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ABSTRACT: Plasmon hybridization, the electromagnetic
analog of molecular orbital theory, provides a simple and
intuitive method to describe the plasmonic response of
complex nanostructures from the combination of the
responses of their individual constituents. Here, we follow
this approach to investigate the optical properties of
periodic arrays of plasmonic nanoparticles with multi-
particle unit cells. These systems support strong collective
lattice resonances, arising from the coherent multiple
scattering enabled by the lattice periodicity. Due to the
extended nature of these modes, the interaction between
them is very different from that among localized surface
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plasmons supported by individual nanoparticles. This leads to a much richer hybridization scenario, which we exploit here
to design periodic arrays with engineered properties. These include arrays with two-particle unit cells, in which the
interaction between the individual lattice resonances can be canceled or maximized by controlling the relative position of
the particles within the unit cell, as well as arrays whose response can be made either invariant to the polarization of the
incident light or strongly dependent on it. Moreover, we explore systems with three- and four-particle unit cells and show
that they can be designed to support lattice resonances with complex hybridization patterns in which different groups of
particles in the unit cell can be selectively excited. The results of this work serve to advance our understanding of periodic
arrays of nanostructures and provide a methodology to design periodic structures with engineered properties for

applications in nanophotonics.
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etallic nanostructures are well-known to support
surface plasmons, which arise from the coupling of
collective oscillations of their conduction electrons
to external electromagnetic fields." The large near-field and
strong interaction cross sections provided by surface plasmons
make them exceptional tools to manipulate light at the
nanoscale, which has enabled the development of a variety of
applications in areas as diverse as solar energy harvesting,™’
photocatalysis,”* ultrasensitive biosensing,é’7 and nanoscale
light emission.” ™
When two or more metallic nanostructures are placed
together, the near-fields generated by the surface plasmons
supported by each of them result in strong interactions that
completely modify the optical response of the whole system.""
The properties of the resulting collective plasmonic resonances
are entirely determined by the spatial distribution of the
individual nanostructures, in much the same way that the
orbitals of a molecule are governed by the geometrical
arrangement of the atomic orbitals of its constituents.'” This
analogy is the basis of the plasmon hybridization model,"
which allows one to describe, in a simple and intuitive manner,
the plasmonic response of ensembles of nanostructures from
the combination of the plasmons of their individual
components. For example, as sketched in Figure la, when
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two identical nanoparticles are placed in close proximity, their
dipolar plasmons interact, resulting in two new hybrid
resonances, commonly referred to as bonding and antibonding
modes,"*"* with energies dictated by the characteristics of the
interaction. Plasmon hybridization has been used extensively to
describe the plasmonic response of a variety of metallic
16—18 19,20
nanostructures such as nanoshells, nanocrescents, and
> as well as graphene nanostructures with
different geometries.mi27 Moreover, this approach has been
used to understand the Fano resonances™ *° supported by
. 31-34 .
plasmonic metamolecules, to interpret electron energy loss

.o 21
nanocavities,

. 35—38 . 1
experiments, and to design building blocks for meta-
. 40 . . 41,42 .
materials®”*° and nanostructures with nonlinear or chiral
43,44
responses.

Although these examples involve finite ensembles of
nanostructures, plasmon hybridization is expected to describe,
as well, the interaction between extended systems, such as
periodic arrays of nanoparticles. These systems are well-known
to support lattice resonances arising from the coherent multiple
scattering enabled by the periodicity of the structure,****

November 18, 2017
Accepted: January 4, 2018
Published: January 4, 2018

Received:

DOI: 10.1021/acsnano.7b08206
ACS Nano 2018, 12, 1618—1629



ACS Nano

Figure 1. Summary of plasmon hybridization model. (a) Hybrid-
ization diagram for two identical plasmonic nanoparticles. When
considered individually, each nanoparticle supports a dipolar mode.
However, if the particles are placed together, the interaction
between the dipolar modes leads to the formation of two
hybridized modes, commonly referred to as bonding and
antibonding, with energies determined by the strength of the
interaction. (b) Hybridization diagram for two periodic arrays of
plasmonic nanoparticles. Similar to the case of individual particles,
the interaction between the lattice resonances of two identical
arrays leads to the formation of hybridized lattice resonances when
the arrays are placed in the same plane.

which appear at wavelengths commensurate with the lattice
. 4. . . 49 .

periodicity and display very narrow line shapes,” thus leading

to very strong optical responses.”” > For that reason, periodic

arrays of nanostructures have been used to design I'ght-emitting
devices,g’54764 sensors,7’65'66 perfect absorbers,677 ° and plat-
forms for quantum information processing,m_74 as well as to
investigate other interesting physical phenomena.”>”® However,
the majority of nanoparticle arrays considered in the past are
built using single-particle unit cells, that is, associated with one
of the five two-dimensional Bravais lattices,”” which imposes a
limitation to the complexity of the near- and far-field responses
of these systems. On the contrary, arrays built from the
repetition of unit cells containing more than one particle, that
is, using non-Bravais lattices, present more involved
responses’° > and, consequently, offer a broader range of
possibilities to engineer their optical properties.***®

