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Abstract

We study a family of finite-dimensional representations of the hyperspecial parabolic
subalgebra of the twisted affine Lie algebra of type A(2)2 . We prove that these modules
admit a decreasing filtration whose sections are isomorphic to stable Demazure
modules in an integrable highest weight module of sufficiently large level. In particular,
we show that any stable levelm′ Demazure module admits a filtration by levelm
Demazure modules for allm ≥ m′. We define the graded and weighted generating
functions which encode the multiplicity of a given Demazure module and establish a
recursive formulae. In the case whenm′ = 1, 2 andm = 2, 3, we determine these
generating functions completely and show that they define hypergeometric series and
that they are related to the q-Fibonacci polynomials defined by Carlitz.

Introduction
In this paper, we explore a connection between Demazure modules in the highest weight
representations of affine Lie algebras and number theory, including the connection with
various hypergeometric series, the q-Fibonacci polynomials introduced by Carlitz and
the mock theta functions of Ramanujan. The first such connection was made in [2] in
the case of the affine Lie algebra associated to sl2. In this paper, we deal with the other
(and the substantially more difficult) rank-one case, namely A(2)

2 . The basic result is that
the character of a Demazure module of level m can be written as a N[q]-combination
of characters of Demazure modules of fixed level � with � ≥ m. In fact, we prove that
a Demazure module of level m admits a flag where the successive quotients are level �

Demazuremodules.This allowsus todefine corresponding generating series and following
the approach taken in [2] our goalwas to study these series. In this paper, we shall see that it
is in fact better to work with canonically defined weighted generating series; we prove that
these series arewell-knownhypergeometric functions or suitable limits of hypergeometric
functions in the case whenm = 1, 2 and � = 2, 3. For higher values of � andm, we see that
these series satisfy interesting but very complicated recurrences. The results of this paper
and [2] indicate a deep and unexpected connection between the theory of Demazure flags
and its combinatorics and number theory. Additional evidence for this connection for
higher-rank cases can be found in the ongoing work [3]. We remark here that there is
a well-known and very important connection between the representation theory of level
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one representations and number theory through the Rogers–Ramanujan identities [15].
But this does not appear to be related in any obvious way to our study of Demazure flags.
We describe our results in more detail. A character formula for Demazure modules,

analogous to the Weyl character formula, was given in [8,13,17]. Combinatorial versions
of the character of suchmodules were given in [16]. In the case of affine Lie algebras, there
is extensive literature in the case of level one highest weight integrable modules; here
the level is the integer by which the canonical central element of the affine Lie algebra
acts on the highest weight module. The work of Sanderson [19] for A(1)

n and the work
of Ion [10] more generally shows that the character of a particular family of level one
Demazure modules (which we shall refer to as stable Demazure modules) is given by a
specialization of Macdonald polynomials (in the untwisted simply laced case) and by the
specialization of the Koornwinder polynomial for the twisted affine Lie algebras. However,
no such formulae are available for the higher-level Demazure modules.
In [11], Joseph introduced the notion of amodule admitting a Demazure flag. He proved

in the case of the quantized enveloping algebra associated to a simply laced affine Lie
algebra that the tensor product of a one-dimensional Demazure module by an arbi-
trary Demazure module admits a filtration whose successive quotients are isomorphic
to Demazure modules. It was shown in [18] that an analogous result could be deduced
from [11] for stable Demazure modules in the simply laced untwisted affine Lie algebras.
In this paper, we turn our attention to such questions in the case of twisted affine Lie

algebras; the most interesting situation being the Lie algebra of typeA(2)
2n and we consider

the corresponding rank-one situation. The stable Demazure modules that we shall be
interested in are those which admit an action of the hyperspecial parabolic subalgebra
(denoted Cg) of the affine Lie algebra. Our first result constructs a large family (which
includes the Demazure modules) of finite-dimensional modules for Cg which admit a
Demazure flag. Analogous results for A(1)

1 were established in [6] using results from [7].
In the current situation, we use results from [14]; however, we have to work much harder
to establish the analogous results of [6] for two reasons. We have to contend with the
fact that A(2)

2 is a much more complicated algebra and we also have to prove additional
representation theoretic results which were not established in [14].
As a first application of our results, we see that the non-symmetric Koornwinder poly-

nomial E−n(q2, t) at t = ∞ is a N[q]-linear combination of graded characters of level m
Demazuremodules for any fixedm ≥ 1. The generating series of the trivialmodule in level
three Demazure flags of a level one Demazure module has interesting specializations; one
of which gives rise to a fifth-order mock theta function of Ramanujan. Analogous connec-
tions were made in the untwisted case in [2].
We introduce the weighted generating series of the multiplicities. Namely we define the

weighted multiplicity of a Demazure module D occurring in a Demazure flag of a module
V by multiplying the graded multiplicity by a power of q so that the resulting polynomial
is either zero or has a nonzero constant term. We show that in the case of level two flags
in level one Demazuremodules the resulting weighted generating series is a specialization
of the hypergeometric function 1F1

[ a
b ; q z

]
. In the case of level three flags in level two

Demazuremodules, the generating series are determined explicitly and is essentially given
by the q-Fibonacci polynomials defined by Carlitz.We remind the reader that the original
q-analogs of the Fibonacci polynomials were introduced by Schur [20] in his work on the
Rogers–Ramanujan identities. We also give a closed form for the generating series for the
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numerical multiplicities (q = 1) and find that they involve the Chebyshev polynomials of
the second kind; a similar closed form for A(1)

1 was proved in [2].
The case of higher-level Demazure flags ismuchmore complicated; however, our results

onweightedmultiplicities do suggest that the hypergeometric series again appear, but this
is still conjectural. The paper is organized as follows. In Sect. 2 we state the main results
of the paper with the minimum possible notation. The representation theoretic results
are established in Sects. 3 and 4. The last sections are devoted to using the representation
theory to calculate the graded and weighted multiplicities.

1 Preliminaries
1.1 We denote the set of complex numbers by C and, respectively, the set of integers,
nonnegative integers, and positive integers by Z, Z+, and N. We set N = {(r, s) : r, s ∈
1
2N, r+ s ∈ N} and let y+ = max{0, y} for y ∈ R. All vector spaces considered in this paper
are C-vector spaces. For a Z-graded vector space V =⊕k∈Z V [k] we denote by τ ∗

p V the
graded vector space whose k-th graded piece is V [k + p]. Given a complex Lie algebra a,
we let U(a) be the corresponding universal enveloping algebra.

1.2 We refer to [12] for the general theory of affine Lie algebras. The focus of this paper is
the twisted affine Lie algebra ĝ of type A(2)

2 , which contains the simple Lie algebra g = sl2
as a subalgebra. Recall that sl2 is the complex simple Lie algebra of two by two matrices
of trace zero and that {x0, y0, h0} is the standard basis with [h0, x0] = 2x0, [h0, y0] = −2y0
and [x0, y0] = h0. The element h0 generates a Cartan subalgebra h of g and let R = {±α}
be the set of roots with respect to h. We fix ĥ a Cartan subalgebra of ĝ containing h

and let R̂ the set of roots of ĝ with respect to ĥ. The corresponding sets of positive and
negative roots are denoted as usual by R̂± and R±, respectively. If δ denotes the unique
non-divisible positive imaginary root in R̂, then we have R̂ = R̂+ ∪ R̂−, where R̂− = −R̂+,
R̂+ = R̂+

re ∪ R̂+
im, R̂

+
im = Nδ, and

R̂+
re = R+ ∪ (R + 2Nδ

) ∪ 1
2
(
R + (2Z+ + 1)δ

)
.

We also consider the set

R̂re(±) = R± ∪ (R± + 2Nδ
) ∪ 1

2
(
R± + (2Z+ + 1)δ

)
.

Given β ∈ R̂ let ĝβ ⊂ ĝ be the corresponding root space; note that x0 (resp. y0) is a
generator of the root space ĝα (resp. ĝ−α). For any real root β we fix a generator xβ of ĝβ

and abbreviate

xα+2rδ := x2r , x α
2 +(r+ 1

2 )δ
:= xr+ 1

2
, x−α+2rδ := y2r , x− α

2 +(r+ 1
2 )δ

:= yr+ 1
2
.

1.3 We define several subalgebras of ĝ that will be needed in the rest of the paper. Let b̂
be the Borel subalgebra corresponding to R̂+, and let n̂+ be its nilpotent radical,

b̂ = ĥ ⊕ n̂+, n̂± =
⊕

β∈R̂+
ĝ±β .

The subalgebras b and n± of g are defined similarly. The twisted current algebra Cg is
defined as

Cg = h ⊕ n̂+ ⊕ n−
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and admits a triangular decomposition

Cg = Cn+ ⊕ Ch ⊕ Cn−,

where

Ch = Ch+ ⊕ h, Ch+ =
⊕

k>0
ĝkδ , Cn± =

⊕

β∈R̂re(±)

ĝ±β .

Following [5] we call Cg the hyperspecial twisted current algebra, which is different from
the notion of twisted current algebras of type A(2)

2 that exists in the literature. The differ-
ences are clarified in [5, Remark 2.5]. To simplify notation we set

U(Cg) := U, U(Cn±) := U±.

1.4 The scaling operatord ∈ ĥ defines aZ+-graded Lie algebra structure onCg: forβ ∈ R̂
we say that ĝβ has grade k if β(d) = k . Since δ(d) = 2 the eigenvalues of d are all integers
and if gβ ⊂ Cg, then the eigenvalues are nonnegative integers.With respect to this grading,
the zero homogeneous component of the twisted current algebra is Cg[0] = g. A finite-
dimensional Z+-graded Cg-module is a Z-graded vector space admitting a compatible
graded action of Cg:

V =
⊕

k∈Z
V [k], Cg[r]V [k] ⊂ V [k + r].

Note that each graded component V [k] is a g-module and we define the graded character
as

chgrV =
∑

k∈Z
chgV [k]qk .

2 Themain results
We summarize the main results of the paper. We keep the notation to a minimum and
refer the reader to the later sections for precise definitions.

2.1 Given m ∈ N and n ∈ Z+ with n = n1m + n0, where n0, n1 ∈ Z, 0 < n0 ≤ m, let
D(m, n) be the graded Cg-module generated by an element vn with defining relations:

(Cn+ ⊕ Ch+)vn = 0, h0vn = nvn, yn+1
0 vn = 0, (2.1)

y2n1+2vn = 0, yn1+ 3
2
vn = 0, ifm > 1, (2.2)

yn0+1
2n1 vn = 0, y(2n0−m)++1

n1+ 1
2

vn = 0, if n0 < m. (2.3)

It was proved in [14] thatD(m, n) is a finite-dimensional indecomposable Cg-module and
is isomorphic to a Demazure module occurring in a highest weight integrable irreducible
representation of ĝ. We callm the level of the Demazure module.

