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Abstract

The paper continues the development of the rigorous supersymmetric transfer matrix
approach to the random band matrices started in [19], [20]. We consider random Hermitian
block band matrices consisting of W x W random Gaussian blocks (parametrized by j,k €
A = [1,n]? N Z%) with a fixed entry’s variance Jig = 6 W™+ BA; ;W2 B > 0 in
each block. Taking the limit W — oo with fixed n and 3, we derive the sigma-model
approximation of the second correlation function similar to Efetov’s one. Then, considering
the limit 8, n — oo, we prove that in the dimension d = 1 the behaviour of the sigma-model
approximation in the bulk of the spectrum, as 5 > n, is determined by the classical Wigner
— Dyson statistics.

1 Introduction

Random band matrices (RBM) represent quantum systems on a large box in Z¢ with random
quantum transition amplitudes effective up to distances of order W, which is called a bandwidth.
They are natural intermediate models to study eigenvalue statistics and quantum propagation
in disordered systems as they interpolate between Wigner matrices and random Schrédinger op-
erators: Wigner matrix ensembles represent mean-field models without spatial structure, where
the quantum transition rates between any two sites are i.i.d. random variables; in contrast, ran-
dom Schrédinger operator has only a random diagonal potential in addition to the deterministic
Laplacian on a box in Z%.

The density of states p of a general class of RBM with W > 1 is given by the well-known
Wigner semicircle law (see [3, [16]):

p(E) = (2m)"'WV4—-FE?, FEe[-22. (1.1)

The main feature of RBM is that they can be used to model the celebrated Anderson metal-
insulator phase transition in d > 3. Moreover, the crossover for RBM can be investigated even
in d = 1 by varying the bandwidth W.

More precisely, the key physical parameter of RBM is the localization length £, which
describes the length scale of the eigenvector ¢)(FE) corresponding to the energy F € (—2,2). The
system is called delocalized if for all £ in the bulk of spectrum £, is comparable with the system
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size, ¢y, ~ n, and it is called localized otherwise. Delocalized systems correspond to electric
conductors, and localized systems are insulators.

In the case of 1d RBM there is a fundamental conjecture stating that for every eigenfunction
¥(E) in the bulk of the spectrum ¢, is of order W? (see [5, [14]). In d = 2, the localization length
is expected to be exponentially large in W, in d > 3 it is expected to be macroscopic, £y ~ n,
i.e. system is delocalized (for more details on these conjectures see [24]).

The questions of the localization length are closely related to the universality conjecture
of the bulk local regime of the random matrix theory. The bulk local regime deals with the
behaviour of eigenvalues of N x N random matrices on the intervals whose length is of the order
O(N~1). According to the Wigner — Dyson universality conjecture, this local behaviour does
not depend on the matrix probability law (ensemble) and is determined only by the symmetry
type of matrices (real symmetric, Hermitian, or quaternion real in the case of real eigenvalues
and orthogonal, unitary or symplectic in the case of eigenvalues on the unit circle). In terms of
eigenvalue statistics the conjecture about the localization length of RBM in d = 1 means that
1d RBM in the bulk of the spectrum changes the spectral local behaviour of random operator
type with Poisson local eigenvalue statistics (for W < v/N) to the local spectral behaviour of
the GUE/GOE type (for W > v/N).

The conjecture supported by physical derivation due to Fyodorov and Mirlin (see [14]) based
on supersymmetric formalism, and also by the so-called Thouless scaling. However, there are
only a few partial results on the mathematical level of rigour. At the present time only some
upper and lower bounds for £, for the general class of 1d RBM are proved rigorously. It is known
from the paper [I8] that £, < W®. Recently this bound was improved in [I7] to W’. On the
other side, for the general Wigner matrices (i.e. W = n) the bulk universality has been proved
in [12] 25], which gives £, > W. By a development of the Erdés-Yau approach, there were also
obtained some other results, where the localization length is controlled in a rather weak sense,
i.e. the estimates hold for “most” eigenfunctions v only: £y > W7/6 in [10] and £y > W5/4 in
[11]. GUE/GOE gap distributions for W ~ n was proved recently in [4].

The study of the decay of eigenfunctions is closely related to properties of the Green function
(H — E —ie)~! with a small . For instance, if (H — E —ie); (without expectation) is bounded
for all ¢ and some E € (—2,2), then the normalized eigenvector 1(FE) of H is delocalized on
scale e~! in a sense that

max :(E)? < e,

~y

and so 1 is supported on at least ! sites. In particular, if (H — E — ie)fl can be controlled

i
down to the scale e ~ 1/N, then the system is in the complete delocalized regime. Moreover, in
view of the bound

E{|(H - E — z’g)j—kly?} ~ O e lli=kl/e

which is supposed to be valid for localized regime, the problem of localization/delocalization
reduces to controlling
E{|(H — E —ie);, |*}

for e ~ 1/N. As will be shown below, similar estimates of E{|Tr (H — E —ig)!|?} for e ~ N1
are required to work with the correlation functions of RBM.

Despite many attempts, such control has not been achieved so far. The standard approaches
of [12] and [11] do not seem to work for ¢ < W1, and so cannot give an information about the
strong form of delocalization (i.e. for all eigenfunctions). Classical moment methods, even with
a delicate renormalization approach [23], could not break the barrier ¢ ~ W~! either.



Another method, which allows to work with random operators with non-trivial spatial struc-
tures, is supersymmetry techniques (SUSY) based on the representation of the determinant as
an integral over the Grassmann variables. Combining this representation with the representa-
tion of the inverse determinant as an integral over the Gaussian complex field, SUSY allows to
obtain an integral representation for the main spectral characteristics (such as density of states,
second correlation functions, or the average of an elements of the resolvent) as the averages of
certain observables in some SUSY statistical mechanics models containing both complex and
Grassmann variables (so-called dual representation in terms of SUSY). For instance, according
to the properties of the Stieljes transform, the second correlation function Rs defined by the
equality

E{ Z e(Ajis )‘jz)} = / (A1, A2) Ra(A1, A2)dA1dAz, (1.2)
J1752 R
where {);} are eigenvalues of a random matrix, the function ¢ : R — C is bounded, continuous
and symmetric in its arguments, and the summation is over all pairs of distinct integers ji, jo €
{1,..., N}, can be rewritten as follows

RQ()\l, )\2) =(7TN)_2 liH(l)E{% Tr (H — /\1 — ’L'E)_lg Tr (H — /\2 — ’iE)_l} (1.3)
e—>
:@MNY%ME{@HH—AV4@4—THH—ArHQA)
e—0
x(B«H—Az—mrl—ﬂmH—Am+mrﬂ},

and since

a2 {det(H—zl)det(H—ZQ))}

E{Tr (H —z1) " "Tr (H — 22) "'} =
(T (=207 (= 20)™) = e St

o (1.4)
=z

R5 can be represented as a sum of derivatives of the expectation of the ratio of four determinants,
which we will call the generalized correlation function.

The derivation of SUSY integral representation is basically an algebraic step, and usually can
be done by the standard algebraic manipulations. SUSY is widely used in the physics literature,
but the rigorous analysis of the obtained integral representation is a real mathematical chal-
lenge. Usually it is quite difficult, and it requires a powerful analytic and statistical mechanics
techniques, such as a saddle point analysis, transfer operators, cluster expansions, renormaliza-
tion group methods, etc. However, it can be done rigorously for some special class of RBM.
For instance, by using SUSY the detailed information about the averaged density of states of a
special case of Gaussian RBM in dimension 3 including local semicircle low at arbitrary short
scales and smoothness in energy (in the limit of infinite volume and fixed large band width W)
was obtained in [7]. The techniques of that paper were used in [6] to obtain the same result in
2d. A similar result in 1d was obtained by the SUSY transfer matrix approach in [19]. More-
over, by applying the SUSY approach in [21], [20] the crossover in this model (in 1d) was proved
for the correlation functions of characteristic polynomials. In addition, the rigorous application
of SUSY to the Gaussian RBM which has the special block-band structure was developed in
[22], where the universality of the bulk local regime for W ~ n was proved. The block band
matrices are the special class of Wegner’s orbital models (see [27]), i.e. Hermitian matrices Hy
with complex zero-mean random Gaussian entries Hjj g, where j,k € A = [1, n]d N z¢ (they
parameterize the lattice sites) and a,,y = 1,..., W (they parameterize the orbitals on each site),
such that

<Hj1k170¢171 Hj2k2,04272> = Oj1ka 5j27€1 6011’72 671042 Jj1k1 (1'5)



with
J=1/W + BA/W, (1.6)

where W > 1 and A is the discrete Laplacian on A. The probability law of Hy can be written
in the form

w
P dH _ _1 |ijao‘7|2 d
N(dHy) = exp{ — 5 >y — pdHy. (1.7)
jkeN ay=1 ik

Combining the approach of [22] with Green’s function comparison strategy the delocalization
(in a strong sense) for W > n%7 has been proved in [I] for the block band matrices with
rather general non-Gaussian element’s distribution.

As it was mentioned above, the main advantage of SUSY techniques is that the main spectral
characteristics of the model - such as a density of states, Ry, E{|G,(E +ic)|*}, etc.
can be expressed via SUSY as the averages of certain observables in nearest-neighbour statistical
mechanics models on A. This in particular in 1d case allows to combine the SUSY techniques
with a transfer matrix approach. The supersymmetric transfer matrix formalism in this context
was first suggested by Efetov (see [9]) and on a heuristic level it was adapted specifically for
RBM in [I5] (see also references therein), although its rigorous application to the main spectral
characteristics is quite difficult due to the complicated structure and non self-adjointness of the
corresponding transfer operator. The rigorous application of this method to the density of states
and correlation function of characteristic polynomials was done in [19], [20]. In this paper we
make the next step in the developing of this approach and apply the technique to the so-called
sigma-model approximation, which is often used by physicists to study complicated statistical
mechanics systems. In such approximation spins take values in some symmetric space (%1 for
Ising model, S' for the rotator, S? for the classical Heisenberg model, etc.). It is expected
that sigma models have all the qualitative physics of more complicated models with the same
symmetry (for more detailes see, e.g., [24]). The sigma-model approximation for RBM was
introduced by Efetov (see [9]), and the spins there are 4 x 4 matrices with both complex and
Grassmann entries (this approximation was studied in [I4], [I5]). Let us mention also that the
average conductance for 1d Efetov’s sigma-model for RBM was computed in [§]. The aim of this
paper is to derive the sigma-model approximation for the second correlation function for RBM
and then analyse it rigorously in the dimension one by the transfer matrix formalism.

