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Full list of author information is subalgebra of the twisted affine Lie algebra of type A(Qz). We prove that these modules
available at the end of the article admit a decreasing filtration whose sections are isomorphic to stable Demazure
modules in an integrable highest weight module of sufficiently large level. In particular,
we show that any stable level m’ Demazure module admits a filtration by level m
Demazure modules for all m > m’. We define the graded and weighted generating
functions which encode the multiplicity of a given Demazure module and establish a
recursive formulae. In the case when m’ = 1,2 and m = 2, 3, we determine these
generating functions completely and show that they define hypergeometric series and
that they are related to the g-Fibonacci polynomials defined by Carlitz.

Introduction

In this paper, we explore a connection between Demazure modules in the highest weight
representations of affine Lie algebras and number theory, including the connection with
various hypergeometric series, the g-Fibonacci polynomials introduced by Carlitz and
the mock theta functions of Ramanujan. The first such connection was made in [2] in
the case of the affine Lie algebra associated to sly. In this paper, we deal with the other
(and the substantially more difficult) rank-one case, namely A;Z). The basic result is that
the character of a Demazure module of level m can be written as a N[g]-combination
of characters of Demazure modules of fixed level £ with £ > m. In fact, we prove that
a Demazure module of level m admits a flag where the successive quotients are level £
Demazure modules. This allows us to define corresponding generating series and following
the approach taken in [2] our goal was to study these series. In this paper, we shall see that it
is in fact better to work with canonically defined weighted generating series; we prove that
these series are well-known hypergeometric functions or suitable limits of hypergeometric
functions in the case when m = 1,2 and £ = 2, 3. For higher values of £ and m, we see that
these series satisfy interesting but very complicated recurrences. The results of this paper
and [2] indicate a deep and unexpected connection between the theory of Demazure flags
and its combinatorics and number theory. Additional evidence for this connection for
higher-rank cases can be found in the ongoing work [3]. We remark here that there is
a well-known and very important connection between the representation theory of level
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one representations and number theory through the Rogers—Ramanujan identities [15].
But this does not appear to be related in any obvious way to our study of Demazure flags.

We describe our results in more detail. A character formula for Demazure modules,
analogous to the Weyl character formula, was given in [8,13,17]. Combinatorial versions
of the character of such modules were given in [16]. In the case of affine Lie algebras, there
is extensive literature in the case of level one highest weight integrable modules; here
the level is the integer by which the canonical central element of the affine Lie algebra
acts on the highest weight module. The work of Sanderson [19] for Ar(ll) and the work
of Ion [10] more generally shows that the character of a particular family of level one
Demazure modules (which we shall refer to as stable Demazure modules) is given by a
specialization of Macdonald polynomials (in the untwisted simply laced case) and by the
specialization of the Koornwinder polynomial for the twisted affine Lie algebras. However,
no such formulae are available for the higher-level Demazure modules.

In [11], Joseph introduced the notion of a module admitting a Demazure flag. He proved
in the case of the quantized enveloping algebra associated to a simply laced affine Lie
algebra that the tensor product of a one-dimensional Demazure module by an arbi-
trary Demazure module admits a filtration whose successive quotients are isomorphic
to Demazure modules. It was shown in [18] that an analogous result could be deduced
from [11] for stable Demazure modules in the simply laced untwisted affine Lie algebras.

In this paper, we turn our attention to such questions in the case of twisted affine Lie
algebras; the most interesting situation being the Lie algebra of type A(zi) and we consider
the corresponding rank-one situation. The stable Demazure modules that we shall be
interested in are those which admit an action of the hyperspecial parabolic subalgebra
(denoted €g) of the affine Lie algebra. Our first result constructs a large family (which
includes the Demazure modules) of finite-dimensional modules for €g which admit a
Demazure flag. Analogous results for A(ll) were established in [6] using results from [7].
In the current situation, we use results from [14]; however, we have to work much harder
to establish the analogous results of [6] for two reasons. We have to contend with the
fact that A(zz) is a much more complicated algebra and we also have to prove additional
representation theoretic results which were not established in [14].

As a first application of our results, we see that the non-symmetric Koornwinder poly-
nomial E_,(g? t) at t = oo is a N[g]-linear combination of graded characters of level m
Demazure modules for any fixed m > 1. The generating series of the trivial module in level
three Demazure flags of a level one Demazure module has interesting specializations; one
of which gives rise to a fifth-order mock theta function of Ramanujan. Analogous connec-
tions were made in the untwisted case in [2].

We introduce the weighted generating series of the multiplicities. Namely we define the
weighted multiplicity of a Demazure module D occurring in a Demazure flag of a module
V by multiplying the graded multiplicity by a power of g so that the resulting polynomial
is either zero or has a nonzero constant term. We show that in the case of level two flags
in level one Demazure modules the resulting weighted generating series is a specialization
of the hypergeometric function 1F1[7;q z]. In the case of level three flags in level two
Demazure modules, the generating series are determined explicitly and is essentially given
by the g-Fibonacci polynomials defined by Carlitz. We remind the reader that the original
g-analogs of the Fibonacci polynomials were introduced by Schur [20] in his work on the
Rogers—Ramanujan identities. We also give a closed form for the generating series for the
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numerical multiplicities (g = 1) and find that they involve the Chebyshev polynomials of
the second kind; a similar closed form for A(ll) was proved in [2].

The case of higher-level Demazure flags is much more complicated; however, our results
on weighted multiplicities do suggest that the hypergeometric series again appear, but this
is still conjectural. The paper is organized as follows. In Sect. 2 we state the main results
of the paper with the minimum possible notation. The representation theoretic results
are established in Sects. 3 and 4. The last sections are devoted to using the representation
theory to calculate the graded and weighted multiplicities.

1 Preliminaries

1.1 We denote the set of complex numbers by C and, respectively, the set of integers,
nonnegative integers, and positive integers by Z, Z, and N. We set N = {(r,s) : 1,5 €
%N, r+s € N} and let y; = max{0, y} for y € R. All vector spaces considered in this paper
are C-vector spaces. For a Z-graded vector space V = @, V'[k] we denote by 7,V the
graded vector space whose k-th graded piece is V' [k + p]. Given a complex Lie algebra a,
we let U(a) be the corresponding universal enveloping algebra.

1.2 Werefer to [12] for the general theory of affine Lie algebras. The focus of this paper is
the twisted affine Lie algebra g of type A(22)’ which contains the simple Lie algebra g = sl
as a subalgebra. Recall that sl is the complex simple Lie algebra of two by two matrices
of trace zero and that {xo, yo, h1o} is the standard basis with [k, xg] = 2x0, [ho, yo] = —20
and [xo, yo] = ho. The element /iy generates a Cartan subalgebra h) of g and let R = {£o«}
be the set of roots with respect to . We fix /b\ a Cartan subalgebra of g containing b
and let R the set of roots of g with respect to . The corresponding sets of positive and
negative roots are denoted as usual by R* and RE, respectively. If § denotes the unique

non-divisible positive imaginary root in R, then we have R = Rt UR™, where R~ = —R™,
Rt =RLUR',RE = N5, and

RE=R"U(R+2Ns)U %(R + (2Z4 +1)5).

We also consider the set

Ree(%) = RE U (RE 4 2N5) U %(Ri + (2Z4 + 1)8).

Given 8 € R let 9p C g be the corresponding root space; note that xo (resp. yo) is a
generator of the root space gy (resp. §_q). For any real root B we fix a generator xg of gg
and abbreviate

KXo+2rs = X2r; x%+(r+%)5 = xr+%’ X—q+2r8 = Y2rs x7%+(r+%)6 = yr+%'

1.3 We define several subalgebras of g that will be needed in the rest of the paper. Letb
be the Borel subalgebra corresponding to R*,and let A" be its nilpotent radical,

EZE@?’T’—, ﬁi = @ﬁiﬁ.
BeR*

The subalgebras b and n* of g are defined similarly. The twisted current algebra €g is
defined as

Cg=hpnt®n"
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and admits a triangular decomposition
Cg=ent@Choen,
where
Ch=¢h @b =P W = P Fup
k=0 BeRre(£)
Following [5] we call €g the hyperspecial twisted current algebra, which is different from

the notion of twisted current algebras of type Ag) that exists in the literature. The differ-
ences are clarified in [5, Remark 2.5]. To simplify notation we set

U(Cg):= U, U(¢nt):=U*

1.4 Thescalingoperatord € b definesa Z4-graded Lie algebra structure on €g: for 8 € R
we say that gg has grade k if B(d) = k. Since §(d) = 2 the eigenvalues of d are all integers
andifgg C Cg, then the eigenvalues are nonnegative integers. With respect to this grading,
the zero homogeneous component of the twisted current algebra is €g[0] = g. A finite-
dimensional Z -graded €g-module is a Z-graded vector space admitting a compatible

graded action of Cg:
V=EDVIK, elrlVIKIC Vik+rl.
keZ

Note that each graded component V' [k] is a g-module and we define the graded character
as

chg V = Z chy V[k]qk.
keZ

2 The main results
We summarize the main results of the paper. We keep the notation to a minimum and
refer the reader to the later sections for precise definitions.