2.2 We define the notion of a Demazure flag as follows. Let V be a graded finite-
dimensional Cg-module V ; we say that V admits a levelm Demazure flag if there exists a
decreasing sequence of graded Cg-submodules of V

F (V ) = (0 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vk = V
)

such that the successivequotients of theflag are isomorphic to τ ∗
pD(m, n) for somen, p ≥ 0.
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Let [V : τ ∗
pD(m, n)] be the number of times τ ∗

pD(m, n) occurs as a section of this flag.
It is not hard to see that this number is independent of the choice of the flag. For an
indeterminate q, we define a polynomial in N[q] by

[V : D(m, n)]q =
∑

p≥0
[V : τ ∗

pD(m, n)]qp.

We also set

[V : D(m, n)]q := 0, if n < 0. (2.4)

We call [V : D(m, n)]q the graded multiplicity of D(m, n) in V . If [V : D(m, n)]q is
nonzero, we define the weighted multiplicity of D(m, n) in V to be the unique polynomial
[V : D(m, n)]wq in N[q] with nonzero constant term satisfying

qr[V : D(m, n)]wq = [V : D(m, n)]q for some r ∈ Z+. (2.5)

Otherwise we set [V : D(m, n)]wq = [V : D(m, n)]q = 0.

2.3 The first result of our paper is the following:

Theorem 1 For all integers m ≥ m′ > 0 and s ≥ 0 the module D(m′, s) admits a
Demazure flag of level m. Moreover,

[D(m′, s) : D(m, n)]q = δn,s, if n ≥ s, [D(m, s) : D(m, n)]q = δn,s (2.6)

and for m ≥ � ≥ m′ > 0 we have

[D(m′, s) : D(m, n)]q =
∑

p≥0
[D(m′, s) : D(�, p)]q [D(�, p) : D(m, n)]q. (2.7)

Remark In the case of quantized enveloping algebras associated with simply laced Kac–
Moody Lie algebras, the existence of such a flag was proved in [11] using the theory of
canonical bases. Later, it was shown in [18] that taking the classical limit, the result remains
true for the corresponding affine Lie algebras.
An alternate constructive proof was given in [6] in the case ofA(1)

1 ; this proof enables one
to compute multiplicities in the Demazure flag. We follow this approach in the current
paper; however there are many non-trivial representation theoretic results that have to
first be established forCg. In particular, we shall prove in Sect. 4 that amore general family
of modules admit a Demazure flag.

2.4 Our next results deal with understanding the graded and weighted multiplicities of
a level m Demazure flag in D(m′, n) in the case when (m′, m) ∈ {(1, 2), (2, 3)}. Given
n,m ∈ Z, the q-binomial coefficient is defined by

[
n
m

]

q
= (q; q)n

(q; q)n−m(q; q)m
, n ≥ m > 0,

[
n
0

]

q
= 1,

[
n
m

]

q
= 0, m < 0 or 0 < m > n,
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where the q-Pochammer symbol (a; q)n is defined as

(a; q)n =
n∏

i=1

(
1 − aqi−1

)
, n > 0, (a; q)0 = 1.

Recall the following well-known q-binomial identities:
[
n
m

]

q
=
[
n − 1
m

]

q
+ qn−m

[
n − 1
m − 1

]

q
,

[
n
m

]

q
= qm

[
n − 1
m

]

q
+
[
n − 1
m − 1

]

q
, n ≥ m > 0.

For s ∈ Z+ let res2(s) ∈ {0, 1} be defined by requiring s − res2(s) be even. The proof of
the next proposition can be found in Sect. 5.

Proposition Let s, p ∈ Z+.

(i) We have

[D(1, s + p) : D(2, s)]wq =
[� s

2� + p
p

]

q2
, (2.8)

and

[D(1, s + p) : D(2, s)]q = qp(s+p+res2(s))[D(1, s + p) : D(2, s)]wq . (2.9)

(ii) For 0 ≤ r ≤ 5, let

r′ = δr,1 + δr,4 , r̄ = (δr,1 + δr,3 + δr,5)res2(p) − δr,1, r̃ =
⌊ r
3

⌋
.

Setting n = 6s + r, we have

[D(2, n + p) : D(3, n)]wq

=
� p
2 �∑

j=0
q2j(j+r′+res2(p))

[
2s + r̃ + � p

2 � − j
2s + r̃

]

q2

[
s + j + r̄

2j + res2(p)

]

q2
,

and

[D(2, n + p) : D(3, n)]q
= qp(4s+r−r̃+
 p

2 �)+res2(p)(r′−� p
2�)[D(2, n + p) : D(3, n)]wq . (2.10)

Remark One outcome of our results is the following. It was proved in [10] that the spe-
cialization of the non-symmetric Koornwinder polynomial E−n(q2, t) at t = ∞ coincides
with the graded character of D(1, n). Using Theorem 1 with m′ = 1, we see that we can
express E−n(q2, t) as a N[q]-linear combination of graded characters of levelmDemazure
modules. In the case when m′ = 1 and m = 2, 3 our analyses gives closed formulae for
this decomposition of Koornwinder polynomials.

2.5 Given n ∈ Z, m′, m ∈ N with n ≥ 0 and m ≥ m′ we define generating series which
encode the graded and weighted multiplicities of a level m flag in a level m′ Demazure
module:

Am′→m
n (x, q):=

∑

p≥0
[D(m′, n + p) : D(m, n)]qxp,

Am′→m,w
n (x, q):=

∑

p≥0
[D(m′, n + p) : D(m, n)]wq xp.
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We shall relate these series to general basic hypergeometric series defined by

rFs
[
a1 . . . ar
b1 . . . bs

; q z
]

=
∑

n≥0

(a1; q)n(a2; q)n · · · (ar ; q)n
(b1; q)n(b2; q)n · · · (bs; q)n

zn

(q; q)n
.

For more details and properties of hypergeometric series we refer the reader to [21].

2.5.1 Consider the case when (m′, m) = (1, 2). Proposition 2.4(i) gives that

[D(1, 2n + p) : D(2, 2n)]wq = [D(1, 2n + 1 + p) : D(2, 2n + 1)]wq ,

and hence we set

�1→2
n+1 (x, q) := A1→2,w

2n+1 (x, q) = A1→2,w
2n (x, q).

A further application of Proposition 2.4(i) gives

�1→2
n+1 (x, q) =

∑

p≥0

[
n + p
n

]

q2
xp =

∑

j≥0

[
j
n

]

q2
xj−n.

Using the identity

∑

j≥0

[
j
k

]

q
xj = xk

(x : q)k+1
, (2.11)

we get

�1→2
n+1 (x, q) = 1

(x; q2)n+1
.

It follows that if we set �1→2
0 = 1, then

∑

n≥0
�1→2

n (x, q)zn = 1F1
[
q2

x
; q2 z

]
.

2.5.2 We now consider the case whenm = 3. In the case when (m′, m) = (1, 3) we prove
the following,

Proposition We have

A1→3
0 (1, q) = φ0(q), qA1→3

1 (1, q) = φ1(q),

where

φ0(q) =
∑

n≥0
qn

2
(−q; q2)n, φ1(q) =

∑

n≥0
q(n+1)2 (−q; q2)n,

are the fifth-order mock theta functions of Ramanujan.

Proof Using Eq. (2.7), we see that

A1→3
0 (x, q) =

∑

p≥0
[D(1, p) : D(3, 0)]qxp

=
∑

p,s≥0
[D(1, p) : D(2, s)]q[D(2, s) : D(3, 0)]qxp.

Equation (2.10) gives

[D(2, 2j + 1) : D(3, 0)]q = 0, [D(2, 2j) : D(3, 0)] = q2j
2
,
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and hence using Proposition 2.4(i) we get

A1→3
0 (x, q) =

∑

p,j≥0
q2j

2+(p−2j)p
[
p − j
p − 2j

]

q2
xp

=
∑

i,j≥0
qj

2+i2
[
i
j

]

q2
xi+j

=
∑

i≥0
qi

2
xi
∑

j≥0
qj

2−j
[
i
j

]

q2
(qx)j

=
∑

i≥0
qi

2
(−qx; q2)ixi.

Thus, A1→3
0 (1, q) = φ0(q). The proof in the other case is similar. ��

2.5.3 We now consider the case (m′, m) = (2, 3). In this case, the generating series
A2→3,w
n (x, q) is related to the q-Fibonacci polynomials defined by Carlitz in [4]:

Sn(x, q)0 = xSn−1(x, q)0 + qn−2Sn−2(x, q)0, S0(x, q)0 = 0, S1(x, q)0 = 1.

We remark that the specialization Sn(1, q)0 was first considered by Schur [20] in his proof
of the Rogers–Ramanujan identities; see also [1] for more details.
The solution to this recurrence is

Sn+1(x, q)0 =
∑

j≥0

[
n − j
j

]

q
qj

2
xn−2j .

The same recurrence relation but with different initial conditions,

Sn(x, q)1 = xSn−1(x, q)1 + qn−2Sn−2(x, q)1, S−1(x, q)1 = 0, S0(x, q)1 = 1,

has the solution

Sn(x, q)1 =
∑

j≥0

[
n − j
j

]

q
qj(j−1)xn−2j .

Write

A2→3,w
n (x, q) = A2→3,w

n (x, q)0 + A2→3,w
n (x, q)1,

where

A2→3,w
n (x, q)k :=

∑

p≥0
[D(2, n + 2p + k) : D(3, n)]wq x2p+k , k ∈ {0, 1}.

We prove

Proposition For 0 ≤ r ≤ 5 we set

s0 = s − δr,1, s1 = s − 1 + δr,3 + δr,5.

Then

A2→3,w
6s+r (x, q)k = q−2s2k−kr′

(x2; q2)2s+� r
3 �+1

S2sk+1(y, q2)k , k ∈ {0, 1},

where y = q2sk+r′x.
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Proof Using the formulae in Proposition 2.4(ii) we get

A2→3,w
6s+r (x, q)0 =

∑

p,j≥0
q2j(j+r′)

[
2s + r̃ + p − j

2s + r̃

]

q2

[
s + j + r̄

2j

]

q2
x2p

=
∑

i≥0

[
2s + r̃ + i

i

]

q2
x2i
⎛

⎝
∑

j≥0
q2j(j+r′)

[
s0 + j
2j

]

q2
x2j
⎞

⎠

= 1
(x2; q2)2s+� r

3 �+1

⎛

⎝
∑

j≥0
q2j(j+r′)

[
s0 + j
2j

]

q2
x2j
⎞

⎠

= q−2s20

(x2; q2)2s+� r
3 �+1

S2s0+1(y, q2)0.