The mechanism of the crossover for the sigma-model is essentially the same as for the corre-
lation functions of characteristic polynomials (see [20]). It is based on the fact that the spectral
gap between two largest eigenvalues of the transfer operator is =1 (it corresponds to W2
in [20]). This implies that for n/8 > 1 the n-th degree of the transfer operator converges to
the rank one projection on the eigenvector corresponding to the largest eigenvalue, while for
n/B < 1 the n-th degree of the transfer operator behaves like the multiplication operator. But
the structure of the transfer operator for the sigma-model is more complicated: now it is a
6 x 6 matrix kernel whose entries are kernels depending on two unitary 2 x 2 matrices U, U’ and
two hyperbolic 2 x 2 matrices S, S’. Hence the spectral analysis in the case of sigma-model is
much more involved (see Section . We would like to mentioned that in the case of the second
generalized correlation function of the 1d block band matrices ((L5)-(1.6) with 8 = aW), the
transfer operator becomes 70 x 70 matrix, whose spectral analysis provides serious structural
problems. Thus the analysis of the sigma-model approximation is an important intermediate
step.



Set
21=FE+ic/N +& /Np(E), 20=FE+ic/N+&/Np(E), (1.8)
2 = E+ig/N+&/Np(E), z=E+ig/N+&/Np(E),
where E € (—2,2), ¢ > 0, p(F) is defined in , and &1,&,&),&, € [-C,C] C R and define
det HN—Zl)det(HN—fg }7 (19)

(
det(Hy — 2;)det(Hy — )
< |
(
for § = (517527511755)'

1)det(
et(Hy — z1)det(Hy — 29
R (F =E
W”'B( 16:¢) {det Hy — z})det(Hy — 2,
To derive the sigma-model approximation for the model (1.5) — (|1.6), we take 8 in (|1.6) of
order 1/W, i.e. put

Rif (B €) = B

J=1/W +BA/W?%  B>0. (1.10)

The main result states that in the model (1.10) with fixed § and |A|, and with W — oo,
the correlators RW 3 and R Wng of converge to the values given by the sigma-model
approximation. More precisely, we get

Theorem 1.1. Given R;/FVnB of (1 ‘ and , with any dimension d, any fixed 3, |A|,
>0, and & = (&1,&,€,,8,) € C \S§J]<E p(E /2) we have, as W — oo:
O’Ri- PR
+— +— Wng np
RWnB(E757€) - Rn,@ (E7€7§)7 W(E757§) — M<Ea€7§)7 (111)

where R:[;(E,s,f) = CEﬁ/eXp {g ZStr Q;Qj-1 — 2|A\ ZStr QjAgs}dQ,

B = 2rp(E))?B, Uj € U(2), S; € U(1,1) (see notation below),
Cpe= eE(51+€2—§/1—§§)/2P(E),

and Q; are 4 x 4 supermatrices with commuting diagonal and anticommution off-diagonal 2 x 2

blocks
us: 0 (I +2pj75)L 27; Uu; 0
e J 77 J J
@ < 0 st > < 2p; —(I = 2p;7)L 0 55 )" (12
dQ = H de, dQ]’ = (1 - 2nj,1nj,2) dpj,1d7j71 dpj’Qde,Q de de
with

i1 = Pj1Tj1, 142 = P5,2752,
pj = diag{pj1, pjo}, 7; = diag{mj1,pjo}, L = diag{l,—1}

Here p;i, 751, | = 1,2 are anticommuting Grassmann variables,

Str(A g > =TrA—Tr B,
n B

and

A¢e = diag{e — i&1/p(E), —e — ila/p(E), e — i1 /p(E), —¢ — i&/p(E)}.
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Theorem 1.2. Given R;TB of ' ‘ (md 1.10), with any dimension d, any fixed 3, |A|,
>0, and § = (£1,8,81,85) € C* (IS¢] < e p(E)/2) we have, as W — oo:

R;{/—;B(E,E\,g) N eia+(£i+£é*£1752)/p(E)’ (113)
82R++ . Y
G (B €) — —a? () - B, = (B I )2

1¥52

Note that Q? = I for Q; of (1.12) and so the integral in the r.h.s of (1.11)) is a sigma-model
approximation similar to Efetov’s one (see [9]).
The next theorem describes the behaviour of R (E g,&) of the sigma-model (|1 in the

regime n — oo, 3 > Cnlog?n:

Theorem 1.3. If n,3 — oo in such a way that § > Cnlog®n, then for any fived € > 0 and
€= (£1,86,8),6) € C* (IS¢| < e - p(B)/2) we have

’R,TJ;@T —)CEf . e—co(oq—i-ag) (5152(6260&1 — 1)/0&10&2 — (51 + 52)6260&1/09 + 6260&1611/042), (1.14)
where a1 =¢e —i(& — &)/2p(E), as=¢—i(& —&)/2p(E), (1.15)
01 =1i(&§ —&1)/2p(E), 02 =i(&2 —&)/2p(E).
Now Theorems - and ([1.3) — (1.4) imply the main result of the paper:

Theorem 1.4. In the dimension d = 1 the behavior of the sigma-model approximation of the
second order correlation function of , as B> n, in the bulk of the spectrum coincides
with those for the GUE. More precisely, if A = [1,n]NZ and Hy, N = Wn are matrices
with J of , then for any |E| < V2

sin?(m(& —
(Np(E)) 2R, (E + p(él) B+ p(g N) — 11— Wz((fi 653))’ (1.16)

in the limit first W — oo, and then 8,n — 0o, > Cnlog?n.

Remark 1.1. Notice that to prove universality of bulk local regime from the delocalization side
of random block band matrices - without a sigma-model approximation one have to
take J of @, fix B, and prove in the limit W,n — oo, W > n, which is different from
the asymptotic regime considered in the current paper (first W — oo with fized 3, then B> n,
By,m — 00).

The paper is organized as follows. In Section [2 we obtain a convenient SUSY integral
representation for R Wnp and R++ of In Sectionwe prove Theorems and in
Section [ we derive Theorem [1.4] - from T heorems [[:2)and [1:3] in Section [§] we prove Theorem
modulo some auxiliary result proven in Section [6]

Acknowledgement. We are grateful to Yan Fyodorov for his suggestion of this particular
model for the derivation of sigma-model approximation for RBM. TS would like to thank Tom
Spencer for his explanation of the nature of sigma-model approximation and for many fruitful
discussions without that this paper would never have been written.



1.1 Notation

We denote by C, C4, etc. various |A|, 8, W-independent quantities below, which can be different
in different formulas. Integrals without limits denote the integration (or the multiple integration)
over the whole real axis, or over the Grassmann variables.

Moreover,

N =WIA[;

e indices i, j,k vary in A and correspond to the number of the site (or the number of the
block), index [ is always 1 or 2 (this is the field index), and Greek indices «,~y vary from
1 to W and correspond to the position of the element in the block;

e variables ¢ and ® with different indices are complex variables or vectors correspondingly;
if 2; means some variable (vector or matrix) which corresponds to the site j € A, then x
means vector {z;}jca, de = [[dz;, and dz; means the product of the differentials which
correspond to functionally independent coefficients of x;;

e variables ¢, ¥, p, and 7 with different indices are Grassmann variables or vectors or ma-
treces correspondingly; if p; corresponds to the site j € A, then p means vector {p;}jea,
dp = [[dpj;, and dp; means the product of the differentials which correspond the compo-
nents (for vectors) or entries (for matrices) taken into the lexicographic order;

iE+ V4 — E?

° ay = 5 . cx=1+a7? co=V4— E?2=2mp(E); (1.17)
L =diag{l,—1}, Ly =diag{as,a_}; (1.18)
e U(2)=U2)/UQ1) xU(1), U1,1)=U(1,1)/U(1) x U(1), (1.19)

where U(p) is a group of p X p unitary matrices, and U(1,1) is a group of 2 x 2 hyperbolic
matrices S such that S*LS = L;

o Li(E)= {r(iE/2 +/4— E2/2) I € [0, +oo)}; (1.20)

e B=3ap; (1.21)
e Zy=E-I+ic-L/N+&/Np(E), Zo=E-I+ic-L/N+¢&/Np(E), (1.22)
Zr =E-T+ic-I/N+E/Np(E), Zf =E-I+iec-I/N+£&/Np(E), (1.23)
£ =diag{&1, &}, & = diag{¢], &) (1.24)

2 Integral representations

In this section we perform the standard algebraic manipulations to obtain an integral represen-
tation for the determinant ratio RJVQ,;H(E, g, &) of 1D



Proposition 2.1. For any dimension d, the determinant ratio R%B(E,s,g) of can be
written as follows:

det?J - (—1)AIW
m3)IA (W = )W —2)!

1 1 B
X exp{ —5 > IR (DL =5 Y 1)jkﬁXij}
J,keEN j,keEN

Rivns(E:6,6) = )\A| /dXdY'eXp{iZTrYjLZQ} (2.1)

JEA

iZ1 + X;)det"Y;
det?Y;

Y

—1 , -1 det" (
x det{J5' 1y — 6520 + X)) @ (L)} o0 T
JeEA
where {X;}jcn are Hermitian 2 x 2 matrices with standard dX; , {Y;}jen are 2 X 2 positive

Hermitian matrices with dY; of Proposition and Z12 are defined in .
A similar formula is valid for R;{;;ﬁ(E,s,f) with Y; instead of Y;L and ZlJr instead of Z;,

1=1,2 (see (1.29)).
Proof. Introduce complex and Grassmann fields:

O = {djitien, Gj1 = (djun, bji2s - dw), 1=1,2, — complex,

U =A{¢jitien, Yj = Wu e, uw), 1=1,2, — Grassmann.
Using (7.3) — (7.4) (see Appendix) we can write

Riyns(E:€,6) = 7T72W|A|E{ /eXP{i‘I’H?«’i — Hy)Wy — i3 (z5 — Hy)Us}

x exp{i®] (21 — Hy)®1 — i®] (Z2 — HN)<I>2}d<I>d\If}
- /d(bd\l! exp {i(z;q/f\pl 2 ®F ) — i(Z T W, + §2<I>2+<I>2)}

XE{ exp{ - Z > (iéRij’Mxﬁ’M — %ij’mxj_k,av) }},
J<koayy
where 7z, 2] are defined in ,
inmw = Njk,ay £ Mhjryos
Nikay = VitaVily — ina®k2y + Oj1aPkiy — PioaPr2ys
Nijoa = (Vj1aVita = Vjsatjoa + Gj1aPita = djoadi2a)/2-
Averaging over , we get

R%}B(E,E,f) — g 2WIA /d(I)d\I/ exp {z(zi\l}iﬁpl + 21 ®FBy) — i(Z U] Wy +§2¢;®2)}

1 2
X exp { = D2 ik Mjkarlkioa — 5 D Jji njj,aa}'
j7a

J<k ayy

Thus,

R (Eoe,€) = w2V /C@d\p exp {iZTerLZl —I—iZTrf/jLZg}
jeA jea
X exp {} > JpTr (X;L)(XiL) — ! > ST (%L)(?kL)} (2.2)
2 J.keA 2 J.keA
X exp { - ZA ij @jﬂkl@kl(ﬁjl - $k2¢j2) + %2%2(%2%2 - aklgbjl))}v

Jke



where L, Z; o are defined in ([1.18)), (1.22), and

= jhn ¢j+1¢j2> = <<Z5 1051 ¢}L1¢j2)
% = <w2wﬂ whi )0 T ohon oho )

Using the standard Hubbard-Stratonovich transformation, we obtain

(2ﬂ2)|A|det2J-eXP{% > T (XL)(XiL) |
JkEA

_ /exp{ - % S UTYAT XX+ Y TrX; (XjL)}dX, (2.3)

J.keA JEA

where X; are 2 x 2 Hermitian matrices with the standard measure d.Xj;.