In this article, we employ a plasmon hybridization approach
to investigate the response of periodic arrays of nanoparticles
with multiparticle unit cells. These systems can be seen as the
superposition of several identical arrays (one per particle in the
unit cell), which are displaced with respect to each other along
the plane in which they lie. The response of the whole array is
then determined by the interaction of the lattice resonances
supported by the individual constituents, as sketched in Figure
1b, in the same way as the bonding and antibonding modes of a
dimer arise from the hybridization of the dipolar plasmons of
the particles that form it. However, due to the extended nature
of the lattice resonances, the interaction between them, which
occurs mainly through far-field coupling, is very different from
that among localized surface plasmons, which is governed by
near-field coupling. In particular, we show that, by controlling
the relative position of the particles within the unit cell, it is
possible to manipulate, and even cancel, the interaction
between the corresponding lattice resonances. This results in
a much richer hybridization scenario, which we exploit to
design arrays with engineered properties. Our study furthers the
knowledge of the response of periodic arrays of nanoparticles
and provides tools for designing nanophotonic platforms.
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Figure 2. Periodic arrays of plasmonic nanoparticles with multiparticle unit cells. (a) Sketch of the system under study, built from the periodic
repetition of a unit cell containing N particles (shaded area) over a square lattice with periodicity a. The different particles in the unit cell are
placed at distances r; = (x,y;), with i = 1,..,N from the lattice nodes. For simplicity, we always choose to place particle 1 at the lattice nodes
(i.e, x, = 0, y; = 0). (b,c) Real part of the lattice sum Qij normalized to the real part of G, calculated as a function of the relative position
between particles j and i for normal incidence. (b) Results calculated at the (0,+1), (+1,0) Rayleigh anomaly, which, for a square lattice,
occurs at A = a. The upper (lower) plot corresponds to the xx (yy) component of the lattice sum. (c) Results for the (+1,+1), (+1,F1)
Rayleigh anomaly, which appears in the spectrum at A = a/~/2. The upper plot corresponds to the xx component, which, in this case, is
identical to the yy one, whereas the lower one corresponds to the xy component.
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RESULTS

The system under study is depicted in Figure 2a. It consists of a
periodic array built from the repetition of a unit cell containing
N nanoparticles (shaded area) over a square lattice of period a.
The array lies in the xy-plane, and the positions of the different
particles in the unit cell, measured from the lattice nodes, are r;
= (xyy,), with i = 1,2,.,N. For simplicity, we assume that
particle 1 is always located at the lattice node (i, x; = 0, y, =
0). The optical response of this system can be described using
the well-established coupled dipole model.*******%¢ Within
this approach, which is valid for particles with small dimensions
compared with both the wavelength and the interparticle
distance, each of the particles is modeled as a point dipole p;,
with a certain polarizability &;. We use greek indices to denote
the unit cell to which the particle belongs and latin ones to label
the different particles within a unit cell. Upon illumination by
an external field E; , the dipoles induced in the particles satisfy

i
) N
B,= @k, + Z Z Gij,;ij,p
v j=1 (1)
where Gy, is the dipole—dipole interaction tensor, defined as
ikIT,+r,—T,~r]
2 e ’
G, = [k + VV]
IT, + 1, — T, — rf
Here, T, — T, is the distance between the y and v unit cells, k

= 27m/2 is the wave vector, and A is the light wavelength. The
prime in the first summation indicates that the terms v = y are
excluded from it when i = j because a dipole does not interact
with itself. Due to the periodicity of the array, the solutions of
eq 1 satisfy Bloch’s theorem and can be written as p;, = p;(k;)
™I, Using this expression, we can solve eq 1 to obtain

N
p(ky) = 2 M; (B, (k)

j=1 (2
where M(k)) = a - G(k) is a 3N x 3N matrix, and
Q,-j(k”) = E;,Gij'yoe_ik”'T” is the Fourier transform of the
dipole—dipole interaction tensor, commonly known as the
lattice sum.*® This quantity contains all of the information on
the geometry of the array and therefore determines its optical
response. In particular, it controls the existence and properties
of the lattice resonances supported by the periodic array, which
appear at wavelengths where the real part of the determinant of
M vanishes.**>> Such behavior happens in the vicinity of the
Rayleigh anomalies, where G(k|) diverges. These spectral

features are located at wavelengths satisfying 1, = 27/lk; + ql,

. . > o adss
with q representing the reciprocal lattice vectors,”"" as
explained in the Methods section.

A periodic array with a multiparticle unit cell can be seen as
the superposition of N identical single-particle arrays, all with
the same periodicity, which are displaced with respect to each
other along the xy-plane. From this perspective, the diagonal
terms of Gj(k;), which are all equal, determine the position of

the lattice resonances for the isolated single-particle array. On
the other hand, the off-diagonal terms of Q,j(k”) represent the
interaction between the single-particle arrays corresponding to
particles i and j and therefore are symmetric under i<>j. Then,
by analyzing Qi]-(kH), we can understand and predict the lattice
resonances of the multiparticle unit cell array, which arise from

1620

the hybridization of the lattice resonances supported by each of
the individual single-particle arrays, in the same way that the
hybridized plasmons supported by a particle dimer can be
understood from the analysis of the interaction between the
plasmons of its individual constituents (see Figure 1). However,
in contrast to the interaction between localized plasmons,
which is governed by the near-field coupling and hence always
has the same sign, Gj(k;) is dominated by the far-field coupling

(see Methods section) and therefore displays a much more
complex behavior, as shown in Figure 2b,c. There, we plot the
real part of the lattice sum as a function of the relative position
of particle j measured with respect to particle i. Here and in the
following, we assume normal incidence (i.e, k = 0). The values
of Re{g,,.} are normalized to those of the corresponding

diagonal term Re{G,}. Panel (b) shows the results calculated
near the (0,+1), (+1,0) Rayleigh anomaly, which, for a square
lattice, is degenerate and appears in the spectrum at 4 = a.
Notice that we use the notation (m,n) to label the Rayleigh
anomaly corresponding to the reciprocal lattice vector

q= 27”(7;1, n) (see Methods). The upper and lower plots

correspond, respectively, to the xx and the yy components of
the lattice sum. Panel (c), on the other hand, displays the
results for the (+1,+1), (+1,¥1) Rayleigh anomaly, which is
also degenerate for a square lattice, appearing at 4 = a/~+/2. In
this case, the upper plot corresponds to the xx component,
which is equal to the yy one, whereas the lower one
corresponds to the xy component. All of these plots are
calculated at wavelengths that are infinitesimally larger than
those of the corresponding Rayleigh anomalies, for which the
real part of the lattice sum dominates and a lattice resonance
exists, " as explained in the Methods section (see also Figure
S1 in the Supporting Information). These results are expected
to change as the wavelength departs from the Rayleigh
anomaly, although, as shown in Figures S2 and S3, the main
features are significantly robust.

