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ABSTRACT: Nanostructures with sizes smaller than or comparable to
visible light strongly modify the decay rate of dipole emitters placed in
their vicinity. Such modification is usually characterized using the local
density of photonic states (LDOS), which quantifies the availability of
photonic states at a certain position and frequency in the presence of a
nanostructure. Here, we present a detailed analysis of the limits of this
quantity through the study of a sum rule that bounds its spectral
integral, taking into account both its radiative and nonradiative
components. The sum rule studied here relates the integral over the
spectrum of the LDOS at a certain point to the field induced by a static
dipole placed at that same location. We confirm the validity of this sum

rule and investigate its implications for the response of nanostructures by performing rigorous numerical calculations for a variety
of systems, including nanospheres, nanodisks, and films, made of different metallic and dielectric materials, as well as graphene.
Furthermore, we apply the sum rule to the cross density of photonic states (CDOS), a quantity that characterizes the spatial
coherence of light in the presence of a nanostructure and determines, as well, the interaction between two dipole emitters located
in its vicinity. We show how this result can be used as a guide to select the most favorable nanostructure geometries and materials
to achieve strong values of the LDOS and the CDOS over desired parts of the spectrum, thus helping to engineer strong decay

rates and coupling enhancements near nanostructures.
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he ability of metallic nanostructures to support surface
plasmons, which interact strongly with light and
concentrate it into volumes below the diffraction limit, has
opened many research opportunities," with applications to solar
energy harvesting,2 photocatalysis,3’4 biosensing,S'G and nano-
scale light emission,”® among others. In order to exploit this
ability, it is necessary to design nanostructures capable of
maximizing their interaction with light over the spectral range
of interest. This requires, in addition to an adequate choice of
material,” the engineering of the nanostructure geometry to
achieve the desired near- or far-field response.'” Such efforts
can benefit extraordinarily from the knowledge of the
fundamental limits on the optical response of nanostructures.
To this end, there has been significant research activity focused
on placing bounds on different frequency-dependent quanti-
ties.'"" These include the extinction,'” scattering,13 and
absorption' "> cross sections of individual and interacting16
nanostructures, as well as two-dimensional systems.'”
Problems involving broad frequency ranges can benefit to a
greater extent from limits on spectrally integrated quantities,
which are usually cast in the form of sum rules. Indeed, sum
rules are ubiquitous in optics; they serve to impose constraints
on the refractive index of materials,'®" having important
implications on novel applications such as negative refraction,”’
as well as on the mean free path of light propagating in random
media.”" A paradigmatic example is the Thomas—Reiche—Kuhn
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sum rule,”*** also known as f-sum rule, which was derived in
the context of electronic transitions.”* This sum rule relates the
integral of the extinction cross section of a nanostructure to the
number of electrons that it contains®*® and therefore
establishes an upper bound to the interaction of nanostructures
with far-field radiation. On the other hand, the interaction of
nanostructures with near-field sources, such as quantum
emitters (i.e., atoms, molecules, quantum dots, etc.), is usually
characterized through the local density of photonic states
(LDOS)."*~* As its name indicates, the LDOS measures the
number of photonic states per unit of frequency and volume at
a certain position and frequency due to the presence of a
nanostructure. This quantity is closely related to the strength of
the near-field associated with the photonic modes supported by
the nanostructure®® and determines the decay rate of a dipole
emitter placed at that position through the so-called Purcell
effect.”**™*® Of note is that the LDOS describes both the
radiative and nonradiative channels through which the emitter
can decay39 (i.e., into photons and heat, respectively) and,
therefore, completely characterizes the optical response of the
nanostructure under near-field dipole excitation.

In the past, different sum rules involving the LDOS have
been presented. Barnett and Loudon derived a sum rule for the
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radiative component of the LDOS near nonabsorbing dielectric
nanostructures,*”*" which establishes a limit to the spectrally
integrated radiative decay rate of a dipole emitter placed near a
nanostructure. This sum rule was later extended by Scheel to
include systems with absorption.”” However, if the system has
absorption, the emitter can also decay nonradiatively, which is
reflected in a potentially significant contribution from the
nonradiative component of the LDOS. This is especially
relevant for emitters placed near metallic nanostructures
supporting plasmonic modes.’”** More recently, the general-
ization of that sum rule for the full LDOS, including the
nonradiative component, has been presented in the context of
Férster resonance energy transfer (FRET).*

Here, we perform a comprehensive analysis of this sum rule,
which includes both the radiative and nonradiative components
of the LDOS. More specifically, it connects the spectral integral
of the LDOS at a certain position with the field induced by a
static dipole placed at that same location. Through the rigorous
solution of Maxwell’s equations, we show that the sum rule is
satisfied by a wide variety of systems, composed of both finite
and extended structures made of different materials, including
dielectrics and metals, as well as graphene. Furthermore, we
investigate the application of this sum rule to the cross density
of photonic states (CDOS),*"** which quantifies the spatial
coherence of light near a nanostructure and determines the
interaction between two dipole emitters placed nearby.*
Through these analyses, we show that the LDOS sum rule
can be used as a guide to design nanostructures producing
strong values of LDOS and CDOS in their vicinity.

B RESULTS AND DISCUSSION

The projected LDOS along direction fi, evaluated at a point r
and frequency @, can be calculated as (note that we use
Gaussian units)

2
LDOS,(r, ®) = ——wIm{ﬁ-G(r, r, )-h}
z (1)
where G(r, 1/, @) is the Green tensor of Maxwell’s equations,
defined as the solution of'
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Here, k = w/c and &(r, w) is the dielectric response of the
system. The Green tensor G(r, r’, @) determines the electric
field produced at r by a current density distribution j(r', ®),
oscillating at frequency w, according to

E(r, ) = —4riw /G(r, v, w)j(r', o) dr’

The projected LDOS, defined in eq 1, governs the decay rate
[;(r, @) of a dipole emitter oscillating along the direction of f,
through the expression

[i(r, ) LDOS4(r, )
Nw)  LDOSY(w)

where I'3(w) and LDOS3(w) = w®/(37%c*) are the decay rate
and LDOS in a vacuum, respectively. This expression applies,
as well, to a classical dipole emitter, in which case T;(r, @) is
replaced by the power radiated by the dipole. We can separate
the contribution induced by the nanostructure from that of a
vacuum as LDOSR(r, @) = LDOS4(r, @) — LDOSY(w), which

is calculated from the induced part of the Green tensor G™(r,
r', w), using eq 1.