The remaining case works similarly. ��

2.5.4 The generating series can also be viewed as limits of hypergeometric series and we
thank George Andrews for helping us with this observation. In particular,

(x2; q2)2s+� r
3�A

2→3,w
6s+r (x, q)0

=
∑

j≥0
q2j(j+r′) (−1)jq2s0j−j2+j(q2s0+2; q2)j(q−2s0 ; q2)j

(q2; q2)2j
x2j

=
∑

j≥0
q2j(s0+r′)+j(j+1)(−1)j

(q2s0+2; q2)j(q−2s0 ; q2)j
(q2; q2)j(−q2; q2)j(q; q2)j(−q; q2)j

x2j

= lim
t→0

4F3
[
q/t t q2s0+2 q−2s0

−q2 q − q
; q2 tx2q2(s0+r′)+1

]
.

Similarly,

(x2; q2)2s+� r
3�A

2→3,w
6s+r (x, q)1

= x(1 − q2s1+2)
1 − q2

lim
t→0

4F3
[
q2/t t q2s1+4 q−2s1

−q2 q3 − q3
; q2 tx2q2(s1+r′+1)

]
.

Remark Another consequence of the established formulae for the graded multiplicities
in Proposition 2.4 is that we can write the generating series Am′→m

n (x, q) in the case when
(m′, m) ∈ {(1, 2), (2, 3)} as a linear combination of partial theta functions

	(q, z) =
∞∑

k=0
qk

2
zk .

This expression is similarly as in [2] and will be omitted.

2.6 Our final collection of results discusses the generating functions for the numerical
multiplicities, namely we set

Am′→m
n (x) :=

∑

p≥0
[D(m′, n + p) : D(m, n)]q=1xp,

and study these function for m′ = 1 and also when m = m′ + 1. In both cases, they
are rational functions in x; moreover, in the first case they are related to the Chebyshev
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polynomial of the second kind as we now discuss. For n ∈ Z+ define polynomials an(x)
by a0(x) = a1(x) = 1 and for n ≥ 2

an(x) =
⎧
⎨

⎩
an−1(x) − xan−2(x) if n is odd,

(1 + x)an−1(x) − xan−2(x) if n is even.
(2.12)

We shall prove

Theorem 2 For s ∈ Z+ and r ∈ {0, . . . , m − 1} we have

A1→m
ms+r (x) = a2m−2r−1(x)

(am(x)am+1(x))s+1 ,

if �m
2 � ≤ r ≤ m − 1 and

A1→m
ms+r (x) = am(x)am−2r−1(x)

(am(x)am+1(x))s+1 ,

if 0 ≤ r ≤ �m
2 � − 1.

Remark The connection with Chebyshev polynomials is made as follows. Consider the
following recurrences:

Un+1(x) = 2xUn(x) − Un−1(x), U0(x) = 1, U1(x) = 2x.

Let Pn(x) be the polynomials defined by the recurrence

P0(x) = P1(x) = 1, Pn+1(x) = Pn(x) − xPn−1(x) for n ≥ 1.

It is known that the Chebyshev polynomials of the second kind satisfy the recurrences for
U and that Pn(x2) = xnUn((2x)−1). It is not hard to see that the polynomials an(x) are
given by

an(x) = (1 + x)�
n
2 �Pn

(
x

1 + x

)
, n ≥ 0.

Basically one just checks that the right-hand side of the preceding equation satisfies the
same recurrence relations as thean(x). It is alsouseful tonotehere thata2n(x) = a2n−1(x)−
x2a2n−3(x) and that an(x) = (1 − x)an−2(x) − x2an−4(x) for n ≥ 4.

3 Themodules V (ξ) and dimension bounds
In this section, we state the more general version of Theorem 1.

3.1 Let P� be the set of all partitions ξ of length � + 1 such that the following holds:

ξ =
⎛

⎜
⎝ξ0 ≥ (ξ + 1) ≥ · · · ≥ (ξ + 1)︸ ︷︷ ︸

�−1−p

≥ ξ ≥ · · · ≥ ξ︸ ︷︷ ︸
p

≥ ξ� > 0

⎞

⎟
⎠ , (3.1)

where either p = 0 and � = 1 or 1 ≤ p ≤ �−1 if � > 1. For ξ = (ξ0 ≥ ξ1 ≥ · · · ≥ ξ�) ∈ P�,
set

|ξ| =
∑

j≥1
ξj , φ(ξ; k) :=

⎧
⎪⎪⎨

⎪⎪⎩

∑
j≥k+1 ξj − 1

2ξk+1, if 0 ≤ k ≤ � − 2,
(
ξ� − 1

2ξ�−1
)
+, if k = � − 1,

0 else.
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Define a partial order on P = ∪�∈NP� by: for ξj ∈ P�j , j = 1, 2, we say that

ξ1 ≺ ξ2 ⇐⇒ either �1 < �2 or �1 = �2 and ξ1 < ξ2, (3.2)

where < denotes the usual reverse lexicographic order on partitions.

3.2 We introduce the main objects of this paper. For any nonnegative integer b ∈ Z+
and x ∈ Cg set x(b) := xb/b!.

Definition Given ξ ∈ P� with |ξ| = n, we defineV (ξ) to be the graded quotient ofD(1, n)
by the submodule generated by the graded elements,

y2�vn, y�+ 1
2
vn, (3.3)

y(ξ�+1)
2�−2 vn, if ξ� + 1 < ξ�−1, y(2φ(ξ;�−1)+1)

�− 1
2

vn, if ξ� < ξ�−1. (3.4)

Remark Note that the definition of V (ξ) is independent of ξ0 unless � = 1 and 2ξ1 > ξ0.
We set ξ̃0 := (1 + δ�,1)ξ1 − δ�,1(2ξ1 − ξ0)+ and denote by vξ the cyclic generator of V (ξ).

3.3 The modules V (ξ), ξ ∈ P� admit another realization which we now discuss. For
s, r ∈ N, k ∈ Z+ let

S≥k (r, s) =
⎧
⎨

⎩
b = (bj)j∈Z+

j≥k
: bj ∈ Z+,

∑

j≥k
bj = r,

∑

j≥k
jbj = s

⎫
⎬

⎭
,

and for (r, s) ∈ N, k̃ ∈ Z+/2 let

S̃≥k̃ (r, s) =
{

b̃ = (b̃j)2j∈Z+
j≥k̃

: b̃j ∈ Z+ ,
∑

j≥k̃

(b̃j+1/2 + 2b̃j) = 2r,

∑

j≥k̃

(
(j + 1

2
)b̃j+ 1

2
+ 2jb̃j

) = s
}

.

The following elementary calculation will be used repeatedly.

Lemma Let (r, s) ∈ N, and b̃ ∈ S̃≥k− 3
2
(r, s) (resp. b̃ ∈ S̃≥k− 5

2
(r, s)) such that b̃j = 0 for all

j ≥ k. Then we have

b̃k− 1
2

+ b̃k−1 = s − 2r(k − 3/2), b̃k− 3
2

+ b̃k−1 = 2r(k − 1/2) − s
(
resp. b̃k− 3

2
+ 2b̃k− 1

2
+ b̃k−2 + 3b̃k−1 = s− 2r(k − 5/2), b̃k− 5

2
− b̃k− 1

2
+ b̃k−2 − b̃k−1 =

2r(k − 3/2) − s
)
. ��

3.4 Let y≥k (r, s), ỹ≥k̃ (r, s) be the following elements of U:

y≥k (r, s) =
∑

b∈S≥k (r,s)
y(bk )2k y(bk+1)

2k+2 · · · y(bs)2s , (3.5)

ỹ≥k̃ (r, s) =
∑

eb∈̃S≥k̃ (r,s)

→∏
n≥k̃

(̃yn+ 1
2
)
(b̃n+ 1

2
)
(̃y2n)(b̃n), (3.6)
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where for n ∈ Z+ we set

2ñyn+ 1
2
:= −yn+ 1

2
, 22ñy2n := ((−1)n − 2) y2n,

and
→∏

n≥0 refers to the product of the specified factors written exactly in the increasing
order of the indexing parameter.

Proposition For ξ ∈ P� with |ξ| = n, the module V (ξ) is the quotient of D(1, n) by the
additional relations:

y≥k (r, s)vn = 0, ∀s, r ∈ N, k ∈ Z+ with s + r ≥ 1 + kr +
∑

j≥k+1
ξj , (3.7)

ỹ≥k+ 1
2
(r, s)vn = 0, ∀(r, s) ∈ N, k ∈ Z+ with s ≥ 1

2
+ 2kr + φ(ξ; k). (3.8)

Moreover, there exists a surjective map of g-modules

V (ξ) � D
(
ξ1, ξ1

)⊗(�−1−p) ⊗ D(ξ�−1, ξ�−1)⊗p ⊗ D(ξ�−1, ξ�).

Proof Let Ṽ (ξ) be thequotient ofD(1, n) by the submodule generatedby the elements (3.7)
and (3.8). For all r, r′ ∈ N, k ∈ Z+ with r ≥ 1 +∑j≥k+1 ξj and r′ ≥ 1 + 2φ(ξ; k) we have

y≥k (r, kr)vn = y(r)2k vn = 0, ỹ≥k+ 1
2
(r′/2, (2k + 1)r′/2)vn = y(r

′)
k+ 1

2
vn = 0.

Hence, we have a surjective homomorphism

V (ξ) −→ Ṽ (ξ) −→ 0.

In order to prove that we have a surjectivemap from Ṽ (ξ) toV (ξ) we need to prove that all
defining relations of Ṽ (ξ) are satisfied inV (ξ). This part and the existence of the surjective
g-module map is proved along the same lines as Theorem 1 and Theorem 7 of [14]. ��

3.5 We emphasize that the above proposition implies

y(r+1)
2k vξ = 0

(
resp. y(r+1)

k+ 1
2
vξ = 0

)
(3.9)

for all r, k ∈ Z+ with r ≥ ∑
j≥k+1 ξj

(
resp. r ≥ 2φ(ξ; k)

)
. Hence, if n1 ∈ Z with n1 ≥ −1

and n = n1m + n0, 0 < n0 ≤ m then we have an isomorphism of graded Cg-modules

V (ξ) ∼= D(m, n), ξ =
⎛

⎜
⎝m ≥ · · · ≥ m︸ ︷︷ ︸

n1+1

≥ n0

⎞

⎟
⎠ . (3.10)

3.6 We now state the more general version of Theorem 1; the proof of this theorem can
be found in the next section.

Theorem 3 For ξ ∈ P�, we have an isomorphism of g-modules

V (ξ) ∼= D
(
ξ1, ξ1

)⊗(�−1−p) ⊗ D(ξ�−1, ξ�−1)⊗p ⊗ D(ξ�−1, ξ�).

