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Time-optimal evading strategies for pursuit-evasion problems involving two pursuers
and one evader are analyzed. It is assumed that both pursuers are identical and possess
higher speed capabilities when compared to the evader. The problems are categorized into
two scenarios, which are based on the evader’s information provided to the pursuers. In
the first scenario, the pursuers have information of the evader’s position and velocity at
each instant of time and follow a constant bearing strategy. In the second scenario, the
pursuers have only positional information of the evader and follow a pure pursuit strategy.

Nomenclature

tc Time-to-capture
p Player’s position
x Player’s x-coordinate
y Player’s y-coordinate
r Relative distance between a pursuer and evader
θ Heading angle
ϕ Line-of-sight angle
u Pursuer’s speed
v Evader’s speed
H Hamiltonian
λ Co-state

Subscript
1 Closer Pursuer
2 Farther Pursuer
E Evader

I. Introduction

The amount of research that went into understanding pursuit-evasion games involving one pursuer and
one evader, starting from its inception in 1950s through Isaacs [1], is immense. Domains of application
include collision avoidance, missile guidance, and several other application that involve mainly defense and
strategic elements. As the research on swarm robotics and formation control is becoming more prevalent
currently, the idea of performing a task efficiently with multiple agents is gaining prominence. Along these
lines, a study on two-pursuer/one evader problem is a first step in understanding cooperation to capture a
target using multiple pursuers.
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H. J. Kelley initially studied the two-pursuer one-evader problem [2], and discussed some aspects of two-
on-one team tactics. The problem was later posed as a differential game with linear dynamics and quadratic
cost, and it was investigated for Nash equilibrium solutions by Foley and Schmitendorf [3]. They identified
partitions in the state-space and their categorization is similar to the degenerate and the non-degenerate
regions, subsequently discussed in this paper. A linear differential game formulation of the problem with the
motion of the players restricted to a straight line was studied and presented in great detail [4–6]. In this type
of formulation, the two pursuers coordinate to reduce the miss distance. Furthermore, to construct level sets
of the value function of a finite horizon problem, an algorithm was proposed [7]. Some variations of the two-
pursuer one-evader problem include: non-convex payoff functions [8], two identical inertial pursuers (second
order dynamics) against a non-inertial evader (first order dynamics) [9], a faster evader that must pass
between two pursuers [10]. Yavin analyzed the stochastic version of the two-pursuer one-evader differential
game [11]. Finally, Sun and Tsiotras discussed a version of the relay pursuit problem presented in this paper,
and proposed a suboptimal strategy [12].

The majority of the existing literature on the two-pursuer one-evader problem assumes linear dynamics,
with optimization of the miss distance by formulating a quadratic cost function with fixed final time. In this
paper, we are motivated to find time-optimal strategies for an evader that is being pursued by two pursuers
and examine the outcomes under two different information structures. Time-optimal solutions were briefly
investigated in the book by Isaacs [1] but, apart from that discussion, there are no comprehensive results
existing in the current literature. The two scenarios, dealt in this paper, differ in the information that the
pursuers contain about the evader. The first scenario deals with the pursuers that follow a constant bearing
strategy by accessing the position and velocity of the evader at each instant of time. However, in the second
scenario, the pursuers know only the instantaneous position of the evader and use this information to follow
a pure pursuit strategy. It is assumed that both pursuers are identical and the speed of a pursuer is higher
compared to the evader’s speed, which means capture is guaranteed. In this regard, the evader tries to
maximize the capture time using its control input which is the heading angle.

At first, the value associated in employing two pursuers to capture an evader is studied in both scenarios,
which is done by characterizing the degenerate and the non-degenerate regions for the problem. Afterwards,
using optimal control theory, the expressions of the corresponding optimal evading strategies are derived.
Some nice geometric interpretations of the optimal evading strategies can be made with the help of the closed
form solution obtained for the first scenario, and from the numerical simulations to the second scenario. This
study can then be used to propose an analytical suboptimal strategy for the evader that is easy to implement
in practice.

The paper is organized into six sections. Section II formally presents the problem statement discussed
in this paper along with the equations of motion for the players. Section III discusses the notion of
degenerate/non-degenerate problems, and the construction of the regions of non-degeneracy for both scenar-
ios. Section IV analyzes the optimal strategies of the evader obtained by formulating the problem, for both
scenarios, in their corresponding reduced state spaces. The discussion on the suboptimal evading strategy for
second scenario, in which the pursuers follow a pure pursuit strategy, is also included in this section. Section
V presents numerical results, simulated for both scenarios, along with a comparative study performed on
the suboptimal strategy against the optimal one for the second scenario. The concluding remarks are made
in Section VI.