Examining Figure 2b,c, we clearly see that the different
components of Re{g,.}.} take values ranging approximately from
—Re{G,} (blue region) to Re{G,} (red region) depending on
the relative position of particle j with respect to particle i. As a
consequence of this, the lattice sums vanish for some relative
positions, which are indicated by the dashed lines in the figure.
Expectedly, the number and the geometrical arrangement of
these lines are dictated by the reciprocal lattice vector
associated with the corresponding Rayleigh anomaly, as
explained in the Methods section. We provide more examples
of the lattice sums corresponding to higher-order Rayleigh
anomalies in the Supporting Information (see Figures S4 and
SS). Furthermore, although in this work we assume normal
incidence, k| = 0, the analysis presented here can be generalized
to k; # 0. In such a case, the degeneracy of the Rayleigh
anomalies is lifted, leading to a more complicated set of
outcomes (see Methods).

The behavior of g,.j shown in Figure 2 enables a richer

hybridization scenario compared to that of localized surface
plasmons. This can be exploited to engineer the optical
response of multiparticle unit cell arrays through the control of
the interaction between their single-particle constituents. As
discussed before, the lattice resonances of a periodic array with
a multiparticle unit cell are governed by G;. More specifically,
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Figure 3. Hybridization of lattice resonances. (a) Black curve shows the reflectance for an array composed of a square lattice with periodicity a
= 800 nm and a two-particle unit cell (see inset), in which particle 1 (red) is located at the lattice nodes (i.e., x; = 0, y; = 0) and particle 2
(blue) is placed at x, = a/2, y, = a/4. Both particles are silver nanoshells with silica cores. The inner and outer radii are R, = 40 nm, R, = 50
nm for particle 1 and R; = 50 nm, R, = 60 nm for particle 2. The red and blue shadowed areas represent the reflectance of the red and blue
arrays when considered individually. (b) Imaginary part of the dipole induced in particle 1 (red curve) and particle 2 (blue curve) for the
lattice considered in panel (a). (c,d) Imaginary part of the dipole induced in particle 1 (c) and particle 2 (d) of the lattice of panel (a) as a
function of x,. (e—h) Same as (a—d) but for the case in which particle 2 is placed at x, = a/2, y, = a/2 (see inset). In all cases, the incident light
is polarized along the x-axis, and the polarizability is normalized to R>.

they correspond to the solution of the following eigenvalue
problem

2 «Gp, =»
j 3)

which is derived from eq 2 in absence of external field.

As a first example of an application of these ideas, let us
consider a square array with periodicity a and a two-particle
unit cell, operating on the red side of the (0,+1), (+1,0)
Rayleigh anomaly (i, near A = a). Assuming nanoparticles
with spherical symmetry, at normal incidence the induced
dipoles must lie in the plane of the array (ie., the xy-plane).
This, together with the vanishing of the xy component of the
lattice sum for the considered Rayleigh anomaly, as shown in
Figure S2, allows us to consider the xx and the yy components
separately. Therefore, without loss of generality, we can focus
on the xx component, which is the only relevant one for
illumination with wx-polarized light (identical results are
obtained for the yy component under y-polarized illumination).
Under these conditions, the lattice sum reduces to the
following 2 X 2 matrix

[gu glz]

G Gu
The diagonal term G, is independent of the relative position
between particles 1 and 2; however, G;, depends on it, as
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shown in the upper panel of Figure 2b. In particular, when
particle 1 is located at the lattice nodes (i.e, x;, = 0, y; = 0) and
particle 2 is at x, = a/2, y, = a/4, the real part of G,, vanishes,
and hence, G becomes diagonal because its real part dominates
on the red side of the Rayleigh anomaly, as shown in Figure S1.
Then, by solving eq 3, we find that the array supports two
different lattice resonances, which appear in the spectrum at
wavelengths A, and 4, satisfying Re{a; ' }= Re{G,,} and
Re{a; ' }= Re{G,}, respectively. Using the notation p
(Propas), the associated dipole mode for the first resonance is
(1,0), whereas for the second one, it is (0,1). This means that
the two single-particle arrays, in which the two-particle system
can be divided, do not interact. Therefore, if particles 1 and 2
have different polarizabilities, the multiparticle array supports
two different resonances, each of them involving only the
excitation of one of the two particles.

This prediction is verified in Figure 3a for a two-particle array
of silver nanoshells with silica cores and periodicity a = 800 nm.
Particle 1 (red) has an inner radius of R; = 40 nm and an outer
radius of R, = 50 nm, whereas for particle 2 (blue), R, = 50 nm
and R, = 60 nm. The black curve shows the reflectance of this
array calculated numerically, using the coupled dipole model
previously described. The polarizability of the nanoshells is
obtained from the dipolar Mie scattering coefficient®’ and
therefore includes retardation effects (see Methods). The
coupled dipole model is expected to be accurate for particles
with subwavelength dimensions, for which the contribution of

DOI: 10.1021/acsnano.7b08206
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higher-order modes is small, separated by distances of at least
three radii. In order to verify the validity of this model, we have
benchmarked it against full-wave results obtained through a
finite element method (FEM) simulation (see Figures S6 and
S7 in the Supporting Information). As anticipated, the
multiparticle array supports two lattice resonances on the red
side of the Rayleigh anomaly located at 800 nm. These two
peaks are almost identical to the reflectance peaks that each of
the two single-particle arrays, in which the multiparticle array
can be divided, support when considered individually, which are
depicted by the red and blue shaded areas. This confirms the
noninteracting nature of these lattice resonances.