Substituting (2.3 to (2.2) and integrating over dW¥ (see ([7.4])), we get

det™2J

R~ (Bye, &) = — v 7
WnB( 7575) (2772(1+W) |A|

/exp ZTrYLZ — - Z T Tr YL)(YkL)} (2.4)
]kEA

1
X eXp{ 3 E (Jfl)jkTI‘Xij} -det M - d® dX
Jj,keA

with M = MM — M®) | where MM and M®) are 2W|A| x 2W|A| matrices with entries

M](clyg,k'yl’ = 0iubay (121 + Xj)wLly, j kel a,y=1,....,W, JI'=1,2,
2
2 _
M](a%,k'yl’ = ijdll/L” Z SOjOtVCPk:'yl/LVV' (25)
v=1
We can rewrite
detM = detM™ -det(l - (M(l))_lM(2)) =: det MM . det (1 - /\/l) (2.6)
with
2
Miarr = T2y + X" > @jarBro Lw. (2.7)

v=1

Note that M = AB, where

Ajocl,kal’ = J]k(lzl + X])l_lll Pjaos ju ke A) Q,y = 17 KRN W7 la l/,O' = 17 2)

Bjsikatr = 0101 Loo Prac- (2.8)
Therefore, using that det(1 — AB) = det(1 — BA), (2.7), and ([2.8)), we get

det<1 - M) - det(l - BA) —. det(l - M), (2.9)
where
) W
Mot ko = Z Biotpov Apav ko = Jik(iZ1 + X;) 3t Z@aa@jaa/Loa (2.10)
P,V a=1

= jk(iZl + Xj)ﬁll(%L)UU



This yields

det(l - M) = det{d;x1s — Jix(iZ1 + X;) 7 @ (GL)}cp (2.11)
= det'J - det{J ;' 14 — 0, (iZ1 + X;) ' ® (f/jL)}jvkeA.
Besides,
detMW) = (—1)MW TT det™ (i2y + X;). (2.12)
JEA

Now substituting (2.5) — (2.7) and (2.9) — (2.12) to (2.4) and applying the bosonization formula
(see Proposition , we obtain ([2.1]).

The formula for R'&,‘;IB (E,e,&) can be obtained by the same way. O

3 Derivation of the sigma-model approximation

3.1 Proof of Theorem [1.1]

Let 8 and |A| be fixed, and W — oo.
Defining |A| x |A| matrix R as

2
1
putting B; = WﬁleL, and shifting iZ; + X; — X, we can rewrite of Proposition as
Rim(Boee)= QY [axaB-detf1 - Pav LR) 1,-64 X' wB,
W\ € 6) = Wy a| ¢ W T L L 7S jken
w N N det" X;det" B;
xexp{ - 3 (Te(B) —iZ2)* + T (X; - i20)*) } 1= (3.1)
jEA jEA J
B 2 2 1 , -
X exp {5 Zk (Tr (Bj — By)? — Tr (X — Xp) ) + 577 Z];Rjk Tr (X; — iZ1)(Xp — zZl)},
~ Js

where
det2.J - W2WHDIA] | ~W|A|Tx Z3 /2
(2m3) A1 (W — 1) (W —2))"

WAIAl .€2W|A|7W\A|TrZ22/2 1
= G (1+o(w™)).

n
WiAl

Change the variables to

Xj = U;XjUj, Xj = diag {:Cj71,l‘j72}, Uj S ﬁ(Q), T;1,T52 € R,
B; = S]-_IBJ'S]', Bj = diag {bj@,bj,g}, Sj € [}(1, 1), bj1€ R+, bjo € R™.

The Jacobian of such a change is

2M (/22N T (i1 — 252)* T[ (b1 — bj2)*.

jEA jeA
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This and (3.1} yield

2 2
i 11 ()1 — 52)7(bj1 — bj2)
RWn,B(E’e’é) QWM‘ deU/dx/]RAXRM db - b2 b2 (3'2)

xdetD(X,B,U,S exp{ WZZ (1) + f( gl))}

JEA I=1
X exp {g > (T (S5 BS; — S5 BySi)? = T (U X,05 - Up XuUi)? ) |
ij’
X exp{ > Ry T (U XU — i20) (U XU — iZl)}

]7

X exp { mp Z (Tr U; XU (ieL + €/p(E)) + Tr ;' B;S; (ie L + é’/p(E))) }

where
det D(X, B,U, ) = det { (1 - %A + WR> VR ea B; } . (3.3)
J .7’
. L1 1
= det {d;(1 - X' @ By) + W( — BA + WR)jk UUL ® Sjs,;l}jkeA,

T 2 T 2 — 2 1
wa — ol (7 /2)2IAl . WIAI(TE Z24+Tr 23) 2= W|A|(2+E2) 'Q(w?w

WAAL . cE(G1+82)/p(B) .
= 23[A 7 21A] ' (1 +O(W )>,
f(x) =2?/2 —iBx —logx — (2 + E%)/4.

The constant in f(z) is chosen in such a way that Rf(a+) = 0. Measures dUj;, dS; in are
the Haar measures over U(2) and U(1,1) correspondingly.
Also it is easy to see that for |E| < V/2 we can deform the contours of integration as

o for 1, xj2 to iE/2 4+ R;
e for b1 to L (E) of (1.20);
o for bjs to L ) of (|1.20] -

To prove Theorem we are going to integrate (3.2]) over the “fast” variables: {x;;}, {b;;}
1=1,2, j € A. The first step is the following lemma:

Lemma 3.1. The integral (-) over {xz;j;},{bj1}, 1 =1,2, j € A can be restricted to the integral
over the W~=(1=%)/2_neighbourhoods (with a small r > 0) of the points

I zj1=a4, xjo=0a_ orzj1 =a_, Tj2=ay, bj1 =ay, bjo=a_ foranyjecA;
II. zj1 =xj2 =a4, bj1 =aq, bjo=a_ for any j € A;
1I1. Tj1 =Tj2=0a_, bj71 = a4, bj72 =a— for any j € A.

Moreover, the contributions of the points II and III are o(1), as W — oo.

11



Proof. The proof of the first part of the lemma is straightforward and based on the fact that
Rf(z) for z =x+iE/2, x € R has two global minimums at z = a4, and for z € £4(F) has one
global minimum at z = a4.

To prove the second part of the lemma, consider the neighbourhood of the point II (the point
III can be treated in a similar way). Change the variables as

Tj1 :a++.i'jL1/\/ W, T2 :a++.fjl2/\/ W, (3 4)
bjn=ar(L+b1/VW), bja=a_(1+0bj2/VW). '
This gives the Jacobian (—1)MW=2IA and also the additional W~ since

Tj1 = Tjo = (Tj1 — Tj2)/VW.

ogether wi 1s gives in front of the integral (3.2]). In addition, expanding f into
Together with Q(VQV)W this gives WA in front of the integral (3.2). In additi ding f int
the series, we get

Flzi) = f +C+53?,l_ 1 @il +O<i§,l) I—1.9 (35
(zj1) = flas) oW ﬁwg/g 2 ) =14 5)
2 b2 b3 b
ajcr Y51 1 05 J:1
Jbi) = Hae) ¥ =57 37 =5y o(53):
CL2_Cf N?Q 1 5?2 [;;lg
Jbia) = Ha) % =537 =5 "y +0(553).
where
et =1+ai®  flay)=—f(a-) €iR. (3.6)

We are going to compute the leading order of the integral over {Z;,;}, {lN)j,l}, 1=1,2,7€A.
To this end, we leave the quadratic part of f (see ) in the exponent, expand everything else
into the series of :Z“j’l/\/W, ijl/\/W around the saddle-point z;; = Ej’l = 0, and compute the
Gaussian integral of each term of this expansion. We are going to prove that all this terms are
o(1).

Indeed, consider the expansion of the diagonal elements of D(X , B ,U,S) of :

dj,ll =1- xj_,llij = (irj7l/a+ — i)jJ)/\/ W + (£j7ll~7j,1/a+ — i’;ﬂai)W + O(Wf?’(lfﬁ)/Z),
deQ =1- .CCj_,llbj’Q =C- — ((i‘jJ/a_i_ - ng)/(l%V W + O(WﬁlJrn), = 1, 2. (37)

If we rewrite the determinant of D(X B, U, S) in a standard way, then each summand has
strictly one element from each row and column. Because of , each element in the rows
(7,11) and (4,21) has at least W12 and so the expansion of det D(X,B’,U, S) starts from
WM. Moreover, to obtain W=l (i.e. non-zero contribution) we must consider the summands
of the determinant expansion that have only diagonal elements d; ;s (since non-diagonal elements
of D(X' ,B,U, S) are O(W 1) or less), and furthermore only the first terms in the expansions

(3.7) and all other function in (3.2). Thus we get

5-1/a+—5-1 i'g/a+—l~)'1 - - )
C- J: g Do (F1 — T + o(1), 3.8
<HA = T = 352)?) () (38)
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where
1 ~2 ~2 2 72 2 72 ~ a1
< . >++ - / ( . ) exp{ -3 ;GA (c+(a¢j,1 +@2,) +ae by + a,c_bm) }dx db.