II. Problem Formulation

Consider a pursuit-evasion game with two pursuers and one evader in the plane. The game terminates
when one of the pursuers enters the evader’s capture zone, assumed here to be a disk of radius ε > 0 centered
at the current position of the evader. The subscripts 1 and 2 will be used for the two pursuers (P1 and P2)
while the subscript E will be used for the evader. The equations of motion for all the players involved in the
game are given below

ẋ1 = u cos θ1, ẏ1 = u sin θ1, (1)

ẋ2 = u cos θ2, ẏ2 = u sin θ2, (2)

ẋE = v cos θE, ẏE = v sin θE, (3)

where p1 = (x1, y1), p2 = (x2, y2), and pE = (xE, yE) denote the positions of pursuer P1, pursuer P2, and
the evader E, respectively. Similarly, θ1, θ2, θE ∈ (−π, π] denote the control inputs of the players, u and v
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are the speeds (constant) of the pursuers and the evader, respectively, with u > v. The game evolves in the
six-dimensional state-space, [x1, y1, x2, y2, xE, yE]T ∈ R6.

Now, consider Scenario 1 when the pursuers know the instantaneous position and velocity of the evader.
Under these circumstances, a constant bearing pursuit is an efficient strategy for the pursuers to guarantee
capture [13]. As the pursuers follow a constant bearing strategy, their control inputs θ1 and θ2 depend on
the evader’s heading and the instantaneous positions of all the players. Scenario 2 deals with the case where
the pursuers have access only to the evader’s instantaneous position but not its velocity. Pure pursuit is
a reasonable strategy to capture the evader in this case [13]. The control inputs θ1 and θ2 are then solely
dependent on the instantaneous positions of the players, where

cos θ1 =
xE − x1

‖pE − p1‖
, sin θ1 =

yE − y1

‖pE − p1‖
, (4)

cos θ2 =
xE − x2

‖pE − p2‖
, sin θ2 =

yE − y2

‖pE − p2‖
, (5)

‖pE − p1‖ =
√

(xE − x1)2 + (yE − y1)2, and ‖pE − p2‖ =
√

(xE − x2)2 + (yE − y2)2.
The problem we wish to address in this paper can be stated as follows:

Problem: Find the optimal control input for the evader, θE ∈ (−π, π] that maximizes the time of
capture tc in the two aforementioned scenarios.

Since it is assumed that the pursuers are identical, without loss of generality, we consider P1 to be the
closer pursuer to the evader at the initial time (t = 0). The problem is symmetric when the evader is on
the perpendicular bisector of the line segment joining the two pursuers, both pursuers are equidistant to the
evader. In such a case, P1 is assigned at random.

III. The Regions of Non-Degeneracy

In the case of a one-pursuer/one-evader problem, pure pursuit is the optimal strategy for the pursuer,
while for the evader the optimal strategy is pure evasion [1]. In the case of the two-pursuer/one-evader
problem, assuming that each of the pursuers follows either a constant bearing strategy or a pure pursuit
strategy may result in degenerate cases as follows.

The perpendicular bisector between the two pursuers defines the regions of dominance (or Voronoi cells
[14]) for each pursuer. The pursuer whose Voronoi cell contains the evader is the closer pursuer (P1). The
optimal strategy of the evader with respect to P1 (alone) is to move away from P1 along the corresponding
line-of-sight (LoS). However, there is a second pursuer (P2 - farther pursuer) also trying to capture the
evader. If the evader follows a pure evasion strategy with respect to P1 and never hits the perpendicular
bisector before getting captured by P1, it follows that P2’s presence does not affect the game. Given the
initial locations of P1 and the evader, it is of interest then to find the set of initial positions for P2 that
makes the problem non-degenerate, that is, when the evader needs to take into account both pursuers, as
long as they are not equidistant from the evader. These are all the locations where the evader will have to
consider the presence of the second pursuer (P2 in this case), and for these initial locations of P2, the evader
reaches the perpendicular bisector before it gets captured by P1 under pure evasion. In the non-degenerate
region, the farther pursuer has a role to play in the problem, and the optimal strategy is not pure evasion
anymore. We can compute the non-degenerate regions for both scenarios under consideration as follows.

Assume momentarily that there is only a single pursuer (i.e., the closer pursuer P1). The capture time
given the problem formulation in Section II, and assuming that the evader follows a pure evasion strategy,
is given by

tf =
‖pE(0)− p1(0)‖

u− v
. (6)

Here tf represents the capture time assuming that a second pursuer is not present. Also, the capture point
is C = (xE(tf ), yE(tf )) where xE(tf ) and yE(tf ) are given by

xE(tf ) = xE(0) + vtf
xE(0)− x1(0)

‖pE(0)− p1(0)‖
, (7a)

yE(tf ) = yE(0) + vtf
yE(0)− y1(0)

‖pE(0)− p1(0)‖
. (7b)
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Next, define the circle C1

C1 = {x ∈ R2 : ‖x− pE(0)‖ = ‖p1(0)− pE(0)‖}. (8)

The exterior of the circle C1 denotes the allowable region for the initial position of P2 (since P1 is the closer
pursuer by definition), given the initial positions of P1 and the evader.