2.1 Givenm € Nand n € Zy with n = nym + ng, where ng, n; € Z,0 < nyg < m, let
D(m, n) be the graded €g-module generated by an element v,, with defining relations:

Ent @ Ch v, =0, hovy = nvy, yg"an =0, (2.1)

y2n1+2Vn = 0} }’nl_,_%Vn = 0) lfm > L (2'2)

y;ﬁflvn =0, yf"ﬁ’””“w: =0, ifng < m. (2.3)
1+3

It was proved in [14] that D(m, n) is a finite-dimensional indecomposable €g-module and
is isomorphic to a Demazure module occurring in a highest weight integrable irreducible
representation of g. We call m the level of the Demazure module.

2.2 We define the notion of a Demazure flag as follows. Let V' be a graded finite-
dimensional €g-module V; we say that V admits a level 1 Demazure flag if there exists a
decreasing sequence of graded €g-submodules of V'

f(V)Z(OCV()CV1C"'CVk=V)

such that the successive quotients of the flag are isomorphic to r;‘D(m, n) forsomen, p > 0.
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Let [V : tlfD(m, n)] be the number of times II;"D(m, n) occurs as a section of this flag.
It is not hard to see that this number is independent of the choice of the flag. For an
indeterminate ¢, we define a polynomial in N[g] by

[V :D(m, n)]y = Z[V : r;D(m, n)lq’.
p>0

We also set
[V:D(mn)l,:=0, ifn<0O. (2.4)

We call [V : D(m, n)], the graded multiplicity of D(m, n) in V. If [V : D(m, n)l, is
nonzero, we define the weighted multiplicity of D(m, n) in V to be the unique polynomial
[V : D(m, n)];" in N[g] with nonzero constant term satisfying

q'[V : D(m, n)]g = [V : D(m, n)], for some r € Z. (2.5)
Otherwise we set [V : D(m, n)];" = [V :D(m,n)]; =0.

2.3 The first result of our paper is the following:

Theorem 1 For all integers m > m' > 0 and s > 0 the module D(w/,s) admits a
Demazure flag of level m. Moreover,

[D(m, s) : D(m, mly =6ns ifn=>s [D(ms): D(m n)]y =8y (2.6)
and form > € > m' > 0 we have

[D(m, s) : D(m, n)]4 = Z[D(m/, s) : D(¢, p)lg [D(L, p) : D(m, n)],. 2.7)
p>0

Remark In the case of quantized enveloping algebras associated with simply laced Kac—
Moody Lie algebras, the existence of such a flag was proved in [11] using the theory of
canonical bases. Later, it was shown in [18] that taking the classical limit, the result remains
true for the corresponding affine Lie algebras.

An alternate constructive proof was given in [6] in the case of A(ll); this proof enables one
to compute multiplicities in the Demazure flag. We follow this approach in the current
paper; however there are many non-trivial representation theoretic results that have to
first be established for €g. In particular, we shall prove in Sect. 4 that a more general family
of modules admit a Demazure flag.

2.4 Our next results deal with understanding the graded and weighted multiplicities of
a level m Demazure flag in D(»7, n) in the case when (m/, m) € {(1,2), (2 3)}. Given
n, m € Z, the g-binomial coefficient is defined by

n| (45 @)n
[mL = @onmgon E"TY

n n
[:| :1,|:] =0, m<OQor0<m>n,
01, mlq
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where the g-Pochammer symbol (g; ), is defined as

n
@qn=]] (1 - aqH), n>0 (aq)=1
i=1
Recall the following well-known g-binomial identities:

mj, m |, m—lq
n mln—1 n—1

=q + 1 , n>m> 0.
mlq m lg m—1llg

Fors € Z4 letresy(s) € {0, 1} be defined by requiring s — resy(s) be even. The proof of
the next proposition can be found in Sect. 5.

Proposition Lets,p € Z,.

(1) We have
s
[D(L,s+p): D2 s)ly) = I:LZJ +p:| , (2.8)
p 7>
and
[D(L, s+ p) : D2, 8)]q = " TPT2[D(1, 5 + p) : D(2, 5)]%. (2.9)
(i) For0 <r <5, let
r
r = 8,1 +0pa, 7= (8,1 + 08,3+ dp5)resa(p) — 6,1, 7= LgJ .
Setting n = 6s + r, we have
(D, n+ p) : D3, )]}
2] R o
= 3 A ) [2S+ F+15] —}:| [ s+j+7 :|
par: 2s + 7 2L +resa(p) ]
and
[D(2,n+ p) : D(3,n)],
= Ostr=+ 150"~ L5 ) [D(2, 1 + p) : D3, Y. (2.10)

Remark One outcome of our results is the following. It was proved in [10] that the spe-
cialization of the non-symmetric Koornwinder polynomial E_,(g> t) at t = 0o coincides
with the graded character of D(1, n). Using Theorem 1 with m’ = 1, we see that we can
express E_,(q> t) as a N[g]-linear combination of graded characters of level m Demazure
modules. In the case when m' = 1 and m = 2, 3 our analyses gives closed formulae for
this decomposition of Koornwinder polynomials.

2.5 Givenn € Z, m',m € Nwith n > 0 and m > m’ we define generating series which
encode the graded and weighted multiplicities of a level m flag in a level m’ Demazure
module:
A, )= Z[D(m’, n+ p) : D(m, n)] 4,
p=0

AZ/[/—)W[,W(x, q):= Z[D(W/’ n+p): D(m, l’l)];/xp.
p=0
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We shall relate these series to general basic hypergeometric series defined by

F [m q Zi| (a; Pulaz; Pn-- (@ Pn 2z
T by . ’ (blyQ)n(bZ;q)n - (bs; @n (QQQ)M‘

n

For more details and properties of hypergeometric series we refer the reader to [21].

2.5.1 Consider the case when (#/, m) = (1, 2). Proposition 2.4(i) gives that
[D(L,2n+p) : D2, 2n)];’ =[D(,2n+1+p):D(22n+ 1)]2,

and hence we set
O, 7P q) = A 6 q) = Ay, ().

A further application of Proposition 2.4(i) gives

1-2 _ I’l+p P _ ] j—n
S S

p=0 j=0
Using the identity
; k
Zm R (2.11)
>0 q @ @it
we get
1
1—>2
D G

It follows that if we set CD(I)_)Z =1, then

7
Z‘Dl_)z (% q)2" —1F1|: iq° Zi|

n>0

2.5.2 We now consider the case when m = 3. In the case when (#7, m) = (1, 3) we prove
the following,

Proposition We have

AFT3(Lq) = dolg),  qATT3(Lq) = ¢i(q),

where
2 2
=Y 4" g 0@ =) 4"V (54w
n>0 n>0

are the fifth-order mock theta functions of Ramanujan.
Proof Using Eq. (2.7), we see that

Ay q) = ) _[D(1,p) : D(3,0)] 42"
p=0

= Y [D(Lp) : D2 5)]4[D(2, ) : D(3,0)]4a*.
p,s>0

Equation (2.10) gives

D22 +1):DB3,0)], =0,  [D22): D 0)] =q%,

12
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and hence using Proposition 2.4(i) we get

AT g = Y g T [5 _é } %
~3),

pJj=0
— Z qu+i2 |:;] Fit
i,j>0 7
2 a2 .l ;
=Y d'«) ¢ ’H (gx)
=0 j>0 72
2 s
=Y 4 (—ax )
i>0
Thus, A(l)_’S(l, q) = ¢o(q). The proof in the other case is similar. O
2.5.3 We now consider the case (m/,m) = (2,3). In this case, the generating series

A%_’B'W(x, q) is related to the g-Fibonacci polynomials defined by Carlitz in [4]:
Su(® q)o = xSu—1(% )0 + ¢" 2Sn—2(% @)o»  So% q)o =0, S1(x q)o = 1.

We remark that the specialization S, (1, q)o was first considered by Schur [20] in his proof
of the Rogers—Ramanujan identities; see also [1] for more details.
The solution to this recurrence is

Sn+1(®% q)o = Z [n _J] ¢ 7.
i=o L/ dq

The same recurrence relation but with different initial conditions,

S )1 = xSu-1(6 @)1 + 4" *Su2@ D1, S—1(6 )1 =0, Sox g =1,
has the solution

Sul, @ =) [n _]] gV Va7,

j=0 /g

Write

A7 (o q) = AL (s q)o + AP (%
where

Ai_’g’w(x, i = Z[D(Z n+2p+k): D3, n)]szerk, k €{0,1}.
p>0

We prove
Proposition For0 <r <5 we set
S0 =85—0r1, S1=8—148,3+ 5.

Then

72s,% —kr'

q

A2—>3,w
(*%; q2)2s+L§J+1

6541 (x: q)k - 52sk+l (y; qz)k; ke {01 1};

/
where y = g**7 .