If all of the materials from which the nanostructure is made
can be described using a local, causal, and linear dielectric
function, G™(r, ', ®) has to satisfy Kramers—Kronig
relations.*® This property can be exploited to obtain the
following sum rule for the induced part of the LDOS* (see the
Supporting Information for a detailed derivation)

® ind 1 Cindg y o
fo LDOS;"(r, w) dw 47;E (r)-h 2)
Here, E™(r) represents the static field (ie., for @ = 0)
generated at r by a unit dipole located at that position due to
the presence of the nanostructure. Notice that this field
corresponds only to the component induced through the
nanostructure at the dipole position, and, hence, it does not
include the bare dipole field, which would diverge at that
position. The sum rule given in eq 2, thus, bounds the spectral
integral of the induced LDOS by the field of a static dipole.

We begin by examining the validity of the sum rule with a
simple nanostructure, namely, a spherical metallic nanoparticle
of radius R, as shown in Figure 1(a). A unit dipole is placed a
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Figure 1. (a) Schematics of a spherical nanoparticle of radius R with a
dipole placed a distance d above its surface, which points along the x
(red) or z (blue) axis. (b) Comparison between the integral of the
induced LDOS (circles) and the field of a static dipole (solid curves)
as a function of the dimensionless parameter 2R/d. The dashed curves
represent the field of a static dipole placed in front of a perfectly
conducting planar surface. All quantities are normalized to E, = 1/
(322d).

distance d above its surface, oriented along either the x (red) or
z (blue) axis, indicating the point at which we analyze the sum
rule. Notice that by analyzing these two directions we cover all
possible orientations. We model the material from which the
nanosphere is made using a Drude dielectric function:"

.2

ep(w) =1 - —F

o(w + l]/p) (3)

where @, is the plasma frequency and y, represents the
damping associated with the nonradiative losses of the material.
Here, for simplicity, we choose 7w, = 4 eV and 7, = 0.01w,,.
Under these conditions, at @ = 0 the dielectric function
diverges, which means that the nanostructure behaves as a
perfect conductor. Therefore, the static field in the right-hand
side of eq 2 can be calculated analytically using the method of
images,46 as detailed in the Supporting Information. On the
other hand, the spherical symmetry of the nanostructure allows
us to calculate the induced LDOS using Mie theory,"” through
an expansion of the electromagnetic field in terms of multipolar
waves.
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Figure 2. (a) Schematics of a nanodisk of radius R and thickness ¢ with a dipole placed a distance d above its surface pointing along the x (red) or z
(blue) axis. (b) Induced LDOS spectrum for a disk with R = 25 nm and ¢ = 10 nm, calculated at different distances, as indicated by the labels. (c)
Integral of the induced LDOS (circles) for the distances discussed in panel (a) and the corresponding induced field generated by a static dipole
calculated either numerically (dashed curves) or using the method of images (solid curves). (d) Integral of the induced LDOS (circles) as a function
of the nanodisk thickness and corresponding induced field generated by a static dipole, obtained using the method of images (solid curves). (e)
Induced LDOS spectrum for a disk with R = 25 nm calculated at d = S nm for different values of t.

Figure 1(b) shows the comparison between the integrated
induced LDOS (circles) and the field of a static dipole (solid
curves), plotted as a function of the dimensionless parameter
2R/d. Here and in the rest of the paper, we normalize all results
to Ey = 1/(327d>), which is 1/4x times the field induced by a
static dipole placed parallel to, and a distance d from, a perfectly
conducting planar surface. Examining the results of panel (b),
we observe that the sum rule is fulfilled in the entire range of
geometries considered, with an error of the same order of
magnitude as the numerical precision of our simulations. As
2R/d grows, the nanosphere locally approaches an infinite
planar surface, and therefore both sides of the sum rule
converge to E,, for the x case, and 2E,, for the z one (see
Supporting Information), as indicated by the red and blue
dashed curves, respectively.

The simplicity of the nanosphere makes it a good initial
example, but, at the same time, it prevents us from exploring
the effect that the aspect ratio of the nanostructure has on the
sum rule. To circumvent this, we analyze the sum rule for a
metallic nanodisk of radius R = 25 nm and thickness t, which is
shown in Figure 2(a). We describe its material properties using
the same Drude dielectric function as for the nanosphere. Due
to the lack of spherical symmetry, Mie theory is no longer
applicable, so we calculate the induced LDOS through the full
numerical solution of Maxwell’s equations using the boundary
element method (BEM).*™! Figure 2(b) displays the results
of this calculation for five different distances d above the surface
of the disk, ranging from S to 25 nm. These spectra show
different resonances, whose height is modified as d is varied,
corresponding to the different plasmonic modes supported by
the nanodisk. For instance, the resonance at ~1.5 eV, which
only appears in the x case (red curves), corresponds to a
dipolar plasmon. The radiative character of this mode makes its
excitation less efficient as the distance decreases. This is also the
case for the mode appearing at ~2.4 eV for the z case (blue
curve). On the other hand, the resonances located around 2.8
eV are clearly nonradiative, since they disappear as d is
increased. Indeed, they correspond to the surface plasmon of a

planar surface, which appears at @ = wp/ﬁ , and is split into

multiple resonances due to the interaction between the upper
and lower surfaces of the disk.

We verify the validity of the sum rule by plotting the
integrated spectra of panel (b) alongside the corresponding
induced field generated by a static dipole. These results are
shown in panel (c) using respectively circles and dashed curves.
The static field is calculated using BEM since, due to the lack of
symmetry of the nanodisks, the method of images is not
convenient in this case. Comparing these two sets of results, we
confirm the validity of the sum rule for all the distances under
consideration. Expectedly, as d/R decreases, the static field (and
hence the integrated LDOS) approaches that of a perfectly
conducting planar surface, namely, E, for the x case and 2E, for
the z case, which are indicated by the solid curves. This means
that, within this limit, the right-hand side of eq 2 only depends
on d and not on the radius or the thickness of the nanodisk, as
confirmed by the results shown in panel (d). There, we plot the
integral of the induced LDOS (circles) and the corresponding
static field, obtained with the method of images, as a function of
the disk thickness. It is important to remark that, although the
integrated LDOS does not vary with t, the corresponding
spectrum is strongly dependent on it. This can be seen in panel
(e), where we plot the induced LDOS spectra for d = S nm and
different nanodisk thicknesses, ranging from S to 50 nm. For
small ¢, the spectrum displays multiple resonances around Aw,/
V2 ~ 2.8 eV, which, as discussed before, arise from the
interaction between the surface plasmons of the upper and
lower plates of the nanodisk. As the thickness increases, the
coupling between the modes of the two plates decreases, and
the resonances coalesce to a single peak. Since the area under
the spectrum is fixed by the sum rule, the reduction of the
number of peaks is compensated by an increase in their height,
as clearly seen in panel (e).