(a) Scenario 1 (b) Scenario 2

Figure 1. Regions of non-degeneracy for ε = 0 (point capture).

III.A. Scenario 1

The non-degenerate region for this scenario can be constructed by defining another circle C2 as follows

C2 = {x ∈ R2 : ‖x− C‖ = ‖p1(0)− C‖}. (9)

The circle C2 is an isochrone that contains the set of initial positions for a pursuer that guarantees capture at
time tf (at C) under a constant bearing strategy for the given initial position of the evader and its heading,
assuming that the evader is non-maneuvering. The center of this circle is the capture point C and its radius
is utf . If the initial position of a pursuer (following a constant bearing strategy) lies inside C2, then it can
capture the evader in a time less than tf for the given initial position of the evader and its heading.

Proposition III.1. For the pursuit-evasion problem formulated in Section II, the set of initial locations of
the farther pursuer (P2), following a constant bearing strategy, for which the evader reaches the perpendicular
bisector at a time 0 ≤ τ < tf (i.e., the non-degenerate region) is given by the area bounded by the circles C1
and C2, C1 inclusive.

Proof. The condition that needs to be satisfied for the problem to be non-degenerate is that there exists a
time 0 ≤ τ < tf , and ε > 0 such that

ε < ‖pE(τ)− p1(τ)‖ = ‖pE(τ)− p2(τ)‖. (10)

The limiting cases occur for τ = 0 and τ = tf . The curve corresponding to the instant τ = 0 is the circle
C1. Hence, the farther pursuer (P2) has to lie on, or outside, this circle. The limiting curve (set of points)
for the case τ = tf should allow P2 to intercept the evader that is moving at a constant heading exactly at
time tf under a constant bearing strategy. This corresponds to the circle C2. That is, given that P1 and
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P2 initially lie on C2, they both capture the evader simultaneously at tf (at location C), assuming that the
evader follows pure evasion from P1. Furthermore, if P2 initially lies inside C2, and assuming that the evader
still follows pure evasion from P1, then there will exist a time 0 ≤ τ < tf when the evader is equidistant to
both the pursuers. Since the capture time for P2 will be less than tf before the evader gets captured at some
time τ < tf by P2, it will be equidistant to both the pursuers. It follows that since the evader is equidistant
to both pursuers (i.e., it meets the perpendicular bisector) at 0 ≤ τ < tf , the region bounded by C1 and C2,
C1 inclusive, is the non-degenerate region.

To demonstrate the corresponding geometry pictorially, consider a problem with an evader initially
stationed at (1, 0) with the closer pursuer (P1) located at (0, 0) having speeds v = 0.6 and u = 1, respectively.
The shaded region in Figure 1(a) represents the set of initial points for pursuer P2 that make the problem
non-degenerate. The inner circle, centered at the evader’s position, sets the lower bound for P2 in terms of
its initial distance from the evader. The outer circle, with its center at the capture point (2.5, 0), denotes
the limiting case for pursuer P2, and beyond which P2 plays no role in the game.

III.B. Scenario 2

To compute the non-degenerate region in this scenario, first define the ellipse E as

E = {x ∈ R2 : ‖x− pE(0)‖+ ‖x− p′E‖ = 2utf}, (11)

where p′E = (x′E, y
′
E) from

x′E = xE(0) + 2vtf
xE(0)− x1(0)

‖pE(0)− p1(0)‖
, (12a)

y′E = yE(0) + 2vtf
yE(0)− y1(0)

‖pE(0)− p1(0)‖
. (12b)

The ellipse E is an isochrone that contains the set of initial positions for a pursuer that guarantee capture
at time tf (at C) under a pure pursuit strategy for the given initial position of the evader and its heading,
assuming that the evader is non-maneuvering. In the literature, C2 and E are called tf -isochrones [13]. It
can be seen from (11) that E is an ellipse centered at C having the initial position of the evader at one of
its foci. For any initial position of a pursuer (following a pure pursuit strategy) inside E , the capture time
is less than tf , for the given initial position of the evader and its heading.

Proposition III.2. For the pursuit-evasion problem formulated in Section II, the set of initial points of
the farther pursuer (P2), following a pure pursuit strategy, for which the evader reaches the perpendicular
bisector at a time 0 ≤ τ < tf (i.e., the non-degenerate region), is given by the area bounded by the circle C1
and the ellipse E, C1 inclusive.

Proof. The proof is identical to the one of Proposition III.1, by simply replacing constant bearing strategy
and the circle C2, in the discussion, with pure pursuit strategy and the ellipse E , respectively.

