E) along with the speed capabilities of all the three
players, it is important to find the set of initial positions of P, for
which 1) the optimal evading strategy is a pure evasion from Py, and
P, plays norole in the solution of the problem (D,: degenerate region
with respect to P,); 2) the optimal evading strategy if the evader
follows pure evasion from P, and P plays no role in the solution (D; :
degenerate region with respect to P;); and 3) the optimal evading
strategy is not a pure evasion from any of the two pursuers, and both
P, and P, play arole in the problem (N: nondegenerate region). We
can compute these regions for the cases CB and PP as follows.

A. Case of Constant-Bearing Strategy

Without of loss of generality, assume that the initial positions of P;
and E are such that p(0) = (0,0) and p:(0) = (d, 0), respectively
(d # 0). The capture time, assuming that the evader follows a pure
evasion strategy from Py, is given by

d
tp = 4
=y )

The point of capture is C = (u;t;,0). Define now the circle
C; = {x € R%: |lx — C|| = uyt,}. The circle C, is an isochrone that
contains the set of initial positions for P, that guarantees capture
exactly at time ¢ (at location C) under a constant-bearing strategy for
the given initial position of the evader and its heading, assuming that
the evader is nonmaneuvering. The center of this circle is the capture
point C, and its radius is u, . If the initial position of P, (following a
constant-bearing strategy) lies inside C;, then P, can capture the
evader in a time less than 7, for the given initial position of the evader
and its heading. If the initial position of P, lies outside C;, then it
cannot capture the evader in a time less than or equal to ¢, which
means that the presence of P, is inconsequential to the solution of the
problem, and the optimal evading strategy is pure evasion from P;.
As aresult, in the case of CB, the circle C; and its exterior constitute
the degenerate region with respect to P,, and C; is the boundary
between D, and V.

Next, the degenerate region with respect to P, can be obtained by
looking at the locus of the initial points of P, such that a pure evasion
from P, would result in simultaneous capture of the evader by both
P, and P,. In this regard, consider the Apollonius circle A
corresponding to P; and E, whose center is at (x,,y,) =
(u3d/(u? —v?),0), and its radius is r, = u;vd/(u? — v*) [1]. The
circle constitutes capture points for P for a given constant heading of
the evader. Clearly, finding the set of initial points of P, such that the
evader hits a point on the Apollonius circle under pure evasion from
P, provides the locus of interest; see Fig. 1. This can be achieved in

Y
Py(x.y)
T g
T 1
P, (0.0) | fE@O) P, X
u,t | /vt
1
T
Apollonius Circle

Fig.1 Limiting case scenario of the degeneracy with respect to P; for the
case of CB.

the following manner. Consider a point 7 on A in its parametric form
T = (x, + r cos ¢, r,sing) (note that y, = 0), and let (x,y) be
the initial position of P, such that it hits the evader at 7. From the
geometry of the problem, as defined in Fig. 1, and because the
triangles AETT' and AEP, P are similar, it follows that

x—d Uy — v
=2 == ®)
d—x,—r,cos¢p r,sing v
The coordinates x, y can then be given as
X = (d + (u, —v)(d _x“)) -1, (u2 _ U) cos ¢,
v v
y= ra("z — ”) singb ©6)
v

Under this parametric representation, it can be realized that the
set of points (x,y) form a circle (call it C,) with its center at
(d + (uy — v)(d — x,)/v,0) and radius r,(u, — v)/v. It is under-
stood that if P, lies inside C,, then the evader will get captured by P,
under pure evasion, before it hits the Apollonius circle A (i.e., P,
does not play arole in the solution of the problem). Hence, in the CB
case, the circle C, and its interior constitute the degenerate region
with respect to P, and C, acts as the boundary between D; and NV.
Finally, R?\ (D, U D,) constitutes the region of nondegeneracy.

The geometry of these regions can be visualized in Fig. 2, which
shows the regions of degeneracy and nondegeneracy for three
different cases, where u, = 1.5, 1, 0.5. As can be seen in this figure,
the evader’s initial position is at (1,0), with P; located at (0,0). The
speeds of E and P are v = 0.5 and u; = 1, respectively. In Fig. 2a,
P, is faster compared to P, and P, is inside circle C,. The converse is
observed in Fig. 2c, when P, is slower than P;. It can be observed that
the region of nondegeneracy increases with the speed of P,, which
suggests that, given the speeds of P; and E, adding a second pursuer
that has higher speed would enable cooperation among the pursuers
in a larger region, and vice versa.

B. Case of Pure-Pursuit Strategy

To compute the nondegenerate region in this case (shown in Fig. 3),
first define the ellipse, & = {x € R%: ||x — pz(0)|| + ||x — pLll =

2u,t;}, where
pé - (|:ul + v}d’ O)
u—v

The ellipse £ is an isochrone that contains the set of initial positions
for a pursuer that guarantees capture at time ¢ (at location C) under a
pure-pursuit strategy for a given initial position of the evader and its
heading, assuming that the evader is nonmaneuvering. In the
literature, C, and £ are called ¢, isochrones [39]. It can be seen that &
is an ellipse centered at C having the initial position of the evader at
one of its foci. For any initial position of a pursuer (following a pure-
pursuit strategy) inside &, the capture time is less than ¢,. If the initial
position of P, (following a constant-bearing strategy) lies inside C,,
then it can capture the evader in a time less than 7. Therefore, if the
initial position of P, lies outside £, then P, cannot capture the evader
in a time less than or equal to 7, (i.e., P;’s presence has no strategic
significance, and the optimal evading strategy is a pure evasion from
P;). Consequently, in the case of PP, the ellipse £ and its exterior
constitutes the degenerate region with respect to P,, and £ is the
boundary between D, and NV,

The degenerate region with respect to P; in this case can be
obtained from the relation

_ 1,(u+vcosb)

t
ul —v?