But it is easy to see that the Gaussian integral in ([3.8) is zero, which completes the proof of the
lemma. O

According to Lemma the main contribution to is given by the neighbourhoods of
the saddle points xj1 = a4, xj2 = a_ or x;1 = a_, xj2 = a4. All such points can be obtained
from each other by rotations of Uj, so we can consider only z;1 = a4, xj2 = a_ for all j € A.
Similarly to the proof of Lemma change variables as

zj1=a+ + T /VW,  mjp=a_+T2/VW,

B 2 3.9
bja = ay(1+bj1/VIV), bj,2 = a(1+b2/VIW). 39
That slightly change the expansions (3.5) and (3.7). We get
72 =3 =4
c_ 2 1 59 Lo
f(zj2) = fla-) + — 9 I/JV 23 st/2 + O<MJ/2)’ (3.10)
dii =1 a1y, — Ta1/0 — bj1 I A AR A O(W-30-972) (3.11)
g, 11 = 19,1 = , .
j VW a3a W
T a_—N- a_§‘725'72—£2
djo =1~ xj_glbjg = ]’2/ T g2 + d aQJW 52 + O(Wﬁg(liﬁ)ﬂ)y
- 7 = 7 =2
Tji/ay —bjo  4Tj1bj2 —Tj, —3(1—k)/2
djnz =1 =} bjo = ey — == = - =+0o(W ),
i, a2 vVW at W
Tjo/a_ — ~]'71 _ a-Tj2bj1 —

J,2 +0 (W73(17n)/2) .

dj721 =1- l’;%bj71 = C_- — QQ_\/W afW
The change 1} gives the Jacobian W 2IAl which together with Qg,? Al gives W2Al in front of
the integral (3.2]). Similarly to the proof of Lemma we are going to compute the leading order
of the integral (3.2)) over {Z;,}, {Bj,l}, l=1,2,j € A, and so we leave the quadratic part of f (see
and (3.10)) in the exponent, expand everything else into the series of jj,l/\/W, Z)j’l/\/W
around the saddle-point Z;; = l;j’l = 0, and compute the Gaussian integral of each term of this
expansion. We are going to prove, that the non-zero contribution is given by the terms having
at least W21l

Lemma 3.2. Formula can be rewritten as

Rivns(Er€,€) = (co/2m) M Cp / dzdp d7 dU dS (3.12)
< exp{ - %(Mz 2)+ WY (200 + W2z b4 (1A )
X exp{ S Tr (U 55 U;_l,;j_lsj_l) (sj—l%jUj - S;jl%j_lUj_l)}
X exp { > <c+nJ 12 + c-njo1 —nj1/coas + ”j,2/00a—> —Beg ) (] + 75?)}
ic N i - _ ) .
X exp {TX\ 3 (Tr USLU; (ieL + €/p(E)) + Tr S LS, (ieL + 5’/p(E))) } +o(1),

jEA
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where

5 = ( P P2/ VW > s ( T Tie/VW ) (3.13)
! pi21/VW  pjaa B Ti2t/VW  Tjo2
nj12 = P4,1274,12, Nnj21 = P4,2174,21,
nj1 = PiNTiIL T2 = P5.227522,
2= (2,11, 2j,22, 23,12, Zj,21) = (Z5,1, T2, 5,1, b51),
and
M= My+ WM (3.14)
(Myz,2) =Y (c+a~;§,1 +e B2y 4 ade bl +a® 0_5?72> (3.15)
JEA
(Mz,2) = =28 (i’j,lfj—l,l + Zjdj-12 — @ bjabjo11 — a2—~j,25j—1,2) (3.16)

+26) (UJQ (Fj0 = j2) (Fjo11 — Fjo1,2) + 8] (a4bj1 — a—bj2)(a4bj—11 — a—@—m))
4 ~ o~ _ o~ _ o~
-2 (Cﬁ(wj,lxj,2 = bj1bj2) = 2(a3’nj 12851052 + a—?’”j,zlxmb',l))-
0
Here ¢ = {(j}jen, ¢ = (11, G225 a4 Cj12, a—Cjo1) with

Cj,ll = —c+ Zgl/p(E) + 2a1u2», Cj,22 =+ lfg/p(E) — 2041’LL2»,
J J

Cj,l? = —c+ ’L&i/p(E) — 2@282-, <j721 =€+ Zfé/p(E) + 204282,
J J

where a2 are defined in . We also denoted

h={hjs}jents=1,2; Ko = {hg,ls}jel\,l,sﬂ,%
hji = 2/co — Beovi — Begui, g +a-njia/a3, hi 1 = nj1/ay,
hjaa = —2/co + Begvi + Begvs g + aynjoar/a?, h gy =nja/a_, (3.17)
hji2 = 2ay /co —2 — 500a+75]2~ - 5Coa+t?+1 —njoay/a—, h?u = —nju,
hj721 = —2a_/co -2+ 5600,_15? + BC()CL_tJQ-_H — nj’ma_/a_i_, h9,21 = —Nnj2,
and

uj = |(Upzl, v = U;U5 el s5=1(Spal, 5 =109 )al-
Proof. Rewriting the determinant in (3.3]) in a standard way, we obtain
det D(X,B,U, S) = Z(—l)‘a‘ H Pis, (%51, %2, b1, b51), (3.18)
G JEIA]

where & is a permutation of {(j,1s)},1,s = 1,2, j € A, &; is its restriction on {(j,1s)}7,_,, (—1)I°!
is a sign of o and Pj5; is an expansion in Z; 1, T2, l~7j71, l;jJ of the product of four elements from
the rows {(j, ls)}lQ’S:1 taken with respect to ;.

Let us prove that for each j € A and any & each term of P;s, (:Ejyl,ijz,l;jvl,l;jyl) of (|3.18]
belongs to one of the three following groups:

i. has a coefficient W2 or lower;
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ii. has a coefficient W—3/2 and at least one of variables Tj1,Tj2, l;j,l, l;jJ of the odd degree;
iii. has a coefficient W~! and at least two variables of Tj1,Tj2, l;jyl, Bﬂ of the odd degree;

Note that each element in the expansion of the coefficients of the rows (j,11) and (j,22)
has a coefficient W—1/2 or lower, and so Pjz,; (Zj1, 0, i’j,lv lN)j,l) has a coefficient W~ or lower.
In addition, if Pjs (%1, %52, bj1,bj1) contains any terms with Ry, (see ), or at least one
off-diagonal elements in (j,12) and (7,21), we get a coefficient W =2 or lower (and so obtain the
group (i)). o

We are left to consider terms with dj12djo1. If Pjs; (Zj1,%j2,b51,bj1) contains two off-
diagonal elements in rows (j,11) and (j,11), we get group (i). One off-diagonal element and
d;j11 (or dj22) gives group (ii) or group (i) (since off-diagonal elements do not depend on Z; 1, Z;2,
l~)j,1, ISM), and it is easy to see from that all the terms in expansion of dj11d;22d; 12d; 21
belongs to groups (i) — (iii).

To get a non-zero contribution, we have to complete the expression Pjs (751, %;,2, l;j71, Ej,l)
by some other terms of the expansion of the exponent of in order to get an even degree
of each variable z;1,Z; 2, ‘6]-71,‘@-,1. But all such a terms have the coefficient W~/2 or lower,
and therefore Lemma yields that the coefficient near each j in terms that gives a non-zero
contribution must be =2 or lower. Since we have a coefficient W24l in after the change
, this means that to get a non-zero contribution each coefficient must be exactly W~2. Note
that the terms of P; 5, (Zj1,%52, l;j,l, ZNJJJ) that can be completed to the monomial with all even
degrees and with a coefficients W2 does not contain any terms with Rji, and any terms of
the expansion dj,, [, 5 = 1,2 of order W—3/2 or lower. They also cannot be completed to the
monomial with all even degrees and with a coefficients W2 by any terms of the exponent of
that has a coefficient lower then W~1/2 for some j. Thus we need to consider the terms
up to the third order in the expansions and , the linear terms of the functions in the
second and the forth exponents of , and the linear terms in —2logb;;, | = 1,2 coming from

-2 _ _—2logb; _
by =e eVl 1 =1,2.

Note that the terms containing icj,lgj,l/W in dj11 (see (3.11)) cannot _contribute to the limit,
since if we complete them to the monomial with even degrees of ;1,b; 1, then it will contain
W~2 and an additional W ~! should come from the line containing dj22. Moreover, the terms

containing i? 1 in dj 11 can give a non-zero contribution only if the resulting monomial contains
2
J
again obtain at least W 3. Thus we can replace m?l by its average via Gaussian measure

(27T/C+)_1/2€_C+5;§71/2, i.e. by ¢;'. The same is true for j2bj2/W and for 5:?72 which could be

replaced by ¢Z!. Similar argument yields that the contribution of the terms with :Eil in the line

only %, since otherwise, taking into account the contribution of the line containing d; 22, we

containing d; 12 and j?,z in the line containing d;2; disappear in the limit W — oo. Thus the
term corresponding to W2Al det D in 1} can be replaced by the term

/dp arexp{B YT (U3 558; — Uapg18i-1 ) (S75U; = 7471051 ) (3.19)
+ Z (c+nj,12 +c-njo — nj,l/COCL_,_ + nj72/00a_>
+ W1/2 Z <(§7]’71/a+ — B]"l)nj’l + (jjg/a, - ~j72)nj72)

— w2 Z (aI_Q (ij,1/a+ - Bj,Q)nj,u +a”? (@-,2/0,_ - Bj71)nj,21>} + O(W_1/2>>
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where pj;, 7, nj 12, nj21, nj1, nj2 are defined in . Here we have used Grassmann variables
{pjists {mjis}, 7 € A, 1,5 = 1,2 to rewrite the determinant with respect to (7.4), have
substituted and left only terms that give the contribution (according to arguments above),
and then have changed p;11 — \/ij,n, Tj11 — \/Wpﬂl. Note also

cha%r =cpay, c_a® =—copa_. (3.20)

Now let us prove that the contribution of the third order in the expansions and (| -
is small. Indeed, the terms P; a; (T1, %52, bj 1 b] 1) that can be completed to the monomlal with
all even degrees and with a coeﬂiments W2 by these cubic terms can be one of two types

1. terms (jjyl/aJr - INJM) ~x-cy - c_, where ¢y, c_ come from the zero terms of dj 12, d;21
(see ) and z is an element of the row (4, 22) and so does not depend on &;1, bj1 (or similar
terms with (Z;2/a— — ~j72));

2. terms of (a?j,l/aJr — Ej,l) (:%jg/a_ — Bﬁz) (aﬁj,l/cu_ — IN)jg) - c_ with :%il or 1332 (or similar
terms with ¢y coming from d;12) ;

But it is easy to see that

-4 4 C”J ! a+c+bj ! o ( 1 1 )
L /(3 3 di;idb;i = - =0,
/ (%,1/( ay)— 1/ )-e L3105 = apey \atcl  atck

and so the contribution of (1) is zero. Similarly the contribution (2) is zero.
Therefore, the contribution of the third order in the expansions (3.5 is small, and using

and also
exp { np Z <Tr U LsUj(ieL + €1/p(E)) + Tr S; ' LiS; (ieL + ég/p(E))) }

=exp{ — E 51 +&+E+8&)/20(E)}

X exp {2Z|CX % (e LU, (ieL + p(‘CE)) +Te Sy (1oL + p(g};)» }

for Ly, L defined in (1.18)), we get (3.12)).
U

Denoting the exponent in the second line of (3.12) by £(z) and taking the Gaussian integral
over dz with z of (3.13)), we get

/ E(2)dz = (2m) 2 M det =12 M (3.21)
R4IA|
exp {%(M‘l(WWhO + W2+ /), WPRO 1+ WA ¢/ |AD) .
It is easy to see from — that
det M = det Mo(1+O(W™1) = (2.2 a2a®)M (1 +0W 1) =M1+ ow1)

with ¢4 of (3.6). Note now that

-1 _ L _
M! (M0+WM) :Mol—WMolMMolJrO(W 2.
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Since M is diagonal and h?’l < is proportional to n;1 or n;2 and ”32',1 = 0, we have
(M;'h° B%) = 0.
Hence, the exponent in the r.h.s. of (3.21)) takes the form
L (MU0, 1+ /M) + (M (h + C/A), 1O
5 (MG R0, h 4G/ M) + (Mg (4 /M), h°)
— (M5 MM RO, h0)> Yo(l)=1) + Ir — Is + o(1).