Biswal et al. Res Math Sci (2018) 5:12

Proof Using the formulae in Proposition 2.4(ii) we get
|28 +7F+p—j s+j+7
A2—>B w(x 9o = Z q21(1+r ) |: ] [ X2
bs+r p ;
s+r et 2s + 7 2 2j e
_y |:2s 7t i] 2 [ 30 g2 [SO +J} 2
>0 g ‘s j>0 Y g
1 oonls j .
= (2. 2 Zq2/(1+’)[04j]:| x”
*% 425+ 541 i~ % p
—2s2
q ° 2
= 55— Ss+106 9o
®% 4254241 %
The remaining case works similarly. ]

2.5.4 The generating series can also be viewed as limits of hypergeometric series and we
thank George Andrews for helping us with this observation. In particular,

%5 0 )ass | 5 | 4G s (% D)o

:Z 2](1+r’)( lyq2so] 1+](q2so+2 2) (q 250. iq )} 2]

= (@% g%

25042, 72) (7250, 72).
— Zqzj(so+r')+j(j+1)(_1)1 (q S )(q 50 q )] x2j
(@% 4%)i(—q% qz),(q q%)i(—q; 4?);
2. 2 =2
= lim 4F3 q/t tq ot q So.qz tx2q2(50+r/)+1 )
t—0 -q>q —q '

j=0

Similarly,

253,
%5 42| 1 [ gty 6 D1
_ x(1—g*1+?) |:q2/t tg*itt g 2 .2 2si+r +1)i|

| F. ;g7 tx
1-¢2 ™ g - T

Remark Another consequence of the established formulae for the graded multiplicities
in Proposition 2.4 is that we can write the generating series A;”/”m(x, q) in the case when
(m', m) € {(1,2), (2,3)} as a linear combination of partial theta functions

o
2
Olg2) =) 4"
k=0

This expression is similarly as in [2] and will be omitted.

2.6 Our final collection of results discusses the generating functions for the numerical
multiplicities, namely we set

A=) = S ID0H, n+ p) 2 Dlm, )] g1,
p=0

and study these function for m’ = 1 and also when m = m’ + 1. In both cases, they
are rational functions in x; moreover, in the first case they are related to the Chebyshev

Page 9 of 34
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polynomial of the second kind as we now discuss. For n € Z. define polynomials a,,(x)
by aop(x) = a1(x) = 1 and forn > 2

ay_1(x) — xa,_o(x) if n is odd,
ay(x) = (2.12)
(1 +x)ay—1(x) —xa,_o(x) ifniseven.

We shall prove

Theorem 2 Fors € Zy andr € {0,...,m — 1} we have

Alom ) = Aym—2r—1(%)
(el (@m (%) g1(x))H

ifL%Jfrgm—land

Al=miy — A (X)Ayy—2r—1 (%) )
mstr ) = @)

fo<r=<|%|-1L

Remark The connection with Chebyshev polynomials is made as follows. Consider the

following recurrences:
Upt1(x) = 20Uy (x) — Up—1(x), Uo(x) =1, Ui(x) = 2x.
Let P,(x) be the polynomials defined by the recurrence
Po(x) = P1(x) =1, Ppy1(x) = Py(x) —xPy—1(x) form > 1.

It is known that the Chebyshev polynomials of the second kind satisfy the recurrences for
U and that P,(x%) = x"U,((2x)~1). It is not hard to see that the polynomials a,(x) are
given by

n X
=(1 lzlp , >0,
an(x) = (1+x) n(1+x> n>

Basically one just checks that the right-hand side of the preceding equation satisfies the
same recurrence relations as the a,, (x). It is also useful to note here that ay, (x) = ag,_1(x)—
x2a9,_3(x) and that a,(x) = (1 — x)a,_o2(x) — x2a,_4(x) for n > 4.

3 The modules V(&) and dimension bounds
In this section, we state the more general version of Theorem 1.

3.1 Let P, be the set of all partitions & of length £ + 1 such that the following holds:

=& =>¢+)>--2¢E+D)2E>--2E28>0], (3.1)

{—1-p p

whereeitherp =0andf =1lorl <p <{—1if¢ > 1.Foré=(§p > & > --- > &) € Py,
set

ijk+1 § — %$k+1, ifo<k<t-2
B=3"8  oE0 =1 (e — L&), ifh=t—1,

-
/= 0 else.
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Define a partial order on P = UyenPy by: for §; € Py, j = 1,2, we say that
& <& < eithert; < ¥y or {1 =45 and & <&, (3.2)

where < denotes the usual reverse lexicographic order on partitions.
3.2 We introduce the main objects of this paper. For any nonnegative integer b € Z
and x € Cgset x®) := xb/b!.

Definition Given & € P, with |&| = 1, we define V() to be the graded quotient of D(1, n)
by the submodule generated by the graded elements,

Y2tVns ngr%Vn; (33)
. 2¢(&0—1)+1 .
A B R T AR O R ) (3.4)

Remark Note that the definition of V(£) is independent of &y unless ¢ = 1 and 2&; > &.
We set & := (1 + 84,1)€1 — 8¢,1(2&1 — &)+ and denote by V¢ the cyclic generator of V(§).

3.3 The modules V (), & € P, admit another realization which we now discuss. For
sreN,keZylet

Sakln9) = b= (b)icn, by € Loy D bj=r D jb=sp,
jzk j=k j=k

and for (r,s) € N, k € Z, /2 let

gz/%(”’ s)=1b= (i?j)z,‘ez~+ 1 by € Ly, Z(i’iH/Z +2b)) =2,

jzk j=k

Z((]-l— +1 +2]b)
j=k

The following elementary calculation will be used repeatedly.

Lemma Let (r,s) € N, andb € gzkf%(r’ s) (resp. be gzk—% (1, 8)) such that l;,- = 0 for all
j = k. Then we have

i;kf% +by_q =s—2r(k — 3/2), Z)k% + by =2rk—1/2) —s
(resp. I;,F% + 21~9k7% +bp_y+3bj_y =s—2r(k —5/2), I;k_% - l;kf% + by — by =
2r(k — 3/2) — s). o

3.4 Lety-i(rs), ¥.;(r, ) be the following elements of U:

) (bis) (b
Yar(ns) = Y iy, (3.5)
beS. k(r,5)
b, 1) i
9= 3 Tl Gy G, (36)

BeS>k(rs)
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where for n € Z we set

V1= Vp b 22"y = ((—=1)" = 2) yom,

>
and [ ], . refers to the product of the specified factors written exactly in the increasing
order of the indexing parameter.

Proposition For & € P, with |&| = n, the module V (§) is the quotient of D(1, n) by the
additional relations:

Yokt 8)vn =0, Vs,reN, ke Zy with s+r>1+4kr + Z &, (3.7)
j=k+1
~ 1
y2k+%(r, Sy =0, V(r,s) €N, k € Z4 with s > 3 + 2kr + ¢(&; k). (3.8)

Moreover, there exists a surjective map of g-modules
®—1—
V(© — D(E, ) @ D(er1, 0-1)% ® Dige-1, ).

Proof Let V(£) be the quotient of D(1, #) by the submodule generated by the elements (3.7)
and (3.8). Forallr,7’ € N,k € Z, withr > 1+ ijk—H & and r’ > 14 2¢(& k) we have

Yokl ks = 9vn = 0, Fogop 1 012, Ch+ D7 [2v =) v = 0
Hence, we have a surjective homomorphism

V() — V(€ — 0.

In order to prove that we have a surjective map from V() to V(&) we need to prove that all
defining relations of V(&) are satisfied in V(§). This part and the existence of the surjective
g-module map is proved along the same lines as Theorem 1 and Theorem 7 of [14]. O

3.5 We emphasize that the above proposition implies

(r+1) (r+1)
ve=0 resp. ve=20 3.9
Yok Ve < P-Ypy1 Vs ) (3.9)

forall r, k € Z4 with r > ijkﬂ & (resp. r > 2¢(&; k)). Hence, if n; € Z with n; > —1
and n = mym + np, 0 < ny < m then we have an isomorphism of graded €g-modules

V& =Dmn), E=|m=>--->2m=>mng|. (3.10)

ni+1

3.6 We now state the more general version of Theorem 1; the proof of this theorem can
be found in the next section.

Theorem 3 For & € Py, we have an isomorphism of g-modules
V) = D(E, &) T @ Dt ) ® Dl &)

Further, the €g-module V (§) admits a level m Demazure flag if and only if m > &.

Biswal et al. Res Math Sci (2018) 5:12
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Remark (1) More generally, theisomorphism in Theorem 3 is of €g-modules if we replace
the tensor product by the fusion product; we refer the reader to [9] for the definition
and properties of fusion products. Hence our result gives a presentation of a certain
class of fusion products of different level Demazure modules.

(2) If V(£) admits a level m Demazure flag, then we have m > £j. This implication can
be proven similarly as in [6, Lemma 3.7] and the details will be omitted.

4 Demazure flags and recursive formulae
In this section, we prove Theorem 3 by an induction on ¢.

4.1 Recall from [14] that the Demazure module D(&, &;) is irreducible if and only if
2&1 < &y and otherwise decomposes into irreducible finite-dimensional g-modules as
follows

Do, 61) =15 V(1) @ -+ @ T, g, V(60 — £1).