The geometry of the non-degenerate region in this scenario is depicted with the same example used for
Scenario 1. The shaded region in Figure 1(b) represents the set of initial points for the second pursuer (P2)
that make the problem non-degenerate when P2 follows a pure pursuit strategy. The inner curve which is
a circle, centered at the evader’s position, sets the lower bound for P2 in terms of its initial distance from
the evader. The outer curve which is an ellipse, with the evader at one of its foci, denotes the limiting case
for P2 beyond which P2 plays no role in the game. Note that the non-degenerate region in Scenario 2 will
always be smaller compared to its counterpart in Scenario 1, as can be observed from Figure 1.

IV. Optimal Strategies

IV.A. Scenario 1

As per the initial formulation in Section II, it can be seen that the game evolves in the six-dimensional
state-space. However, the problem formulation can be reduced to the two-dimensional state-space in the
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Figure 2. Schematics of the proposed pursuit-evasion problems.

following manner. Consider the relative distances between the evader and each of the pursuers (r1 − P1

and E, r2 − P2 and E), and the corresponding LoS angles (ϕ1, ϕ2), shown in Figure 2(a). Using equations
(1)-(3), the dynamics can be expressed as

ṙ1 = v cos(θE − ϕ1)− u cos(θ1 − ϕ1), (13)

ϕ̇1 =
1

r1
[v sin(θE − ϕ1)− u sin(θ1 − ϕ1)] , (14)

ṙ2 = v cos(θE − ϕ2)− u cos(θ2 − ϕ2), (15)

ϕ̇2 =
1

r2
[v sin(θE − ϕ2)− u sin(θ2 − ϕ2)] . (16)

Furthermore, it is assumed that the pursuers follow a constant bearing strategy and hence the LoS for a
given pursuer does not rotate, i.e., ϕ̇1 = 0 and ϕ̇2 = 0. That is, ϕ1(t) = ϕ10, ϕ2(t) = ϕ20, for all t ≥ 0,
where ϕ10 and ϕ20 are the LoS angles at the initial time t = 0. Therefore, r1 and r2 are the only states that
have to be taken into consideration to solve for the optimal evading strategy in this scenario.

The problem can now be solved using tools from optimal control theory. Since we are dealing with a
time maximization problem, one way to formulate the problem is to introduce a payoff function

min
θE
J (θE) = −

∫ tc

0

dt, (17)

subject to the dynamics

ṙ1 = v cos(θE − ϕ10)− u cos(θ1 − ϕ10), (18)

ṙ2 = v cos(θE − ϕ20)− u cos(θ2 − ϕ20). (19)

Note that θ1, θ2 are functions of θE. They can be determined at each instant of time, given θE, using the
equations (14) and (16), and the fact that ϕ̇1 = ϕ̇2 = 0. Therefore,

u sin(θ1 − ϕ10) = v sin(θE − ϕ10), (20)

u sin(θ2 − ϕ20) = v sin(θE − ϕ20). (21)

Each of the above relations have two possible solutions for θ1 and θ2, given θE, and each pursuer chooses
that solution for which ṙ1 < 0 and ṙ2 < 0, respectively. The initial conditions of the problem are

r1(0) = r10 = ‖pE(0)− p1(0)‖, (22)

r2(0) = r20 = ‖pE(0)− p2(0)‖. (23)
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The terminal condition for capture is

Ψ(r1(tc), r2(tc)) = min{r1(tc), r2(tc)} − ε = 0. (24)

The Hamiltonian for this problem can be expressed as

H = −1 + λ1ṙ1 + λ2ṙ2

= −1 + λ1 [v cos(θE − ϕ10)− u cos(θ1 − ϕ10)] + λ2 [v cos(θE − ϕ20)− u cos(θ2 − ϕ20)] , (25)

where λ1 and λ2 are the co-states. The corresponding adjoint equations are given by

λ̇1 = −∂H
∂r1

= 0, (26a)

λ̇2 = −∂H
∂r2

= 0. (26b)

Therefore, λ1(t) = c1, λ2(t) = c2, t ∈ [0, tc], where c1 and c2 are constants. The transversality conditions
are given by

λ1(tc) = ν
∂Ψ

∂r1

∣∣∣
t=tc

, λ2(tc) = ν
∂Ψ

∂r2

∣∣∣
t=tc

, H(tc) = 0, (27)

where ν ∈ R. Since the Hamiltonian has no explicit dependency on time,

H(t) = 0, t ∈ [0, tc]. (28)

Note that the terminal condition is not fully differentiable and it can be written as ∂Ψ
∂r1

∣∣∣
t=tc

∂Ψ
∂r2

∣∣∣
t=tc

> =

[1 0], r1(tc) = ε < r2(tc),

[0 1], r2(tc) = ε < r1(tc).
(29)