A similar behavior is expected if, instead of changing t, we
modify the shape of the nanostructure, keeping d/R < 1. To
corroborate this prediction, we investigate the induced LDOS
for three different nanostructures: a nanodisk of radius R = 25
nm, a nanosquare of side length 2R = 50 nm, and an equilateral
nanotriangle of height 3R = 75 nm. In all cases, we calculate the
induced LDOS at a point located a distance d = 5 nm above the
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center of the nanostructure, as indicated in Figure 3(a). The
resulting spectra are plotted in panels (b) and (c) for t =S and ¢
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Figure 3. (a) Schematics of three nanostructures with equal
thicknesses t and different shapes: a nanodisk of radius R = 25 nm,
a nanosquare of side length 2R = SO nm, and an equilateral
nanotriangle of height 3R = 75 nm. In all cases, a unit dipole is placed a
distance d = S nm above their surfaces pointing along the x (red) or z
(blue) axis. (b, c) Induced LDOS spectra for the three nanostructures
of panel (a) with thicknesses ¢t = S (b) and ¢ = 10 nm (c). (d) Integral
of the induced LDOS (circles) compared with the induced field of a
static dipole (solid curves), calculated using the method of images for a
perfectly conducting planar surface.

= 10 nm, respectively. Clearly, the shape of the nanostructure
has a major impact on the induced LDOS spectra, dictating the
number of resonances, as well as their spectral positions and
heights. However, as shown in panel (d), the integral of the
induced LDOS (circles) remains the same for all of the
geometries, being equal to E, in the x case (red curve) and 2E,
in the z one (blue curve). These results highlight how the sum
rule investigated here can be used as a guide to select the most
favorable geometries to enhance the decay rate of an emitter
placed near the surface of a nanostructure.

It is important to notice that, as long as the nanostructure is
made of a metallic material (i.e., it has at least one free
electron), it behaves as a perfect conductor at @ = 0. This
means that, for a given geometry, the integral of the induced
LDOS is independent of the parameters of the Drude dielectric
function @, and y,, although the spectrum itself does depend
on them. This is demonstrated in panels (a) and (d) of Figure 4
for a nanodisk with R = 25 nm, ¢ = 10 nm, at a point located a
distance d = S nm above its surface. Specifically, panel (a)
shows the induced LDOS spectrum for three different values of
ha)P, with flyp fixed to 0.04 eV. Expectedly, as W, grows, the

LDOS spectrum blue-shifts. However, its area remains
unchanged, as shown in panel (d) by the circles, and equals
the corresponding induced static field (solid curves), calculated
using the method of images for a perfectly conducting planar
surface. As always, red and blue colors are used to indicate the x
and z cases, respectively.

So far, we have restricted ourselves to nanostructures made
of an ideal metal, whose material properties are described using
a pure Drude dielectric function. However, real metals such as
gold and silver have more complicated dielectric responses,
arising from effects that are neglected in the Drude description,
such as interband transitions. It is possible, however, to describe
the effect of these interband transitions by adding Lorentzian
terms into the Drude dielectric function, £,(®), given in eq 3.5
This results in the so-called Drude—Lorentz dielectric
function;***?

A
" — (0 + i}/o/z)2

epr(@) = ep(@) +

where A quantifies the strength of the transition, w, is the
transition frequency, and y, is the associated damping. To
explore the effect that the addition of the Lorentz term has on
the sum rule, we investigate the same nanodisk as in panel (a)
but now made of a material described with e (w). In
particular, we choose iw,, = 4 eV, hiy, = 0.04 eV, hiw, = 3 eV,
and 7y, = 0.16 eV. Figure 4(b) shows the evolution of the
induced LDOS spectrum for the different values of A indicated
by the labels. As the value of A grows, the height of the
resonances in the spectrum decrease, but, at the same time, the
resonances become broader. This is consistent with the fact
that the area under the spectrum has to remain invariant since,
despite the addition of the Lorentz term, at @ = 0, the material
still behaves as a perfect conductor, and, consequently, the
static field remains equal to that of a perfectly conducting
planar surface. This can be seen in panel (e), where we
compare the integral of the induced LDOS (circles) and the
static field (solid curves) as a function of A.

The Drude—Lorentz dielectric function can also be used to
model dielectric materials by taking @, = 0. In this case, at @ =
0, the material does not behave as a perfect conductor since it
does not have any free electrons. Therefore, the static field is
now dependent on the dielectric function. In particular, for a
planar surface, the method of images results in a extra factor of
A/(A + 2(wy* + 74°/4)), multiplying the result for a perfect
conductor (see the Supporting Information). This means that,
if we repeat the calculations of panel (b) taking @, = 0, the area
under the induced LDOS spectrum must vary with A. This is
clearly shown in Figure 4(c), where we plot the induced LDOS
spectrum for three different values of A. In fact, the integral of
the induced LDOS, plotted with circles in panel (f), grows
linearly with A, as expected from the factor A/(A + 2(w* + y,*/
4)), which, for A < @y’ reduces to A/(2w,’). Incidentally, in
this case, the agreement of the integrated LDOS and the static
field calculated with the method of images (solid curves) is not
as good as in previous examples. We attribute this to the less
efficient screening of bound electrons as compared with that of
the free electrons, which results in the edges of the
nanostructure having a noticeable contribution to the static
field. However, if we calculate the latter using BEM (dashed
curves), the agreement with the integrated LDOS is recovered,
as required by the sum rule. These examples demonstrate how
the investigated sum rule can help to understand the limits of
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Figure 4. (a—c) Induced LDOS spectrum evaluated at d = 5 nm above the surface of a nanodisk with R = 25 nm, t = 10 nm, made of different
materials. (a) Nanodisk made of an ideal metal described using a Drude dielectric function with hy, = 0.04 eV and different values of 7w, (b)
Nanodisk made of a real metal described with a Drude—Lorentz dielectric function with 7w, = 4 eV, iy, = 0.04 eV, iw, = 3 eV, iy, = 0.16 eV, and
different values of A. (c) Nanodisk made of a dielectric material described using a Drude—Lorentz dielectric function with vanishing w,, 7w, = 3 eV,
hy, = 0.16 eV, and different values of A. (d—f) Comparison between the integral of the induced LDOS (circles) and the static field for the nanodisks
analyzed in panels (a), (b), and (c), respectively. Solid curves represent the results of the static field calculated using the method of images for a
perfectly conducting planar surface, while dashed curves are used to indicate the calculations performed with BEM. In all cases, red and blue colors
correspond respectively to the x and z cases, as indicated in Figure 2(a).

the LDOS produced by structures made of different types of

materials.