Then we can rewrite (recall (3.17)) and (3.20))

. AN , TNy
hth=Y ((h;,n +Gar/IADnga | (Ryoe + Giaa/Anj (3.22)
a4 Cy a_c—
(a2t agGaz/[ADnja  (hjor + a—Cj,21/!A|)nj,2>
a%ey a’c_

2 2, .2 9 9 a-nji2 | Mo | Gl — G2
= Z”m(fm) +B(6 + 1 =V — V) + + )

az.co a_co colA|
2 2, 42 2 9 aymnjor  mj12 G2 — Gjot 1
n; —_ t t — vi = v _ ) _ 9 _ 9 ) ) O W
+ E J,2< a_co +ﬂ( i T+ J J+1) a2 co atco colAl +0( );

4 1 1
I3 = P E :nj,lnj,Q - E :nj712nj,1nj,2 - E :nj721nj,1nj,2
0

2 232
B(v} +13) _
+> % (njamjrin +nianj012 + njanji +njanji2) + OW 1. (3.23)
0
Moreover,
* ~ * o~ -1~ -1 ~
exXp {5 Z Tr (Uj ijj — Uj_lpj_lsj_1> <S] TjUj — ijlTj—lUj—l)} (3.24)

B . 5 1. 1. _
= exp {W ZTI" (Uj ijj — Uj_lpj,lSj,1> (S] 1TjUj - Sj_llijlUjfl)} + O(W 1/2),
where
p; = diag{pj11,pj22}, 7 = diag{7j11,7;,22}.

Combining (3.22) — (3.24) we can integrate the main term of (3.21)) with respect to pj 12, 7j 12,

pj21, Tj21 according to ([7.4)). This integration gives

a_n~71 ;.2 n‘71n~72 n~71 a+n~72 n;1mn;2
H(c++ S e 4 T ;><c_+ o s D

2 2 2
P a‘ co a+Co a4 ¢ a_co a co a“ cg
o CoMj2  CoMyi 5 2 ni1o M2 2
=g+ = = ==+ (L+2/cg)njange = ¢gexpy — — -+ —— ¢+ 1+ Zmjanga ),
a_ a4 atcy G_Co c
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which together with (3.22) — (3.24) yields

R+W_7L,B(E £,€) —Co| CEa/dpdeUdSH(

11 CQOnJ 1, 2) exp{ — By (v} + t?)}

X exp {52% (U;ﬁjsj - U;_lﬁj_lsj_1> (sj—l%jUj — 87U 1)}
X eXp { > nia (ﬁ(t§ + 12, — 02 —vl) + WD)}

coxp { Snin (85 + 2 07— 0l) - W))} T o(1),

where we have used
4 —An;:in;o/ck 4
(14 2nj1nja/ch) - e 152/ =1 — 2nj 1njs/cf.

Now changing
Pj11 =2 CopPj 1, Tjil —> C0Tj1,  P4,22 — C0P4,2, T4,22 =7 CopPj,2

with an appropriate change in nj1, nj2, p;, 7;, and recalling (1.21)), we get
Rivns(B.e8) = Cp,e / dpd#dU dS || (1 - znj,mjyz.) eXp{ — By + t?)}
JEA

X exp {BZTI‘ (U*ﬁij — Uik_lij—ISj—1> (Sj_lijj — 5, 5471U; 1)}
X expi > i1 ( B(t5 4+ t5,, —v: —v7y) + (G — Cj,lz)/W))}
02
Yj

{
X eXp{Zn]2< t2 +t]+1 - j+1) — c0(Gj,22 —Cj,21)/’A|)>}
X exp { ZCO (Tr U; LU (ieL + €/p(E)) + Tr S; ' LS; (ieL + é’/p(E))) }

2|A
jEA

which can be rewritten as (1.11). The second relation of (1.11f) follows from the uniform in &

convergence of RWnB(E’ g,&),as W — 0.
[l
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3.2 Proof of Theorem [1.2l

Theorem can be proved in a similar way. First of all we can write an analogue of (3.2)):

zj1 — x52)%(bj1 — bj2)?
Riphs(E.e,€) = Q%M/dVdU/dm/“ d ] (@1 jzfz) b(g“ ji2) (3.25)
R jeA J,173,2

2
X exp 3" (flajo) + f(bio) } -det D(X,B,U,V)
€A o=1

j~k

1
N Ry T (U XU, — iZ0) (U XUy —zZl)}

Jik

X exp { n 3 (ﬁ Uz X;U;(ie - T+ €1 /p(E)) + T Vi BV (ie - T + éz/p(E))) }
JEA

{-w
J
Xexp{gz Tr (V; B;V; — Vi By Vi) — (U”‘X'U'—UﬁXkUk)2>}
{

X exp

\V]

Note that (3.25) has unitary V; instead of hyperbolic S; and e - I instead of ie - L. Then we
deform the contours of integration as

o for z;1, xj2 to iE/2 4+ R;
e for bj1,bj2 to LL(E of-
and prove the following lemma in the same way as Lemma :

Lemma 3.3. The integral over {z;;},{bj1}, | = 1,2, j € A can be restricted to the
integral over the neighbourhood of the points

I zj1=a4, xjo=a_ orxj1 =a_, Tj2=ay, bj1 =0bj2=ay forany j € A;
II. ;1 = xj2 = a4, bj1 =bj2 =ay forany j € A;
1I1. Tj1 =Tj2 =0, bj71 = bjyg =aq for any j € A.

Moreover, the contributions of the points I and II are o(1), as W — oc.

Indeed, the contribution of the point II is small, since after an appropriate change of variables
similar to (3.4) (which gives W~2/A1) the expression
(271 = xj2)* (b1 — bj2)?

gives W2Al and the expansion of det D(X, B, U, V) starts from W—2Al (see (3.11)).

For the pomts I the expression for det D(X, B U V) starts from WA and another WA
comes from (b1 — b]’g) . Therefore similarly to we get that the main Contrlbutlon around
these saddle-points is given by

¢ < I @ia/ar =bja) - (@50 /as —bja) - (b — 51‘,2)2> +o(1), (3.26)
JEA
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where
()= / () exp{ = 53 (cey ey + ades (B, + i2y) bz,
JEA

But it is easy to see that the Gaussian integral in (3.26) is zero.
Thus we are left to compute the contribution of the point III. Doing again an appropriate
change of variables similar to (3.4) , we see that the expression

(zj1 — xj,2)%(bj1 — bj2)?

already gives W22l and hence to obtain a non-zero contribution we have to compute

- - = = 1 - - = = L
/ H(l’j}l - xj,2)2(bj,1 — bj,2)2 exp{ — 5 Z (Cf(l‘%l + —ZE?Q) + CL?'_CJr(b?’l + bj2,2)) }dl’db

JEA JEA
= ((2%)2 . 4(c+c,a+)_2)w

and take only zero terms in the expansions of all other functions in (3.25)). That gives the first
relation of (|1.13). The second relation of (|1.13)) follows from the uniform in £ convergence of
R;FVZB(E,&@ as W — o0. O

4 Proof of Theorem [1.4]
According (1.3), (1.9), (1.11), and (1.13]), to prove Theorem it is sufficient to show that

2

9. . - P
()l lin e (Ri7 (B.e) + REG (Boe.€) (4.1)
_ .2
—RIH(E,e, &) — R (E,e, —1_ sin”(m (&1 — 52))
np (8 8) = Rg | é)) £=¢ (&1 — &2)?
Using we get

: - 0’ ++ o _ dita?
lim B}ngloo 9¢ 08, (Rnﬁ (E,e,8) +R,5 (Eﬂf:f)) oee = 2(B) (4.2)

In addition, R:B_ (E,¢,€) are analytic functions in any of &1, &2, &), & for S, &) > —¢, and they
are uniformly bounded in n, § for &1, &2, &}, &, varying in any compacts satisfying this condition.
Hence, we can replace the order of the derivative and the limiting transition and by (1.14]) obtain

2

. Jrf
i DT, s (B,e, 5)‘

§'=¢

0? _
:mcﬂfe oo (5152(62%‘” — 1)/aras — (61 + 82)e”0 [az + 62”“10‘1/0‘2) s
Computing the derivative, we get
82 1 1— e27ri95
lim ——R > (E,e¢, = — ,
Binsoo OE,DE, P Ee0lo_e = 2®) 02
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where
0. = 2ia1p(E) = 2iep(E) + & — &.
This yields

82 i — 9 (€i7r95 . 6—i7r65)2
61115100 08108, (Rnﬁ (B,&,8) + R (E’€’£)> ¢=¢  p*(E) * 62 ’
and hence
62 4 . 2 4Sin2(7r(£1 — 52))

which combined with (4.2)), and
at +a* +2 = (ay —a_)? = 47%p(E)?,

gives (4.1)), thus Theorem

5 Proof of Theorem 1.3l

Let us note that to prove Theorem it suffices to prove it only for & such that

%51 = %52, §R€1 gte527 513527§£,§é € QCE (5]‘)
Qee ={£:3E> —ce}, (0<e<]).

Indeed, assume that {R:B_(E,E,f)} are uniformly bounded in n, 8 for &, &2, &), &, € Q. Con-

sider {R 2 (E,e,€)} as functions on & with fixed &3,&1, &, such that R = RES. Since these
functions are analytic in QCE, the standard complex analysis argument yields that ( on the
segment & = RN implies ((1.14) for any & € Qe., hence for any &1,& € Q. Then ﬁxmg any
&1,&2, &, we can consider {R:{B_ (E,a,f)} as a sequence of analytic functions on fi. Since, by
the above argument, is valid on the segment & = RNE), the same argument yields that
is valid for any &{,&,. Therefore, it is enough to prove Theorem for real a; > /2,
g > €/2, which means that we take ¢ = p(E) (see the definition (L.15)).

To check that {R:LFB_(E, g,&)} are uniformly bounded in n, 8 for &, &2, &}, &) € Qee, we apply

the Schwartz inequality to R;rv;ﬁ (E,e,€) in the form 1} Then we get

|RWnB(E g, f)‘2 < ‘ang(E £,61)] ’RWnﬁ(E757§2)|
SR (B.e, &) < RS (B.e,&)| [R5 (B, e, &)

where & = (&1,&1,81, ), &2 = (£2,82, 85, &5). Since &1, &2 satisty (5.1] the uniform boundedness
of the r.h.s. follows from the uniform convergence (in &, satlsfymg ) of (1.14) (see Section

5.2).