At r1(tc) = r2(tc) = ε, the partial derivatives are undefined. Using Pontryagin’s minimum principle,

∂H

∂θE
= 0, (30)

the following result is obtained,

λ1

[
−v sin(θE − ϕ10) + u sin(θ1 − ϕ10)

∂θ1

∂θE

]
+ λ2

[
−v sin(θE − ϕ20) + u sin(θ2 − ϕ20)

∂θ2

∂θE

]
= 0, (31)

where from (20) and (21),

∂θ1

∂θE
=
v cos(θE − ϕ10)

u cos(θ1 − ϕ10)
, cos(θ1 − ϕ10) 6= 0, (32)

∂θ2

∂θE
=
v cos(θE − ϕ20)

u cos(θ2 − ϕ20)
, cos(θ2 − ϕ20) 6= 0. (33)

Since λ1, λ2 are constants, θ1, θ2 and their partials from (32), (33) are dependent only on θE, we can
conclude from (31) that the optimal heading of the evader θE is constant in time, and hence the headings of
the pursuers are constant as well.

Proposition IV.1. Consider the optimal control problem expressed using the equations (17)-(24). If the
farther pursuer (P2) initially lies inside the non-degenerate region, then the optimal control strategy of the
evader involves simultaneous capture.
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Proof. First, consider the case when r1(tc) = ε < r2(tc), i.e, only P1 captures the evader at the final time.
In this case, λ2(tc) = 0, which implies c2 = 0. From (25), (28), and (31), we have that

−1 + c1 [v cos(θE − ϕ10)− u cos(θ1 − ϕ10)] = 0, (34)

c1

[
−v sin(θE − ϕ10) + u sin(θ1 − ϕ10)

∂θ1

∂θE

]
= 0, (35)

and c1 cannot be equal to zero as it will lead to a contradiction in (34). Therefore,

−v sin(θE − ϕ10) + u sin(θ1 − ϕ10)
∂θ1

∂θE
= 0. (36)

From (32), sin(θ1 − ϕ10) cos(θE − ϕ10)− sin(θE − ϕ10) cos(θ1 − ϕ10) = 0, which implies

sin(θE − θ1) = 0. (37)

Further analysis leads to the result
θ∗E = ϕ10, (38)

i.e, the optimal strategy is a pure evasion from P1. This is the solution for a degenerate case of the problem.
It has been proven that in the non-degenerate case with this strategy, P2 will capture the evader prior to
P1, leading to a contradiction. Similarly, the strategy for the instance when r2(tc) = ε < r1(tc) turns out
to be a pure evasion from P2. But since P1 is closer to the evader, it lies inside the circle of equal time-to-
capture corresponding to P2, and therefore P1 reaches the evader before P2, again leading to a contradiction.
Hence, the optimal evading strategy in a non-degenerate case should involve r1(tc) = r2(tc) = ε namely,
simultaneous capture.

P1

P2

E θΕ

θ1

θ2

Q

Apollonius circle of (E, P2)

Apollonius circle of (E, P1)

*

*

*

Figure 3. A schematic of finding the optimal heading of the evader using Apollonius circles.

Since the optimal heading θ∗E is constant, and involves a simultaneous capture in the non-degenerate
case, an easy way to obtain the heading is to use the well-known Apollonius circles [1], see Figure 3. The
Apollonius circles of the pairs (E, P1) and (E, P2) at the initial time can be constructed from the players’
initial positions. If the problem is non-degenerate, then there always exist two intersection points. During
optimal play, the evader should head towards one of the intersection points, namely, the one that is farther
away. If both the points are equidistant, then the evader can choose either point. This completes the analysis
on the optimal evading strategy for Scenario 1.
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IV.B. Scenario 2

In this scenario, the problem can be examined in the three-dimensional state-space that makes the analysis
simpler. A schematic of the geometry of the proposed pursuit-evasion problem is shown in Figure 2(b). First,
we translate the problem into a rotating/non-inertial frame with the origin fixed on the evader (E) and with
the x-axis along the line joining P1 and E. The velocity vector of P1 is along the x-axis, as it follows a pure
pursuit strategy. In this frame P1 is restricted to move only along the x-axis. The positions of the players
expressed in polar coordinates are given by p1 = (r1, π), p2 = (r2, ψ), and pE = (0, 0), −π < ψ ≤ π. Since
the pursuers follow a pure pursuit strategy, their headings are along their corresponding LoS directions, i.e.,
θ1 = ϕ1, θ2 = ϕ2, see Figure 2(b). The angle between the velocity vectors of P1 and E is θ = θE − ϕ1. The
rotation rate of the non-inertial frame is given by

ϕ̇1 =
v sin θ

‖pE − p1‖
=
v sin θ

r1
. (39)