Hence

dim D(Eo, &1) = (61 + 1) + %((zsl &)+ (6o + 1)),

Thus, Proposition 3.4 gives a lower bound for the dimension of V (&), & € P;:

=1-p p
amve) = (M7 (5 (@rng@ams@at) @

4.2 To see that induction begins at £ = 1 we write & = (&, &1). Equation (3.10) implies
that V(&) = D(&, £&1) and hence the first statement of Theorem 3 holds in this case. If
281 < &y or m = &y the second statement also holds since D(&g, &1) = D(m, £1). Otherwise
consider the filtration of graded U-modules

1 1
2 2

0C Uy %0y c Uy 1y o c Uy T c V), (4.2)
3 2

where s = (2&; — &) — (261 — m)4+ — 1. Using Definition 3.2, it is easily seen that the
successive quotients of the filtration in (4.2) are themselves quotients of a Demazure
module of the form t;*D(m, & — s). The dimension inequality in (4.1) now implies these
maps are isomorphisms and hence V' (£) has a Demazure flag of level m establishing the
inductive step. Moreover, we have also proved that

E1—S  ifo _ _ B
[D(&o, £1), D(m, 5)]4 = ' ifs =8 or (26 —m)y <& —s < (261 — o)+
0, else.

(4.3)

4.3 For the rest of this section, we fix an arbitrary & € Py with £ > 1 and assume that the
main theorem holds for all T € P with © < &. In particular, we will assume without loss of
generality that &y = &y = &, (see Remark 3.2).

Define §7 € P by

M= (E+1) PP g — 1),
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We have ¢p(ET;¢ — 1) = (& — %E@l —1—6,1/2)+. Noting that £ < &, we have by the
induction hypothesis that V' (§1) admits a level m Demazure flag iff m > & + 1. We now
prove,

Proposition The assignment vg v v+ defines a surjective morphism T L V(E) —
V(ET) — 0 of €g-modules. Moreover, ker ™ is generated by the elements,

Wilave Suaden S ve i 2% <)

Ye_3Ve if p=2, Ez =1=§&-1

(( EZ ‘i:g 1)++1)

and in all other cases by Yy 1

Proof A simple checking shows that v+ satisfies all the relations that vg does and hence
the existence of ¢ is immediate. It is also immediate that ker ¢ is generated by the

elements
(28 —&1 )+1)
3’(2%12"5’ yg_%e T g 808, 13’2[31)"‘5 (4.4)

If 2&, < &, the result follows since Ve 1VeE= 0. If 2, > &,_1, we prove by a downward
induction on k that forall0 < k < (252' — §£1)+, we have

k (287 -8, )++1)
9’(22 2)3’2)1"6 GUyg_f B

(4.5)
Assuming we have done this, notice that by taking k = 0 the proof is complete unless we
are in the case of p = 2 and & = &,_; = 1 when we also have to prove that

Ve 1Ve € Uy(—%vé'

But this is immediate by applying an element of €h_ of appropriate grade. We set 2r =
2£, — kand s = 2(¢ — 1)& — (¢ — 2)k. Note that

S22 Q8 KD+ 3E1 b= 5 20— 2) 9 E—2) (4.6)

For an arbitrary element be §2 -3 (r, s) with l;,» =0 forj > £ we get with Lemma 3.3

by 1 +hi =&, 13[_% +hiy =& —

which implies I;g_% = B(—% — k > 0. Hence, together with (3.8) and (4.6) we get

k
9 yﬁ,)lv Y u) yi”w; 4.7)
t>k

Ifk = (2& 2’ —& ZF_ 1)+ Eq. (4.5) isimmediate with (4.7). Otherwise we know by the induction
hypothesis that each summand in (4.7) has the desired property. O

In the rest of this section, we shall show by doing a case by case analysis that ker ¢
has a filtration such that the successive quotients are of the form V (§'), with § < &. Since
the induction hypothesis applies to the & it follows that ker ¢ has a level m Demazure
flag and also allows us to get an upper bound for V(§); together with the lower bound
established in Proposition 3.4 we then complete the inductive step.
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4.4 Given & € Py, set

2, if26p — &1 >3 andp =1,
1, if26p — &1 =20r28 —&_1 >3andp > 1,

k(&) =
0, if2& —&_1=1,
-1, if2& —&_1 <0
Equivalently,
k(€)= (28 —&—1)y — (25 — & Dy — 1. (4.8)

For —1 <j < k(&), define partitions &(j) as follows:
E() = ((E+ 1) P00, gP=1400 g, ) — & 4 8)9).
It is easily seen that £(j) € P and &(j) < & for —1 < < k().

4.5 We analyze ker ¢ under the assumption that 2&, > &,_1.
Proposition Suppose that 2&; > &;_;.

(i) Letde,g,_,8p2 = 0.For—1 < j < k(&) there exists graded €g-submodules V; C ker ¢
with

Vo1 = 85,6, 10p1 Ty o1y VE(=1), Vi = ker o™,
Vj—l - V}’: V}/Vj—l = T(ZZ—I)(ZE@—E@,I—]’)V(E(j))’ 0 S] = k(E)
(ii) Letde,e,_,8p2 = L. If& = 1 we have a short exact sequence of graded Cg-modules
0— t(*%_l)\/(‘g'(O)) — ker g, — t(*zg_g)\/((&,1 +1DH > o.
If&; > 1 then there exists graded €g-submodules Vy C V1 of ker o™ such that
~ ~ -1
Vo = ng(zg,l)v(g(o)): VI/VO = TZ&:Z([,D,Q@,I)V((Sﬁfl + 1) ):
ker o /Vi Z 1 1y00_1) VI(EQ)).

4.6 To complete our analysis of ker ¢ we shall prove,
Proposition Assume that 2§, < &;_1.

(i) Suppose that 5¢,18,2 = 0 and (1 — 82¢,¢,_,)8p,1 = 0. Then we have an isomorphism
of graded Cg-modules

Tio_1e, VED) Z ker g™

(ii) Suppose that é¢,108p,2 = 0 and (1 — 82¢,.,_,)8p,1 = 1. We have a short exact sequence
of graded €g-modules

0— t&_g)&iﬁz& V(-1 + 1)L &) - kergpt — r‘;‘(z_l)&\/@(—l)) — 0.
(iii) Suppose that 8¢,18p2 = 1. We have a short exact sequence of graded Cg-modules

0— TZ([_DV(&(_I)) — ker (ﬂ+ - Q;fl(zg_g)v((‘;@—l + 1)6_1) — 0.

12
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4.7 Before we prove Proposition 4.5 and Proposition 4.6, we show how we can use both
to prove Theorem 3. We obtain a filtration of ker ¢ by graded €g-submodules such that
the successive quotients are of the form V(¢), with & < &. By applying the induction
hypothesis to each V(¢') and V(§") we obtain that V(£) admits a level m Demazure flag
for all m > & + 1. Hence the second part of Theorem 3 is proven unless we are in the case
& = & = m when we also have to prove that V() has a level £y Demazure flag. But this is
immediate with (3.10) since V() itself is a Demazure module of level &.

Recall the dimension bound from (4.1). Now we also have an upper bound using the
above filtration. A long but tedious calculation shows that these bounds coincide and
hence we have equality in (4.1). This proves the first part of the theorem together with
Proposition 3.4. Moreover, the explicit construction of the filtration yields the following

recursive formulae:

Corollary Let& € Py, £ > 1, m € Nsuch that m > &y and D a level m Demazure module.

(1) If2&; > &1 we have

k(&)
[V () 3D]q — [V(§+) iD]q + Zq(ZZ—l)(ZSZ—SZ—l—/)[V(E(j)) 5D]q
j=0

+ 8,601 (Bp1 + 8p2)g V=D Y (g, 1)1y DY,
(2) If2&; < &1 we have

[V(§): D], = [V(EY) : D]y + ¢* V[V (E(-1) : D],
+ g PR sy, e )8 [V((Ee—1 + 1)L &) 2 D,
+ g V518, 18,0V ((Ee—1 + 1)) : D],

4.8 We need the following technical lemma whose proof we postpone to the end of the
section.

Lemma We have the following relations in V (§):

(i) (Ee_1—E¢+1)
yziu; ‘ y(zgﬁz"é =0

(i) If2&; < &—1, we have

(Ee—1—2&0+1) +1) | (Ee—1—2&)
Ve T o = 0= P T v

(iii) If& = &—1 we have

(Ee+1) |, (50) -0 (e) (&)

(&)
y(ﬁ% y{,%vﬁ ,

yb% yei%v,; €U yy, v
(iv) If& = &1 = &2 we have

1) (5—1 -1 — (&
{yf_{g )J’f_l% )VE’ Y204 )’ff)%g J’f_l% )VE} cvu J’ff)%"s-
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4.9 Proof of Proposition 4.5(i)
Suppose that 2§, > &1 and 8¢, ¢, 8,2 = 0. Set

280—&p_1—j .
W1 = 8¢5, 0p1 yff)% yff)%vé" Wi :y;fl% o ])Vﬁ' 0 <j =< k).

Let V; be the €g-submodule of V'(§) generated by w; for —1 < j < k(&) and note that
Vi) = ker g™ by Proposition 4.3 and (4.8). An easy calculation shows that we have
a surjective map from the appropriate level one Demazure module onto V;/V;_1, 0 <
j < k(&). We will further show that the highest weight vector w; in V;/V;_1 satisfies the
defining relations of V' (£()). It means, we shall prove that

Y2UW) = Yy 1 Wj = Yoy W) =0, (4.9)
(E—1—E¢+8j0+1)— _
yZZ[—12 o Wj = 8g,,5,10p18j,0 yff)% wj = 0. (4.10)

The relations in (4.9) are obviously satisfied since [y2¢, y,_ 1 1=0 [y, LY 1 ] = y2¢, and

2&0—&p_1+1
yijé &1 )V§=y£+%V§=y2ZVE=O

by (3.9). Now we turn our attention to the relations in (4.10). By construction we have
(sgbé‘l_lgp,l yééf)% Wo =w_1 = 0,
Hence it remains to show

11— $;
y(zil—; €¢+dj2+1) wj € Uwj_,. (4.11)

Set
1 5
r=5g4,1+1—’7’1and

o (z _ %) (26 — Evoy — ) + 20 — DEes — & + 82 + 1.