We can gain more insight into the response of this array by
analyzing the dipole induced in each of the particles. This is
done in panel (b), where we plot the imaginary part of the x
component of the dipole induced in particle 1 (red curve) and
particle 2 (blue curve), normalized to R3. We choose to analyze
the imaginary part because, at resonance, it dominates over the
real part and, as opposed to the absolute value, it retains the
information about the phase. Examining these results, we
observe that, for the first lattice resonance, particle 1 is strongly
excited, whereas particle 2 displays almost no induced dipole.
This behavior is completely reversed for the second lattice
resonance, thus confirming that, for the particular arrangement
under investigation, the two single-particle arrays do not
interact and therefore behave as if they were isolated. This
behavior is further supported by the induced charge and field
enhancement calculated with the FEM approach, which are
shown in Figure S6. Interestingly, the same outcome is
expected for any value of x,, provided y, = a/4, because, as
shown Figure 2b, the real part of G,, vanishes along the line y,
= a/4. This is confirmed by Figure 3c,d, where we plot the
imaginary part of the x component of the dipole induced in
particle 1 (c) and particle 2 (d) as a function of x,.

The behavior of the two-particle array changes dramatically if
particle 2 is moved to x, = a/2, y, = a/2. In this case,
Re{G|,} = —Re{G,;}, and we therefore expect maximum
interaction between particles 1 and 2. Solving eq 3, we find
that, in this case, the system supports only one lattice
resonance, located at the wavelength satisfying the condition
Re{(a, + @,)"'} = Re{G,,}, whose associated dipole mode is
proportional to (—a;,a,). This means that the dipoles induced
in particles 1 and 2 oscillate in opposite directions. These
predictions are confirmed by the numerical results shown in
Figure 3e,f. In the former, we plot the reflectance of an array
identical to that of panel (a), but in which particle 2 is placed at
position x, = a/2, y, = a/2. As expected, the reflectance shows a
single peak located at a wavelength larger than that of the array
of panel (a). Examining the corresponding induced dipole
shown in panel (f), we observe that, at the lattice resonance, the
dipole induced in particle 1 (red curve) has the opposite sign to
that of particle 2 (blue curve), thus confirming our prediction
(see Figure S6 for the associated induced charge and field
enhancement calculated with the FEM simulations). An
identical behavior is obtained when x, is varied, while keeping
¥, = a/2, as shown in panels (g/h), where we plot the imaginary
part of the x component of the dipole induced in particle 1 (g)
and particle 2 (h) as a function of x,. This is in accordance with
the fact that Re{G,,} = —Re{G,,} for all relative positions with
¥, = a/2, as shown Figure 2b.

The behavior of this two-particle array can also be intuitively
understood by examining the field enhancement maps shown in
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Figure S6. Specifically, when x, = a/2 and y, = a/4, both
particles are located exactly at the node of the lattice resonance
associated with the other, and therefore do not interact. If, on
the other hand, particle 2 is displaced to x, = a/2, y, = a/2, then
both particles sit in an antinode of the lattice resonance but
with opposite phase, and their corresponding induced dipoles
therefore point in opposite directions. This intuitive approach
also helps one to understand the limitations of the coupled
dipole model; when the size of the particle becomes a
significant fraction of the wavelength, higher-order modes
could be excited despite the cancelation of the dipole mode
(see Figure S7). Unfortunately, as the complexity of the array
grows, its behavior becomes less intuitive.

It is important to note that, if particle 2 is placed at a position
for which the xx and yy components of Re{G,,} take different
values, then the two-particle array will display a different
response when illuminated with x- or y-polarized light. This
behavior can be exploited to design arrays with complex
anisotropic responses and therefore can complement and
enhance anisotropic responses induced by the morphology of
the particles. To illustrate this possibility, we consider an array
composed of a square lattice with periodicity a = 800 nm and a
unit cell with two particles located at x; = 0, y; = 0 and «x, = 0,
¥, = a/4. The two particles are assumed to be silver nanoshells
with silica cores and dimensions identical to those considered
in Figure 3, that is, R; = 40 nm, R, = 50 nm for particle 1 and R;
= 50 nm, R, = 60 nm for particle 2. For this configuration, the
xx and yy components of Re{G,,} are equal to 0 and Re{G,,},
respectively, as can be seen by examining Figure 2b. Therefore,
remembering that the xx and yy components of the lattice sums
are independent because the xy terms are negligible near the (0,
+1), (£1,0) Rayleigh anomaly (see Figure S2), we can solve eq
3 for each of them separately to predict the response of the
array under x- and y-polarized illumination. Under x-polarized
illumination, we find that this system behaves exactly as the
array considered in Figure 3a—d and therefore supports two
lattice resonances with wavelengths determined by
Re{a,' }= Re{G,,}, each of them corresponding to the
excitation of an x-polarized dipole in only one of the two
particles. On the other hand, when the array is illuminated with
y-polarized light, the different value of the yy component of
Re{G,,} results in the array supporting a single lattice
resonance with a wavelength determined by
Re{(a, + a,)"" }= Re{G,,}, which is associated with the
excitation of y-polarized dipoles in particles 1 and 2 with an
amplitude ratio a;/a,. Notice that, in contrast to the situation
analyzed in Figure 3e—h, in this case, Re{G,, }= Re{G },
which causes the dipoles to oscillate in the same direction.