Further, the Cg-module V (ξ) admits a level m Demazure flag if and only if m ≥ ξ̃0.
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Remark (1) Moregenerally, the isomorphism inTheorem3 is ofCg-modules ifwe replace
the tensor product by the fusion product; we refer the reader to [9] for the definition
and properties of fusion products. Hence our result gives a presentation of a certain
class of fusion products of different level Demazure modules.

(2) If V (ξ) admits a level m Demazure flag, then we have m ≥ ξ̃0. This implication can
be proven similarly as in [6, Lemma 3.7] and the details will be omitted.

4 Demazure flags and recursive formulae
In this section, we prove Theorem 3 by an induction on �.

4.1 Recall from [14] that the Demazure module D(ξ0, ξ1) is irreducible if and only if
2ξ1 ≤ ξ0 and otherwise decomposes into irreducible finite-dimensional g-modules as
follows

D(ξ0, ξ1) ∼= τ ∗
0V (ξ1) ⊕ · · · ⊕ τ ∗

2ξ1−ξ0V (ξ0 − ξ1).

Hence

dimD(ξ0, ξ1) = (ξ1 + 1) + 1
2
(
(2ξ1 − ξ0)+(ξ0 + 1)

)
.

Thus, Proposition 3.4 gives a lower bound for the dimension of V (ξ), ξ ∈ P�:

dimV (ξ) ≥
(

ξ1 + 2
2

)�−1−p(
ξ�−1 + 2

2

)p(
(ξ�+1)+1

2
(
(2ξ�−ξ�−1)+(ξ�−1+1)

))
. (4.1)

4.2 To see that induction begins at � = 1 we write ξ = (ξ0, ξ1). Equation (3.10) implies
that V (ξ) ∼= D(ξ0, ξ1) and hence the first statement of Theorem 3 holds in this case. If
2ξ1 ≤ ξ0 orm = ξ0 the second statement also holds sinceD(ξ0, ξ1) ∼= D(m, ξ1). Otherwise
consider the filtration of graded U-modules

0 ⊂ Uy2ξ1−ξ0
1
2

vξ ⊂ Uy2ξ1−ξ0−1
1
2

vξ ⊂ · · · ⊂ Uy2ξ1−ξ0−s
1
2

vξ ⊂ V (ξ), (4.2)

where s = (2ξ1 − ξ0) − (2ξ1 − m)+ − 1. Using Definition 3.2, it is easily seen that the
successive quotients of the filtration in (4.2) are themselves quotients of a Demazure
module of the form τ ∗

s D(m, ξ1 − s). The dimension inequality in (4.1) now implies these
maps are isomorphisms and hence V (ξ) has a Demazure flag of level m establishing the
inductive step. Moreover, we have also proved that

[D(ξ0, ξ1), D(m, s)]q =
⎧
⎨

⎩
qξ1−s, if s = ξ1 or (2ξ1 − m)+ < ξ1 − s ≤ (2ξ1 − ξ0)+
0, else.

(4.3)

4.3 For the rest of this section, we fix an arbitrary ξ ∈ P� with � > 1 and assume that the
main theorem holds for all τ ∈ P with τ ≺ ξ. In particular, we will assume without loss of
generality that ξ̃0 = ξ0 = ξ1 (see Remark 3.2).
Define ξ+ ∈ P by

ξ+ := ((ξ + 1)�−p+1, ξp−1, ξ� − 1).



12 Page 14 of 34 Biswal et al. Res Math Sci (2018) 5:12

We have φ(ξ+; � − 1) = (ξ� − 1
2ξ�−1 − 1 − δp,1/2)+. Noting that ξ+ ≺ ξ, we have by the

induction hypothesis that V (ξ+) admits a level m Demazure flag iff m ≥ ξ + 1. We now
prove,

Proposition The assignment vξ �→ vξ+ defines a surjective morphism ϕ+ : V (ξ) →
V (ξ+) → 0 of Cg-modules. Moreover, ker ϕ+ is generated by the elements,

y(ξ�)
2�−2vξ , δp,2δξ� ,1y

(ξ�−1)
�− 3

2
vξ , if 2ξ� ≤ ξ�−1,

y�− 3
2
vξ , if p = 2, ξ� = 1 = ξ�−1,

and in all other cases by y((2ξ
+
� −ξ+

�−1)++1)
�− 1

2
vξ .

Proof A simple checking shows that vξ+ satisfies all the relations that vξ does and hence
the existence of ϕ+ is immediate. It is also immediate that ker ϕ+ is generated by the
elements

y(ξ�)
2�−2vξ , y((2ξ

+
� −ξ+

�−1)++1)
�− 1

2
vξ , δp,2δξ�,1y

(ξ�−1)
�− 3

2
vξ . (4.4)

If 2ξ� ≤ ξ�−1 the result follows since y�− 1
2
vξ = 0. If 2ξ� > ξ�−1, we prove by a downward

induction on k that for all 0 ≤ k ≤ (2ξ+
� − ξ+

�−1)+, we have

y(ξ�−k)
2�−2 y(k)

�− 1
2
vξ ∈ Uy((2ξ

+
� −ξ+

�−1)++1)
�− 1

2
vξ . (4.5)

Assuming we have done this, notice that by taking k = 0 the proof is complete unless we
are in the case of p = 2 and ξ� = ξ�−1 = 1 when we also have to prove that

y�− 1
2
vξ ∈ Uy�− 3

2
vξ .

But this is immediate by applying an element of Ch+ of appropriate grade. We set 2r =
2ξ� − k and s = 2(� − 1)ξ� − (� − 3

2 )k . Note that

s ≥ 1
2

+ (2ξ� − k)(� − 2) + 1
2
ξ�−1 + ξ� = 1

2
+ 2r(� − 2) + φ(ξ, � − 2). (4.6)

For an arbitrary element b̃ ∈ S̃≥�− 3
2
(r, s) with b̃j = 0 for j ≥ � we get with Lemma 3.3

b̃�− 1
2

+ b̃�−1 = ξ�, b̃�− 3
2

+ b̃�−1 = ξ� − k,

which implies b̃�− 3
2

= b̃�− 1
2

− k ≥ 0. Hence, together with (3.8) and (4.6) we get

y(ξ�−k)
2�−2 y(k)

�− 1
2
vξ ∈

∑

t>k
Uy(ξ�−t)

2�−2 y(t)
�− 1

2
vξ . (4.7)

If k = (2ξ+
� −ξ+

�−1)+ Eq. (4.5) is immediatewith (4.7). Otherwisewe knowby the induction
hypothesis that each summand in (4.7) has the desired property. ��
In the rest of this section, we shall show by doing a case by case analysis that ker ϕ+

has a filtration such that the successive quotients are of the form V (ξ′), with ξ′ ≺ ξ. Since
the induction hypothesis applies to the ξ′ it follows that ker ϕ+ has a level m Demazure
flag and also allows us to get an upper bound for V (ξ); together with the lower bound
established in Proposition 3.4 we then complete the inductive step.
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4.4 Given ξ ∈ P�, set

k(ξ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2, if 2ξ� − ξ�−1 ≥ 3 and p = 1,

1, if 2ξ� − ξ�−1 = 2 or 2ξ� − ξ�−1 ≥ 3 and p > 1,

0, if 2ξ� − ξ�−1 = 1,

−1, if 2ξ� − ξ�−1 ≤ 0.

Equivalently,

k(ξ) = (2ξ� − ξ�−1)+ − (2ξ+
� − ξ+

�−1)+ − 1. (4.8)

For −1 ≤ j ≤ k(ξ), define partitions ξ(j) as follows:

ξ(j) = ((ξ + 1)�−p+1−δj,0−δj,−1 , ξp−1+δj,0 , ξ�−1 − ξ� + δj,2).

It is easily seen that ξ(j) ∈ P and ξ(j) ≺ ξ for −1 ≤ j ≤ k(ξ).

4.5 We analyze ker ϕ+ under the assumption that 2ξ� > ξ�−1.

Proposition Suppose that 2ξ� > ξ�−1.

(i) Let δξ� ,ξ�−1δp,2 = 0. For−1 ≤ j ≤ k(ξ) there exists gradedCg-submodulesVj ⊂ ker ϕ+

with

V−1 ∼= δξ�ξ�−1δp,1 τ ∗
4ξ�(�−1)V (ξ(−1)), Vk(ξ) = ker ϕ+,

Vj−1 ⊂ Vj, Vj/Vj−1 ∼= τ ∗
(2�−1)(2ξ�−ξ�−1−j)V (ξ(j)), 0 ≤ j ≤ k(ξ).

(ii) Let δξ� ,ξ�−1δp,2 = 1. If ξ� = 1 we have a short exact sequence of graded Cg-modules

0 → τ ∗
(2�−1)V (ξ(0)) → ker ϕ+ → τ ∗

(2�−3)V ((ξ�−1 + 1)�−1) → 0.

If ξ� > 1 then there exists graded Cg-submodules V0 ⊂ V1 of ker ϕ+ such that

V0 ∼= τ ∗
ξ�(2�−1)V (ξ(0)), V1/V0 ∼= τ ∗

4ξ�(�−1)−(2�−1)V ((ξ�−1 + 1)�−1),

ker ϕ+/V1 ∼= τ ∗
(ξ�−1)(2�−1)V (ξ(1)).

4.6 To complete our analysis of ker ϕ+ we shall prove,

Proposition Assume that 2ξ� ≤ ξ�−1.

(i) Suppose that δξ�,1δp,2 = 0 and (1 − δ2ξ� ,ξ�−1 )δp,1 = 0. Then we have an isomorphism
of graded Cg-modules

τ ∗
4(�−1)ξ�

V (ξ(−1)) ∼= ker ϕ+.

(ii) Suppose that δξ� ,1δp,2 = 0 and (1− δ2ξ� ,ξ�−1 )δp,1 = 1. We have a short exact sequence
of graded Cg-modules

0 → τ ∗
(2�−3)ξ�−1+2ξ�

V ((ξ�−1 + 1)�−1, ξ�) → ker ϕ+ → τ ∗
4(�−1)ξ�

V (ξ(−1)) → 0.