Similarly as in the proof of Proposition 4.3, we can show that each be gz -3 (r, s) with
l;i = 0 for i > £ satisfies i’ef% > 2&p — &1 — j. Together with Proposition 3.4 and
1
525 +2r(€ —2) + (& ¢ —2)
we get
~A&e—1—E¢+8j2+1) 5){2&5—5@4—1’) Z Uj/(tz

Yae—2 -1 Vg € ,
£>280—8_1—/

VE’

D=

which implies (4.11). Thus we get surjective maps
Tég_l)(zgz_ngl_j)V(g(i)) = Vi/Vi-, 0<5j < k(&). (4.12)
Moreover, we note that Lemma 4.8 (i) and (iii) imply that we also have a surjective map

8e1.6010p1 T:&(g_l)v(s(—l)) - Vo (4.13)

The proof is complete if we show that the maps in (4.12) and (4.13) are isomorphisms.
Applying our induction hypothesis, we obtain an upper bound for dim V() by (4.12)
and (4.13). A straightforward calculation shows that the lower bound established in (4.1)
coincides with this upper bound, which proves the proposition.
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4.10 Proof of Proposition 4.5(ii)
Assume that 28 > &7 and 8¢, ;82 = 1. Set

&) ¢o)  (Ee—1) (1— 8 l)y(fz
o

WO:y(Z_%)VE’ y{ 3yl 1 VE: Wy = VE}

and let V; be the submodule generated by the elements w;, 0 < i < j. Notethat V5 = ker ¢
by Proposition 4.3 and if £ = 1 we have V] = V, = ker ™.

The idea is again to show that there is a cyclic generator satisfying the defining relations
of V(£(j)) and V' ((£,_1+1)*~1), respectively, and to use the dimension bound given in (4.1).
The harder relations are stated in Lemma 4.8 and all other relations are easy to check. To
be more precise, in addition to the relations proven in Lemma 4.8 (iii)—(iv) we need to

verify
Yae— 2)’2&1 v e U™ J/fl)l Ve Yau— 2)’2&)1 vg =0.

The proof is similar and will be omitted.

4.11 Proof of Proposition 4.6(i)

Assume that 2&, < &1, 8,,20¢,,1 = 0 and (1 — 82,6, ,)8p,1 = 0. By Lemma 4.8 and (3.9),
we know that y(ff) Vg, which is the generator of the kernel by Proposition 4.3, satisfies the
defining relations of t 4([ e V' (£(—1)) given in Definition 3.2. Again, a simple dimension

argument using our induction hypothesis and (4.1) finishes the proof.

4.12 Proof of Proposition 4.6(ii)
We consider the case 25, < £y_1, 8,,20¢,,1 = 0and (1 — 82¢,¢,_,)81 = 1. Set

(Ee—1—2&¢), (&0) (&)
-3

=y YouoVe =Yor—2Ve

and let V; be the submodule generated by the element w;, 0 < j < 1. Note that Proposi-
tion 4.3 implies V] = ker ¢*. From Lemma 4.8 and (3.9), we obtain the following surjective

maps:
Th_pe, VE=D) = Vi/Vo (4.14)
and
7(25_3)&714_2& V((‘SK*I + 1)6_1; 5@) - Vo. (4~15)

Again a simple dimension argument shows that the maps in (4.14) and (4.15) are isomor-
phisms.

4.13 Proof of Proposition 4.6(iii)
We consider the remaining case 2, < &,_1 and §8,,28¢,,1 = 1. Set

Wo = yae-avey Wi = yf‘ g

and let Vj be the submodule generated by the element w;, 0 < i < j. Note that V; = ker ™.
Lemma 4.8 immediately implies

IZ(Z—I) V(&(=1) — Vo
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Again by a dimension argument, it remains to show that the highest weight vector in
V1/ Vo satisfies
1
Yae—2) yfi BI)VE _yfz 1+1) ve =0,
Letk = (( —3), 2r = &_1+1lands = (£ — %)(i—‘g_l + 1). We obviously have s >
% + 2r(€ — 3) + ¢(& € — 3) and hence 3’}@7% (r,8)ve = 0. Our aim is to prove that

Vorogmsve =373 e+ Vo (4.16)

or equivalently

be gzzi%(r’ s) = by_1 > Oor i’e—% =& 1+ 1
Assume 2571 = 0. We have with Lemma 3.3

iﬂe,% +hea=&1+1 135_% +bia=0,

which proves (4.16). Now we set 2r = &1 + 2, s = (£ — %)&_1 + 2(¢ — 2) and obtain

with similar calculations as above that any be §> 5 (r,s) with bi=0fori> ¢ —1lisof
= 2

the form

bg o=1,0b, 3 =&, bg b[_s =0 or ge_g = i?g_l =0,

I\)
[N

by s =%&-1+1 b, s =1
2 2
Now (4.16) finishes the proof.

4.14 Proof of Lemma 4.8
Proofof part (i): Letr =1+4&_1,5s = & + (£ — 2)(§¢—1 + 1). We have

r+s>1+r(l —2)+&_1+&,

which implies together with (3.7)

1
Y>e—2(r 8)vg = y(fg T st )y(ff)ZVg =0.

Proof of part (ii): Wefixt € {0,...,&}andset2r =2t +&_1+1,s=§& + (€ — —)(Eg 1+
1) + 2(¢ — 2)t. We obtain

1 1 1
525 + (2t + &1 +1)(5—2)+§&3—1 +& = 3 +2r(€ —2) + ¢(§ £ —2)
and hence with (3.8) we get

~ —2 4t+1
Vorybove =50 5 v =0 (4.17)

which proves the first part. If £ = 2 the second part follows from sl-theory, since
y(1€:‘172€z)y(2$2)v§ has weight &, and xoy(frZ&)y(fZ)vé =01f¢>3wefixze{l,...,&+1}
3 2

andset2r =& _14+2z,s =& + &_1(£ — %) + 2(€ — 2)z. We have
1
sz 5 +2(t—3)+ 0 L—3)

and therefore if;gf%(r, s)ve = 0. Let be §>[7%(r, s) with iaj =O0forallj > ¢ — % and set

by_1 =& — tforsomet € {0, ..., &} From Lemma 3.3 we get

s=1(2=5) = (by_y +3be1 +bia) =1+ +2 (4.18)

Page 19 of 34
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which implies
z=&=2r—(-1+&+2)= ( -3 +by_y— by 1) i?g,% thiy=z—t
Thus by_y < z — t and with (4.18) we obtain

b, 3 > &1 — 2 +4t

I\)

Now we use (4.17) and obtain that b must be of the form

boo1 =& —t ~g,, = &p—1 — 280 + 41,

bi—y =z —t, b,_s =0, forsomet € {0,..., &}

2

Therefore

min{z,&¢}
Z ~Eg_1—2E0+4t) »5/42 t) »514& t)VE —o. (4.19)

Yoo 5 (r,s)vg = Y3 204 Y202

Acting with 37(2%&; ~ on (4.19) yields

min{z,§}

e +1-0" e —25+40) A +1-0dEr—0)
2 (= +1-2) z_é,l T v =0, (4.20)

t=0
Our aim is to show that each summand in (4.20) vanishes. Let v = (vy, . . ., V¢,), where
=TI, 0zess,
By using (4.20) forz = 1, ..., & + 1 we get a system of linear equations Av = 0 where A is

invertible. Hence v = 0. The proof of the remaining parts is similar and will be omitted.

5 Proof of Proposition 2.4
In this section, we establish a recursive formulae for the graded multiplicities and prove
Proposition 2.4.

5.1 The following lemma is the analog of [6, Lemma 3.8] and is proven similarly using
Corollary 4.7. The proof will be omitted.

Lemma Let & € Py, £ > 1, and & be the unique partition obtained from & by removing
& = &1. Fors € Z4, we have

[V(&) : Do, 9)g = ¢ B[V (E) : D(%0, s — &0)lg O

5.2 Now we are able to give a recursive formulae for the graded multiplicities.
Proposition Letm,n € N.
(1) We writes = msy + so, where 0 < so < m and set & = (m, m®!, sp).
(i) If2so <mandsy > 1, then

[D(m, s) : Dim+1, m)]y = g% [D(m, s—m—1) : Dim+1, n—m—1)],
+ q451$0 [D(m, s — 2sg) : D(m + 1, ”)]q
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(i) If2so > mand sy > 1, then
[D(m, 5) : D(m+1, m)]; =q* " [D(m, s—m—1) : Dim+1,n —m — 1)],

+ q(zslﬂ)@s"_m) [D(m, s + m — 2sg) : D(m + 1, n)],

k(&)
+ 3 g1 G0 D Gy, 5~ 250+j—1) : Dm+1, n—m—1)]g.

j=1
(2) ForjeZ4+, 0 <nk <mandmj+k > n,
qj(mj+2k) %f;q =k
[D(m, mj + k) : D(m + 1, n)]q = { gUHD0+2%k=m) iy — g — k,
0 otherwise.