. uy#v @)

)4

which provides the capture time for a pursuer that follows a pure-
pursuit strategy, assuming that the evader is nonmaneuvering
(constant heading) [39]. Here, r, is the initial distance between the
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Fig.2 Regions of degeneracy and nondegeneracy for the case of CB: u; = 1, v = 0.5, and ¢ = 0 (point capture).

3 3
2 D, 2
D,

1 1
0 Pl 0 "P1

-1 -1

-2 -2

-3 -3

0 2 4 0 4 0 2 4
au,=15 b)u,=1 c)u,=0.5

Fig. 3 Regions of degeneracy and nondegeneracy for the case of PP: u; = 1, v = 0.5, and € = 0 (point capture).

pursuer and the evader (= d for P, and E), and 0 is the evader’s
heading measured with respect to the line-of-sight from the pursuer to
the evader. Using this relation, and following an approach similar to
the one in Sec. II.A, the locus of the initial points of P,, such that a
pure evasion from P, would result in simultaneous capture of the
evader by both P, and P,, can be obtained. Consider now the case of
an evader following a pure evasion strategy from P, with the heading
0, as shown in Fig. 4. Let the initial position of P, be (x, y). Assuming
that the evader gets captured by both P; and P, at T (see Fig. 4), it
follows from Eq. (7) that

0
x=d- (uy— v)dcos@(%),
uy—v
0
y=—(up — v)dsine(%) ®)
uy—v

Y/\

P,(0,0)

P (xy)

Fig.4 Limiting case scenario of the degeneracy with respect to P; for the
case of PP.

Under this parametric representation, the locus of interest can be
obtained, which is a closed curve (F) around the initial position of the
evader. If P, lies inside F, then the evader will get captured by P,
under pure evasion, before E is captured by P;. And hence, in the case
of PP, the closed curve F and its interior constitutes the degenerate
region with respect to Py, and F acts as the boundary between D, and
N. Finally, in the case of PP, the set RZ\ (£ U F) constitutes the
region of nondegeneracy.

The regions of degeneracy and nondegeneracy observed in these
cases are depicted using the previous example in Sec. II.A, see
Fig. 3. Note that the ellipse £ is contained in the circle Cy, and on the
other hand, the closed curve F contains C,. This is a consequence of
the fact that the pursuers use pure pursuit because they lack
information about the evader’s speed. As a result, the regions of
nondegeneracy are smaller compared to their counterparts in
Sec. II.LA. This observation further supports the fact that the
information structure plays a crucial role in problems involving
cooperation among agents.

III. Optimal Evading Strategies Against Two Pursuers
A. Case of Constant-Bearing Strategy

As per the formulation in Sec. LB, it can be seen that the game
evolves in the six-dimensional state space. However, the problem
formulation can be reduced to the two-dimensional state space in the
following manner. Consider the relative distances between the evader
and each of the pursuers (r; — py, r, — p»). The corresponding line-
of-sight (LOS) angles (¢, ¢,) are shown in Fig. 5a. Using Egs. (1-3),
the equations can be expressed as

i = vecos(0g — @) — u; cos(0; — @y),

o1 -
@ = r—l[l} Sln(HE — (pl) — U Sln(el - (/71)] (9)
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Frame Y 2 o
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Collision A QN
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\ ’
o Iy
a) CB

i . .
Inertial | 2 n,n Noninertial
Frame Frame

b) PP

Fig. 5 Schematics of the proposed pursuit—evasion problems.

i = veos(Og — @p) — up cos(0, — @,),

. 1 . .
P = r—[U sin(0g — @) — up sin(6, — @,)] (10)
2

Furthermore, it is assumed that the pursuers follow a constant-
bearing strategy, and hence the LOS for a given pursuer does not
rotate (i.e., ¢; = 0 and ¢, = 0). That is, ¢, (¢) = @19, P2(t) = @9,
forall r > 0, where ¢ and @, are the LOS angles at the initial time
t = 0. Therefore, r; and r, are the only states that have to be taken
into consideration to solve for the optimal evading strategy.

We are dealing with a time-maximization problem subject to the
dynamics

i1 = vcos(Og — @19) — uy cos(d — ¢9) an

i = vcos(0g — @y9) — u cos(6 — ) (12)

Note that 6, 6, are functions of €. They can be determined at each
instant of time, given 6, using Egs. (9) and (10) and the fact that
@1 = ¢, = 0. Therefore,

vsin(@ — @10) = u; sin(@) — @),
vsin(@g — @y0) = us sin(6, — @) (13)
Each of the preceding relations has two possible solutions for 8, or

6,, given 6, and each pursuer chooses the solution for which 7, <0
or 7, <0, respectively. The initial conditions are r;(0) = riyp =

[ P£(0) — p1(0)|| and r5(0) = ry = [|p£(0) — p2(0)||. The terminal
condition for capture is
lII(rl (t(:)’ rZ(tc)) = min{rl (tc)’ r2(tc)} -e=0 (14)