5.1 Representation of R:L“B_ in the operator form

Now we are going to represent 7'\’,;67 in 1d case in the operator form. Put n = |A|, and set
M@, Q) = FQH(Q,Q)F(Q),
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where

1(Q.Q) = exp { D810 Q@ } (1 — mna) (1~ ninp) (52)
F(Q) = exp{ - %}Lsm QAf,E} = F(U,S) - exp {m Fy(U,S) +ns - Fy(U, S)}
with @, Q' of the form and
F(U,S) =exp{ — %0(041(1 — [U1a]?) + g - |S12%) }, (5.3)
Fi(U,S) = —co(61 — o - |Ur2]* — a2 - |S12]%) /m,

B(U,S) = —co (62 — o - [Ura]* — a2 - |S12]?) /n,
n = p7, n; = pETllv l= 1727

and a1 2,012 defined in . Hence, by
Rb5(E,e,&) =Cpe@—2) /(1 — n1ng) F(QM"H(Q, Q) F(Q)(1 — niny)dQdQ"  (5.4)

with
dQ = dpldTldpnggdUdS.

Note that M, H, F can be considered as operators acting on the space of polynomials of
Grassmann variables pj, 7/, | = 1,2 with coefficients from Lo(U) ® L2(S), where Ly are taken
with respect to the Haar measures on U(2), U(1,1). It is easy to see these that operators
transform any even Grassmann polynomial into an even polynomial and an odd one into an
odd one. In addition, they preserve the modulo of the difference between the number of p; and
the number of 7;. Since we are going to apply these operators only to even polynomials which
contain equal numbers of p; and 77, we need to study a restriction of M, H, F to the space
Pe = (Lo(U(2)) ® La(U(1,1)))8 of polynomials

7= qo+ qn} + qanb + gnnh + qap) s + g5 Py (5.5)

Thus M is represented by a 6 x 6 matrix Ps — Pg (which we also denote M) of the form
.FH.F‘%, the entries of the matrix H are the integral operators on Lo(U) ® Lo(S) with the

kernels of the form v(U(U’)*, S(S")™1) (the integrals are taken with respect to dU’dS’), and the
entries of the matrix F are operators of multiplication in Ly(U) ® Lo(S). Then (5.4) takes the
form

Ri5 (E,e,€) = Cyeeo@=2) / (MU', S"),3(U, S))edUdSdU"dS", (5.6)
f(U’S) ::f'(l_nan)v g(Uv‘S) ::]:'(1_”177&)7
where by (-, ) we mean the ”scalar” product in Ps which gives the coefficient in front of njng
in the product of two polynomials of the form ([5.5)).
5.2 Proof of Theorem for ay,ay > ¢/2

As it was mentioned in the beginning of Section 5, it suffices to prove Theorem for real
ay, o > e/2.
The proof of 1} is based on the following representation of RIE (E,e,§).
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Proposition 5.1. For any { such that ay, ag > /2 (see (1.15)) we have

Cg 8660(a1—a2) U
Ry (B,e,€) = sz{ N G(2)f,9)dz, wa={z:]z|=14+4/n},  (5.7)
wA
G(z)=(M—2)"", M=FKF, K=Ey+0(8"), (5.8)

where operators IA(O, F and the vectors ]?, g have the form

Kys K1 Ky f:(:a 1 i B 1 F
I?O _ 0 KUS 0 {(:2 1:_1\ _F 0 1 0 F2 (59)
0 0 Kpys K |’ o0 1 B
0 0 0 Kysg 0O 0 O 1

f=Flea—e), §=F"(er—eq)
with F' and Fy o being the operator on Lo(U) ® Lo(S) of multiplication by the functions F and
Fi 2 defined in , Kys = Ky ® Kg and Ky and Kg being the integral operators in Lo(U)
and Lo(S) with a "difference” kernels
Ky(U,U') = Kp(U(U')") = fe VWD sel,
Ks(5,5") = Ks(S(8) ™) = e A5 nal,

Here f(p, p =1,2,3 are normal operators on La(U) @ La(S), they commute with Kyg and with
the Laplace operators Ay, Ag on the corresponding groups and satisfy the bounds

K| < C(1 - Kys) < —C(Ay + As)/B, (5.10)
where the Laplace operators KU, 35 for the functions depending only on |S12|? and |Uia|? have
the form

~ d dp ~ d dp
Bs() = —ae+ D% @=190P).  Au(e) = —a(l-0)% (=),

We postpone the proof of the proposition to Section@ and now derive ([1.14]) from it. To this
end, set

My=F?, Go=(My—z)",
and consider
AG =G — Gy = —Go(M — My)Go — Go(M — Mo)G(M — Mp)G.
We apply the following lemma, which we will prove later:

Lemma 5.1. For any z € wa (see (5.7)) we have the bounds

I(M — My)Gof|? < C(n/B)%,  |(M — Mo)Gog|? < C(n/B)? (5.11)
(Go(M — Mo)Gof,9)| <nf~Y/|z—1], |G < Clog?n/|z—1].
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The lemma implies that

1 ~ N TS RS T A
‘2,]{ znfl(AGf,g)dz| gcf [(Go(M — Mo)Gof,g)l |dz|
T Sy wA

+C ¢ ||G)| - |(M — Mo)Go(2)f]| - | (M — Mo)Go(2)]| |d=]

wA

< (/)

wA

dz]
o= 1]

< Cnlogn/B — 0,

where we used nlog?n < 3 and

Thus we have proved that (recall (5.9)))
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co(a1—az) N ~ ~ —~
RZB_(E7E’£) = CE’Ee% Znil(GQ(Z) ,9)dz +o(1) = CE7€€Co(a1*a2)(F2n72f’:q\) +o(1)
wa
= Cpe0(@1702) / (4’ Fy — 2)F?"dUdS + o(1).

Performing the integration with respect to dU, dS we obtain (1.14]). O
Proof of Lemma To prove the first inequality of 1} observe that since F is bounded

we have

(M = Mo)Giof|I” = | F(K = VEGof||* < C|[(Ko — DEGo f|1*
Moreover, since [~(a and 1 — Kyg commute with KU, 55, (5.10) implies

(Ko — 1)"(Ko — 1) < CB%(Ay + Ag)?
=||(M — Mo)Gof||? < CA2(Au + As)FGof|? < C'B 2| AuGoF fII? + |AsGoF f%)
<C'g? gem<>i<|r£U<éo>W<ﬁf>u||2 + (|1As(Go)w (FF)u]1?).

It is easy to see that G has the same form as the matrices in {D with zeros below the main
diagonal and

~

(Go)ii = Go = (F2 = 2)"', (Go)az =0, (Go)ia = (Go)zs = —2F1GEF?
(Go)is = (Go)aa = —2FLGEF?,  (Go)us = SFIFRGEF* — AR Fo,GLF?

(recall that here all operators commute with each other). In addition (ﬁf)y, v=1,..,4 are the
linear combinations of the functions (F1)" (F3)"?F? with ;2 = 0,1,2, 0 = 1, 2. Let us estimate
the term which appears after the application of AgF “F PG} to the function F? (the other
terms can be estimated similarly). Rewrite

B2 AgFLFy(F? — 2) 3 F9)?

= o [ d d (z+e)(z+e) edez/n 2
_ 2 (2 el
=08 /0 dac’ dx (2" + x)dsc n? (emax/n — )31
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where ¢; and ¢y correspond to the terms of (5.3), which do not depend on z = |Si2|?, end
a = 2cpaz > 0. Changing & = z/n we get
~ o ©  vd d ~ —3ax )
5 n/o | (e + 1/n)cﬁ(m+c1/n)(x+62/n)w‘

<Cj2n /0°° dj‘ ‘(:E te/n)?  (F+e/n)®  (F+c/n) ‘26_&@

efozi _ Z|3 |efa§3 _ Z|4 |efa:7: _ Z|5

. 00 —6ax ~
SC’ﬂ2n/ & 45 < Cm/B)?, |2l > 1+ Ajn.
0

e — 2]

Here ¢ = max{|ci1], |c2], 1}.
The second and the third inequality in (5.11]) can be obtained similarly.
To obtain the bound for ||G||, we introduce

W, = FRoF, Gy = (W — )"
and prove that
IG1 ]| < Clog?n/|z — 1],
or, equivalently,
IG5l < Clog?n/|z = 1]. (5.12)

Observe that ]\/4\1 have the same form as the matrices in with Kys — FKygF, INQ — L,
where
L, =FKysFF, + F,FKysF + FK,F, (5.13)
Ly =FKysFF + FoFKygF + FKyF
Ly =FK3F + {3 FKygF + FKygFF Fy + F\FKysFFy + P FKygFFy
+ FE\FFy + FFKoF + FKoFFy + FyFK F.
Then the matrix Gy := (ﬁf(gﬁ — 2)~! has zeros at the same places as in and
Grii=G = (FKysF —2)7', Gi1i =G 1= -GLi1G, i=2,3,
G4 = GL1GLyG + GLyGL G — GL3G,

Since the spectrum of F Ky gF belongs to [0, 1], it is evident that

|Gl = |Gl < C/]z —1]. (5.14)
To estimate the non-diagonal entries, we set
G, :=G(2)
z=1+A/n

and prove the bounds
G PR FGY?|| < |GYPFIR PG| < €, ||GVP6?| <C, a=1,2,3,
IGY2Fy FKysFGY?| < Clogn, a=1,2
IGY2 PR FKysFGY?|| < Clog?n, ||GY?FIFKysFFGY?|| < Clog?n
IGY2F2FGY?| < Clog?n, a=1,2.

—~

5.15)
5.16)

—~
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It is easy to see from (5.13)) that GL; 2G, GL1GL2G and GL2GL,G can be represented as a linear

combination of the terms GY/2IIGY/2, where II is some product of the operators whose bounds are
. . . o 1/2 1/2
given in 1) and the first line of 1] or operators similar to them (e.g., Gy’ "FKysFF,G

instead of Gi/QFaFKUSFGl/Q, etc.). For instance,
GFKysFFG =GV . (GV2GY?) - (GYPFKysFFGY?) - (GTV*GY?) . gV,

Therefore ((5.14) and the first line of (5.16)) yield
|GL12G| < Clogn - ||G|| < Clogn/|z — 1|, ||GL1GLyG|| + ||GL1GLyG|| < Clog?n/|z — 1.

To estimate GL3G, we use the bounds from the last two lines of (5.16)), combined with the
inequality (recall that G, and F' are self-adjoint, and F' commutes with F)

|GY2FE \FEGY?| <||GY2FE\FKIFGY?||V2 . |GY* R F RG22 (5.17)
<GP RIE PG|V |G RG22,

The terms in the r.h.s. above can be estimated with the first inequality of (5.15)) and the last
inequality of 1' In the last inequality of 1' we used that since F' < 1 and K; K} < ¢-| K],

GYPFK\FKIFGY? < GYPFK\KIFGY? < - GYPF|K | FGY>.

The expression \|Gi/2Fk2FF1Gi/2]] can be estimated similarly.