Although we have focused so far on finite nanostructures, the

sum rule under investigation applies equally to extended

systems, such as metallic slabs. In these cases, thanks to the

translational invariance of the system, we can compute the

~ 40k t=50nm i
induced LDOS analytically, as explained in the Supporting > r 1
Information. Furthermore, the right-hand side of the sum rule ;3 201 d=%nm A 1
can be obtained exactly by using the method of images for a i 1=350mm 1 ]
. (@) T d=10nm r=5nm
perfectly conducting planar surface. As a first example, we A ZM |
investigate the metal slab of thickness ¢ shown in Figure 5(a). %
We describe the material properties of the structure using a 0 r~51i1m s : It <
Drude dielectric response with fla)P = 4 ¢V and 7, = 0.01@,. Energy (¢V) Integrated LDOS / E,
The corresponding induced LDOS spectrum is plotted in panel (e) ' PR ®
(c) for different values of d and t. As expected, smaller values of A S || |
t result in the hybridization of the surface plasmon supported at % 36k 2_:56' v
the upper and lower surfaces, which leads to a splitting of the o 30f 1
. cres . .. . ~ d=10nm
resonance. This splitting disappears when ¢ is increased, leaving 2 E=0.1eV
a much stronger and narrower resonance (notice the different 8 15 s r
scales in the upper and lower parts of the plot). The LDOS J\\, E=0.1eV
. . . 0 F g
spectrum also depends on d; in particular, for small distances, 60 ie 7 i !
the contribution of large wave vectors, outside the light cone, Energy (eV) Integrated LDOS / £,
becomes stronger, which results in a smaller splitting. However, Figure S. (3, b) Schematics of a metallic slab of thickness £ () and a
despite the changes in the LDOS spectra, the corresponding graphene sheet with Fermi energy E (b). In both cases, a dipole is
integrals for each value of d always have to be the same. This is placed a distance d from the surface oriented along the x (red) or z
confirmed in Figure 5(d), where we compare the static field (blue) axis. (c) Induced LDOS spectrum for the metallic slab
) gu Y ) P ) calculated for different values of ¢ and d. (d) Comparison between the
(solid curves) with the integral of the induced LDOS (circles). integral of the induced LDOS (circles) and the corresponding static
To complete our analysis of extended systems, we also field (solid curves) for the structures analyzed in panel (c). (e, f) Same

investigate the case of a pure two-dimensional material, namely, as (c, d), but for the graphene sheet with different values of d and Ej.

a graphene sheet, which is depicted in Figure S(b). This
material, when doped, behaves as a metal, with a surface
conductivity that can be modeled within the random phase
approximation, at temperature T = 0 K using54
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Here, O(x) is a step function and Ey is the Fermi energy, which
determines the level of doping of the graphene sheet.
Furthermore, y is the damping rate given by y = ev/(uE;)
in terms of the Fermi velocity vz & ¢/300 and the electron
mobility p, for which we assume a value of 10* cm?/(V s).
Although this expression of the conductivity is strictly valid at T
= 0 K and for y = 0, it is a very good approximation for Fermi
energies larger than the thermal energy kgT, which, at room
temperature, is ~0.026 eV.

Using this surface conductivity, we can calculate the induced
LDOS spectrum at distance d from the graphene sheet. The
corresponding results are plotted in Figure S(e) for different
values of d and Eg. In all cases, we observe a single resonance,
corresponding to the surface plasmon supported by the
graphene sheet, which blue-shifts, becomes broader, and
reduces its height (notice the different scales in the upper
and lower parts of the plot) as Ey increases. A sharp feature is
visible at Aw = 2Eg corresponding to the threshold of
interband transitions (second term in the surface conductivity),
which adds a nonradiative contribution to the LDOS. The sum
rule is satisfied in each of these cases, as shown in Figure 5(f),
where we compare the integral of the induced LDOS (circles)
with the field induced by a static dipole (solid curves). These
results confirm that the integral of the induced LDOS,
evaluated at a certain distance from a planar metallic structure,
is always independent of its thickness, as well as of its material
properties, as long as the system remains metallic. More
broadly, the presented analysis can help to understand the
interaction of emitters with substrates, which is a relevant
problem for applications in sensing and photochemistry.

The derivation of the sum rule for the induced LDOS can be
generalized to obtain a sum rule for the cross density of states.
This quantity measures the intrinsic spatial coherence of the
electric field near a nanostructure.®">>%¢ Furthermore, it is
proportional to the so-called cross-decay rate of two diggole
emitters interacting in the presence of a nanostructure,*>>’ =7
Similar to the LDOS, the CDOS is obtained from the Green
tensor, evaluated, in this case, at two different positions:

i ‘ha)—ZEF

+ —log
7 ho + 2Eg

2
CDOS, 4(r, ¥/, w) = ——wlm{ﬁ-G(r, r, w)n'}
r

a0
,Nn

The contribution induced by the nanostructure can be
separated from that of a vacuum as CDOSI(r, r/, ) =
CDOS;4(r, r', @) — CDOSY;(x, ', ), and, therefore, is
proportional to the imaginary part of G™(r, r, w). As detailed
in the Supporting Information, we can follow the same
procedure as in the derivation of eq 2 to obtain the following
sum rule for the induced CDOS:

o . 1
f CDOSM (r, ', ®) dw = —
0 ' 4

E™r; v, A)-A
CER SN
where E™(r; 1/, fi’) is the field created at r, by a static dipole
located at r’, oriented along '
To confirm the validity of this sum rule, we analyze the case
of a metallic nanosphere of radius R = 25 nm with two dipoles
placed a distance d = 15 nm above its surface, separated by an

angle 6, as shown in Figure 6(a). The material properties of the
nanostructure are described using a Drude dielectric function

(b) 1.5 , , . . .

=]

o
n
T

o
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S
n
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Figure 6. (a) Schematics of a nanoparticle of radius R = 25 nm with
two dipoles placed a distance d = 15 nm from its surface separated by
an angle 6. Each of the dipoles is oriented along either the x (red) or z
(blue) axis. (b) Comparison, as a function of 0, of the integral of the
induced CDOS (circles) and the corresponding static field induced by
the left dipole at the position of the right one (curves). We analyze
four possible combinations of the relative orientation of the two
dipoles, as indicated in the legend by x, zz, zx, and xz, where the first
(second) letter corresponds to the orientation of the right (left)
dipole.

with Aw, = 4 eV and y, = 0.01w,. We calculate the static field
induced by the left dipole at the position of the one placed on
the right as a function of € using the method of images for a
spherical geometry (see the Supporting Information). The
corresponding results are plotted in Figure 6(b) for four
different combinations of the orientation of the dipoles: xx, zz,
zx, and xz, where the first (second) letter in these labels
indicates the orientation of the right (left) dipole (see the
legend). We compare the static field with the integral of the
induced CDOS, calculated using Mie theory, which is plotted
using circles. As expected, the two sets of calculations are in
excellent agreement for all values of € under consideration. At 6
= 0° and € = 180° the xz and zx cases vanish due to the
symmetry of the induced field. Indeed, for 8 = 0° the induced
CDOS reduces to the induced LDOS.