In the reduced state-space, the number of states is just three, and the corresponding equations of motion
are given by

ṙ1 = −u+ v cos θ, (40)

ṙ2 = −u− v cos(ψ − θ), (41)

ψ̇ =
v

r2
sin(ψ − θ)− v

r1
sin θ. (42)

The initial conditions for the states can be computed as follows

r1(0) = ‖pE(0)− p1(0)‖, (43)

r2(0) = ‖pE(0)− p2(0)‖, (44)

ψ(0) = π − ϕ10 + ϕ20, (45)

where ϕ10 and ϕ20 are now the initial headings of P1 and P2, respectively, which can be obtained from the
initial positions of the players. The terminal condition remains the same as

Ψ(r1(tc), r2(tc)) = min{r1(tc), r2(tc)} − ε = 0. (46)

The problem statement is then to find the optimal control θ∗(t) that maximizes capture time tc given
the equations of motion (40)-(42), the initial conditions (43)-(45), and the terminal condition (46). It is
assumed that the initial conditions are such that the problem is non-degenerate for the given speeds of the
players. Otherwise, the pursuit strategy for the evader is pure evasion from pursuer P1.

The problem can be solved using the framework of optimal control theory by considering the payoff
function

min
θ
J (θ) = −

∫ tc

0

dt. (47)

The Hamiltonian can then be written as

H = −1 + λ1ṙ1 + λ2ṙ2 + λ3ψ̇

= −1 + λ1(−u+ v cos θ) + λ2[−u− v cos(ψ − θ)] + λ3[
v

r2
sin(ψ − θ)− v

r1
sin θ], (48)

where λ1, λ2, and λ3 are the co-states. The corresponding adjoint equations are given by

λ̇1 = −∂H
∂r1

= −λ3v sin θ

r2
1

, (49)

λ̇2 = −∂H
∂r2

=
λ3v sin(ψ − θ)

r2
2

, (50)

λ̇3 = −∂H
∂ψ

= −λ2v sin(ψ − θ)− λ3v cos(ψ − θ)
r2

. (51)
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Since ψ(tc) is not specified and is free, the transversality conditions are given by

λ1(tc) = ν
∂Ψ

∂r1

∣∣∣
t=tc

, (52)

λ2(tc) = ν
∂Ψ

∂r2

∣∣∣
t=tc

, (53)

λ3(tc) = 0, (54)

H(tc) = 0, (55)

where ν ∈ R. Since the Hamiltonian has no explicit dependency on time,

H(t) = 0, t ∈ [0, tc]. (56)

Note that since the terminal condition is the same as in (24), its derivatives are implicit from (29). From,

∂H

∂θ
= 0, (57)

the following expression can be derived

−λ1v sin θ − λ2v sin(ψ − θ)− λ3

[
v

r2
cos(ψ − θ) +

v

r1
cos θ

]
= 0. (58)

Proposition IV.2. Consider the optimal control problem expressed using the equations (40)-(47). If the
farther pursuer (P2) initially lies inside the non-degenerate region, then the optimal control strategy of the
evader involves simultaneous capture.

Proof. Consider the case when r1(tc) = ε < r2(tc). This implies λ1(tc) = ν, and λ2(tc) = 0. Note that the
adjoint equations are linear in the co-states λ2, λ3, and since λ2(tc) = λ2(tc) = 0, the co-states are constant
in time, i.e., λ1(t) = ν, λ2(t) = 0, λ3(t) = 0. From (48), (56), (58), it follows that

−1 + ν(−u+ v cos θ) = 0, (59)

νv sin θ = 0. (60)

Since ν = 0 leads to a contradiction in (59), sin θ = 0, and thus

θ∗(t) = 0, (61)

which means that the optimal strategy is pure evasion from P1. However, this is true only when the problem
is degenerate. In a non-degenerate case, it will lead to early capture by P2. In the second instance, when
r2(tc) = ε < r1(tc), λ1(tc) = 0, λ2(tc) = ν. Furthermore, from (48), (56), (58), at t = tc.

−1 + ν(−u− v cos(ψ(tc)− θ(tc))) = 0, (62)

νv sin(ψ(tc)− θ(tc)) = 0. (63)

Since ν 6= 0, it follows that sin(ψ(tc) − θ(tc)) = 0. With this terminal condition, it can be seen that the
co-states are constant and similarly is the optimal heading, which in this case is given by θ∗(t) = π + ψ.
This means that the optimal evading strategy is a pure evasion from P2. However, this strategy is infeasible
in the non-degenerate case. Hence, the optimal evading strategy in a non-degenerate case should involve
r1(tc) = r2(tc) = ε i.e., simultaneous capture.