The Hamiltonian for this problem can be expressed as

H(ry, 19,41, 2,0p) = =1 + 1[vcos(0g — ¢19) — u; cos(d; — @10)]
+ Ao[vcos(0g — @ag) — up cos(6 — @a)] (15)

where 4, and 4, are the costates. The corresponding adjoint equations
are given by

=0, =0 (16)

and therefore 1, () = ¢y, 4,(t) = ¢,, for t € [0, z.], where ¢, and ¢,
are constants. The transversality conditions are given by

. H(@)=0 (17)

t=t,

oY
M) =v—
l(c) Var

o
, A(t) =v—
: 2(2) Uar

t=t, 2

where v € R. Because the Hamiltonian has no explicit dependency
on time, it follows that H(f) = O for all 7 € [0, t.]. Note that the
terminal condition is not fully differentiable, and it can be written as

oY

_ rpy—min{r;, rp} ¥
ary

— ry —min{rl,rz} (18)

=1, ry—r Coon,, re—ra
At ri(t.) = ry(t,) = ¢, the partial derivatives are undefined.
Using Pontryagin’s minimum principle, the following expression is

obtained:
. , 90,
1| —vsin(@ — @0) + uy sin(0; — @10) =
0,
. , 06,
+ Ao | —vsin(@g — @) + uy sin(0, — fﬂzo)E =0 (19

where, from Eq. (13),

90, _ vcos(dx — @1o)

B 0, — 0 20
00 u;cos(0) — @)’ cos(6) — ¢10) # (20)

00,  vcos(Og — @)
0, 10050 — gog)” cos(fy = ) # 0 2n

Because 1; and 4, are constants, 6, and 6, and their partials from
Egs. (20) and (21) are dependent only on €, we can conclude from
Eq. (19) that the optimal heading of the evader 8 is constant in time,
and hence the headings of the pursuers are constant as well.

Theorem 1: For the CB time-optimal control problem, given the
initial positions of P and E, if P, initially lies in the nondegenerate
region (), then the optimal control strategy of the evader involves
simultaneous capture by P; and P,.

Proof: First, consider the case when r|(t,) = € < r,(¢,) (i.e., only
P captures the evader at the final time). In this case, it follows from
Eqgs. (17) and (18) that A,(.) = 0, which from Eq. (16) implies that
¢, = 0. From Eqgs. (15) and (19), we then have that

=1+ ¢i[vcos(@p — @19) —u;cos(0) — 1)) =0 (22)

. . 00
Cy |:—U sin(@g — @10) + u; sin(0; — @) ﬁ] =0 (23
E
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Apollonius circle of (E, P,)

Apollonius circle of (E, P;)

Fig. 6 Schematic of finding the optimal heading of the evader using
Apollonius circles.

and ¢; # 0 because it leads to a contradiction in Eq. (22). Therefore,
. . 00,

—vsin(@g — @10) + u; sin(@; — @y0) 0. 0 (24)
E

From Eg. (20), sin(0; — @io) cos(@g — @10) — sin(0g — @10)X
cos(6; — ¢19) = 0, which implies that sin(@z — 6;) = 0. Further
analysis leads to 83 = ¢ (i.e., the optimal strategy is a pure evasion
from P;). This is the solution for a degenerate case of the problem. It
has been proven that, in the nondegenerate case with this strategy, P,
will capture the evader before P;, leading to a contradiction.
Similarly, the strategy when r,(¢,) = € < r(¢,) turns out to be a pure
evasion from P,. But because P, is closer to the evader, it lies inside
the circle of equal time to capture corresponding to P,, and therefore
Py reaches the evader before P,, again leading to a contradiction.
Hence, the optimal evading strategy in the nondegenerate case should
involve r;(t,) = ry(t.) = €, namely, simultaneous capture. O

Because the optimal heading 6} is constant and involves
simultaneous capture in the nondegenerate case, it is easy to obtain
the heading using the well-known Apollonius circles [1]; see Fig. 6.
The Apollonius circles of the pairs (E, P;) and (E, P,) at the initial
time can be constructed from the players’ initial positions. If the
problem is nondegenerate, then there always exist two intersection
points, Q and Q’, as shown in Fig. 6. During optimal play, the evader
should head toward one of the intersection points, namely, the one
that is farther away. If both the points are equidistant, then the evader
can choose either point. This completes the analysis on the optimal
evading strategy for CB.

B. Case of Pure-Pursuit Strategy

In this case, the problem can be examined in the three-
dimensional state space that makes the analysis simpler. A
schematic of the geometry of the proposed pursuit—evasion
problem is shown in Fig. 5b. First, we translate the problem into a
rotating/noninertial frame with the origin fixed on the evader (E)
and with the x axis along the line joining P; and E. The velocity
vector of P; is along the x axis because it follows a pure-pursuit
strategy. In this frame, P, is restricted to move only along the x axis.
The positions of the players expressed in polar coordinates are given
by pP1 = (rhﬂ)’ P2 = (}’2,1//), and PE = (070)’ —T<y <7
Because the pursuers follow a pure-pursuit strategy, their headings
are along their corresponding LOS directions (i.e., 8; = ¢,
0, = @,); see Fig. 5b. The angle between the velocity vectors of P,
and E is 8 = 6 — ¢,. The rotation rate of the noninertial frame is
given by

vsin@ vsinf

= = (25)
lpe— pill r

@

In the reduced state space, the number of states is only three, and
the corresponding equations of motion are given by

71 = —u; +vcosf (26)

Fy = —uy — vcos(y — 0) 27

W = sin(y — 0) ——-sin6 (28)
r ry

The initial conditions for the states are r; (0) = || pg(0) — p;(0) ||,
r2(0) = | p£(0) = p2(0) ||, w(0) = 7 — @10 + @29, Where @)y and
@, are now the initial headings of P; and P,, respectively, which
can be obtained from the initial positions of the players. The
terminal condition remains the same as in Eq. (14).