(iii) Suppose that δξ� ,1δp,2 = 1. We have a short exact sequence of graded Cg-modules

0 → τ ∗
4(�−1)V (ξ(−1)) → ker ϕ+ → τ ∗

ξ�−1(2�−3)V ((ξ�−1 + 1)�−1) → 0.
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4.7 Before we prove Proposition 4.5 and Proposition 4.6, we show how we can use both
to prove Theorem 3. We obtain a filtration of ker ϕ+ by graded Cg-submodules such that
the successive quotients are of the form V (ξ′), with ξ′ ≺ ξ. By applying the induction
hypothesis to each V (ξ′) and V (ξ+) we obtain that V (ξ) admits a level m Demazure flag
for allm ≥ ξ + 1. Hence the second part of Theorem 3 is proven unless we are in the case
ξ0 = ξ = m when we also have to prove that V (ξ) has a level ξ0 Demazure flag. But this is
immediate with (3.10) since V (ξ) itself is a Demazure module of level ξ0.
Recall the dimension bound from (4.1). Now we also have an upper bound using the

above filtration. A long but tedious calculation shows that these bounds coincide and
hence we have equality in (4.1). This proves the first part of the theorem together with
Proposition 3.4. Moreover, the explicit construction of the filtration yields the following
recursive formulae:

Corollary Let ξ ∈ P�, � > 1, m ∈ N such that m ≥ ξ0 and D a level mDemazure module.

(1) If 2ξ� > ξ�−1 we have

[V (ξ) : D]q = [V (ξ+) : D]q +
k(ξ)∑

j=0
q(2�−1)(2ξ�−ξ�−1−j)[V (ξ(j)) : D]q

+ δξ� ,ξ�−1 (δp,1 + δp,2)q4ξ�(�−1)−(p−1)(2�−1)[V ((ξ�−1 + 1)�−1) : D]q.

(2) If 2ξ� ≤ ξ�−1 we have

[V (ξ) : D]q = [V (ξ+) : D]q + q4ξ�(�−1)[V (ξ(−1)) : D]q
+ q(2�−3)ξ�−1+2ξ� (1 − δ2ξ� ,ξ�−1 )δp,1[V ((ξ�−1 + 1)�−1, ξ�) : D]q
+ q(2�−3)ξ�−1δξ� ,1δp,2[V ((ξ�−1 + 1)�−1) : D]q.

��

4.8 We need the following technical lemma whose proof we postpone to the end of the
section.

Lemma We have the following relations in V (ξ):

(i)
y(ξ�−1−ξ�+1)
2�−4 y(ξ�)

2�−2vξ = 0.

(ii) If 2ξ� ≤ ξ�−1, we have

y(ξ�−1−2ξ�+1)
�− 3

2
y(ξ�)
2�−2vξ = 0 = y(ξ�+1)

2�−4 y(ξ�−1−2ξ�)
�− 3

2
y(ξ�)
2�−2vξ .

(iii) If ξ� = ξ�−1 we have

y(ξ�+1)
�− 3

2
y(ξ�)
�− 1

2
vξ = 0, y(ξ�)

�− 3
2
y(ξ�)
�− 1

2
vξ ∈ U−y(ξ�)

2�−2vξ .

(iv) If ξ� = ξ�−1 = ξ�−2 we have
{
y(ξ�+1)
�− 3

2
y(ξ�−1)
�− 1

2
vξ , y2�−4 y(ξ�)

�− 3
2 δ

y(ξ�−1)
�− 1

2
vξ

}
⊂ U−y(ξ�)

�− 1
2
vξ .
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4.9 Proof of Proposition 4.5(i)

Suppose that 2ξ� > ξ�−1 and δξ� ,ξ�−1δp,2 = 0. Set

w−1 = δξ�ξ�−1δp,1 y
(ξ�)
�− 3

2
y(ξ�)
�− 1

2
vξ , wj = y(2ξ�−ξ�−1−j)

�− 1
2

vξ , 0 ≤ j ≤ k(ξ).

Let Vj be the Cg-submodule of V (ξ) generated by wj for −1 ≤ j ≤ k(ξ) and note that
Vk(ξ) = ker ϕ+ by Proposition 4.3 and (4.8). An easy calculation shows that we have
a surjective map from the appropriate level one Demazure module onto Vj/Vj−1, 0 ≤
j ≤ k(ξ). We will further show that the highest weight vector wj in Vj/Vj−1 satisfies the
defining relations of V (ξ(j)). It means, we shall prove that

y2�wj = y�+ 1
2
wj = y�− 1

2
wj = 0, (4.9)

y(ξ�−1−ξ�+δj,2+1)
2�−2 wj = δξ� ,ξ�−1δp,1δj,0 y

(ξ�)
�− 3

2
wj = 0. (4.10)

The relations in (4.9) are obviously satisfied since [y2�, y�− 1
2
] = 0, [y�+ 1

2
, y�− 1

2
] = y2�, and

y(2ξ�−ξ�−1+1)
�− 1

2
vξ = y�+ 1

2
vξ = y2�vξ = 0

by (3.9). Now we turn our attention to the relations in (4.10). By construction we have

δξ� ,ξ�−1δp,1 y
(ξ�)
�− 3

2
w0 = w−1 = 0.

Hence it remains to show

y(ξ�−1−ξ�+δj,2+1)
2�−2 wj ∈ Uwj−1. (4.11)

Set

r = 1
2
ξ�−1 + 1 − δj,1

2
and

s =
(

� − 1
2

)
(2ξ� − ξ�−1 − j) + 2(� − 1)(ξ�−1 − ξ� + δj,2 + 1).

Similarly as in the proof of Proposition 4.3, we can show that each b̃ ∈ S̃≥�− 3
2
(r, s) with

b̃i = 0 for i ≥ � satisfies b̃�− 1
2

≥ 2ξ� − ξ�−1 − j. Together with Proposition 3.4 and

s ≥ 1
2

+ 2r(� − 2) + φ(ξ, � − 2)

we get

ỹ(ξ�−1−ξ�+δj,2+1)
2�−2 ỹ(2ξ�−ξ�−1−j)

�− 1
2

vξ ∈
∑

t>2ξ�−ξ�−1−j
Ũy(t)

�− 1
2
vξ ,

which implies (4.11). Thus we get surjective maps

τ ∗
(2�−1)(2ξ�−ξ�−1−j)V (ξ(j)) → Vj/Vj−1, 0 ≤ j ≤ k(ξ). (4.12)

Moreover, we note that Lemma 4.8 (i) and (iii) imply that we also have a surjective map

δξ� ,ξ�−1δp,1 τ ∗
4ξ�(�−1)V (ξ(−1)) → V−1. (4.13)

The proof is complete if we show that the maps in (4.12) and (4.13) are isomorphisms.
Applying our induction hypothesis, we obtain an upper bound for dimV (ξ) by (4.12)
and (4.13). A straightforward calculation shows that the lower bound established in (4.1)
coincides with this upper bound, which proves the proposition.
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4.10 Proof of Proposition 4.5(ii)

Assume that 2ξ� > ξ�−1 and δξ� ,ξ�−1δp,2 = 1. Set

w0 = y(ξ�)
(�− 1

2 )
vξ , w1 = y(ξ�)

�− 3
2
y(ξ�−1)
�− 1

2
vξ , w2 = (1 − δξ� ,1)y

(ξ�−1)
�− 1

2
vξ ,

and letVj be the submodule generatedby the elementswi, 0 ≤ i ≤ j.Note thatV2 = ker ϕ+

by Proposition 4.3 and if ξ� = 1 we have V1 = V2 = ker ϕ+.
The idea is again to show that there is a cyclic generator satisfying the defining relations

ofV (ξ(j)) andV ((ξ�−1+1)�−1), respectively, and to use the dimension bound given in (4.1).
The harder relations are stated in Lemma 4.8 and all other relations are easy to check. To
be more precise, in addition to the relations proven in Lemma 4.8 (iii)–(iv) we need to
verify

y2�−2 y(ξ�−1)
�− 1

2
vξ ∈ U−y(ξ�)

�− 1
2
vξ , y2�−2 y(ξ�)

�− 1
2
vξ = 0.

The proof is similar and will be omitted.

4.11 Proof of Proposition 4.6(i)

Assume that 2ξ� ≤ ξ�−1, δp,2δξ� ,1 = 0 and (1 − δ2ξ� ,ξ�−1 )δp,1 = 0. By Lemma 4.8 and (3.9),
we know that y(ξ�)

2�−2vξ , which is the generator of the kernel by Proposition 4.3, satisfies the
defining relations of τ ∗

4(�−1)ξ�
V (ξ(−1)) given in Definition 3.2. Again, a simple dimension

argument using our induction hypothesis and (4.1) finishes the proof.

4.12 Proof of Proposition 4.6(ii)

We consider the case 2ξ� ≤ ξ�−1, δp,2δξ� ,1 = 0 and (1 − δ2ξ� ,ξ�−1 )δp,1 = 1. Set

w0 = y(ξ�−1−2ξ�)
�− 3

2
y(ξ�)
2�−2vξ , w1 = y(ξ�)

2�−2vξ ,

and let Vj be the submodule generated by the element wj , 0 ≤ j ≤ 1. Note that Proposi-
tion 4.3 impliesV1 = ker ϕ+. FromLemma4.8 and (3.9), we obtain the following surjective
maps:

τ ∗
4(�−1)ξ�

V (ξ(−1)) � V1/V0 (4.14)

and

τ ∗
(2�−3)ξ�−1+2ξ�

V ((ξ�−1 + 1)�−1, ξ�) � V0. (4.15)

Again a simple dimension argument shows that the maps in (4.14) and (4.15) are isomor-
phisms.

4.13 Proof of Proposition 4.6(iii)

We consider the remaining case 2ξ� ≤ ξ�−1 and δp,2δξ� ,1 = 1. Set

w0 = y2�−2vξ , w1 = y(ξ�−1)
�− 3

2
vξ ,

and letVj be the submodule generated by the elementwi, 0 ≤ i ≤ j.Note thatV1 = ker ϕ+.
Lemma 4.8 immediately implies

τ ∗
4(�−1)V (ξ(−1)) � V0.
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Again by a dimension argument, it remains to show that the highest weight vector in
V1/V0 satisfies

y2(�−2) y
(ξ�−1)
�− 3

2
vξ = y(ξ�−1+1)

�− 3
2

vξ = 0.