Proposition IV.3. Consider the optimal control problem expressed using the equations (40)-(47). The
optimal control strategy of the evader can be summarized as follows:

tan θ∗ =



0, r2 ≥
p

1− e cosψ
,

Θ(r1, r2, ψ, λ1, λ2, λ3), r1 < r2 <
p

1− e cosψ
,

tan

(
ψ + π

2

)
, r1 = r2, ψ ≤ 0,

tan

(
ψ − π

2

)
, r1 = r2, ψ ≥ 0,

(64)
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where

Θ(r1, r2, ψ, λ1, λ2, λ3) = −λ2 sinψ + (λ3/r1) + (λ3 cosψ/r2)

λ1 − λ2 cosψ + (λ3 sinψ/r2)
, (65)

e = v/u is the eccentricity, and p = r1(1 + v/u) is the semi-latus rectum of the ellipse E in (11).

Proof. The regions of degeneracy and non-degeneracy, bounded by E , given the distance r1 (between P1 and
E), can be expressed using the pair (r2, ψ). The size of the ellipse, having semi-major axis a = r1/(1− v/u)
grows with the distance between P1 and the evader, and also with the speed ratio v/u. For a given r1, P2

(its position is expressed using the pair (r2, ψ), r2 ≥ r1), is in the non-degenerate region if it is inside E and
vice-versa. In this regard, from the properties of the ellipse, it can be noticed that if

r2 <
p

1− e cosψ
, (66)

then P2 is inside E , i.e, the non-degenerate region, and if

r2 ≥
p

1− e cosψ
, (67)

then P2 is in the degenerate region. As discussed earlier, the optimal strategy is a pure evasion from P1, if
the problem is degenerate.

There is a special case where both pursuers are equidistant to the evader when the problem is non-
degenerate. In this case, the optimal strategy for the evader is to move along the perpendicular bisector and
away form the line joining the two pursuers. When ψ = 0, the problem is symmetric and the evader has two
choices, θ∗ = π/2 or − π/2. Thus, the optimal control for the case r1 = r2 can be summarized as

θ∗ =


ψ + π

2
, r1 = r2, ψ ≤ 0,

ψ − π
2

, r1 = r2, ψ ≥ 0.
(68)

When the problem is non-degenerate and the evader is not equidistant with respect to P1 and P2 (r1 6= r2),
it follows from (58) that

tan θ∗ = −λ2 sinψ + (λ3/r1) + (λ3 cosψ/r2)

λ1 − λ2 cosψ + (λ3 sinψ/r2)
. (69)

This completes the proof.

The optimal control problem for Scenario 2 can be solved using the above analysis and a numerical
solver. A closed-form solution to the equations of optimality subject to arbitrary initial conditions is at this
point intractable. Section V presents some simulation results for both scenarios. In the next subsection,
a suboptimal strategy for Scenario 2, that is easy to implement in practice, is discussed. This suboptimal
strategy of the evader is based on geometric arguments and interpretations obtained from the above analysis.

IV.C. A Suboptimal Strategy for Scenario 2

The optimal strategy for Scenario 2 can be intuitively understood as one where the evader chooses its heading
so that it does not favor any one of the two pursuers, and which finally results in simultaneous capture. With
this motivation, a suboptimal strategy is constructed and its performance is compared with the optimal one.
Given that each pursuer follows a pure pursuit strategy, the capture time for a non-maneuvering evader
(constant heading) is given by

tf =
ro(u+ v cos θ)

u2 − v2
, v 6= 0, (70)

where ro is the initial distance between the pursuer and the evader, and θ is the evader’s heading measured
with respect to the line-of-sight from the pursuer to the evader [13]. For a non-degenerate problem, the
evader’s heading for which both P1 and P2 take equal time to reach the evader can be found from their
initial positions using the expression

r1(0)(u+ v cos θ) = r2(0)(u+ v cos(ψ − θ)). (71)
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In general, equation (71) has two solutions resulting in simultaneous capture, assuming the evader follows a
constant heading. For the given initial conditions, the solution to (71) that provides maximum capture time
is chosen as the suboptimal strategy. If the problem is degenerate, i.e., P2 is outside the ellipse, then (71)
has no solution.

V. Numerical Simulations

In this section, the aforementioned strategies are demonstrated using simulations performed for both
scenarios. The speeds of the players are chosen to be u = 1, v = 0.6, unless specified otherwise. The radius
of capture is ε = 0.001.

The optimal strategy for Scenario 1 is straightforward. The software package GPOPS-II [15] was used to
simulate the test cases and validate the presented theory. Figure 4(a) presents the trajectories of the players
for the initial conditions, p1 = (0, 0), p2 = (4.464,−2), pE = (1, 0), that makes the problem degenerate.
Clearly, the optimal strategy is a pure evasion from P1, and P2 does not affect the evader’s trajectory.
An example for the non-degenerate case is presented in Figure 4(a) for the initial conditions, p1 = (0, 0),
p2 = (2,−1.732), pE = (1, 0). It can be observed that the optimal evading strategy involves simultaneous
capture with a constant heading.