The problem statement is then to find the optimal control 8*(r)
that maximizes the capture time ¢, given the equations of motion
Egs. (26-28) and the given initial conditions and terminal
conditions. It is assumed that the initial conditions are such that the
problem is nondegenerate for the given speeds of the players.
Otherwise, the pursuit strategy for the evader is pure evasion from
either pursuer.

The Hamiltonian for this problem can be written as

H(ry,ry,w, A1, A, 43,0) = =1 + A (—u; + vcosb)

+ Jo[—uy —veos(y — 0)] + A3 |:1 sin(y — 0) — Y sin 9:| 29)
r r

where 1;, 1,, and 5 are the costates and satisfy the adjoint equations
(dropped for brevity). Because y(¢.) is not specified and is free, the
transversality conditions are given by

¥ oY
)'] (tc) =V s /12(16) =Vo—
0 r

s /IS(IL') = 0’ H(t(') =0
I t=t, 0 2

1=t,

(30)

where v € R. Because the Hamiltonian has no explicit dependency
on time, it follows that H(¢) = 0 for all ¢ € [0, ¢.]. Note that because
the terminal condition is the same as in Eq. (14), its derivatives are
implicit from Eq. (18). From Pontryagin’s minimum principle, it
follows that

—Avsin@ — Avsin(y — 0) — A3 [ricos(z// -0) + rlcos 9] =0
2 1
3D

Theorem 2: For the PP time-optimal control problem, given the
initial positions of P; and E, if P, initially lies in the nondegenerate
region N/, then the optimal control strategy of the evader involves
simultaneous capture.

Proof: Consider the case when r(t.) = € < r,(t.). This implies
M(t.) = v, and A,(t,) = 0. Note that the adjoint equations are linear
in the costates 4,, 13, and because 4,(z.) = 1,(t.) = 0, the costates
are constant in time, i.e., 1;(¢) = v, A (¢) =0, A3(¢) = 0. From
Egs. (29) and (31), it follows that —1 4 v(—u; 4+ vcosf) = 0 and
vvsing = 0. Because v =0, these two equations lead to a
contradiction. It follows that sin@ = 0, and thus 6*(¢) = 0, which
means that the optimal strategy is pure evasion from P;. However,
this is true only when the problem is degenerate. In a nondegenerate
case, this would lead to an early capture by P,. In this case, when
ro(t,) = e <ri(t.), we have 4,(t,) =0 and A,(z.) = v. Further-
more, from Eqs. (29) and (31), at r =1, it follows that
—14v(—u; —vcos(y(t,)—0(t.))) =0, and vvsin(y(z.)—6(z.)) =0.
Because v # 0, it follows that sin(y(z.) — 6(z.)) = 0. With this
terminal condition, it can be seen that the costates are constant and
similarly is the optimal heading, which in this case is given by
6*(1) = m + w. This means that the optimal evading strategy is a pure
evasion from P,. However, this strategy is infeasible in the
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Fig.7 Trajectories of the players for optimal control inputs in I1; black: evader, blue: Py, red: P, (Please refer the online version for colors).

nondegenerate case. Hence, the optimal evading strategy in a
nondegenerate case would result in r;(z.) = r,(¢,) = € (i.e., in
simultaneous capture). O

Proposition 1: Consider the time-optimal control problem
expressed using Eq. (26). Given the initial positions of P, and E,
the optimal control strategy of the evader can be summarized as
follows:

0, (x2(0), y2(0)) € D5,

O(ry, 12, w. 4. 22, 43),  (12(0),3,(0) e N, (32)
(x2(0), y,(0)) € D,

tan 6* =
T+,

where (x,(0), ¥,(0)) is the initial position of P, in the inertial frame,
and

_Apsing + (43/r) + (A3 cosy/ry)
A — Ay cosy + (A3 siny/ry)
(33)

O, 12, W, A1, Ay, A3) =

Proof: The proofis a direct consequence of defining the degenerate
and nondegenerate regions for PP (see Sec. IL.B).

With this analysis, the optimal control problem for the case PP can
be solved numerically. An analytical solution to the equations of
optimality subject to arbitrary initial conditions is at this point
elusive. Numerical results for the cases CB and PP are shown in
Sec. IIL.D. Next, we present a suboptimal strategy for PP that is
easy to implement in practice. This suboptimal strategy of the evader
is based on geometric arguments and is discussed in the next
subsection.

C. Suboptimal Strategy for Pure Pursuit

The optimal strategy for PP can be intuitively understood as one
where the evader chooses its heading so that it does not favor any
one of the two pursuers, finally resulting in simultaneous capture by
both pursuers. With this motivation, a suboptimal strategy is
constructed, and its performance is compared with the optimal one
in the case of identical pursuers. In this regard, the time-to-capture
relation given in Eq. (7) is exercised. For a nondegenerate problem,
the evader’s heading for which both P, and P, take equal time to
reach the evader can be found from their initial positions using the
expression

r1(0)(u; + vcos6) _ r2(0)(up + vcos @)

2_ 2 2_ 2
uy—v uz —v

(34)

In general, Eq. (34) has two solutions resulting in simultaneous
capture, assuming that the evader follows a constant heading. For
the given initial conditions, the solution to Eq. (34) that provides

maximum capture time is chosen as the suboptimal strategy. If the
problem is degenerate (with respect to Py or P,), then Eq. (34) has
no solution.