Let k = (� − 3), 2r = ξ�−1 + 1 and s = (� − 3
2 )(ξ�−1 + 1). We obviously have s ≥

1
2 + 2r(� − 3) + φ(ξ, � − 3) and hence ỹ≥�− 5

2
(r, s)vξ = 0. Our aim is to prove that

ỹ≥�− 5
2
(r, s)vξ = y(ξ�−1+1)

�− 3
2

vξ + V0 (4.16)

or equivalently

b̃ ∈ S̃≥�− 5
2
(r, s) =⇒ b̃�−1 > 0 or b̃�− 3

2
= ξ�−1 + 1.

Assume b̃�−1 = 0. We have with Lemma 3.3

b̃�− 3
2

+ b̃�−2 = ξ�−1 + 1, b̃
�− 5

2
+ b̃�−2 = 0,

which proves (4.16). Now we set 2r = ξ�−1 + 2, s = (� − 3
2 )ξ�−1 + 2(� − 2) and obtain

with similar calculations as above that any b̃ ∈ S̃≥�− 5
2
(r, s) with b̃i = 0 for i ≥ � − 1 is of

the form

b̃�−2 = 1, b̃�− 3
2

= ξ�−1, b̃�−1 = b̃
�− 5

2
= 0 or b̃�−2 = b̃�−1 = 0,

b̃�− 3
2

= ξ�−1 + 1, b̃
�− 5

2
= 1.

Now (4.16) finishes the proof.

4.14 Proof of Lemma 4.8

Proof of part (i): Let r = 1 + ξ�−1, s = ξ� + (� − 2)(ξ�−1 + 1). We have

r + s ≥ 1 + r(� − 2) + ξ�−1 + ξ�,

which implies together with (3.7)

y≥�−2(r, s)vξ = y(ξ�−1−ξ�+1)
2�−4 y(ξ�)

2�−2vξ = 0.

Proof of part (ii): We fix t ∈ {0, . . . , ξ�} and set 2r = 2t + ξ�−1 +1, s = ξ� + (�− 3
2 )(ξ�−1 +

1) + 2(� − 2)t. We obtain

s ≥ 1
2

+ (2t + ξ�−1 + 1)(� − 2) + 1
2
ξ�−1 + ξ� = 1

2
+ 2r(� − 2) + φ(ξ, � − 2)

and hence with (3.8) we get

ỹ≥�− 3
2
(r, s)vξ = ỹ(ξ�−1−2ξ�+4t+1)

�− 3
2

ỹ(ξ�−t)
2�−2 vξ = 0, (4.17)

which proves the first part. If � = 2 the second part follows from sl2-theory, since
y(ξ1−2ξ2)
1
2

y(ξ2)2 vξ has weight ξ2 and x0y(ξ1−2ξ2)
1
2

y(ξ2)2 vξ = 0. If � ≥ 3 we fix z ∈ {1, . . . , ξ� + 1}
and set 2r = ξ�−1 + 2z, s = ξ� + ξ�−1(� − 3

2 ) + 2(� − 2)z. We have

s ≥ 1
2

+ 2r(� − 3) + φ(ξ, � − 3)

and therefore ỹ≥�− 5
2
(r, s)vξ = 0. Let b̃ ∈ S̃≥�− 5

2
(r, s) with b̃j = 0 for all j ≥ � − 1

2 and set
b̃�−1 = ξ� − t for some t ∈ {0, . . . , ξ�}. From Lemma 3.3 we get

s − r(2� − 5) =
(
b̃�− 3

2
+ 3b̃�−1 + b̃�−2

)
= ξ�−1 + ξ� + z, (4.18)
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which implies

z − ξ� = 2r − (ξ�−1 + ξ� + z) =
(
b̃

�− 5
2

+ b̃�−2 − b̃�−1
)
, b̃

�− 5
2

+ b̃�−2 = z − t.

Thus b̃�−2 ≤ z − t and with (4.18) we obtain

b̃�− 3
2

≥ ξ�−1 − 2ξ� + 4t.

Now we use (4.17) and obtain that b̃must be of the form

b̃�−1 = ξ� − t, b̃�− 3
2

= ξ�−1 − 2ξ� + 4t,

b̃�−2 = z − t, b̃
�− 5

2
= 0, for some t ∈ {0, . . . , ξ�}.

Therefore

ỹ≥�− 5
2
(r, s)vξ =

min{z,ξ�}∑

t=0
ỹ(ξ�−1−2ξ�+4t)
�− 3

2
ỹ(z−t)
2�−4 ỹ

(ξ�−t)
2�−2 vξ = 0. (4.19)

Acting with ỹ(ξ�+1−z)
2�−4 on (4.19) yields

min{z,ξ�}∑

t=0

(ξ� + 1 − t)!
(z − t)!(ξ� + 1 − z)!

ỹ(ξ�−1−2ξ�+4t)
�− 3

2
ỹ(ξ�+1−t)
2�−4 ỹ(ξ�−t)

2�−2 vξ = 0. (4.20)

Our aim is to show that each summand in (4.20) vanishes. Let v = (v0, . . . , vξ�
), where

vt = ỹ(ξ�−1−2ξ�+4t)
�− 3

2
ỹ(ξ�+1−t)
2�−4 ỹ(ξ�−t)

2�−2 vξ , 0 ≤ t ≤ ξ�.

By using (4.20) for z = 1, . . . , ξ� + 1 we get a system of linear equations Av = 0 where A is
invertible. Hence v = 0. The proof of the remaining parts is similar and will be omitted.

5 Proof of Proposition 2.4
In this section, we establish a recursive formulae for the graded multiplicities and prove
Proposition 2.4.

5.1 The following lemma is the analog of [6, Lemma 3.8] and is proven similarly using
Corollary 4.7. The proof will be omitted.

Lemma Let ξ ∈ P�, � > 1, and ξ be the unique partition obtained from ξ by removing
ξ0 = ξ1. For s ∈ Z+, we have

[V (ξ) : D(ξ0, s)]q = q2(|ξ|−s)[V (ξ) : D(ξ0, s − ξ0)]q. ��

5.2 Now we are able to give a recursive formulae for the graded multiplicities.

Proposition Let m, n ∈ N.

(1) We write s = ms1 + s0, where 0 < s0 ≤ m and set ξ = (m,ms1 , s0).

(i) If 2s0 ≤ m and s1 ≥ 1, then

[D(m, s) : D(m+1, n)]q = q2(s−n)[D(m, s−m−1) : D(m+1, n−m−1)]q
+ q4s1s0 [D(m, s − 2s0) : D(m + 1, n)]q.
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(ii) If 2s0 > m and s1 ≥ 1, then

[D(m, s) : D(m+1, n)]q =q2(s−n)[D(m, s−m−1) : D(m+1, n − m − 1)]q
+ q(2s1+1)(2s0−m)[D(m, s + m − 2s0) : D(m + 1, n)]q

+
k(ξ)∑

j=1
q2s1(2s0−j)+j+m−2n[D(m, s−2s0+j−1) : D(m+1, n−m−1)]q.

(2) For j ∈ Z+, 0 ≤ n, k ≤ m and mj + k ≥ n,

[D(m,mj + k) : D(m + 1, n)]q =

⎧
⎪⎪⎨

⎪⎪⎩

qj(mj+2k) if n = k,

q(j+1)(mj+2k−m) if n = m − k,

0 otherwise.

Proof Using the recursive formulae given in Corollary 4.7 and Lemma 5.1 we get in part
(i)

[D(m, s) : D(m+1, n)]q = q2(s−n)[D(m+δs1 ,2δs0 ,1, s−m − 1) : D(m + 1, n − m − 1)]q
+ q4s1s0 [D(m + δs1 ,1, s − 2s0) : D(m + 1, n)]q
+ δn,m+1δs0 ,1δs1 ,2q3m + (1 − δ2s0 ,m)δs0 ,nδs1 ,1qm+2s0 .

The statement follows from the following identities, which are easy consequences of (4.3):

[D(m, s − 2s0) : D(m + 1, n)]q = [D(m + δs1 ,1, s − 2s0) : D(m + 1, n)]q
+(1 − δ2s0 ,m)δs0 ,nδs1 ,1qm−2n

and

[D(m, s − m − 1) : D(m + 1, n − m − 1)]q
= [D(m + δs1 ,2δs0 ,1, s − m − 1) : D(m + 1, n − m − 1)]q

+ δn,m+1δs0 ,1δs1 ,2qm.

The proof of part (ii) follows exactly the same ideas and is left to the reader. Nowwe prove
part (2) of the proposition. Note that the case j = 0 follows from (4.3). So by induction we
can assume that

[D(m,mj′ + k) : D(m + 1, n)]q =

⎧
⎪⎪⎨

⎪⎪⎩

qj′(mj′+2k) if n = k,

q(j′+1)(mj′+2k−m) if n = m − k,

0 otherwise.

holds for all 0 ≤ j′ < j , 0 ≤ n, k ≤ m such thatmj′ + k ≥ n. If k = 0, we can assume that
j > 1, since j = 1 follows once more with (4.3). Using the recursive formulae from part
(1) and the induction hypothesis we get

[D(m,mj) : D(m + 1, n)]q = qm(2j−1)[D(m, (j − 1)m) : D(m + 1, n)]q

=

⎧
⎪⎪⎨

⎪⎪⎩

qj(mj) if n = 0,

q(j+1)(mj−m) if n = m,

0 otherwise.
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If 0 < k ≤ m
2 , then

[D(m,mj + k) : D(m + 1, n)]q = q4kj[D(m,mj − k) : D(m + 1, n)]q

=

⎧
⎪⎪⎨

⎪⎪⎩

qj(mj+2k) if n = k,

q(j+1)(mj+2k−m) if n = m − k,

0 otherwise.

If m
2 < k ≤ m, then

[D(m,mj + k) : D(m + 1, n)]q = q(2j+1)(2k−m)[D(m,mj + m − k) : D(m + 1, n)]q
= q(2j+1)(2k−m)q4(m−k)j[D(m,m(j−1)+k) : D(m+1, n)]q

=

⎧
⎪⎨

⎪⎩

qj(mj+2k) if n = k,
q(j+1)(mj+2k−m) if n = m − k,
0 otherwise. ��

5.3 Proof of Proposition 2.4(i)

If s ∈ {0, 1} the statement of the proposition follows from Proposition 5.2(2). Also the
case p = 0 is clear. Using the recursive formulae in Proposition 5.2, an easy induction
argument shows

[D(1, s + p) : D(2, s)]q = q2p[D(1, (s − 2) + p) : D(2, s − 2)]q
+ q2(s+p)−1[D(1, s + (p − 1)) : D(2, s))]q

= qp(s+p+res2(s))
[� s−2

2 � + p
p

]

q2
+ q2s+pq(p−1)(s+p+res2(s))

[� s
2� + p − 1
p − 1

]

q2

= qp(s+p+res2(s))
([� s−2

2 � + p
p

]

q2
+ qs−res2(s)

[� s
2� + p − 1
p − 1

]

q2

)

= qp(s+p+res2(s))
[� s

2� + p
p

]

q2
,

which finishes the proof.