(a) A degenerate case (b) A non-degenerate case

Figure 4. Trajectories of the players for optimal control inputs in Scenario 1: black - evader, blue - P1, red - P2.

The simulation results for the non-degenerate cases of Scenario 2, obtained using GPOPS-II, can be
seen in Figure 5. Figure 5(a) presents the trajectories of the players for initial conditions p1 = (0, 0),
p2 = (2.732,−1), pE = (1, 0). In the reduced state-space, these positions correspond to r1(0) = 1, r2(0) = 2,
and ψ(0) = −π/6. The optimal capture time is tc = 2.340.

As expected, simultaneous capture is observed in these figures. Also, it can be observed that the constraint
is met only at the final time. This suggests that the evader is approaching the perpendicular bisector just
before it gets captured. The same behavior has been observed in all the simulations that were carried out.
The suboptimal strategy is also compared against the optimal strategy in Figure 5. The (constant) heading
obtained from the suboptimal strategy is θ = 0.6099 (34.94◦) with a capture time of tc = 2.329. Note
that the capture time and the time variation of the constraint are comparable to the corresponding results
obtained using the optimal strategy, see Figure 5(b).

Furthermore, a comparative study was carried out to gauge the performance of the suboptimal strategy.
For this purpose, the following parameters were chosen: r1(0) = 1, u = 1. The speed of the evader v was
varied from 0.3 to 0.7. For each v, 140 different initial conditions (r2(0), ψ(0)) were considered spanning
the non-degenerate area for the chosen r1(0) and u. Table 1 presents the results of this comparative study.
Though the average percentage variation of the time-to-capture increases with the evader’s speed v, the
variation is less than 1% for all the evader speeds considered. The maximum percentage variation is only
2%. It can be observed that the suboptimal strategy is easily implementable and its performance is similar
to the optimal one. Hence, the suboptimal strategy can be considered for all practical purposes.

The elegance of the optimal strategy lies in the empirical observation that the evader is able to choose
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Optimal
Suboptimal

(a) Trajectories

Optimal
Suboptimal

(b) Time variation of the constraint (S)

Figure 5. Performance of the optimal and suboptimal strategies for a non-degenerate case in Scenario 2: black - evader,
blue - P1, red - P2.

Table 1. Comparison table for optimal and suboptimal strategies of Scenario 2

v Average percentage
variation in tc

Maximum
percentage variation

in tc

0.3 0.0337 % 0.4451 %

0.4 0.0727 % 0.7653 %

0.5 0.1277 % 1.2182 %

0.6 0.1704 % 1.6883 %

0.7 0.2343 % 2.2487 %

a control that lets it hit the perpendicular bisector only at the instant of capture (this is true everywhere
except when P1 and P2 are initially equidistant from the evader). In this regard, some trends are observed
and are plotted in Figure 6. The fixed parameters for this set of simulations are r1 = 1, u = 1, v = 0.5. For
a given ψ, r2 varies as 1 ≤ r2 ≤ 3/(2− cosψ), from (66). The corresponding optimal headings of the evader
are plotted for different values of ψ, ψ ∈ (−π, π] in Figure 6. As the initial position of P2 approaches the
ellipse for a given ψ, θ∗ approaches 0, and in the case of r2 = r1 = 1, the heading is along the perpendicular
bisector, in agreement with (64).

VI. Conclusion

We have analyzed the two-pursuer/one-evader problem considering two scenarios that differ in their
information structure. In both scenarios, it is assumed that the pursuers are superior to the evader in terms
of their speed capabilities, and hence capture is guaranteed. Optimal evading strategies that maximize
capture time are derived. In the process, the corresponding regions of non-degeneracy are identified for the
case of identical pursuers. These regions can be used to inspect the potency in employing two pursuers to
capture the evader. If the problem is degenerate, then optimal evading strategy is pure evasion from the closer
pursuer, and the second pursuer is a mere spectator and cannot affect the outcome of the game. However,
if the problem is non-degenerate, then both pursuers should participate in the game to reduce capture time.
In this case it is established that the optimal evading strategy entails one that leads to simultaneous capture.
Since obtaining a closed-form solution for the second scenario is intractable, an efficient sub-optimal strategy
is proposed and is compared with its optimal counterpart.

13 of 15

American Institute of Aeronautics and Astronautics



| | = 0
| | = /6
| | = /3
| | = /2
| | = 2 /3
| | = 

Figure 6. Optimal control trends in Scenario 2: r1 = 1, u = 1, v = 0.5. ψ ≥ 0 in the shaded region and ψ ≤ 0 in the
unshaded part.
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