The numerical results displayed in Figure 4 confirm these
predictions. Panels (a,b) show, respectively, the reflectance of
the two-particle array under consideration (see inset) and the
imaginary part of the dipole induced in each nanoparticle.
Examining panel (a), we find that, as expected, the reflectance
of the array displays two peaks for wx-polarized illumination
(solid curve), which becomes a single peak when the
polarization of the illumination is changed to the y-axis (dashed
curve). The spectral positions of the different peaks are
consistent with the predictions obtained from the solution of eq
3. Panel (b) analyzes the corresponding dipoles induced in the
different particles. Specifically, red and blue curves are used to
plot the imaginary part of the dipole induced, respectively, in
particles 1 and 2, normalized to R}. Clearly, each of the two
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Figure 4. Periodic arrays with complex anisotropic response. (a)
Reflectance for an array composed of a square lattice with
periodicity a = 800nm and a two-particle unit cell, in which
particle 1 (red) is located at the lattice nodes (i.e., x, = 0, y, = 0)
and particle 2 (blue) is placed at x, = 0, y, = a/4, as shown in the
inset. Both particles are silver nanoshells with silica cores and
dimensions identical to those of Figure 3, i.e.,, R; = 40 nm, R, = 50
nm for particle 1 and R, = 50 nm, R, = 60 nm for particle 2. (b)
Imaginary part of the dipole induced in particle 1 (red curves) and
particle 2 (blue curves) for the lattice considered in panel (a). In
both panels, solid and dashed curves correspond to illumination
with x- and y-polarized light, respectively.

peaks observed for x-polarized illumination (solid curves)
corresponds to the excitation of a different particle, while under
y-polarized illumination (dashed curves), both particles are
excited with the induced dipoles oscillating in the same
direction.

So far, we have focused on the (0,+1), (+1,0) Rayleigh
anomaly occurring at A = g, for which the xy component of the
lattice sums vanishes, and therefore, the xx and yy components
can be considered separately. However, this is not the case for

the (+1,+1), (+1,¥1) Rayleigh anomaly located at 4 = a/~N72,

for which, as shown in Figure 2c, the xy component of Re{G}

takes values comparable to those of the xx and yy components.
A nonvanishing xy component signifies interaction between the
x and y components of the induced dipoles and therefore
enables the design of more complex responses,88 in which the
induced dipoles do not need to follow the polarization of the
external illumination. This can be applied, for instance, to
design an array for which the x and y components of the
induced dipoles are always equal, regardless of the polarization
of the external illumination. To that end, we consider the array
described in Figure Sa, consisting of a square lattice of period a
= 1300 nm with a two-particle unit cell, in which particle 1
(red) is located at x; = 0, y; = 0, whereas particle 2 (blue) is at
x, = a/4, y, = a/4. Both particles are assumed to be identical
silver nanoshells with silica cores and dimensions R; = 50 nm,
R, = 60nm. For wavelengths near the (+1,+1), (+1,¥I)
Rayleigh anomaly (ie, 1 = a/~/2), the geometry of the unit
cell dictates, as per the results of Figure 2c, that the xx and yy
components of Re{G,,} vanish, whereas the xy one becomes
equal to Re{G,,}. Furthermore, for a square lattice, the xy
component of G, is always zero. Therefore, remembering that
the imaginary part of the lattice sums are minor on the red side
of the Rayleigh anomaly, and thus discarding them, we have

1 001
0110

= Re
G {gll}()llo
1 001

expressed using the notation in which the dipole reads p =
(PIx;P1y,p2x,p2y). Solving eq 3 with this G, we find that the array

under study supports a doubly degenerate lattice resonance,
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Figure S. Periodic arrays with response invariant to polarization. (a) Reflectance for an array composed of a square lattice with periodicity a =
1300 nm and a two-particle unit cell (see inset), in which particle 1 (red) is located at the lattice nodes (i.e.,, x, = 0, y, = 0) and particle 2
(blue) is placed at x, = a/4, y, = a/4. The gray solid and black dashed curves correspond to illumination with x- and y-polarized light,
respectively. Both particles are silver nanoshells with silica cores and dimensions R; = 50 nm, R, = 60 nm. (b) Imaginary part of the dipole
induced in the nanoparticles at resonance (i.e., A = 919.7 nm) as a function of the polarization angle of the incident light as indicated by the
inset. The yellow and green curves correspond, respectively, to the x and y components of the induced dipole. (c,d) Same as (a,b) but for the

case in which particle 2 is placed x, = a/2, y, = a/2.

1623

DOI: 10.1021/acsnano.7b08206
ACS Nano 2018, 12, 1618—1629



ACS Nano

with a wavelength determined by the condition
Re{a™' }= 2Re{G,,}. The corresponding dipole modes are
(1,0,0,1) and (0,1,1,0). Then, if the array is illuminated with a
field polarized along a direction forming an angle 6 with the x-
axis, that is, E = (cos 0,sin O,cos O,sin 0) in the notation used,
the two modes are excited with identical amplitude cos € + sin
0. This means that the dipole induced in the particles is always
proportional to (1,1,1,1), and hence, it has equal x and y
components, independent of the polarization angle 6.

Figure Sa shows the reflectance of the array for x-polarized
(solid gray curve) and jy-polarized (black dashed curve)
illumination, calculated numerically using the coupled dipole
model. As expected, the array supports a single lattice
resonance, irrespective of the light polarization. Panel (b)
analyzes the dipole induced in the particles at the lattice
resonance (i.e, A = 919.7 nm) as a function of the polarization
angle 0 (see inset). Yellow and green curves are used to indicate
the imaginary part of the x and y components of the induced
dipole. Clearly, as 6 is varied, the amplitude of the induced
dipole follows the expected cos € + sin € dependence, with the
x and y components taking identical values for all angles. This
means that the dipole induced in the particles always points in
the same direction, regardless of the polarization of the external
illumination. The origin of this behavior lies in the coupling
arising from the xy component of G,. Indeed, a similar
behavior is found if particle 2 is moved to a position for which
the xy component of Re{G,,} is equal to —Re{G,,}, such as x,
=a/4,y, = 3a/4 or x, = 3a/4, y, = a/4. However, the different
sign of the lattice sum for this configuration changes the
coupling amplitude to —cos € + sin @ and the induced dipole to
(=1,1,—1,1). For the same reasons, moving particle 2 to the
center of the unit cell (ie, x, = a/2, y, = a/2), where the xy
component Re{G,,} vanishes, is expected to produce a
completely different behavior. In this case, we have