D. Numerical Simulations

This subsection demonstrates the aforementioned strategies using
simulations performed for the cases CB and PP with different initial
conditions. For simplicity, we assume that the speeds of the pursuers
are the same and are set to u; = u, = 1, whereas the speed of the
evader is set to v = 0.5, unless specified otherwise. The radius of
capture is chosen as € = 0.001.

The optimal strategy for CB is straightforward. The software
package GPOPS-II [41] was used to simulate the test cases and
validate the presented theory. Figure 7a presents the trajectories of the
players for the initial conditions, p; = (0,0), p, = (3.427,-1.763),
pe = (1,0), which make the problem degenerate. Clearly, the
optimal strategy is a pure evasion from P, and P, does not affect the
evader’s trajectory. An example for the nondegenerate case is
presented in Fig. 7a for the initial conditions, p; = (0,0),
pr = (2.732,-1), pr = (1,0). It can be observed that the optimal
evading strategy involves simultaneous capture with constant
heading.

The simulation results for a nondegenerate case of PP, obtained
using GPOPS-II, can be seen in Fig. 8. Figure 8a presents the
trajectories of the players for initial conditions p; = (0,0),
pr = (2.516,-0.875), pr = (1, 0). In the reduced state space, these
positions correspond to r; (0) = 1, r,(0) = 1.75, and w(0) = —x/6.
The optimal capture time is z. = 1.874. The difference between the
relative distances (r; — r,) is shown in Fig. 8b.

As expected, simultaneous capture is observed in these figures.
Also, the difference in the relative distances, (r; — r,), becomes
zero only at the final time. This suggests that the evader is
equidistant from both the pursuers just before it gets captured. The
same behavior has been observed in all the simulations that were
carried out. The suboptimal strategy is also compared against the
optimal strategy in Fig. 8. The (constant) heading obtained from the
suboptimal strategy is @ = 0.6378 (36.54 deg) with a capture time
of 7. = 1.868. Note that the capture time and the variation in
(ry — rp) are comparable to the corresponding results obtained
using the optimal strategy; see Fig. 8b. Furthermore, a comparative
study was carried out to gauge the performance of this suboptimal
strategy. For this purpose, the following parameters were chosen:
r1(0) = 1, u; = u, = u = 1. The speed of the evader v was varied
from 0.3 to 0.7. For each v, 140 different initial conditions (r,(0),
w(0)) were considered spanning the nondegenerate area for the
chosen r;(0) and u. Table 1 presents the results of this comparative
study. Though the average percentage variation of the time to
capture increases with the evader’s speed v, the variation is less than
1% for all the evader speeds considered. The maximum percentage
variation is only 2%. It can be observed that the suboptimal strategy
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Fig. 8 Performance of the optimal and suboptimal strategies for a nondegenerate case in 12; black: evader, blue: P, red: P, (Please refer the online

version for colors.).

is easily implementable, and its performance is similar to the
optimal one. Hence, the suboptimal strategy can be considered for
all practical purposes.

IV. Optimal Evading Strategies with a
Stationary Pursuer

In this section, and without loss of generality, it is assumed that
both pursuers are identical and that one of the pursuers remains
stationary during the game. This scenario may result, for instance,
from the implementation of a relay—pursuit strategy, according to
which only one pursuer is assigned to go after the evader at every
instant of time [26,38]. The pursuer whose Voronoi cell contains the
evader is assigned to be the active pursuer to chase the evader. The
other pursuer, designated as the inactive pursuer, stays at its original
location and plays the role of a guard. The active pursuer switches
when the evader enters the interior of the Voronoi cell of another
pursuer. Because of the symmetry of the problem, when the evader
resides on the Voronoi boundary, we can assign any one of the two
pursuers to be the active pursuer. Therefore, throughout the pursuit
process, we can fix one of the pursuers to be the active pursuer, while
the other pursuer remains stationary, whose mere presence, however,
imposes a state restriction, namely that the evader does not enter the
interior of its corresponding Voronoi cell.

Without loss of generality, we choose P; to be the active pursuer
with velocity u; = u and P, to be the inactive pursuer with velocity
u, = 0, assumed to be located at the origin, i.e., p,(0) = (0,0). The
equations of motion are given [Eqgs. (1-3)] with #; = u and u, = 0.
The game evolves in the four-dimensional state space,
[x1, y1, xg, ve]T € R*. We consider strategies differing in the
information structure and pursuit strategies used, subject to the state
constraint

Ip1 = pell £ llp2 = pell = llpell (35)

This constraint restricts the evader from entering the Voronoi cell
of the inactive pursuer. First, the region of nondegeneracy and the
value of employing two pursuers in a relay pursuit mode is examined
based on the set of initial conditions.