Proof Using the recursive formulae given in Corollary 4.7 and Lemma 5.1 we get in part

(i)
[D(m, s) : D(m+1,n)], = qZ(S_”) [D(m+685,,265,1,s—m — 1) : Dim + 1, n —m —1)]4
+ g™ [D(m + 85,18 — 280) : D(m + 1, n)],4

+ 5n,m+1850,1831,2q3m +(1- 82s0,m)5s0,n8s1,1q

m+2s0

The statement follows from the following identities, which are easy consequences of (4.3):

[D(m, s — 250) : D(m + 1, )]y = [D(m + 85,1, s — 280) : D(m + 1, )],
+(1 - 5250,m)850,n851,1qm_2n

and

[D(m,s —m—1):Dim+1,n—m—1)],
= [D(m + 6528501, 8 —m —1): Dm+ 1L, n—m— 1),

+ 3n,m+15s0,1531,26]m'
The proof of part (ii) follows exactly the same ideas and is left to the reader. Now we prove
part (2) of the proposition. Note that the case j = 0 follows from (4.3). So by induction we

can assume that

g/ ' +2k) ifn=k
[D(m, mj' + k) : D(m + 1, n)ly = { gVt +2k=m) iy — py — ko
otherwise.

0

holds forall0 < ;' <j,0 < n,k < msuch that mj’ + k > n. If k = 0, we can assume that
j > 1, sincej = 1 follows once more with (4.3). Using the recursive formulae from part

(1) and the induction hypothesis we get
[D(m, mj) : Dim + 1, m)]; = ¢" ¥V [D(m, (j — 1)m) : Dm + 1, n)],
g ifn=0,
= { qUHDt=m)if y — g,

0 otherwise.

12
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Ifo <k < %,then

[D(m, mj 4 k) : D(m + 1, m)l; = g*¥ [D(m, mj — k) : D(m + 1, n)],
qi(rm'+2k) ifn =k

q(j+1)(mj+2k7m)

ifu=m—k
0 otherwise.
If 3 < k < m, then
[D(m, mj + k) : D(m + 1, m)]y = ¢ ¥V D, mj + m — k) : Dim + 1, n)],
= gDk A=K [ D (1, ma(j — 1)+ k) : D(m+1, m)],
qj(m1'+2k) ifn=k
— q(j+1)(mj+2k—m) ifn=m—k

0 otherwise. o

5.3 Proof of Proposition 2.4(i)

If s € {0, 1} the statement of the proposition follows from Proposition 5.2(2). Also the
case p = 0 is clear. Using the recursive formulae in Proposition 5.2, an easy induction
argument shows

[D(L, s+ p) : D(2,8)]y = g [D(L, (s 2)+P):D(2,s—2)]q
[D(1,

+ g DL s+ (p— 1) : D2 5)]y
p(s+p+resz(s))[ J +pj| + 6125—&-1!9q(p—1)(s—&-p+resz(s))|:|-%J +p— 1:|
p—1 |p
_ gPspresn) [LTZJ +P} e [L%J +p- 1]
2 p—1 e
s
2

:ql”(s+zv+resz(s))[L 1+ } ’
p o

which finishes the proof.

5.4 Proof of Proposition 2.4(ii)

Recall the following recursive formulae from Proposition 5.2:
[D(2,2n) : D3,5)l; = ¢**I[D(2, 21 — 3) : D(3,5 — 3)],
+q** VD2, 21 — 2) : D(3, 5],
+q% 53D, 2n—4) : D(3,s — 3]y, ifn>2,[D(22n+1):D@3,9),
= g2 [D2,2n —2) : D(3,s — 3y
+4q*"[D2,2n—1):D3,s)l, ifn>1

Since all cases follow the same idea, we will only prove

[D(2,3s +r +2p) : D(3,3s + r)]q

p . .
_ s Y q2w+sr.1>[s+l7—l] [L%J +J _‘?nl‘gfesz(s%o} , (5.1)
par s e 2j e
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where r € {0,1,2} and s € Z,. The proof proceeds by induction on s. If s = 0, the state-
ment follows from Proposition 5.2(2) and the induction begins. The strategy of the proof
is to show that the g-binomial formulae in (5.1) satisfies the above recursive formulae. Let
us define

u' = 8,1resn(s), ¥ = (85,0 + 85,2)8resy (s),0-

Case 1: In this case we suppose that 3s + r is even. By the induction hypothesis, it will be
enough to show that the g-binomial formula in (5.1) satisfies the recursive

[D(2, 3s+7+2p) : D(3,3s+7)]; =q"[D(2, 3(s—1)+7r + 2p) : D(3,3(s — 1) + 1)],
+ g?CH=V[D(2, 35+ r +2(p — 1)) : D(3, 35 + 1),

+ TP 3D2,3(s — 1) + 7+ 2 — 1)+ 1) : D3, 3(s — 1) + )],

Equivalently, it suffices to show that the following sum vanishes for all p > 0:

p . —1 s
> it s+p—j=1] [[55]+i-o
pard s—1 e 2j e

4 iqzsﬂi(iﬂr,l)[s tr—j- 1} 2 [L%J fl}
q q

j=0 S 2j 2
= i s—1 . ,
+ ) gH U+ s+ [S +p—j— 2] [LTJ‘ +j +y}
j=0 s—1 7 2] +1 2
_ Xp:qzj(ﬁar,l) [s +p —1} [L%J ‘+j] ‘
j=0 s e 2 p

Note that ' = 1 implies ' = 0 and s is even and y' = 0 forces ¥’ = 1 and s is odd. It
follows

[Ls_TlJ N “/Lz S [Ls_TlJ ity - le _ [L%J +

, 1<j<np
2j 2ji—1 2j Lz =/=P

Now rewriting the third term in the above sum as

p ‘ - ‘
Z g¥Uten) =2 =81 s+p—j—1 1SS 4+j+y —1
7* 7>

= s—1 2j—1

we obtain the desired result.
Case 2: We assume that 3s+r is odd. Again, it will be enough to show that the g-binomial
formula in (5.1) satisfies the recursive

[D(2,3s+r+2p) : D(3,3s+1)]; = g*[D(2,3(s — 1)+r+2p) : D(3,3(s — 1) + Nly
+ g® I =2(D(2, 3s+r+2p—2) : D(3, 3s + Ny

12



12 Page24of34 Biswal et al. Res Math Sci (2018) 5:12

which is equivalent to the statement that the following sum vanishes for all p > 0:

p . — .
3 gHi+n) [S +tp—j- 1} [LSTlJ +j- M/]
i s—1 e 2j 7

2 [s +p —j — 1j| [L%J +j — 8n18resz(s),0j|
+q i
s e 2 7?

_ |:S +p _]] |:|_%J +] - Snlaresz(s),0:|
s 2 2j e '

Since I_S_TIJ —u' = | 5] = 8,18res,(s),0 it is easy to see that the above sum is zero. Hence
Proposition 2.4(ii) is proven.

6 Proof of Theorem 2

In this section, we study the generating series A:,”/_””(x) for the numerical multiplicities
and give a closed formula when m' = 1 and m = m’ + 1, showing that they are rational
functions. We will use freely the notation and results established in the previous sections.

6.1 The following result gives a recursive formulae . It will be convenient to set
AlT"(x) = 1.

Proposition Form > 2andn > —1writen+1 = mn;+ngy, where0 < ng < m, n; > —1.
: : 1->m :
The generating series A, " (x) satisfies the reccurrence,

Aiam(x)

AL (%) if2ng =m—1,
A;:lm(x)(l — (1 = 8m2)x) ifno=m—1or2ny=m-—2,
A;j{”(x) —(1- 5m,2)x2Ai:2”‘(x) if 2ng = m,

1- x)A}q:lm(x) —(1- (Sm,z)sz;rz”’(x) if2nyg ¢ {m —2,m — 1, m} and no #m—1.

The proof of the above proposition is postponed to the end of this section. We first
discuss how this can be used to prove Theorem 2.

6.2 Proof of Theorem 2

Set Dy, (x) = a;,(x)ay+1(x) and Fy = A}(_’”’(x) for k > —1. The theorem follows if we
prove that for all k > 0 and 0 < r < m, we have

1
(@) Fuikr = Nunr O Fpkym—1, (D) Frapegm—1 = W’
where
a2m—2r—1(%) if |2 <r<m-1,
Nm,r(x) =

<
A (X am—or—1(x) O <r<|[Z]|-1

We first prove (a). If r = m — 1 this is immediate since Ny, ,,—1(x) = 1l and ifr = m — 2
this follows from the second case of Proposition 6.1. Assume now that we have proved
the equality for all0 < v’ < m with ¥’ > rand r < m — 2. To prove the equality for r, we
use Proposition 6.1 and the following equalities which can be easily checked
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N Nm)L%J,l(x) = Nm,L%J (x), if m is odd,

o Nyym—2(x) = (1 — (1 = 85,2)%)Nyym—1(x),

. Nm,%_z(x) =(1- x)Nm,%_l(x) if m > 4 is even,

B Nm,%,l(x) = Nm’%(x) —(1- 6m,2)x2Nm)%+1(x) if m is even,

o Npp-1(x) = (l—x)Nm,p(x)—szm,pH(x) if2p ¢ (m—2,m—1, myand1 < p < m-—2,
o Nym—1(0)Dy(x) = (1 = )Ny 0(x) — (1 — am,Z)szm,l(x)'

Now part (a) follows by an easy induction argument. In order to prove (b), observe that
the last case of Proposition 6.1 gives

Fm(k—1)+m—1 =(1- x)Fm(k—1)+m - (1- 5m,2x2)x2Fm(k—l)+m+1
= Dm(x)ka+m—1, k > 0.