G= Re{gll}

o = o =
= o = o
o = o =

0
1
0
1

which, upon substitution into eq 3, leads to a solution again
consisting in a doubly degenerate lattice resonance located at
the same wavelength (i.e., that for which Re{a™" }= 2Re{G,}).
However, in this case, the associated dipole modes are (1,0,1,0)
and (0,1,0,1), and therefore, upon illumination with a field E =
(cos Bsin O,cos Osin ), they are excited with amplitudes cos 0
and sin 6, respectively. This means that the dipole induced in
the particles is proportional to E, and its direction therefore
exactly follows the polarization of the field. This behavior is
clearly corroborated by the numerical results shown in panels
(c,d) of Figure S. The former displays the reflectance of this
array, confirming the presence of a lattice resonance for both x-
and y-polarized illumination with the same wavelength as that
of the array of panel (a). Panel (d), on the other hand, shows
the behavior of the induced dipole, verifying that it exactly
follows the polarization of the external field.

All of the systems studied so far involve arrays with unit cells
containing two particles. However, the hybridization approach
described here applies equally to systems with arbitrary unit
cells. An interesting example of an array with a three-particle
unit cell is the Lieb lattice,”’ depicted in the right inset of
Figure 6a, which is being extensively studied due to its unusual
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Figure 6. Periodic arrays with three- and four-particle unit cells. (a)
Reflectance for two different arrays composed of a square lattice
with periodicity a = 1300 nm and a three- (black dashed curve) or
four-particle unit cell (gray solid curve), arranged as shown in the
insets. In both cases, all particles are identical silver nanoshells with
silica cores and dimensions R; = 50 nm, R, = 80 nm. The incident
light is polarized along the x-axis. (b,c) Imaginary part of the dipole
induced in each of the nanoparticles for the arrays with three- (b)
and four-particle (c) unit cells. The curves are color-coded to
match the insets, which show the direction of the dipoles induced
at each resonance.

topological properties that lead to extraordinary optical
responses.” It consists of a square array with periodicity a =
1300 nm and a unit cell containing three particles located at x,
=0, y, = 0 (red particle), x, = 0, y, = a/2 (blue particle), and x;
=a/2,y; = 0 (green particle). All of the particles are taken to be
identical silver nanoshells with silica cores and dimensions R; =
50nm, R, = 80nm. Near the (+1,+1), (+1,%1) Rayleigh
anomaly (ie, A =a/~/2), the xy component of Re{gij}
vanishes for all values of i and j, as can be seen in Figure 2c.
Therefore, assuming x-polarized illumination, we only need to
consider the xx component of G, which reduces to the 3 X 3
matrix

1 -1 -1
G=Re{G}[-1 1 1
-1 1 1

where we use the notation p=(p;,parupsy)- Introducing this

expression into eq 3 and solving it, we find that the system
supports a single lattice resonance, whose wavelength satisfies

Re{a~' }= 3Re{G,,}. The associated dipole mode is (—1,1,1),
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meaning that, while the dipoles induced in particles 2 and 3
oscillate in the same direction, that of particle 1 does so in the
opposite direction. This is corroborated by the numerical
calculations shown in Figure 6a,b, which display, respectively,
the reflectance of the array (dashed black curve) and the
imaginary part of the dipole induced in the different particles.
The results of the latter are color-coded according to the inset.

It is possible to add a fourth particle to this array at a position
such that it does not interact with any of the three original
particles. There are, indeed, four positions within the unit cell
for which this happens, all of them characterized by the fact that
the xx, yy, and xy components of Re{G,,}, Re{G,,}, and
Re{G;,} vanish. These positions correspond to the points for
which the dashed lines of the upper panel of Figure 2c intersect
those of the lower one. When particle 4 is placed at one of
these positions, G becomes

1 -1 -10
-1 1 1 0

= Re
G=relG_, | |
0 0 0 1

using the notation p = (piyPruP3wPar). Therefore, this new
array supports, in addition to the lattice resonance of the three-

particle array, a new mode at a wavelength Re{ot_1 }= Re{G,,}-
Clearly, the dipole associated with this new lattice resonance is
(0,0,0,1), which, as anticipated, involves only the excitation of
particle 4. The two predicted resonances are visible in the
reflectance spectrum of Figure 6a (gray solid curve), which is
calculated for particle 4 located at x, = 3a/4, y, = a/2, as
indicated in the left inset. The corresponding induced dipoles
are analyzed in panel (c), where the different colors represent
the different particles in the unit cell. The left peak involves the
exclusive excitation of particle 4, whereas the right one
corresponds to the excitation pattern of the lattice resonance
of the three-particle array (cf. panels (b,c)). All of these results
show the extraordinary potential of multiparticle arrays to
support engineered lattice resonances that allow for the
selective excitation of different groups of particles in the unit
cell.

CONCLUSIONS

In summary, we have presented a detailed analysis of the optical
response of periodic arrays with unit cells containing an
arbitrary number of nanoparticles based on the plasmon
hybridization approach. We can think of these systems as the
superposition of a number of identical single-particle arrays,
one per particle in the unit cell, which are displaced in the plane
in which they all lie. By utilizing this description, we have
shown that the Iattice resonances supported by these
multiparticle arrays can be understood from the hybridization
of the lattice resonances of the individual single-particle arrays,
in the same way as the plasmonic response of complex
nanostructures arises from the hybridization of the plasmons
supported by their constituents. However, lattice resonances
are extended excitations, and their interaction is therefore
governed by far-field coupling, in sharp contrast with the
localized plasmons supported by particles, which interact
primarily through near-field coupling. This leads to the much
richer hybridization scenario that we have described in this
work. Specifically, we have shown that the sign of the