Tablel Comparison table for optimal and

suboptimal strategies of 12

Average percentage Maximum percentage

v variation in ¢.., % variation in ¢ .., %
0.3 0.0337 0.4451
0.4 0.0727 0.7653
0.5 0.1277 1.2182
0.6 0.1704 1.6883
0.7 0.2343 2.2487

A. Region of Nondegeneracy

The problem is nondegenerate for a given set of initial conditions if
the inactive pursuer affects the outcome of the game (i.e., if the
optimal evading strategy is not pure evasion from the active pursuer).
Therefore, for a given set of initial conditions, and with the evader
following a pure evasion strategy from the active pursuer, if the
evader enters the Voronoi section of the inactive pursuer before it gets
captured, then the problem is nondegenerate and vice versa. Because
the position of the inactive pursuer is fixed at the origin, given the
initial position of the active pursuer, the region of nondegeneracy is
defined as the set of the evader’s initial positions for which the
problem is nondegenerate. Note that the region of nondegeneracy is
the same for both R-CB and R-PP, given the active pursuer’s initial
position, unlike the case of two active pursuers analyzed in Sec. IL.
This is because of the fact that P and P, are identical in terms of their
speed capabilities, and P, is stationary in a relay pursuit problem.

Proposition 2 [38]: Consider the pursuit—evasion problem stated
in Sec. IV. The evader will be captured before entering the Voronoi
cell of the inactive pursuer while moving along the LOS and away
from the active pursuer if and only if the quadratic equation

at? +bt+c=0 (36)

where a = u?> —2uv, b = 2[(ux,(0) — vx; (0) — uxz(0)) cos 0 (0)+
(y1(0) = vy, (0) —uy£(0))sin€(0)], and ¢ = x;(0)* + y,(0)*~
2(x£(0)x;(0) + y(0)y(0)), does not have a solution inside the
interval [0, ¢/], where ¢, is obtained from Eq. (4), and 6g(0) is
determined by the equations

) o) X0 =5 0) =0
OO = o= pon O == hol
(37)

Notice that, when v < u/2, there exists no initial position for the
evader such that the condition in proposition 2 is satisfied. Therefore,
the optimal control for the evader is always to move along the LOS of
P, when v < u/2. Henceforth, we assume that v > u/2.

To find the explicit expression for the region in which the condition
of proposition 2 is not satisfied, and without loss of generality, let the
initial position of the active pursuer be p; = (x;(0), 0). A schematic
for the nondegenerate region with p; = (-2,0),v = 0.8,andu = 1
is shown in Fig. 9. The shaded region depicts the evader’s initial
positions for which the condition of proposition 2 is not satisfied.
That is, if the evader starts from a position inside the shaded region, it
will not be able to move along the LOS of P; throughout the pursuit
without violating the state constraint. We denote the three vertices of
the shaded region by A, B, and C, where A resides on the line segment
between the active pursuer and the inactive pursuer, and B and C are
on the Voronoi boundary.
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If the evader starts on the line segment PP, at an initial
position (xz(0),0) that does not violate the state constraint,
while moving along the LOS of P, it must be captured by P,
before it reaches the boundary of the Voronoi cell. Thus,
(%1 (O] =[x (0)D/ (= v) < (|x£(0)] = |x1(0)[/2) /(v — u/2). After
simplification, we have |xz(0)| > |x;(0)|v/u. Because A is at the
boundary of the region and the previous inequality is linear with
respect to x;(0), we thus obtain A = (x;(0)v/u, 0).

Because B is the uppermost point of the shaded region that is also
on the Voronoi boundary, when the evader starts at B, its velocity for
staying on the Voronoi boundary should coincide with its velocity for
moving along the LOS. On the boundary, we have x;(x; — 2xg)+
yi1(yi —2yg) = 0. Hence, by taking a time derivative, we obtain
=2(u||pg — p1ll = vx; cos @ — vy, sinfg) = 0. By plugging in
x£(0) = x1(0)/2, y£(0) = p, y;(0) = 0 in the previous equations,
one obtains

u(x, (0> /4 + p)'/
- vx, (0)

cos 0(0) = (33)

On the other hand, for the evader to move along the LOS of Py,
0£(0) satisfies

—x1(0)/2

cos0:0) = 0 /a 4 I

(39)

Equating Eq. (38) with Eq. (39) and solving for f, we have
B = (x1(0)/2, yv/Q2u) = 1/4]x;(0))).  And  C = (x(0)/2,
—/v/(Qu) — 1/4]x,(0)|), which by the nature of symmetry is the

reflection of B about the x axis.
The curves AB and AC are arcs of circles and satisfy the equation

0= (((v=1)x;(0) + ux)(x = x,(0)) + uy*)*
= u(2v = u)x; (0)(2x = x; (0)) ((x = x,(0))* + %) (40)

which is derived from 0 = b2 — 4ac, where a, b, and ¢ are defined in
proposition 2, by plugging in Eq. (37) and the initial condition for the
active pursuer. The optimal evading strategies can now be analyzed in
the nondegenerate regions for R-CB and R-PP.

B. Case of Relay Constant-Bearing Strategy

For R-CB, it is assumed that the active pursuer P; follows a
constant-bearing strategy. The reduced state space dynamics are
given by

i1 = veos(Og — ¢19) — ucos(@; — @y9) 41
iy = veos(Pg — @) 42)
. v .
P = 75111('95 - ) (43)
2

where ¢ is the initial LOS angle of P;. Because P; follows a
constant-bearing strategy, ¢; is determined from the equation

. 1 . i
¢ = V_l[v sin(@p — @0) — usin(@; — @) =0 (44)

These equations are similar to the ones presented in Sec. III.A, but
they differ in the sense that the second pursuer is stationary.