Now we are left to show (5.15)) — (5.16)). To prove the first inequality of ([5.15]), we recall first
that for any normal A and B

|B*AB| < |[B*|A|Bl| (5.18)
Indeed, for any normal A we have
|(Az, y)* < (JA|z, 2)(|Aly, ).

and so putting Bz and By instead of x and y we get ([5.18).
Now (|5.18]), the first inequality in ([5.10f), and the bound F' < 1 yield

F|Ko|F < F(1 - Kys)F <1 - FKysF
= |GY2F| K. FGY?)| < |GY*(1 - FKysF)GY?| < C,

since the spectrum of FKygF belongs to [0, 1] and

1-A

- < 1. 5.19
NS T+ A=A (5:19)

Moreover, since GG and G, commute we have

1+A/n—A <c

1/2 —1/22 _ —1) <
G @G =6E6E s | max T S

which gives the second inequality of ([5.15)).
To prove the first inequality (5.16]), take n-independent B > 0 and introduce the projection

II, = 1|S'12|2§Bn10gn'
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From the definition ([5.3)) it is evident that for sufficiently big B we can write
(5.20)

|(1=10,)FF,|| <C max ze ®<C/nd,
xz>B'logn

coaz| S12|* -1y _ “9ay-1
0< ————(1—-F°)"'II,= max z(l—e )" <C(B)logn

- n 0<z<B’logn
=|F, |, < C/n+ C(B)logn(l — F?) < C/n+ C(B)logn(l — FKysF)
with B’ = cpasB. Using the first inequality above, the bound ||G4|| < Cn, and the fact that

FKygF commute with G, we get
GV R, FKysFGY? = GY*F,((1 — 11,) + 11, FKys FGY/?
= 0(n"2) + GY*F,11,GY/*FKygF.

In addition the third line of ([5.20)) and (5.19)) yield
G2 P IL,GY? < O+ C'logn G2 (1 — FKysF)GY? < Clogn.

are similar to the proof of the first one.

The proofs of the other inequalities of (5.16) are )
Thus we obtain (5.12). Since by (5.8) K = Ko+ O(5~1), we have
G =Gi(1+0(871)G1) ™" = Gi(1+ O(log> n(n/B))).

Combined with (5.12)) the relation finishes the proof of Lemma O

6 Proof of Proposition [5.1]
We start with a detailed study of the operator H of (5.2)). Set

U=U,U;, S=255;"
and use two simple formulas, valid for any diagonal 2 x 2 matrices A and B,

Tr AUBU* = Tr AB — ‘U12‘2(A11 - A22)<Bll — BQQ),
Tr ASBS™' = Tr AB + |512’2(A11 — AQQ)(BH — 322).

Using (|1.12)) and changing
~71/2ij [3/ - Bfl/ZpAl (61)

71/27:7 7A_/ N 1671/272/7

in 1' (note that this gives the Jacobian BZ), we get

H = e 7(1 = nina/5) (1 — i}/ 5?)
- exp {(m +ng +nf +nh)d — Tr pUF' S — Tr f'U*#S — (n1 + na)(n) + n'z)w/ﬁ}

d=1—|Upa* + [S12]*, w = |Ura* + |S12]*.
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Writing

TepU' S~ = (p, A7), TrpU*tS = (p/, BT)

Ajj = Uiij_il, Bij = U;;S;i
and using that

(p, AT')? = —2det Apiporiy, (', BT)* = —2det B pyphmiTy,
we obtain
H‘Pﬁ =p32. exp{ — B-w+ (ny 4 ng + ny +nb)d — (ny + no)(ny + né)w/ﬁ} (6.2)
X (1 + (p, AT")(p', BT) + detA - det B 77,177,277,/177,/2) (11— nlng/BQ)(l — n’ln’2/6~2)

Introduce the basis e; = 1, ea = nq1, e3 = no, e4 = NN, €5 = P17, eg = pa71 of Pg. Denote

the space spanned on the first 4 vectors as P4 and represent H in this basis by the block 6 x 6
matrix with 1 corresponding to the projection on P. Then using 1' we obtain

H)  [O2) Ay1Bys ApB hiy h
_ (22) _ bz Ai2biz |\ _ 11 N2
H < H®) g2 >’ H Kus < Ag1Ba1 A By ) ( hai  hoo )’ (6:3)
0 0
H(21) _ 214 x z 0 H(m) _ Y -y
2Ty -z —-x 0 )’ y -y
2yq —2Ya

Here and below h;;,z,y,x4,yq are "difference” operators whose kernels are defined with the
functions

hij =hijuhijs,  hiju = UEKy,  higs = S5 Ks (6.4)
r=xyrs, xy=UnUpKy, xs=>5S1S02Ks, zq=z-d,

y=yoys, yu =UnUwnKy ys=5S11512Ks, yi=y-d,

and Z, 7, Z4, §q mean the complex conjugate kernels. Now let us study the structure of H(1).
Using (6.2) and the relations

det A = det B = d, (Ap,7")(Bp’,T)}P4 = —d(nyn} 4 nanh) + |Uia|?[S12)*(n1 + no)(n} + nb)
we continue to transform H as
H|, = Kys- ednitnztnytny) (1 —w(ni + ng)(ny + nh)/B + 2w2n1n2n'1n'2/ﬁ~2)
x (1= (ning + ninb)/B% + nlngnlln'Q/B4)
x (1= d(niny + nanb) + |Ura|*|S12|*(n1 + n2) (0} + nf) + d*ningninb)
=Kypg - edmtnztnitn) (1 —w(ng 4 ng)(n) +nb)/B — (ning + nink) /3>
— d(niny + nany) + |Uia[*[S1a|* (n1 + n2) (nf + n)
+ (d? + 2uw?/ B2 + 2dw/B +1/5* — 4w]U12]2\Slg|2/5)n1n2n’1n’2).

Pa
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Represent H an — Kys - K and observe that to find the coefficients of K we can represent H
as a polynomials with respect to n1,ng, nf,n} and the coefficients of this polynomials gives the
coefficients of K. In particular,

/N /W /AW 7!
KH ~ NqNg, Kgl ~ N1 Ny, Kgl ~ NN 1Ny, K41 ~ NiNaning,

/ !
Ky ~ ninany, Kyz ~mninany, Kog~ni, Kzg~ng, Ky~ ning,

Evidently these and the other coefficient of K can be found as the respective derivatives, taken
at the point (n1,na,ni,nb) = (0,0,0,0).

Now we return to the proof of Proposition In order to transform (5.6)) to with an
appropriate M and K satisfying — we are going to consider the matrix K after the

transformation

0 00 B
0 010
Ky =TKT, T= 0 100
L0 0 0

It is easy to see that
Kr12 = BKy3, K113 = K42, Kro4 = K31, K134 = 8Ko1, Kr14 = 82 Ku;.

All the rest coefficients K change the places or are multiplied by 1, B_l or even 3_2. Thus,
to obtain representation — , we need to control the elements of K written above. The
following lemma allows to understand the order of the operators, which will appear in the
coefficients of K.

Lemma 6.1. . 3 . )
Kus|Ur2|* = B+ O0((1 — Kus)B™Y),  Kus|Si2]? =57+ 0((1 — Kys)B™"), (6.5)

Kys|Uma|* =282+ O((1 — Kys)B™?), Kuys|Siz|* =287%+O((1 — Kys)B™2),

Kys|Ui2)?S12)* = B2+ O((1 — Kys)B72).

We recall that all operators here are self adjoint and commute with each other, hence the relations
mean the ones for the corresponding eigenvalues.

The proof or the lemma will be given at the end of the proof of Lemma (see the argument
above (6.17))).

Coming back to the coefficients of K, compute first
'K

On10n20n,0nk 1(0,0,0,0)

—AdPwB ™ = 2d2F72 + 2dwB " + 2w B2 — dw|Uss2|S1al?/B + B7Y)

— Kus (d2w2 — 2?32 — deéfl) +O(F3)

:B_QI},, I?,:O(l—KUS).

Kys- K4 = Kys - :KUS(d4—2d3+d2+4d2’U12’2|512|2

Here we have used the relation (which follows from the definition of d and w)

dt — 2d3 + d* 4 4d*|U1 2| S12)* = d*w?,  4d*w — 4dw = 4dw(|S1a|* — |Ura]?),
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and the lemma above.
Similarly

Kys - Ko1 = Kys - K31 = Kys - Kag = Kys - Ku3
= Kyg(d® — d? — 2dw/3 — d/B% + 2d|U12|?|S12]?) = 31K

with N
K =0(1 — Kys).
In addition,
Ki=1+0(BY, i=1,...4,
Kij =087, (i,§) = (2,3) or (3,2).

Observe now that the operator F=F ‘Pe in li after the change 1| in our basis have the

block diagonal form, where a 4 x 4 upper left block has the form TFT, where Fis given by
, and a 2 x 2 bottom left block is I. In addition, f and ¢ are spanned on eg, es, e3, eq and
after the change their restriction on P4 have the form f =BT f , G = p"'Tg. Thus we
are interested in the upper left block GMV of the resolvent G = (]:"H]:" —2)7! and so
yields

CEﬁeCo(al*az)

R (E =
nﬂ( 7875) 27_”

f U TG ()T f,§)dz.
wa
But by the Schur compliment formula
TGW ()T = (ﬁT(H(“) — H2 (gD Z)—lH(zl))Tﬁ _ Z)_17
and so we are left to prove that
M =FT(HMW - gOD(H®) _ )~ 1gCHTE (6.6)

satisfies (5.8) — (5.9).
According to the consideration above, TH (DT has the form 1| — 1) The estimate on

H2)(H®2) _ 2)=1H®Y i5 given in the following lemma
Lemma 6.2. Set G®)(z) := (H®?) — 2)~1. Then for any z : |z2| = 1+ A/n the operator
HI2GP ()HEY has the form

0 0 0 0
12)~@ ey _ | 28 R R 0
e 2Rig R R o |’
4R4q 2R4y1 2R41 O
where
R =yGP¢ + 5697 — 6Pz — 56Q)¢, 6.7)

R14 can be obtained from R, if we replace x with xg4, to obtain R4y, one should replace y with
Yd, to obtain Ryq, one should replace x, y with x4 yq, and the operators x,y, xq,yq are the same

as i .

The operators R, R14, Rq1, Rqq are normal and satisfy the bound

|R| + |Rig| + |Rat| + |Raal < CB7%(1 — Kys) +0(B~®), 1-Kys < C(Ay+Ag)/B (6.8)

30



The lemma gives that indeed satisfies ((5.8) — (5.9), and (5.10)), which finishes the proof
of Proposition

O

Proof of Lemma . Let us prove for R of . For Ry4, R41, R4q the proof is the
same. To simplify notations set

HD Zp =4+ F,

where £ is the diagonal part of H®? and h is its off diagonal part, and denote

It is easy to see that

[UZP/RS /\Ulz\ |S12P Ky KsdUdS < 572, | < 874, [yl < 57 (6.9)

(recall that by 1' hi; = U2S2 Ky Kg). Hence, writing

ij~ g
¢ =a - GPhGY +r, r=aPRGPRGA),
and using the bounds above combined with (6.3), we get
Il < Cn®B~ = HWrHCD| <0370 < 573,

Consider R which has the same form as but with G replaced by G( ). Then the second

two terms become zeros and

~

R=vy(h11 —2) "o+ §i(hos — 2)"'2 = R| + Ry.