1625

interaction between lattice resonances, as well as its strength,
is determined by the relative position of the corresponding
particles within the unit cell. Therefore, it is possible to control
the interaction, and even cancel it, by placing the particles at
appropriate positions. We have exploited this behavior to
design different arrays with engineered optical responses. In
particular, we have studied a two-particle array, which, when the
relative position of the particles is chosen to suppress the
interaction, supports two different lattice resonances, each
involving the excitation of only one of the particles. If, on the
other hand, the relative position is selected to maximize the
coupling, the array displays a single lattice resonance with the
particles being excited in the same or opposite directions,
depending on the sign of the interaction. Furthermore, the
control of the interaction between the lattice resonances allows
for the design of arrays with responses either invariant to the
polarization of the incident light or strongly dependent on it.
We have also investigated three- and four-particle arrays for
which, by controlling the arrangement of the unit cell, it is
possible to tailor the interaction to produce lattice resonances
that selectively excite different groups of particles within the
unit cell. It is important to remark that, although we have
focused on periodic arrays built from metallic nanoparticles, the
results and methodology presented here can be directly applied
to arrays composed of other photonic elements, including
dielectric nanoparticles and atoms. Indeed, the dipolar nature of
atomic transitions make two-dimensional atomic arrays ideal
platforms to explore the concepts introduced here.”””"* The
results of this work serve to advance our understanding of the
behavior of lattice resonances and provide a methodology to
design periodic arrays of nanostructures with engineered optical
responses.

METHODS

Lattice Sums. The lattice sums appearing in eq 2 are defined as
Gyl = D) Gy e
v

where the prime on the sum indicates that the term v = 0 is excluded
from it when i = j. It is important to notice that the dipole—dipole
interaction tensor G;;,o contains terms that decay with distance as IT,
+ 1 — rjl_l, IT, + 1, — rjl_z, and IT, + r; — rj|_3, corresponding,
respectively, to the far-, mid-, and near-field coupling.” At wavelengths
near a Rayleigh anomaly, the lattice sum is dominated by the far-field
coupling term, which produces a divergent contribution. The reason is
that, while the far-field coupling decays with the inverse of the
distance, the number of array sites included in the lattice sum increases
with its square, thus leading to a divergent contribution that dominates
over those arising from the mid- and near-field coupling terms.

The lattice sum defined above can be efficiently calculated using
Ewald’s method.**”"”> However, we can gain some insight by

rewriting Q,.j(k”), using the Weyl identity,” as
Q(k) = lim Z/ e—ik”-T,/(kZ + VV)L /d_kheik"|-(T,,+rl-—r/-)eik‘l\zl
LA g ~ 2 J k]

This expression can be further simplified by noting that, due to the
periodicity

Z &K~k T,

v

4r* ,
e D 3(kj — k- @)
q

where A is the area of the unit cell and q are the reciprocal lattice
vectors. Using this relation, we have
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kK - (q, + k)’
27
q
- kzq(qx +k,)
2 12 o
Rk -k,
. 5‘7

k;

2
_ klzklx _ klzkly

ro1 2 2
KoK, K-k

where ko = K —(q+ k”)z. The vanishing of this quantity

determines the existence of the Rayleigh anomalies. For instance, for
a square lattice of periodicity a, the reciprocal lattice vectors have
27n/a, and therefore

components ¢q, = 2am/a and qy

A = 2][/\/(2727!1/(1 + kx)2 + (2zn/a + ky)z, where m and n are

integers. This expression reduces to 4, , = a/ m” + n* for normal
incidence (k; = 0), which explains the degeneracy of the Rayleigh
anomalies considered in this work. Such degeneracy is lifted for k; # 0,
resulting in a much larger set of Rayleigh anomalies.

On the red side of a Rayleigh anomaly, the associated reciprocal
lattice vector satisfies (q + ky)* > k’, and the corresponding kg
therefore becomes purely imaginary. This makes Qi}.(ku) predominantly

real in these parts of the spectrum, as shown in Figure S1 of the
Supporting Information. There, we plot the real and imaginary parts of
G, as a function of wavelength for different cases relevant to the
systems investigated in this work.

Examining eq 4 closely, we notice that for wavelengths on the red
side of the of the Rayleigh anomalies, the zeros of the different
components of Re{gi/} appear for the relative positions between

particle i and j that satisfy the condition

Zf(q’ kH)COS[(q + k”)-(ri - r)-)] =0
q (5)

where f(q,k;) is the corresponding element of the matrix of eq 4, and
the sum runs over all of the reciprocal lattice vectors associated with
the corresponding Rayleigh anomaly. For normal incidence (k; = 0),
these zeros are indicated with black dashed lines in Figure 2, as well as
in Figures S2, S4, and SS. When the wavelength increases, and
therefore moves away from the corresponding Rayleigh anomalies, the
lines indicating the zeros of Re{gij} become more complicated, but the

same general features are preserved, as shown in Figure S3. For tilted
incidence (i.e,, k; # 0), in addition of the breaking of the degeneracy of
the Rayleigh anomalies discussed above, the solutions of eq S become
more involved, leading to more complex patterns than those obtained
for normal incidence.

Calculation of Nanoshell Polarizability. In all of the examples
discussed in this work, we calculate the polarizability of the different
nanoshells from the dipolar Mie scattering coefficient®” as a = 3/(2k°)
t£, where

e (e = [py (p)]'hy
" ) — [P (o)1,

Here, ji(x) and h{Y(x) are the spherical Bessel and Hankel functions
of order 1, the prime denotes differentiation with respect to the
argument, and

- (qx + kx)(qy + ky) - (qx + kx)kzq

ei(‘l'*'k”)'(l';—fj)

2 2
k- (qy +k) - (qy + ky)kzq
2q
2 g2
~ kglg, + k) -k
- k'K,
—_ k/yk/z
kZ _ kri
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a =& 1]'1(,01):|IA1 - Sijl(pl)Bl

by = e2[pj,(p))'C, — 4, (p)D;

A =j ()P ()] = b))y ()]