A schematic of the proposed pursuit—evasion problem can be
seen in Fig. 10a. The boundary conditions are given by
r1(0) = [[pe(0) = p1(O)[,  72(0) = [[pe(0) = p2 (O], @2(0) =
@0, 71(t.) = €, ry(t.) and @,(t,.) are free, where ¢, is the initial
LOS angle of the inactive pursuer P,. The state constraint [Eq. (35)]
imposed on the relay pursuit problem can be expressed as

§=5(3-) <0 45)

Note that the inequality constraint [Eq. (45)] imposed on the

problem involves only the state variables. Therefore, we have to take

the time derivative for the constraint S and substitute the equations of

motion until an explicit dependence on the control variable occurs.

The gth-order time derivative in which this first happens plays a role
in the Hamiltonian [42]. To this end, we first use the fact

S = rli’l - r2f’2
= ri(vcos(0g — @ig) — ucos(d; — @19)) — vry cos(fg — @)
(46)

It can be seen that the control variable @ appears explicitly in the
first time derivative. The Hamiltonian can then be expressed as

H(r . ra. w0, 20, A ) = =1+ iy + oty + dsdpy + pS
=—1+ (4 +ur)(vcos(Op — 1) — ucos(d, — ¢g))

AU .
+ (A — pury)vcos(Op — @o) + %SIH(QE —¢) 47)
2

where 1, 4,, 43, and u are the costates, and p satisfies the Kuhn—
Tucker and complementary slackness conditions (i.e., for S # 0,
u=0,and S = 0, u > 0). The transversality conditions are given by
M(t.) =0, A3(t.) =0, H(t.) =0. Furthermore, because the
Hamiltonian has no explicit dependency on time, H(¢) = 0 for all
t €0, t.]. The optimal control can be obtained from Pontryagin’s
minimum principle, using the expression

(4 + pry) sin(@; = Og) — (A, — ury) sin(@g — ¢,) cos(0; — @1o)

A
+ r—3005(05 —p) =0 (43)
2

Proposition 3: Consider the time R-CB optimal control problem. If
the initial conditions are such that the problem is nondegenerate with
u > v > u/2, then the optimal control of the evader 0};() satisfies
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Ay sin(8, (1) — O (1)) — A sin(O (1) — @) cos(6; (1) = p10) + A3 c0s(01(1) — ¢2)/r2 =0, 1 €0, 7],

r1(veos(O% (1) — @19) — ucos(0,(1) — @19)) — vry cos(O;(t) — @) = 0,

03x(t) = @10,

where 6, (¢) is obtained using the expression
vsin(05(t) — @10) = usin(0,(1) — @19), t€[0,7,] (49)
Furthermore, 7, satisfies the switching condition:

(v =u)r((7) = vry(1y) cos(pyp — 2(72)) =0 (50)

C. Case of Relay Pure-Pursuit Strategy

In this case, P; follows a pure-pursuit strategy. A schematic of the
proposed relay pursuit problem is shown in Fig. 10b. This problem is
similar to the one presented in Sec. III.B and can be analyzed in the
three-dimensional reduced state space, but it differs from it by the fact
that P, is now stationary. It can be solved with the use of states and the
control input @ in the reduced state space presented in Sec. III.B. The
equations of motion are now given by

Fp = —u+ vcosé (&28)

7, = —vcos(y — 6) (52)

= Lsin(y — 0) — sin0 (53)
r r

whereas the constraint given in Eq. (45) and the boundary conditions
for r; and r, are the same as in the R-CB case; y(0) = y, and y(z,.)
is free. Note that a time derivative of the constraint S has to be taken to
write the Hamiltonian for this optimal control problem and

S = rii = rafy = ri(—=u + veos0) + vry cos(w—0) (54)
Therefore, the Hamiltonian is
H(ry,ry,w, 41,20, 43,10) = =14 (A + pr) (—u + vcos )

4 (=Ay + pry)veos(y — ) + A (r—vzsin(y/—e) —r—v]sine) (55)

where A, 4,, 43, and u are the costates, and y satisfies the Kuhn—
Tucker and complementary slackness conditions (i.e., for S # 0,

/ i,

/ Inertial
! Frame
Qy /
Collision R !
triangle for P, S ,/
/
' Voronoi
(/ Boundary
)
' ‘;“\“~~‘fp2:/\
1/ PZ i7
/

a) R-CB

te [Tl, Tz],

t €1y, t,]

u=0,and S = 0, u > 0). The transversality conditions are given by
M(t,) =0, 43(t,) = 0 and H(t,) = 0. Again, the Hamiltonian has
no explicit dependency on time, and therefore the optimal
Hamiltonian remains constant at zero. The optimal control can be
obtained similarly from Pontryagin’s minimum principle, using the
expression

_ (Ay — ury) siny + (A3/r1) + (A3 cosy/r,)

tan 0* = -
A = Ay — pry) cosy + (A3 siny /1)

(56)

Proposition 4 [38]: Consider the R-PP time-optimal control
problem. If the initial conditions are such that the problem is
nondegenerate with u > v > u/2, then the optimal control of the
evader 0*(t) satisfies

_Aasiny + (A3/r1) + (A3 cosy/ra)