Let us study the operator

2P ’

B - Z y( hu i yu(h1v)Pzy) @ (ys(hiis)Prs)
p=0
where yy, h11v, Ty (see ) are integral operators on Lo(U) with the ”difference” kernels of
the form U(UlUQ_I), and yg, hi1s, s are the ”difference” integral operators on Lo(S). Here
Ly(U) and L2(S) denote the subspaces of even functions ¢(U) = ¢(—U) (or ¢(S) = ¢(—=9)).
Since our operators preserve the evenness, it suffices to study only these subspaces. It is known
that
Ly(U) = @2 L0V, LOV = Lin (1O},

mk

where {t%g (U) lm’szl are the coefficients of the irreducible representation of the shift operator

TUﬁ = UU. It follows from the properties of the unitary representation that

DU /57— RO HU
1O @ =100, A o) = S e ().

According to [26], Chapter III,

1 (U) = emime k2P0 (g),
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where

P,Si;g(COS ) = Céik dip(cos(8/2) + isin(0/2)e'?)F (cos(0/2) + isin(0/2)e ) Fetm—Fl¢
s
_(U=m)'l + m)!\1/2 _ cos(6/2)e!0+)/2 jsin(h/2)el( =)/
e ( (L =R+ k) ) C U= isin(0/2)e-i0-92  cos(p/2)e—iorwiz )+ (6:10)

In addition (see [26], Chapter III),

PO 1—z)=1—zl+m)(I+m+1)/2+0(?). (6.11)
It is known also that {t%g (U) lm’k:_l make an orthonormal basis in LY.

For any function v(U) consider the matrix vV = {vq(fl)kU} defined as
v = / vt () au.

It is easy to see that if we consider an integral operator v with the kernel v(U Uy 1), then for
any p(U) € LOU

@) = [ vy )X st (O = @ VS nith @ )

nHU l
= [ @) S sty @O @10 = 3o it (0.

mkj

Hence, denoting II; the orthogonal projection on LU one can see that LWV reduces o and
9OV = 11,511, is uniquely defined by the matrix v(OV. Moreover, for any functions v, and vy it is

evident that v175 is also a ”difference” operator, hence it commutes with IT;, and if the matrices

U U

v, and vy’ correspond to v and Uz, then

(010) Y v%l)Uvél)U.

Let us find the matrices, corresponding to hi1y, yu, zy (see (6.4)) in LWV, Using (6.10) it is
easy to see that

2
@) / UKo ([0 7 (0)du = 3 / sin 06 / dedisin(0/2) cos(0/2)
% =B sin2(9/2))ei({)ezm(b—i-m"bpﬁli,o(cos 0) = 5m’715n70)\(7)1707
where we set

(l)on_ B/ e—Bsin*(0/2) p () (cosH)sm 0do. (6.12)

Hence, denoting F;; the matrix which has only ¢jth entry equal to 1, and all other entries equal
to 0, we get
( W _ g 10 )\(Z)U
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Introduce also the eigenvalues AWV of Kp;. Repeating the argument above, we have
KS)U _ E070)\(I)U’
where, using (6.11)), we obtain
s - - 1 .
AU :ﬁ/o 6_*851“2(6/2)]3(%(008 0) sin 0df = 1 /0 €_B$Péé)(1 —2z)dz (6.13)

=1—1(l+1)/8+0(0"/B).

To find an asymptotic behaviour of )\(l)l%, observe that formulas (6.10) and (6.11]) yield

2i(1+ 1/1)/2sin(6/2) cos(8/2) P! (cos 6)

/0 (cos(0/2) + isin(0/2)e™)! cos(0/2) + isin(6/2)e ") 2i cos psin(0/2) cos(0/2)

2
dg” cos(8/2) + i sin(6/2)e")!(cos(6/2) + isin(6/2)e %)’

0

X ((cos(9/2) + isin(0/2)e™) (cos(8/2) + isin(h/2)e” ) — cos?(/2) + sin2(9/2)>
:PO(SLI)(COS 0) — PO(Z())(COS 0)(1 — 2sin(6/2)).

)

Hence
(14 1/DY20 =AY — 2Oy /2 1 OB = —(14+1)/B+ 02872 + O(F ™)
=N < Co(1 = AOY) /B,

Similarly
y[(Jl)U - E0771)\(,l)1%, h% = Efl,fl)\(,l)f,p

where we set

A =5 / e P50/2) c052(9/2) P, _ | (cos 0) sind0 = XDV + O(31) (6.14)
0

and in the last relation we used (6.11)). Thus, for any p

(o (ha1o)Pa) OV = O RO Ego. (6.15)

The analysis of (ys(hi15)Pxg) is very similar, the difference is that for the hyperbolic group
the irreducible representations are labelled by the continuous parameter I’ = —% +ip, p € R,

tg;]zs = ei(m¢+k¢)3$)k(9), m,k € Z,

and Bi,?k(e) has the form 1} with cos(6/2) replaced by cosh(0/2), isin(6/2) replaced by
sinh(6/2) and ¢, replaced by 1 (see [26], Chapter VI) . Then the same argument yields that

(ys(hiy)Pzs) ") |A DSOS P Eog (6.16)
DS < Co(1 = A8y /5, AT = a5 Lo,
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where )\( )S )\(l/) and A( ) _1, are defined similarly to (6.12)), (6.13)), and (6.14)). Here the

bound for |O( D] < CoB~ 1 is uniform in [. R
This relation combined with (6.15) yields that Ry : LOU @ LU)S — LWV & [0S and the
only non zero eigenvalue of R; in this subspace has the form

’ nu s nu NS \—
AU = |)\(—)1,0|2\)\(—1),0’2(2 - )‘(—)1,—1>‘(—1),—1) !

The bounds (6.15)) and (6.16)) yield for |z| > 1 + 2Co3~"

(1— )\(Z)U) (1= A9
2] = AOVAWMS 1 O(5—1) ~

A < cp? < CAL = ADUNDS|,

Here we have used that for any 0 < a,b < 1
ab < a® 4+ b2 —ab < a® + bv* — a®?,

hence, taking a? =1 — AV 2 =1 — AI)S | we obtain the last inequality for |[A*)],
Note that (6.13) and a similar relation for A()S combined with the facts that

ApLOV = (1 +1) LWV Agr®S = —1/(1' +1)L")3

prove the second inequality in .
Assertions of Lemma can be obtained from the fact that the operators in the l.h.s. of

are tensor products of the ”difference” operators on LQ(U ) and LQ(S). Hence they are
reduced by LOU @ LIS and since the kernels depend on |Uia|? and [S12|?, the corresponding
matrices have the form u(l) W )E()() ® Ego, where p0, v ) _are corresponding eigenvalues. For
example, for the first operator in ) = XS and

T . 5 1 ~
p® :6/ Sin2(9/2)6—5511“2(9/2)P(%(cos 0) sin 6dH = B_l/ J:e_ﬁxPo(é)(l — 2x)dx (6.17)
0 0
=1/ —2l(1 +1)/8% + O(1*/B>).

The first relation of (6.5 follows from the above one combined with the analogue of (6.13)) for
A5 The other relatlons of (6.5)) can be obtained similarly.
To complete the proof of the lemma we are left to consider the part of R which can be

obtained if we replace G?) with G(()Q)iLG((?). For this replacement the first two terms of ll are
zero. Set

R3 = y(h11 — Z)_1h12(h22 — Z)_li'.
Repeating the above argument we obtain that Rj : LOU @ LS 5 OV @ [I)S and the only
non zero eigenvalue A&) of Rs in this subspace has the form

nU l Hu \(
AL SPAGIADS

A QL2
(z — /\—1,—1)‘—1,—1)

where )\(l)U and )\(_1/1)’51* by satisfy the trivial bound

nU
AOIADS ] < kel < B2
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The bound, (6.15)) and (6.16]) yield

L DT[] - 2OV o

X(ll’) <C~—4 _
S S T R

The same bound is valid for
Ry = §(haz — 2) " hor(hi1 — 2) .

These bounds complete the proof of the lemma for R. For Ry4, Rq1, Rqq the proof is the same.
O

7 Appendix

7.1 Grassmann integration

Let us consider two sets of formal variables {1, ;?:1, {E] ;?:1, which satisfy the anticommutation
conditions

Vit + iy = Ok + ity = Yithp + Uy, =0, jk=1,...,n. (7.1)
Note that this definition implies 1/1?- = @]2 = 0. These two sets of variables {1; 7y and {E] i
generate the Grassmann algebra 2. Taking into account that 1/1]2- = 0, we have that all elements

of 2 are polynomials of {¢;}7_; and {Ej};-‘zl of degree at most one in each variable. We can
also define functions of the Grassmann variables. Let x be an element of 2, i.e.

n
X =a+ Y (a4 bid) + Y (ajstbyion + bjathithy + ciath ) + - (7.2)
Jj=1 J#k
For any sufficiently smooth function f we define by f(x) the element of 2 obtained by substi-
tuting x —a in the Taylor series of f at the point a. Since x is a polynomial of {¢;}7_;, {@J Y
of the form , according to there exists such [ that (x —a)’ = 0, and hence the series
terminates after a finite number of terms and so f(x) € 2.
Following Berezin [2], we define the operation of integration with respect to the anticom-
muting variables in a formal way:

/d¢j=/d¢j =0, /ﬂ)jdll}j Z/%’d% =1,

and then extend the definition to the general element of 2 by the linearity. A multiple integral is
defined to be a repeated integral. Assume also that the “differentials” d; and d ), anticommute
with each other and with the variables 1; and 1. Thus, according to the definition, if

k
f(wla cee 7wk) =po + Z p]1wj1 + Z pj1,j2¢j1wj2 + ... +p1,2,...,k¢1 ce wka

Jji=1 J1<j2
then
/f(lﬁl,---,wk)dwk cdr = pro ke
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Let A be an ordinary Hermitian matrix with positive real part. The following Gaussian
integral is well-known

/exp{ - Z Ajkzjék} H d%Z;dSZj = de%cA' (7.3)

j,k=1 J=1

One of the important formulas of the Grassmann variables theory is the analog of this formula
for the Grassmann algebra (see [2]):

/exp{ -y Aj@jwk} [[d¥;dv; = deta, (7.4)
k=1 j=1

where A now is any n x n matrix.
We will also need the following bosonization formula

Proposition 7.1. (see [13] )
Let F' be some function that depends only on combinations

W 2
¢3¢ = { Z (Elad)sa}l a1’
a=1 ’

and set

2 W
d® = [ [ dRe1adSera-

=1 a=1
Assume also that W > 2. Then
F (36) dd . F(B) - det" 2B dB
— .detW—
/ (99) (W—l)!(W—2)!/ (B) - de ’

where B is a 2 X 2 positive Hermitian matriz, and

dB = 1p~0dB11dB22dRB12d3B3.
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