The CDOS sum rule applies, as well, to extended systems. In
order to verify it, we consider the case of a metallic slab of
thickness ¢ with two dipoles placed a distance d = 10 nm above
its surface, separated by D = 20 nm, as shown in Figure 7(a).
We describe the material properties of the slab using a Drude
dielectric response with 7w, = 4 eV and y, = 0.0lw,. The
corresponding induced CDOS spectrum is plotted in Figure
7(b) for t = 50 nm (upper curves) and t = 5 nm (lower curves).
We investigate three different combinations of the orientation
of the dipoles—uxx, zz, and xz—where the first (second) letter
in these labels indicates the orientation of the right (left) dipole
(see the legend). Notice that, in this case, the zx combination
produces the same result as the xz but with opposite sign.
Examining the results, we observe that, as it was in the case of
the LDOS, the thinner slab presents a spectrum with more
features than the thicker one, which we attribute to the stronger
hybridization between the surface plasmon supported at the
upper and lower surfaces of the structure. Due to the fixed value
of the integrated CDOS, a larger number of features in the
spectrum has to come associated with smaller peak values
(notice the different scales in the upper and lower parts of the
plot). The validity of the CDOS sum rule is confirmed in panel
(c), where we compare, as a function of the thickness of the
slab, the integrated CDOS (circles) with the static field induced
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Figure 7. (a) Schematics of a metallic slab of thickness ¢ with two
dipoles located a distance d = 10 nm above it and separated from each
other by D = 20 nm. Each of the dipoles is oriented along either the x
(red) or z (blue) axis. (b) Induced CDOS spectrum for t = 50 nm
(upper curves) and t = S nm (lower curves). (c) Comparison, as a
function of ¢, of the integral of the induced CDOS (circles) and the
corresponding static field induced by the left dipole at the position of
the right one (curves). We analyze three possible combinations of the
relative orientation of the two dipoles, as indicated in the legend by xx,
zz, and xz, where the first (second) letter corresponds to the
orientation of the right (left) dipole.

by the left dipole at the position of the right one (curves). The
latter is calculated using the method of images (see Supporting
Information). These results show the potential of the analyzed
CDOS sum rule to guide the design of nanostructures capable
of enhancing the coupling between dipole emitters placed in
their vicinity.

B CONCLUSIONS

In summary, we have investigated the response of different
nanostructures to near-field excitation by dipole emitters
through the analysis of a sum rule for the induced LDOS.
This relation bounds the spectral integral of the LDOS induced
by a nanostructure to the field generated by a static dipole in its
presence. We have verified the sum rule for a wide variety of
systems including finite nanostructures such as nanospheres,
nanodisks, nanotriangles, and nanosquares, made of metallic as
well as dielectric materials. We have also shown that it applies
to extended systems, such as metal films and graphene sheets.
Through this study, we have shown that the spectral integral of
the LDOS near metallic nanostructures is independent of the
material parameters, such as the plasma frequency and the
damping. We have shown, as well, that this quantity is
independent of the thickness for metallic slabs and of the Fermi
level of graphene sheets. Although we have focused on the

electric part of the LDOS, the sum rule investigated here can be
directly extended to the magnetic component of LDOS,””"
which governs the decay rate of magnetic dipole transitions.’”¢"
Furthermore, we have applied the sum rule to the CDOS, a
quantity that measures the spatial coherence of the electric field
near a nanostructure and determines the interaction between
two dipoles in its presence. Our work serves to highlight the
usefulness of the analyzed sum rule in the understanding of the
limits of the near-field response of nanostructures, and shows
how to exploit it as a tool to guide the selection of the most
favorable nanostructure geometries and materials for achieving
strong values of the LDOS and the CDOS over desired parts of
the spectrum.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsphoto-
nics.8b00225.

Derivation of the sum rule for the LDOS and CDOS;
outline of the method of images for a dipole placed in
front of a plane and a sphere; derivation of the induced
LDOS and CDOS near a planar system (PDF)

H AUTHOR INFORMATION

Corresponding Author
*E-mail: manjavacas@unm.edu.

ORCID
Alejandro Manjavacas: 0000-0002-2379-1242

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This work has been sponsored by the U.S. National Science
Foundation (Grant ECCS-1710697). We also acknowledge the
UNM Center for Advanced Research Computing for computa-
tional resources used in this work.

B REFERENCES

(1) Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge
University Press: New York, 2006.

(2) Atwater, H. A;; Polman, A. Plasmonics for improved photovoltaic
devices. Nat. Mater. 2010, 9, 205—213.

(3) Baffou, G.; Quidant, R. Nanoplasmonics for Chemistry. Chem.
Soc. Rev. 2014, 43, 3898—3907.

(4) Brongersma, M. L,; Halas, N. J.; Nordlander, P. Plasmon-induced
hot carrier science and technology. Nat. Nanotechnol. 20185, 10, 25—34.

(5) Johansson, P.; Xu, H,; Kill M. Surface-enhanced Raman
scattering and fluorescence near metal nanoparticles. Phys. Rev. B:
Condens. Matter Mater. Phys. 2008, 72, 035427.

(6) Moskovits, M. Surface-enhanced Raman spectroscopy: a brief
retrospective. J. Raman Spectrosc. 2005, 36, 485—496.

(7) Lozano, G.; Louwers, D. J.; Rodriguez, S. R. K.; Murai, S.; Jansen,
O. T. A; Verschuuren, M. A;; Gomez Rivas, J. Plasmonics for solid-
state lighting: enhanced excitation and directional emission of highly
efficient light sources. Light: Sci. Appl. 2013, 2, e241.

(8) Yang, A; Odom, T. W. Breakthroughs in Photonics 2014
Advances in Plasmonic Nanolasers. IEEE Photonics J. 2015, 7, 1—6.

(9) Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative Plasmonic
Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264—3294.

(10) Myroshnychenko, V.; Carbé-Argibay, E.; Pastoriza-Santos, ;
Pérez-Juste, J.; Liz-Marzan, L. M.; Garcia de Abajo, F. J. Modelling the
optical response of highly faceted metal nanoparticles with a fully 3D
boundary element method. Adv. Mater. 2008, 20, 4288—4293.

DOI: 10.1021/acsphotonics.8b00225
ACS Photonics XXXX, XXX, XXX—XXX



ACS Photonics

(11) Miller, O. D.; Polimeridis, A. G.; Reid, M. T. H.; Hsu, C. W,;
Delacy, B. G.; Joannopoulos, J. D.; Soljacic, M.; Johnson, S. G.
Fundamental limits to optical response in absorptive systems. Opt.
Express 2016, 24, 3329-3364.