, t€]0,7],
A — Ay cosy + (A3siny/ry) 0.1
sy = g—op /TP =1
tan 0" () q-orvp t4 -1 1 €[z,
p+ogyp*+q*—1
0. tE€[n,t,]

where  p = (vr; +vrycosy)/(ur)), q = (vrpsiny)/(ury),
o = sgn(q). Furthermore, 7, satisfies the switching condition

(v =u)r(z;) + vry(7;) cosy(zy) =0 (57)

Summarizing the previous analyses, we conclude that, for both
cases R-CB and R-PP, the optimal trajectory of the evader involves
three periods. First, the evader moves inside the Voronoi cell of the
active pursuer in a way such that the optimal conditions
(corresponding transversality conditions, Erdmann corner con-
ditions, etc.) are satisfied before it hits the Voronoi boundary. The
evader then moves along the boundary until the switching condition
[Eq. (50) for R-CB, Eq. (57) for R-PP] is satisfied. Finally, the evader
moves along the LOS of P; until capture occurs.
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Fig. 10 Schematics of the proposed relay pursuit problems.
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D. Numerical Simulations

In this subsection, the optimal strategies for R-CB and R-PP are
demonstrated using an example with nondegenerate initial
conditions. The speed of the active pursuer (P;) is u = 1, and that
of the evader is v = 0.8. The initial position of P, is (-2, 0), and the
evader’s initial position is at (—1.1, 0), which is in the nondegenerate
region; see Fig. 9. Because the nondegenerate region is the same in
both cases, their corresponding optimal strategies can be compared in
this example. The problem is solved using GPOPS-IL.

The simulated results are presented in Fig. 11. The time to capture
in the case of R-PPis z. = 4.172, whereas in R-CB, . = 4.125. The
R-CB case is lower than R-PP because, in the latter, the pursuers have
an advantage because they have information of both the evader’s
position and velocity. The trajectories of the players can be seen in
Fig. 11a. Because P; follows a constant-bearing strategy, its LOS
angle is constant throughout the time (¢ o = 0). The state constraint
can be analyzed using Fig. 11b. The three periods in both optimal
strategies can be observed in that plot. The interesting observation
here is that, in R-CB, the evader hits the Voronoi boundary earlier
compared to R-PP, but the evader stays on the boundary for longer
time and eventually follows pure evasion from P;. This is because of
the difference in P;’s strategy, which also affects the dynamics of the
Voronoi boundary and the switching condition.

V. Conclusions

The two-pursuer/one-evader problem is analyzed in two different
scenarios, assuming both pursuers to be superior to the evader in terms
of their speed capabilities, thus guaranteeing capture. The first scenario
involves pursuers that have access to information of the evader’s
position and velocity and use this information to follow a constant-
bearing strategy. In the second scenario, the pursuers have access to the
evader’s position only and hence, they follow a pure-pursuit strategy.
The time-optimal evading strategy is identified in both scenarios.
Because obtaining a closed-form solution in the second scenario is
elusive at this point, a competitive suboptimal strategy that can be
practically implemented is identified and is compared against the
optimal strategy. The regions of nondegeneracy are used to investigate
the utility of employing two pursuers to more efficiently capture the
evader. If the initial positions of the players are such that the problem is
degenerate, then one of the pursuers does not play any role in the game,
and the optimal evading strategy is pure evasion from the other pursuer.
Optimal evading strategies against relay pursuit are also investigated
by keeping one pursuer stationary. The results of this paper provide a
potential framework for solving larger classes of multiplayer time-
optimal pursuit—evasion games under different information structures.

Appendix: Proof of Proposition 3

If the initial condition of the evader is not on the boundary of the
Voronoi cell of the inactive pursuer, it follows that the control is given

by Eq. (48) with 4 = 0, and hence
Ay sin(@, (1) — O(1) — A sin(O (1) — p2) cos(6; (1) — 10)

+ /ECOS(QZ(Z) —@,) =0, fortel0,17] (A1)
r

where 0, (t) is obtained from Eq. (49), which is a consequence of
Eq. (44). The evader will follow this strategy until some time 7; > 0,
when it hits the Voronoi boundary, and then it will stay on the boundary,
defined by S = 0, for ¢ € [z, 7,]. It follows that, when the evader
moves along the Voronoi boundary, the control to use should satisfy

S = ri(veos(@5(1) — @19) — ucos(8; () — ¢i0))

—vrycos(05(f) — @) =0, for t €7y, 15] (A2)

The optimal value of the multiplier 4* for ¢ € [z, 75] can be
immediately computed from Eq. (48) with boundary condition
u(z3) = u(r3) = 0. After the evader leaves the constraint at time
t = 1,, and before capture, u* = 0, and thus the adjoint equations are
linear in their respective costates whose solution subject to the
transversality conditions is given by 4,(f) = 43(r) =0 for all
t €[y, t.]. Therefore, when € ][r,,1.], from Eq. (48),
0%(1) = 0,(t) = ¢10. By imposing Erdmann’s corner conditions at
the entry and exit points from the state constraint [42], and after some
tedious but rather straightforward calculations, one obtains 85 (77) =
0%(z1) and 0%(z3) = 03(77). Hence, the control is continuous at 7,
and 7,. Because 0%(z3) = @, it follows that 8%(13) = @y, and
hence the evader will leave the boundary when the evader’s velocity is
parallel to the current the initial LOS angle of P,. Because after the
switching at r = 7, we have 05(r,) = 0,(12) = @9, the switching
condition to leave the boundary follows immediately from Eq. (A2)
and is given by Eq. (50). This completes the proof.
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