5.4 Proof of Proposition 2.4(ii)

Recall the following recursive formulae from Proposition 5.2:

[D(2, 2n) : D(3, s)]q = q2(2n−s)[D(2, 2n − 3) : D(3, s − 3)]q
+ q2(2n−1)[D(2, 2n − 2) : D(3, s)]q
+ q6n−2s−3[D(2, 2n − 4) : D(3, s − 3)]q, if n ≥ 2, [D(2, 2n + 1) : D(3, s)]q

= q4n+2−2s[D(2, 2n − 2) : D(3, s − 3)]q
+ q4n[D(2, 2n − 1) : D(3, s)]q, if n ≥ 1.

Since all cases follow the same idea, we will only prove

[D(2, 3s + r + 2p) : D(3, 3s + r)]q

= q2(p
2+p(2s+r))

p∑

j=0
q2j(j+δr,1)

[
s + p − j

s

]

q2

[� s
2� + j − δr,1δres2(s),0

2j

]

q2
, (5.1)
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where r ∈ {0, 1, 2} and s ∈ Z+. The proof proceeds by induction on s. If s = 0, the state-
ment follows from Proposition 5.2(2) and the induction begins. The strategy of the proof
is to show that the q-binomial formulae in (5.1) satisfies the above recursive formulae. Let
us define

u′ = δr,1res2(s), y′ = (δr,0 + δr,2)δres2(s),0.

Case 1: In this case we suppose that 3s + r is even. By the induction hypothesis, it will be
enough to show that the q-binomial formula in (5.1) satisfies the recursive

[D(2, 3s+r+2p) : D(3, 3s+r)]q =q4p[D(2, 3(s−1)+r + 2p) : D(3, 3(s − 1) + r)]q
+ q2(3s+r+2p−1)[D(2, 3s + r + 2(p − 1)) : D(3, 3s + r)]q
+ q3s+r+6p−3[D(2, 3(s − 1) + r + 2(p − 1) + 1) : D(3, 3(s − 1) + r)]q.

Equivalently, it suffices to show that the following sum vanishes for all p ≥ 0:

p∑

j=0
q2j(j+δr,1)

[
s + p − j − 1

s − 1

]

q2

[⌊ s−1
2
⌋+ j − u′

2j

]

q2

+
p∑

j=0
q2s+2j(j+δr,1)

[
s + p − j − 1

s

]

q2

[⌊ s
2
⌋+ j
2j

]

q2

+
p−1∑

j=0
q2j(j+δr,1)+2j+s+δr,1

[
s + p − j − 2

s − 1

]

q2

[⌊ s−1
2
⌋+ j + y′

2j + 1

]

q2

−
p∑

j=0
q2j(j+δr,1)

[
s + p − j

s

]

q2

[⌊ s
2
⌋+ j
2j

]

q2
.

Note that y′ = 1 implies u′ = 0 and s is even and y′ = 0 forces u′ = 1 and s is odd. It
follows

[⌊ s−1
2
⌋+ j − u′

2j

]

q2
+ qs−2j−δr,1

[⌊ s−1
2
⌋+ j + y′ − 1
2j − 1

]

q2
=
[⌊ s

2
⌋+ j
2j

]

q2
, 1 ≤ j ≤ p.

Now rewriting the third term in the above sum as

p∑

j=1
q2j(j+δr,1)+s−2j−δr,1

[
s + p − j − 1

s − 1

]

q2

[� s−1
2 � + j + y′ − 1

2j − 1

]

q2

we obtain the desired result.
Case 2:Weassume that 3s+r is odd. Again, it will be enough to show that the q-binomial

formula in (5.1) satisfies the recursive

[D(2, 3s+r+2p) : D(3, 3s+r)]q = q4p[D(2, 3(s − 1)+r+2p) : D(3, 3(s − 1) + r)]q
+ q6s+2r+4p−2[D(2, 3s+r+2p−2) : D(3, 3s + r)]q,
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which is equivalent to the statement that the following sum vanishes for all p ≥ 0:

p∑

j=0
q2j(j+δr,1)

([
s + p − j − 1

s − 1

]

q2

[⌊ s−1
2
⌋+ j − u′

2j

]

q2

+ q2s
[
s + p − j − 1

s

]

q2

[⌊ s
2
⌋+ j − δr,1δres2(s),0

2j

]

q2

−
[
s + p − j

s

]

q2

[⌊ s
2
⌋+ j − δr,1δres2(s),0

2j

]

q2

)

.

Since � s−1
2 � − u′ = � s

2� − δr,1δres2(s),0 it is easy to see that the above sum is zero. Hence
Proposition 2.4(ii) is proven.

6 Proof of Theorem 2
In this section, we study the generating series Am′→m

n (x) for the numerical multiplicities
and give a closed formula when m′ = 1 and m = m′ + 1, showing that they are rational
functions. We will use freely the notation and results established in the previous sections.

6.1 The following result gives a recursive formulae . It will be convenient to set
A1→m−1 (x) = 1.

Proposition Form ≥ 2andn ≥ −1write n+1 = mn1+n0 , where 0 < n0 ≤ m, n1 ≥ −1.
The generating series A1→m

n (x) satisfies the reccurrence,
A1→m
n (x)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A1→m
n+1 (x) if 2n0 = m − 1,

A1→m
n+1 (x)(1 − (1 − δm,2)x) if n0 = m − 1 or 2n0 = m − 2,

A1→m
n+1 (x) − (1 − δm,2)x2A1→m

n+2 (x) if 2n0 = m,

(1 − x)A1→m
n+1 (x) − (1 − δm,2)x2A1→m

n+2 (x) if 2n0 /∈ {m − 2, m − 1, m} and n0 �=m−1.

The proof of the above proposition is postponed to the end of this section. We first
discuss how this can be used to prove Theorem 2.

6.2 Proof of Theorem 2

Set Dm(x) = am(x)am+1(x) and Fk = A1→m
k (x) for k ≥ −1. The theorem follows if we

prove that for all k ≥ 0 and 0 ≤ r < m, we have

(a) Fmk+r = Nm,r(x)Fmk+m−1, (b) Fmk+m−1 = 1
Dm(x)k+1 ,

where

Nm,r(x) =
⎧
⎨

⎩
a2m−2r−1(x) if

⌊m
2
⌋ ≤ r ≤ m − 1,

am(x)am−2r−1(x) if 0 ≤ r ≤ ⌊m2
⌋− 1.

We first prove (a). If r = m − 1 this is immediate since Nm,m−1(x) = 1 and if r = m − 2
this follows from the second case of Proposition 6.1. Assume now that we have proved
the equality for all 0 ≤ r′ < m with r′ > r and r < m − 2. To prove the equality for r, we
use Proposition 6.1 and the following equalities which can be easily checked
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• Nm,�m
2 �−1(x) = Nm,�m

2 �(x), if m is odd,
• Nm,m−2(x) = (1 − (1 − δm,2)x)Nm,m−1(x),
• Nm,m2 −2(x) = (1 − x)Nm,m2 −1(x) ifm ≥ 4 is even,
• Nm,m2 −1(x) = Nm,m2 (x) − (1 − δm,2)x2Nm,m2 +1(x) if m is even,
• Nm,p−1(x) = (1−x)Nm,p(x)−x2Nm,p+1(x) if 2p /∈ {m−2, m−1, m} and 1 ≤ p ≤ m−2,
• Nm,m−1(x)Dm(x) = (1 − x)Nm,0(x) − (1 − δm,2)x2Nm,1(x).

Now part (a) follows by an easy induction argument. In order to prove (b), observe that
the last case of Proposition 6.1 gives

Fm(k−1)+m−1 = (1 − x)Fm(k−1)+m − (1 − δm,2x2)x2Fm(k−1)+m+1

= Dm(x)Fmk+m−1, k ≥ 0.

Since F−1 = 1 we get Dm(x)k+1Fmk+m−1 = 1 and the proof is complete.

6.3 The following lemma is needed in the proof of Proposition 6.1.

Lemma Let m ∈ N and p ∈ Z+. Write p = mp1 + p0 with p1, p0 ∈ Z, p1 ≥ −1 and
0 < p0 ≤ m. Then

chgD(m, p) chgD(1, 1) = chgD(m, p + 1)

+ (1 − δm,1)
(
(1 − δ2p0 ,m − δ2p0 ,m+1 − δp0 ,m)chgD(m, p − 1)

+ (1 − δ2p0 ,m − δ2p0 ,m−1)chgD(m, p)
)
.

Proof If m = 1, the statement is obvious since D(1, p) ⊗ D(1, 1) ∼=g D(1, p + 1); also if
p = 0 there is nothing to prove. So assume from now onm ≥ 2 and p �= 0.
Case 1: Let p0 < m. Then D(m, p) ∼=g D(m,mp1) ⊗ D(m, p0) and hence

D(m, p) ⊗ D(1, 1) ∼=g D(m,mp1) ⊗ D(m, p0) ⊗ D(1, 1)
∼=g D(m,mp1) ⊗ D(m, p0) ⊗ (D(m, 1) ⊕ V (0)

)

∼=g D(m,mp1) ⊗ (D(m, p0) ⊗ D(m, 1) ⊕ D(m, p0)
)
.

So the lemma in this case follows if we prove

chgD(m, p0) chgD(m, 1)

= chgD(m, p0 + 1) + (1 − δ2p0 ,m − δ2p0 ,m+1)chgD(m, p0 − 1)

− (δ2p0 ,m + δ2p0 ,m−1)chgD(m, p0). (6.1)

We have the following decomposition into irreducible g-modules:

D(m, p0) ⊗ D(m, 1)

∼=g

⎧
⎨

⎩

(
V (p0) ⊕ V (p0 − 1) ⊕ · · · ⊕ V (m − p0)

)⊗ V (1), if 2p0 > m,

V (p0) ⊗ V (1), if 2p0 ≤ m,

∼=g

⎧
⎨

⎩

⊕p0+1
j=m−p0+1 V (j) ⊕⊕p0−1

j=m−p0−1 V (j), if 2p0 > m,

V (p0 + 1) ⊕ V (p0 − 1), if 2p0 ≤ m.
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Further we know

D(m, p0 + 1) ∼=g

⎧
⎨

⎩
V (p0 + 1) ⊕ V (p0) ⊕ · · · ⊕ V (m − p0 − 1), if 2p0 + 2 > m,

V (p0 + 1), if 2p0 + 2 ≤ m.