(12) Miller, O. D.; Hsu, C. W.; Reid, M. T. H.; Qiu, W.; DeLacy, B.
G.; Joannopoulos, J. D.; Soljacic, M.; Johnson, S. G. Fundamental
limits to extinction by metallic nanoparticles. Phys. Rev. Lett. 2014, 112,
123903.

(13) Sohl, C.; Gustafsson, M.; Kristensson, G. Physical limitations on
broadband scattering by heterogeneous obstacles. J. Phys. A: Math.
Theor. 2007, 40, 11165.

(14) Sohl, C.; Gustafsson, M.; Kristensson, G. Physical limitations on
metamaterials: restrictions on scattering and absorption over a
frequency interval. J. Phys. D: Appl. Phys. 2007, 40, 7146.

(15) Raman, A; Shin, W,; Fan, S. Upper Bound on the Modal
Material Loss Rate in Plasmonic and Metamaterial Systems. Phys. Rev.
Lett. 2013, 110, 183901.

(16) Hugonin, ].-P.; Besbes, M.; Ben-Abdallah, P. Fundamental limits
for light absorption and scattering induced by cooperative electro-
magnetic interactions. Phys. Rev. B: Condens. Matter Mater. Phys. 2015,
91, 180202.

(17) Miller, O. D.; Ilic, O.; Christensen, T.; Reid, M. T. H.; Atwater,
H. A, Joannopoulos, J. D.; Soljacic, M.; Johnson, S. G. Limits to the
Optical Response of Graphene and Two-Dimensional Materials. Nano
Lett. 2017, 17, 5408—5415.

(18) Altarelli, M.; Dexter, D. L.; Nussenzveig, H. M.; Smith, D. Y.
Superconvergence and Sum Rules for the Optical Constants. Phys. Rev.
B 1972, 6, 4502—4509.

(19) King, F. W. Sum rules for the optical constants. J. Math. Phys.
1976, 17, 1509—1514.

(20) Forcella, D.; Prada, C.; Carminati, R. Causality, Nonlocality, and
Negative Refraction. Phys. Rev. Lett. 2017, 118, 134301.

(21) Carminati, R; Saenz, J. J. Density of States and Extinction Mean
Free Path of Waves in Random Media: Dispersion Relations and Sum
Rules. Phys. Rev. Lett. 2009, 102, 093902.

(22) Kuhn, W. Uber die Gesamtstirke der von einem Zustande
ausgehenden Absorptionslinien. Eur. Phys. J. A 1925, 33, 408—412.

(23) Reiche, F.; Thomas, W. Uber die Zahl der Dispersionselek-
tronen, die einem stationdren Zustand zugeordnet sind. Eur. Phys. . A
1928, 34, 510—528.

(24) Barnett, S. M.; Loudon, R. Optical Thomas-Reiche-Kuhn Sum
Rules. Phys. Rev. Lett. 2012, 108, 013601.

(25) Sievers, A. J. Extinction sum rule and optical moment for an
ellipsoid particle of arbitrary shape. Opt. Commun. 1994, 109, 71—74.

(26) Yang, Z.-].; Antosiewicz, T. J.; Verre, R.; Garcia de Abajo, F. J.;
Apell, S. P.; Kill, M. Ultimate limit of light extinction by nanophotonic
structures. Nano Lett. 20185, 15, 7633—7638.

(27) Joulain, K; Carminati, R.;; Mulet, J. P.; Greffet, J. J. Definition
and measurement of the local density of electromagnetic states close to
an interface. Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 68,
245408.

(28) Fussell, D. P.; McPhedran, R. C.; Martijn de Sterke, C. Three-
dimensional Green’s tensor, local density of states, and spontaneous
emission in finite two-dimensional photonic crystals composed of
cylinders. Phys. Rev. E 2004, 70, 066608.

(29) Kuttge, M,; Vesseur, E. J. R;; Koenderink, A. F.; Lezec, H. J,;
Atwater, H. A; Garcia de Abajo, F. J,; Polman, A. Local density of
states, spectrum, and far-field interference of surface plasmon
polaritons probed by cathodoluminescence. Phys. Rev. B: Condens.
Matter Mater. Phys. 2009, 79, 113405.

(30) Krachmalnicoff, V.; Castanié, E.; De Wilde, Y.; Carminati, R.
Fluctuations of the Local Density of States Probe Localized Surface
Plasmons on Disordered Metal Films. Phys. Rev. Lett. 2010, 105,
183901.

(31) Carminati, R; Cazé, A,; Cao, D.; Peragut, F.; Krachmalnicoff,
V.; Pierrat, R;; Wilde, Y. D. Electromagnetic density of states in
complex plasmonic systems. Surf. Sci. Rep. 2015, 70, 1—41.

(32) Shahbazyan, T. V. Local Density of States for Nanoplasmonics.
Phys. Rev. Lett. 2016, 117, 207401.

(33) Dereux, A; Girard, C.; Weeber, J.-C. Theoretical principles of
near-field optical microscopies and spectroscopies. J. Chem. Phys. 2000,
112, 7775—=7789.

(34) Purcell, E. M. Spontaneous emission probabilities at radio
frequencies. Phys. Rev. 1946, 69, 681.

(35) Barnett, S. M.; Huttner, B.; Loudon, R. Spontaneous emission in
absorbing dielectric media. Phys. Rev. Lett. 1992, 68, 3698—3701.

(36) Noginov, M. A;; Li, H,; Barnakov, Y. A;; Dryden, D.; Nataraj, G;
Zhu, G, Bonner, C. E; Mayy, M,; Jacob, Z.; Narimanov, E. E.
Controlling spontaneous emission with metamaterials. Opt. Lett. 2010,
35, 1863—1865.

(37) Poddubny, A. N.; Belov, P. A; Ginzburg, P.; Zayats, A. V,;
Kivshar, Y. S. Microscopic model of Purcell enhancement in
hyperbolic metamaterials. Phys. Rev. B: Condens. Matter Mater. Phys.
2012, 86, 035148.

(38) Sauvan, C.; Hugonin, J. P.; Maksymov, L. S.; Lalanne, P. Theory
of the Spontaneous Optical Emission of Nanosize Photonic and
Plasmon Resonators. Phys. Rev. Lett. 2013, 110, 237401.

(39) Carminati, R; Greffet, J.-J.; Henkel, C.; Vigoureux, J. Radiative
and non-radiative decay of a single molecule close to a metallic
nanoparticle. Opt. Commun. 2006, 261, 368—375.

(40) Barnett, S. M.; Loudon, R. Sum rule for modified spontaneous
emission rates. Phys. Rev. Lett. 1996, 77, 2444—2446.

(41) Barnett, S. M,; Loudon, R. Sum rule for environmentally
modified spontaneous emission rates. Quantum Semiclassical Opt.
1998, 10, 591.