Since F_; = 1 we get Dm(x)k+1ka+m_1 = 1 and the proof is complete.

6.3 The following lemma is needed in the proof of Proposition 6.1.

Lemma Let m € N and p € Z,. Write p = mp1 + po with p1,po € Z, p1 > —1 and
0 < po < m. Then

chgD(m, p) chgD(1,1) = chgD(m,p + 1)
+(1- 5m,1)<(1 - 82p0,m - 82po,m+1 - 8po,m)Cth(m;P -1
+ (1= Bapoun — Bapoum-—1)chigDlm, p))

Proof If m = 1, the statement is obvious since D(1, p) ® D(1, 1) =4 D(1, p + 1); also if
p = 0 there is nothing to prove. So assume from now on m > 2 and p # 0.
Case I: Let pg < m. Then D(m, p) =4 D(m, mp1) ® D(m, po) and hence

D(m:p) ®D(1’ 1) gg D(Wl, Wlpl) ® D(mrp()) ® D(L 1)
=4 D(m, mp1) ® D(m, po) ® (D(m, 1) & V(0))
=y D(m, mp1) ® (D(m, po) ® D(m, 1) & D(m, po)).

So the lemma in this case follows if we prove

chyD(m, po) chgD(m, 1)
= chygD(m, po + 1) + (1 — S2p0,m — S2pg,m+1)chgD(m, po — 1)
- (82p0,m + 52p0,m—1)Cth(m: Po)- (6.1)

We have the following decomposition into irreducible g-modules:

D(Wl, pO) ® D(Wl, 1)

_ (Vo e Vpo-1e&---eVim-p)) @ V1), if2p>m
v e v, if 2p0 < m,
+1 . —1 . .
=, om—pot1 VD @ B2,y 1 VU if2p0 > m,
Vipo+1)® V(po — 1), if 2pg < m.

Page 25 of 34
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Further we know

Vipo+1)@ Vo) ®---@V(im—po—1), if2po+2>m,

D(m, po + 1) =4 .
V(po + 1), if 2pg + 2 < m.

Vipo—1)@V(po)®---®V(m—po+1), if2pg—2>m,

D(m, po — 1) =4 )
Vpo — 1), if2pg—2 <m.

Now writing both sides of (6.1) in terms of characters of irreducible g-modules and using
the above formulae we get (6.1).
Case 2: Let po = m. We get

D(m, p) ® D(1,1) =4 D(m, m(p1 + 1)) ® (D(m, 1) & V(0)) =g D(m, p + 1) ® D(m, p).

0

6.4 Proof of Proposition 6.1
We continue assuming p = mp; + po with p1,po € Z, p1 > —1and 0 < po < m. For
s € Z4, we write

chgD(1,5) = Y "[D(1,5) : D(m, p)lg=1chg D(m, p)
p>0

and multiply both sides with chyD(1, 1). We get
chyD(1,s) chyD(1, 1) = chgD(1,s 4+ 1)

= > [D(,5) : D(m, p)lg=1chgD(m, p) chgD(1, 1), (6.2)
p>0

Now we can apply Lemma 6.3 to both sides of (6.2). Applying to the right-hand side gives
a linear combination of characters of level m Demazure modules. Writing the left side as
chgD(L,s +1) = Y "[D(1, s+ 1) : D(m, p)lg=1chg D(rm, p)
p=0

and equating the coefficients on both sides of (6.2) gives

[D(L, s + 1) : D(m, p)lg=1

= [D(L,5) : D(m, p — D]g=1
+ (1 — b250,m — 82p0.m+1 — 856,m)[D(L, 8) : D(m, p 4 1)]4=1
+ (1 = Sapo,m — S2p,m—1)[D(L, 8) : D(m, p)lg=1

where

- po+1, ifpo<m,
bo =
1, otherwise.

Let us consider the case 2pg = m. We get from above

[D(1,s+ 1) :D(m’p)]qzl
= [D(Ls) : D(m, p — 1)]g=1 + (1 = $m2)[D(1, 5) : D(m, p + 1)]4=1
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and thus

A7) =1+ Y [D(L,p—1+k): D(m, p — 1)}x*
k>0

=1+ ) [D(Lp+Kk) : D(m, p)lx*
k>0

— (1= 82) ) _[D(Lp—1+k): Dm, p + D]s*
k>0

=A%) — (1 = 82w Ay ().

Repeating the same argument for all remaining cases gives the statement of Proposi-
tion 6.1. We omit the details.

6.5 Finally, we turn our attention to the study of AZ“_””‘H(x) for m > 1.

Proposition For m > 1 and n > 0, write n = (m + 1)p,, — r, where p,, € Zy and
0 <r, <m. Then,

A;n%m+1( )
ARSI @) = AT () ifl<m<["5t],
Azifmm“ (x) — a2 ”’Amfzzf“(x) ifry= LWTIJ and m is odd,
= Anm_;nm+1(x) Zr"Am_)m'H (%) ifry= LWTIJ and m is even,
A () — a2 AT () — 2 A o 1 (x) i [ 2R ] <m<m,
A () ifm+1|n
(6.3)
Proof To simplify notation, we fix m > 1 and for s, n € Z, set
v(s, n) = [D(m, 5) : D(m + 1, n)]y=1.
Recall that v(s, n) = 0 if s < n. The theorem follows if we prove for all s, # > 0 that
v(s+m, n+m) — v(s, n+ 2ry,) ifl<r,< L IJ
v(s+m, n+m)—v(s+m, n+2ry,) ifrn:LWTJ and m is odd,
v(s, n) = § v(s+m, n+m)—v(s, n+2ry,) ifr,= L’”%J and m is even,
v(s+m, n+m)—v(s +m n+ 2r,)—v(s, n+2r,—m—1) if LWT3J <r,<m,
v(s+m, n+m) ifm+1 | n
(6.4)

Notice that this equality holds whenever s < #, since both sides are zero. Hence, we can
assume that s > n. Taking ¢ = 1 in Proposition 5.2 gives

1 ifs+ nors— nisamultiple of m,
$s>0,0<n<m = visn= (6.5)
0 otherwise.

12
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Applying once more Proposition 5.2 with s = ms; + 9, 0 < sp < m, s1 > 1 and
& = (m, m*, sp) gives

visn)=vis—m—1L,n—m—1)+v(s+ m — 2sg, n)

k(&)
+Zv(s—2so+j—1,n—m—1), if 259 > m
j=1

and
visn)=vis—m—1,n—m—1)+v(s — 2sp,n), if2s9 < m.

We now proceed to prove Eq. (6.4) by induction on n. Equation (6.5) obviously implies

v(s,0) = v(s + m, m) and hence induction begins. Now let n > 0. Assume that v(s, ')

satisfies (6.4) for all0 < #’ < nand for all s € Z. We proceed by induction on s to prove

that v(s, n) satisfies (6.4) for all s € Z. Notice that the s = 0 is clear since both sides of

(6.4) are zero. Further, as remarked earlier, we assume for the rest of the proof that s > #.
Case I: Suppose 0 <n <mand1l <r, < LV”T*IJ. We have to prove that

v(s,n) =v(s+mn+m)—v(s2m—+2— n).

Case 1(a): Suppose s > m + 1 and 2sy > m. Then the recursive can be used for both
terms of the right-hand side and we get

vis+mn+m)=v(s—1,n—1)~+ v(s + 2m — 259, n + m)
k(&)
+Zv(s+m—2so+j—1,n—1),
j=1
vis2m+2—n)=vis—m—1,m+1—n)+v(is+m—2s0,2m~+2—n)
k(&)
+Zv(s—2so+j—1,m+l—n),
j=1

Set
Th=vis—1Ln—-1)—vis—m—1,m+1—n),
Ty = v(s + 2m — 2sg, n + m) — v(s + m — 250, 2m + 2 — n),
and
T3=vis+m—2sp+j—Ln—1)—v(s—2s0+j—Lm+1—n)

Equation (6.5) applies to both terms in 77 and T3. Since

s—1)—-n—-1)=@6—m—-—1)+(m+1—n)

s—-1)+mn—-1)=@6—-—m—-—1)—(m+1—n (mod m),
(s+m—2s50+j—1)—(n—1)=G6—-2s50+j—1)+(m+1—n)
(s+m—2s504+j—1)+mn—1)=E—2s50+j—1)—(m+1—n) (mod m),

we deduce that 77 = T3 = 0. Further, since s — 25y < s, the inductive hypothesis gives
Ty = v(s + m — 2sg, n). Hence, we have to verify v(s, n) = v(s + m — 2s¢, n). Since s = sp
(mod m), we obtain s + m — 2sg = —s (mod m) and thus s +n = —(s + m — 2s9 F n)
(mod m). Applying (6.5) completes the proof.
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Case 1(b):Suppose that s > m + 1 and 2s9 < m. Then the recursive formulae can be
used for both terms on the right-hand side and we get

vis+mn+m)=v(s—1Ln—1)+v(s — 2sg + m, n+ m),

v(ig2m+2—n)=vis—m—1L,m+1—n)+v(s — 2s0,2m + 2 — n).
Since T1 = 0 and s — 2s¢ < s, by using induction on s, we get

V(s — 289 +m, n+m) — v(s — 280, 2m + 2 — n) = v(s, n)

which proves the claim.