B, = [0,j,(0,)) [0 (0)1 = (0,1 (0,)1 i, (03) 1

C =, (e)h (o) = 1P, (o)

Dy = [p,j,(p)IH(0,) = [o,h (0T, ()

JE&KR;, p, = \[& kR, and
Po = kR,, where R; and R, are, respectively, the inner and outer radius,
whereas €, and €, are the dielectric function of the materials in the core

and in the shell. In our case, these materials are, respectively, silica and
silver, whose dielectric functions we take from tabulated data.”>%*

In these expressions, p, = \[€kR;, p,
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periodicity a, and normal incidence. Blue and red curves are used to indicate the real and
imaginary parts of the lattice sum, respectively. (a) za component of G;;, which is identical

some of the arrays studied in the main paper. In all cases, we consider a square array with

(b) xz component of G;; for x; — z; = a/2, y; —y; = a/4. (c) zx
component of G;; for x; — x; = a/2, y; — y; = a/2. (d) xz component of G;; for x; —z; =0,

y; —vy; = a/4. (e) yy component of G;; for z; —z; =0, y; — y; = a/4. (f) vy component of

Gij for x; — vy = a/4, y; — yi = a/4.

to the yy component.

S2



01> <£1,00 SSESPREESD
™ (b)!

-H

Re {gl.j }/Re{G, }
v-y)a

I
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|

1
- -

Re {Ql.j }/Re{G. }
vy )la

1
-’_‘ ’_‘-

N e = o = = e e et |, e

o |
TS :
2 :
=0 i
SENRCY 5
O |
ml ;
b -1 oL — |
0 14 12 34 1 0 14 12 34 1
(x-x)/a (x-x)/a
J 1 J o

Figure S2: Real part of the lattice sum G;; normalized to the real part of G;;, calculated
as a function of the position of particle j, measured with respect to particle ¢, for normal
incidence. Panel (a) displays the results for the (0, £1), (£1,0) Rayleigh anomaly occurring
at A = a, while (b) displays the results for the (+1,+1), (+1,F1) Rayleigh anomaly, which
appears in the spectrum at A = a/ V2. In both cases, the upper, middle, and lower plots
correspond, respectively, to the xz, yy, and xy components of the lattice sum.
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Figure S3: Same as Figure S2, but calculated at wavelengths A = 1.01a (a) and A

(b).
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Figure S4: Real part of the lattice sum G;; normalized to the real part of G;;, calculated
as a function of the position of particle j, measured with respect to particle ¢, for normal
incidence. Panel (a) displays the results for the (0, £2), (£2,0) Rayleigh anomaly occurring
at A = a/2, while (b) displays the results for the (£2,£2), (+2,F2) Rayleigh anomaly,
which appears in the spectrum at A = a/ V/8. In both cases, the upper, middle, and lower
plots correspond, respectively, to the zx, yy, and xy components of the lattice sum.
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Figure S5: Real part of the lattice sum G;; normalized to the real part of G;;, calculated as
a function of the position of particle j, measured with respect to particle ¢, for normal inci-
dence. Panel (a) displays the results for the (+1, £2), (2, £1), (£1,F2), (£2, F1) Rayleigh
anomaly occurring at A = a/+/5, while (b) displays the results for the (43, 44), (4, £3),
(£3,F4), (£4,F3), (0,£5), (£5,0) Rayleigh anomaly, which appears in the spectrum at
A = a/5. In both cases, the upper, middle, and lower plots correspond to the zz, yy, and
xy components of the lattice sum, respectively.

S6



— Coupled Dipole Model
——— Finite Element Method

0.61(a) " (ii) ] 0.15(b) ' ' 1
S 3
= £ 0.10
+~ +~
8 o1
= 55 0.05
a2 a2
0.00

Jm[©
= E SR O
= i
(] 1
= 0 al2 |
3 i
1 i
— ' al2

-max

max

1.

min

Field enhancement

Figure S6: Benchmark of the coupled dipole model against full-wave solutions of Maxwell’s
equations obtained through a Finite Element Method (FEM) simulation, performed using the
commercial software COMSOL Multiphysics. (a,b) Reflectance for the arrays investigated
in Figures 3(a) and 3(e) of the main paper, both of which consist of a square lattice with
periodicity @ = 800nm and a unit cell containing two silver nanoshells with silica cores
and dimensions R; = 40nm, R, = 50nm for particle 1, and R; = 50nm, R, = 60nm for
particle 2. The positions of the particles are ;7 = 0, y; = 0, and x93 = a/2, yo = a/4 for the
array of panel (a) and =y = 0, y; = 0, and 23 = a/2, yo = a/2 for that of panel (b). The
black curves represent the results obtained using the coupled dipole model, while the gray
curves indicate the outcome of the FEM simulation. Both cases show an excellent agreement
between the predictions of the coupled dipole method and the FEM simulations. The main
difference is a shift of the peak position, which we attribute to the effect of the higher order
modes not accounted for in the dipole approximation. (c¢,d) Charge density induced in the
nanoshells (c¢), and field enhancement in the plane of the array (d), both calculated using the
FEM approach for the two lattice resonances of the array of panel (a). (e,f) Same as panels
(c) and (d) for the lattice resonance of the array of panel (b). These results confirm the
predictions of Figure 3 of the main paper, and therefore support the validity of the coupled
dipole model.
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Figure S7: Same as Figure S6 but for nanoshells with increased sizes. Specifically, we use
R; = 80nm, R, = 100 nm for particle 1, and R; = 100nm, R, = 120nm for particle 2. The
rest of the parameters are identical to those of Figure S6. The coupled dipole model results
are in good agreement with the FEM simulations. As expected, the contribution of higher
order modes is increased with respect to the systems of Figure S6, which leads to a larger
shift between the coupled dipole model predictions and the FEM results, although this effect
is partially masked by the increased linewidth of the resonances. The charge density and
field enhancement maps also confirm the larger contribution of higher order modes.
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