(42) Scheel, S. Sum rule for local densities of states in absorbing
dielectrics. Phys. Rev. A: At, Mol, Opt. Phys. 2008, 78, 013841.

(43) Cao, D.; Cazg, A.; Calabrese, M.; Pierrat, R.; Bardou, N.; Collin,
S.; Carminati, R.; Krachmalnicoff, V.; De Wilde, Y. Mapping the
Radiative and the Apparent Nonradiative Local Density of States in the
Near Field of a Metallic Nanoantenna. ACS Photonics 2015, 2, 189—
193.

(44) Blum, C; Zijlstra, N.; Lagendijk, A,; Wubs, M.; Mosk, A. P;
Subramaniam, V.; Vos, W. L. Nanophotonic Control of the Forster
Resonance Energy Transfer Efficiency. Phys. Rev. Lett. 2012, 109,
203601.

(45) Ficek, Z.; Tana$, R. Entangled states and collective nonclassical
effects in two-atom systems. Phys. Rep. 2002, 372, 369—443.

(46) Jackson, J. D. Classical Electrodynamics; Wiley: New York, 1999.

(47) Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light
by Small Particles; Wiley-Interscience: New York, 1983.

(48) Garcia de Abajo, F. J.; Howie, A. Relativistic electron energy loss
and electron-induced photon emission in inhomogeneous dielectrics.
Phys. Rev. Lett. 1998, 80, 5180—5183.

(49) Garcia de Abajo, F. J.; Howie, A. Retarded field calculation of
electron energy loss in inhomogeneous dielectrics. Phys. Rev. B:
Condens. Matter Mater. Phys. 2002, 65, 115418.

(50) Hohenester, U.; Triigler, A. MNPBEM - A Matlab Toolbox for
the simulation of plasmonic nanoparticles. Comput. Phys. Commun.
2012, 183, 370.

(51) Waxenegger, J; Triigler, A; Hohenester, U. Plasmonics
simulations with the MNPBEM toolbox: Consideration of substrates
and layer structures. Comput. Phys. Commun. 2015, 193, 138—150.

(52) Maier, S. A. Plasmonics: Fundamentals and Applications;
Springer: New York, 2007.

(53) Pines, D.; Noziéres, P. The Theory of Quantum Liquids; W. A.
Benjamin, Inc.: New York, 1966.

(54) Koppens, F. H. L; Chang, D. E; Garcia de Abajo, F. J.
Graphene plasmonics: A platform for strong light-matter interactions.
Nano Lett. 2011, 11, 3370—3377.

(55) Setild, T.; Blomstedt, K.; Kaivola, M.; Friberg, A. T. Universality
of electromagnetic-field correlations within homogeneous and
isotropic sources. Phys. Rev. E: Stat. Phys, Plasmas, Fluids, Relat.
Interdiscip. Top. 2003, 67, 026613.

(56) Cazé, A; Pierrat, R; Carminati, R. Spatial Coherence in
Complex Photonic and Plasmonic Systems. Phys. Rev. Lett. 2013, 110,
063903.

DOI: 10.1021/acsphotonics.8b00225
ACS Photonics XXXX, XXX, XXX—XXX



ACS Photonics

(57) Martin-Cano, D.; Martin-Moreno, L.; Garcia-Vidal, F. J;
Moreno, E. Resonance Energy Transfer and Superradiance Mediated
by Plasmonic Nanowaveguides. Nano Lett. 2010, 10, 3129—3134.

(58) Gonzalez-Tudela, A,; Martin-Cano, D.; Moreno, E.; Martin-
Moreno, L,; Tejedor, C.; Garcia-Vidal, F. J. Entanglement of two
qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev.
Lett. 2011, 106, 020501.

(59) Manjavacas, A.; Thongrattanasiri, S.; Chang, D. E; Garcia de
Abajo, F. J. Temporal quantum control with graphene. New J. Phys.
2012, 14, 123020.

(60) Chigrin, D. N.; Kumar, D.; Cuma, D.; von Plessen, G. Emission
Quenching of Magnetic Dipole Transitions near a Metal Nanoparticle.
ACS Photonics 2016, 3, 27—34.

(61) Manjavacas, A.; Fenollosa, R;; Rodriguez, I; Jimenez, M. C,;
Miranda, M.; Meseguer, F. Magnetic Light and Forbidden Photo-
chemistry: The Case of Singlet Oxygen. J. Mater. Chem. C 2017, §,
11824—11831.

DOI: 10.1021/acsphotonics.8b00225
ACS Photonics XXXX, XXX, XXX—XXX



Supporting information for:
Analysis of the Limits of the Local Density of

Photonic States Near Nanostructures.

Stephen Sanders and Alejandro Manjavacas®

Department of Physics and Astronomy, University of New Mezico, Albuquerque, New
Mezxico 87131, United States

E-mail: manjavacas@unm.edu

Sum rule derivation

We start the derivation of the sum rule by considering the following function

2uw? .
fﬁ,fl/(r7 rla W) = _%ﬁ : Gmd(r7 rla LU) ' ﬁl?

which is analytic in the upper part of the complex w plane and vanishes for large w in that

plane. As a consequence, it satisfies Kramers-Kronig relations,S! and, in particular,

2 oe w,Im{fﬁ,ﬁ’ (I‘, IJ? w/)}
Re{fﬁﬁ/ (1', I'/aw)} = %P/o W2 — w2 duf,

which, for w = 0, becomes

dw'. (1)

Re{ faa (T, r',0)} = %73 /00 Im{ faa(r, v, 0)}

0 W'

S1



Taking into account that the n component of the induced field generated by a dipole placed

at 1’ oscillating at frequency w along #’ is given byS2
n-EM(r,w) = —4rwih - GM(r, v/, w) - i,
the left-hand side of Equation (1) reduces to

Re{fan (r,r',0)} = %ﬁ -E™(r; ', i),
where E™(r;r’ @t’) is the static field at r, induced by a unit dipole placed at r’, oriented
along n’, due to the presence of the nanostructure. It is important to remark that this
field is always a real quantity. Finally, noticing that Im{fa s (r,r',w)}/w is equal to the
induced LDOS when r = r’ and i = @i/, Equation (1) becomes the LDOS sum rule stated
in Equation (2) of the main paper. If, on the other hand, we leave r # r’ and fi # @, then

Equation (1) reproduces the sum rule for the CDOS given in Equation (4) of the main paper.

Method of images for electrostatic problems

In the static limit, i.e., for w = 0, the electric field generated by a dipole placed in the
vicinity of a nanostructure can be calculated from the electrostatic potential that solves
Poisson’s equation. If the structure has enough symmetry, Poisson’s equation can be solved
analytically using the so-called method of images.S! This method consists in replacing the
nanostructure with a collection of image charges, which generate a potential in the region
outside of the nanostructure satisfying the boundary conditions imposed by the geometry
of the nanostructure. Thanks to the uniqueness of the solution of Poisson’s equation,>!
the potential created by the image charges has to be identical to the potential induced
by the nanostructure in its exterior. We use the method of images throughout the paper
to calculate the static field appearing on the right-hand side of the sum rule. Although

a detailed explanation of this method can be found in most electromagnetism textbooks,

S2



we provide here, for the sake of completeness, a summary of its application to planar and

spherical geometries.