Case 1(c): Suppose s < m. Since 2m + 2 — n > m, we have v(s, 2m + 2 — n) = 0. Thus
we need to show that v(s, n) = v(s + m, n + m). Applying the recursive formulae again we
get

vis+mn+m)=v(s—1,n—1)+ v(s+ 2m — 289, n + m).

But since 0 < s < m, we have s = s, and hence s + 2m — 2sg = 2m — so < n + m. Thus
the second term vanishes. It remains to show v(s — 1,7 — 1) = v(s, n). But this is clear
by (6.5), which implies for 1 <s,n <m:v(s — 1, n — 1) = v(s, n) = Sg.

Case 2: Supposen > m+land1 <r, < LmT_lj. Then m + 1 { r. Consider

S=v(s+mn+m)—v(s,n+2r,) —v(s n).

Case 2(a): Assume that 2so > m. By applying the recursive to each of the terms of S, we

have
k(&)
S:v(s—l,n—1)—|—v(s—|—2m—2so,n+m)+Zv(s+m—2so+j—l,n—l)
j=1
—vs—m—Ln+2r,—m—1)—v(s+m — 2sp, n + 2ry,)
k(&)
—Zv(s—2so+j—l,n+2r,,—m—l)—v(s—m—l,n—m—l)
j=1
k(&)
—v(s+m—250,n)—Zv(s—Zso—i—j—l,n—m—l),
j=1

Sincen—m—1<mn,s+m—2sy <sands—2sg+j— 1 < s, the inductive hypothesis

gives

vis—m—1Ln—m—1)=v(is—1n—-1)—vis—m—1Ln+2r, —m—1),
V(s +m — 250, n) = v(s + 2m — 280, n + m) — v(s + m — 259, 1 + 2ry,),
vis—2s9+j—lLn—m—1)=v(is+m—2s0+j—Ln—1)
—v(s—2s0+j—1Ln+2r,—m—1).

Substituting these equations in our equation for S, we obtain § = 0.
Case2(D): Let us assume that 25y < m. By applying the recursive to each of the terms of
S,

S=vis—1Ln—-1)+vis+m—2sg,n+m)—v(is—m—1,n+2r,—m—1)

—v(s—2sg,n+2r,) —vis—m—1,n—m—1) — v(s — 250, n).
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Again by using the induction hypothesis we get

vis—-m—-1Ln—-m—1)=vis—1L,n—1)—vis—m—1Ln+2r,—m—1),

V(s — 280, n) = v(s + m — 250, 1 + m) — v(s — 250, 1 + 2ry).

Substituting these equations in our equation for S, we obtain § = 0. The remaining cases

can be proven similarly and we leave the details to the reader. O

6.6 We shall use Proposition 6.5 to establish a closed formula for the generating series
AZ‘_””“ (). For this we define polynomials d,(x), n > 0 with nonnegative integer coeffi-

cients as follows. For 0 < n < m set

1 ifn=0,m,

L4am2 i1 <n < [252),
dlx) = cemre

1+ 8res2(m),1x ifn = rT—L

1 + x2m—2n if[5]1<n<m-—1

The polynomials d,,(x) for n > m are defined by requiring that the following equality
holds for allp > 1:

T T
(o100 @ dims1p1® -+ dimipim)| =K [do(o) dr@) -+ d@)] 2 (66)

where K isa (m + 1) x (m + 1) matrix defined as

K Ky + Ky ifmiseven
Ki + ](2)1 if mis odd,

and the three (m + 1) x (m + 1) matrices K3, Ky 0 and K3 1 are defined below. Set

01 -
01

where number of zeros on the diagonal of the matrix K is (mTHW and the number of

entries equal to ! is LmT“J. Set
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_ 1T
xm73 xm72
'xm—4
X .
0 x2
Koo = 0 0
. xm—Z
. xm74
0 .-
0 x2

|01 »
where the number of antigonal elements equal to zero in the matrix K3 o is equal to (”’TH] .
Set

_ 17

xm—S xm—Z
. xm—éL
x? .
0 x
Ky1 = 0 0
. xm—?)
. xm—S
0 .
0 x2
_0 l > -

where the number of antigonal elements equal to zero in the matrix K ; is equal to I'mTJr?"I .

Theorem 4 Let m > 1. Then, for all n > 0, we have
Am—>m+1(x) — d”(x)

n n *
(1- x’")L’”TlJH

Proof Letn p, € Z4+,0 <r, < msuchthatn = (m+ 1)p, — ry. To simplify the notation
in the proof we set A, := A7~ "+1(x) and

enl) = A1 — xmL )L

The strategy of the proof is to show by induction on p that

T T
[elnr1p® elmstp1®) - miprm@ | =K [do() @) -+ du()] . (67)

From Proposition 5.2, it is easy to see that

An:d,,—(x) forO<n<m

1- x’”)L”’LJ"JJrl
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and the induction begins. First we verify certain recursive formulae for the e,(x)’s using
Theorem 6.5.

Case I: If1 <r, < L’"T_ZJ, we have

A(m“‘l)Pn_rn = A(m+1)pn+m_rn - x2rnA(m+1)Pn+rn’ (6'8)

—2ry
A(m+l)p,,—(m—r,,,) = A(m"‘l)l’n“"n — & A(m+1)l7n+(m_rn)

_xm72rn71A(m+l)pﬂ_rn_1. (69)
Multiplying Eq. (6.8) by =2 and adding the result to Eq. (6.9) gives

(L= %At 1)pptrs = At —m—r) T " Ay 1py 1,
+xm72r"71A(m+1)pn—r,,—1'
It follows
e(m+1)pn+rn (x) = e(m«l»l)pnf(mfr,,)(x) + xm_Zrne(m+1)p,,fr,, (x)
a2 -1 (). (6.10)

Case 2: If LmTJr?’J <r, <m— 1we obtain

_ 2ry—m
A(Wl+1)17n*7n - A(m+1)pn+m*rn —x A(m+1)pn+rn

_xzrn_m_lA(m+1)pn+Vn*m*1’ (611)

Al )p—n—r) = At Dpatrs =" A1), by (6.12)

Multiplying Eq. (6.11) by ¥2”~2 and adding the result to Eq. (6.12) gives

(I = 2" At 1)pytra = At Dpu—(m—r,) + xzm_zr”f“wmpn—m ()
+xm_1A(m+1)pn+rn_m_1'

This implies

e(m+1)pn+”n (x) = e(m+1)pn_(m_rn)(x) + xzy’qizrne(m‘i‘l)pn_rn (x)
+a" e 1), 1)+, (%): (6.13)

Case 3: If r,, = m, then

Apmi)pu—m = Apmi1)p, — " A putm — X" Apnityp,—1

=(1- xm)A(m+1)pn+m - xmilA(m+1)pn—l-
Hence
emt Dpntm®) = €t 1)(pu—1)+1%) + 5" enr1)pp—1)4m (¥)- (6.14)

Case 4: If m is even and r,, = 3, we get

AntDp,—13 = At pt g =X Apmt1)p, 1

This shows

Clm+ Dput+ 2 (%) = €nt1)(p, 1)+ 2 +1(%)- (6.15)
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Case 5: If m is odd, then we get the following two equations by setting r, = I_’"THJ and

rm = 251, respectively:
A(WH—DPn_mTH = A(m+1)Pn+mT_l o xA(m+1)pn+mT+1(x)’ (616)
- -1
‘Ll(rnﬂ)pn—’%1 - A(m+1)Pn+mT+l — " A(m+1)pn+’”T*1‘ (6.17)
Multiplying Eq. (6.17) by x and adding the result to Eq. (6.16) yields
m —
(= Aaypy gt = Ay, 0+ 5G4, s
Thus
€l Dpyt 25t (x) = €l Dpy— 1L (x) + X,y 1), 1L (x). (6.18)
Similarly multiplying Eq. (6.16) by ! and adding the result to Eq. (6.17) gives
m _ m—1
(A =2 A 1), mit = A(m+1)pn7m74(x) A Ay, mL
which implies
-1
e(m+1)pn+’”7“(x) = e(m+1)(pn71)+'”7“+1(") + %™ e(m+1)(pn—1)+’”7“(x)' (6.19)

Hence the recursive formulae for the e, (x)’s from Egs. (6.10), (6.13), (6.14), (6.15), (6.18)
and (6.19) imply forp > 0

T

K [e(m-l-l)(p—l)(x) em+1)(p—1)+1(%) - e(m+1)<p—1)+m(x)]
T
= [e(m+1)p(x) e(m+1)p+1(x) e(m+l)p+m(x):| .

Applying the induction hypothesis shows (6.7). o
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