Figure S1: Schematics used in the derivation of the method of images for a dipole placed
near an extended planar surface.

Planar surface. We begin by considering the case of a dipole p, placed at a distance d
from a planar surface. The response of the latter caused by the presence of the dipole can be
modeled using an image dipole p, placed at the mirror position with respect to the surface,
as shown in Figure S1. The electrostatic potential created at r by a dipole placed at r’ is

given by
p-(r—1)
lr — /|3

O(r) =
(notice we use Gaussian units) while the corresponding field is

3c—r)r-r)-p]
Ik TP

E(r) = (2)

Imposing the continuity of both the tangential component of the electric field and the normal
component of the displacement vector, we find that, for a given dipole p, the corresponding

image dipole p is given by



where 1 is the unit vector normal to the surface (pointing outside it), and £(0) represents
the static value of the dielectric function of the material from which the surface is made.
Using these expressions, together with Equation (2), we can calculate the field created by

the image dipole at the position of the original dipole, which satisfies

—1
0 -1,
e(0)+1

where P and P, are, respectively, unit dipoles parallel and perpendicular to @, and Ey =
1/(32md?). If the surface is made of a perfect conductor, £(0) — oo, and the expressions
above reduce to

| R, I ind A
EElndl Py = Eo, E 4.p, = 2F,.

p

Figure S2: Schematics used in the derivation of the method of images for a dipole placed
near a sphere.
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If instead, the field of the image dipole is evaluated at a position different from that of

the original dipole, we get

| s _30=0)0-1)-5 B

4r At|r — /)P e — 1

where r and r’ represent, in this case, the position at which the field is evaluated, and the
position at which the image dipole p is located.

Sphere. The other important geometry we use in the manuscript is that of a dipole
placed at a point r, located at a distance d above the surface of a perfectly conducting
sphere of radius R, as shown in Figure S2. Following the derivation by Santos and Tort,?
we start by considering the case of a grounded sphere, for which the potential must vanish
everywhere on its surface. We can model the effect of the sphere by using an image dipole
p and an image charge ¢, placed at a point r. This point is located on the line connecting
the original dipole and the center of the sphere, a distance h = R?/(R + d) from the latter,
as shown in Figure S2. The potential created by the original dipole, the image dipole, and

the image charge at a point s on the surface of the sphere is

p-(s—r) p-(s—7) q

o = .
&= " F-FF -7

Imposing ®(s) = 0, we can solve this equation to obtain

- R? o - R
PZW[QU(U'P)—PL qzm(u'm,

where 11, in this case, is the unit vector normal to the surface of the sphere (pointing outside
it) at the point at which it is crossed by the line connecting its center with the position of p.
If instead of having a grounded sphere, we have an isolated sphere, the total image charge
has to vanish. We can fulfill this requirement without altering the uniformity of the potential

on the surface of the sphere by adding an extra image charge —¢q at the center of the sphere.

S5



Then, the field created by the image dipole and the two image charges at a point r’ outside
the sphere is
Sw-Blw-95 p L .(0-F v

ind/./\ __ ~
E"(r') = o — Fp - P +q|r,_f|3 _q|r/|3' (3)

Taking r’ = r, the field at the position of the original dipole due to the presence of the sphere

satisfies
1 SR 1o SR ARd ARd?
SRy = g ~E.p, = . 2F
e PITRRTaE™ 4 PrT I QR+dP T QR+42 Ry TV

where p and p, are, respectively, unit dipoles parallel and perpendicular to the sphere
surface. These expressions, normalized to Ejy, correspond to the solid curves in Figure 1 of
the main paper. On the other hand, leaving r' # r, Equation (3) can be used to calculate
the right-hand side of the sum rule for the CDOS (solid and dashed curves in Figure 6 of

the main paper).

LDOS and CDOS near an extended system

In order to calculate the induced part of the LDOS and the CDOS near an extended system
such as a metallic film or graphene sheet, we can take advantage of their translational

invariance to write the induced part of the Green tensor connecting points r = (z,y, z) and

/ S2

v = (2,y,7), as

. % dQ.dQ,
Glnd (I', I'/7 (,O) _ ? / Q Qy ezQx(;B—$ )ezQy(y—y )ezkz(z-f-z ) [TpMp + TSMS] ) (4)

8m2w? J_ k.

where (), and @), are the components of the wave vector parallel to the surface, while
k. = \/k*— Q% is the component perpendicular to it, with Q*> = Q% + @} and k = w/c.

Furthermore, 7, and 7, are the Fresnel reflection coefficients of the extended system for p-
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and s-polarized waves, and

2 2
_kz % —/’f,f Qégy —Q.k, k2 % k2 Qégy 0
Mp kz Q2 kz Q2 kaz ) MS k Q7 k Q° 0
Quk. Qyk- Q? 0 0 0
Taking the limit " — r, the equation above reduces to
; o k. 0 0 2 100
G™(r,r,w) = T / dQQe*™ |r, [ 0 k. 0 - Sk 010}/,
T Jo 0 0 =22 = \0 00

from which the induced LDOS can be directly calculated using Equation (1) of the main

paper. If, on the other hand, we are interested on the CDOS, we have to work with Equa-
tion (4), particularized for the r and r’ under consideration.

The Fresnel reflection coefficients for the metallic slab of thickness ¢ studied in the paper
are given by

(1 — 2iklt
= Pl =)

1— p?e2ik;t ’

where i = (p, s), k. = \/e(w)k? — Q?, e(w) is the dielectric function of the slab, and p; is the
reflection coefficient for a planar interface defined asS?

B e(w)k, — k.

k. -k
S Ry YA S S
Alternatively, for the case of a graphene sheet, we have
L 271'(;((.0) kz L 27rac(2w)w
p 1 + 271'((:(&)) kz’ §

kz + 270 (w)w ’

c2

where o(w) is the graphene conductivity defined in the paper.
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Numerical integrations

The sum rule involves an integral over the whole frequency spectrum. In order to calculate
it numerically, we must restrict the integral to a finite frequency interval wyin < w < Whax,

and then we approximate

/ LDOS (w)dew ~ / " LDOS (w)duw.
0 w

min

We choose wpi, and wyax such that the extension of the frequency interval does not change
the result of the integral within our numerical precision. In practice, this results in values of

Wmin ~ 1074 eV and wyax ~ 10 — 50 €V.
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