D(m, p0 − 1) ∼=g

⎧
⎨

⎩
V (p0 − 1) ⊕ V (p0) ⊕ · · · ⊕ V (m − p0 + 1), if 2p0 − 2 > m,

V (p0 − 1), if 2p0 − 2 ≤ m.

Now writing both sides of (6.1) in terms of characters of irreducible g-modules and using
the above formulae we get (6.1).
Case 2: Let p0 = m. We get

D(m, p) ⊗ D(1, 1) ∼=g D(m,m(p1 + 1)) ⊗ (D(m, 1) ⊕ V (0)
) ∼=g D(m, p + 1) ⊕ D(m, p).

��

6.4 Proof of Proposition 6.1

We continue assuming p = mp1 + p0 with p1, p0 ∈ Z, p1 ≥ −1 and 0 < p0 ≤ m. For
s ∈ Z+, we write

chgD(1, s) =
∑

p≥0
[D(1, s) : D(m, p)]q=1chgD(m, p)

and multiply both sides with chgD(1, 1). We get

chgD(1, s) chgD(1, 1) = chgD(1, s + 1)

=
∑

p≥0
[D(1, s) : D(m, p)]q=1chgD(m, p) chgD(1, 1). (6.2)

Now we can apply Lemma 6.3 to both sides of (6.2). Applying to the right-hand side gives
a linear combination of characters of levelm Demazure modules. Writing the left side as

chgD(1, s + 1) =
∑

p≥0
[D(1, s + 1) : D(m, p)]q=1chgD(m, p)

and equating the coefficients on both sides of (6.2) gives

[D(1, s + 1) : D(m, p)]q=1

= [D(1, s) : D(m, p − 1)]q=1

+ (1 − δ2p̃0 ,m − δ2p̃0 .m+1 − δp̃0 ,m)[D(1, s) : D(m, p + 1)]q=1

+ (1 − δ2p0 ,m − δ2p0 ,m−1)[D(1, s) : D(m, p)]q=1

where

p̃0 =
⎧
⎨

⎩
p0 + 1, if p0 < m,

1, otherwise.

Let us consider the case 2p0 = m. We get from above

[D(1, s + 1) : D(m, p)]q=1

= [D(1, s) : D(m, p − 1)]q=1 + (1 − δm,2)[D(1, s) : D(m, p + 1)]q=1
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and thus

A1→m
p−1 (x) = 1 +

∑

k>0
[D(1, p − 1 + k) : D(m, p − 1)]xk

= 1 +
∑

k>0
[D(1, p + k) : D(m, p)]xk

− (1 − δm,2)
∑

k>0
[D(1, p − 1 + k) : D(m, p + 1)]xk

= A1→m
p (x) − (1 − δm,2)x2A1→m

p+1 (x).

Repeating the same argument for all remaining cases gives the statement of Proposi-
tion 6.1. We omit the details.

6.5 Finally, we turn our attention to the study of Am→m+1
n (x) form ≥ 1.

Proposition For m ≥ 1 and n ≥ 0, write n = (m + 1)pn − rn where pn ∈ Z+ and
0 ≤ rn ≤ m. Then,

Am→m+1
n (x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am→m+1
n+m (x) − x2rnAm→m+1

n+2rn (x) if 1≤rn≤⌊m−1
2
⌋
,

Am→m+1
n+m (x) − x2rn−mAm→m+1

n+2rn (x) if rn=⌊m+1
2
⌋
and m is odd,

Am→m+1
n+m (x) − x2rnAm→m+1

n+2rn (x) if rn=⌊m+1
2
⌋
and m is even,

Am→m+1
n+m (x) − x2rn−mAm→m+1

n+2rn (x) − x2rn−m−1An+2rn−m−1(x) if
⌊m+3

2
⌋≤rn≤m,

Am→m+1
n+m (x) if m+1 | n.

(6.3)

Proof To simplify notation, we fixm ≥ 1 and for s, n ∈ Z+, set

ν(s, n) = [D(m, s) : D(m + 1, n)]q=1.

Recall that ν(s, n) = 0 if s < n. The theorem follows if we prove for all s, n ≥ 0 that

ν(s, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν(s+m, n+m) − ν(s, n + 2rn) if 1≤rn≤⌊m−1
2
⌋
,

ν(s+m, n+m)−ν(s+m, n+2rn) if rn=⌊m+1
2
⌋
andm is odd,

ν(s+m, n+m)−ν(s, n+2rn) if rn=⌊m+1
2
⌋
andm is even,

ν(s+m, n+m)−ν(s + m, n + 2rn)−ν(s, n+2rn−m−1) if
⌊m+3

2
⌋≤rn≤m,

ν(s+m, n+m) ifm+1 | n.
(6.4)

Notice that this equality holds whenever s < n, since both sides are zero. Hence, we can
assume that s ≥ n. Taking q = 1 in Proposition 5.2 gives

s ≥ 0, 0 ≤ n ≤ m =⇒ ν(s, n) =
⎧
⎨

⎩
1 if s + n or s − n is a multiple ofm,

0 otherwise.
(6.5)
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Applying once more Proposition 5.2 with s = ms1 + s0, 0 < s0 ≤ m, s1 ≥ 1 and
ξ = (m,ms1 , s0) gives

ν(s, n) = ν(s − m − 1, n − m − 1) + ν(s + m − 2s0, n)

+
k(ξ)∑

j=1
ν(s − 2s0 + j − 1, n − m − 1), if 2s0 > m

and

ν(s, n) = ν(s − m − 1, n − m − 1) + ν(s − 2s0, n), if 2s0 ≤ m.

We now proceed to prove Eq. (6.4) by induction on n. Equation (6.5) obviously implies
ν(s, 0) = ν(s + m,m) and hence induction begins. Now let n > 0. Assume that ν(s, n′)
satisfies (6.4) for all 0 ≤ n′ < n and for all s ∈ Z+. We proceed by induction on s to prove
that ν(s, n) satisfies (6.4) for all s ∈ Z+. Notice that the s = 0 is clear since both sides of
(6.4) are zero. Further, as remarked earlier, we assume for the rest of the proof that s ≥ n.
Case 1: Suppose 0 < n ≤ m and 1 ≤ rn ≤ �m−1

2 �. We have to prove that

ν(s, n) = ν(s + m, n + m) − ν(s, 2m + 2 − n).

Case 1(a): Suppose s ≥ m + 1 and 2s0 > m. Then the recursive can be used for both
terms of the right-hand side and we get

ν(s + m, n + m) = ν(s − 1, n − 1) + ν(s + 2m − 2s0, n + m)

+
k(ξ)∑

j=1
ν(s + m − 2s0 + j − 1, n − 1),

ν(s, 2m + 2 − n) = ν(s − m − 1, m + 1 − n) + ν(s + m − 2s0, 2m + 2 − n)

+
k(ξ)∑

j=1
ν(s − 2s0 + j − 1, m + 1 − n).

Set

T1 = ν(s − 1, n − 1) − ν(s − m − 1, m + 1 − n),

T2 = ν(s + 2m − 2s0, n + m) − ν(s + m − 2s0, 2m + 2 − n),

and

T3 = ν(s + m − 2s0 + j − 1, n − 1) − ν(s − 2s0 + j − 1, m + 1 − n).

Equation (6.5) applies to both terms in T1 and T3. Since

(s − 1) − (n − 1) = (s − m − 1) + (m + 1 − n)

(s − 1) + (n − 1) ≡ (s − m − 1) − (m + 1 − n) (mod m),

(s + m − 2s0 + j − 1) − (n − 1) = (s − 2s0 + j − 1) + (m + 1 − n)

(s + m − 2s0 + j − 1) + (n − 1) ≡ (s − 2s0 + j − 1) − (m + 1 − n) (mod m),

we deduce that T1 = T3 = 0. Further, since s − 2s0 < s, the inductive hypothesis gives
T2 = ν(s + m − 2s0, n). Hence, we have to verify ν(s, n) = ν(s + m − 2s0, n). Since s ≡ s0
(mod m), we obtain s + m − 2s0 ≡ −s (mod m) and thus s ± n ≡ −(s + m − 2s0 ∓ n)
(mod m). Applying (6.5) completes the proof.
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Case 1(b):Suppose that s ≥ m + 1 and 2s0 ≤ m. Then the recursive formulae can be
used for both terms on the right-hand side and we get

ν(s + m, n + m) = ν(s − 1, n − 1) + ν(s − 2s0 + m, n + m),

ν(s, 2m + 2 − n) = ν(s − m − 1, m + 1 − n) + ν(s − 2s0, 2m + 2 − n).

Since T1 = 0 and s − 2s0 < s, by using induction on s, we get

ν(s − 2s0 + m, n + m) − ν(s − 2s0, 2m + 2 − n) = ν(s, n)

which proves the claim.
Case 1(c): Suppose s ≤ m. Since 2m + 2 − n > m, we have ν(s, 2m + 2 − n) = 0. Thus

we need to show that ν(s, n) = ν(s+m, n+m). Applying the recursive formulae again we
get

ν(s + m, n + m) = ν(s − 1, n − 1) + ν(s + 2m − 2s0, n + m).

But since 0 < s ≤ m, we have s = s0, and hence s + 2m − 2s0 = 2m − s0 < n + m. Thus
the second term vanishes. It remains to show ν(s − 1, n − 1) = ν(s, n). But this is clear
by (6.5), which implies for 1 ≤ s, n ≤ m: ν(s − 1, n − 1) = ν(s, n) = δs,n.
Case 2: Suppose n ≥ m + 1 and 1 ≤ rn ≤ �m−1

2 �. Thenm + 1 � r. Consider

S = ν(s + m, n + m) − ν(s, n + 2rn) − ν(s, n).

Case 2(a): Assume that 2s0 > m. By applying the recursive to each of the terms of S, we
have

S = ν(s − 1, n − 1) + ν(s + 2m − 2s0, n + m) +
k(ξ)∑

j=1
ν(s + m − 2s0 + j − 1, n − 1)

− ν(s − m − 1, n + 2rn − m − 1) − ν(s + m − 2s0, n + 2rn)

−
k(ξ)∑

j=1
ν(s − 2s0 + j − 1, n + 2rn − m − 1) − ν(s − m − 1, n − m − 1)

− ν(s + m − 2s0, n) −
k(ξ)∑

j=1
ν(s − 2s0 + j − 1, n − m − 1).

Since n − m − 1 < n, s + m − 2s0 < s and s − 2s0 + j − 1 < s, the inductive hypothesis
gives

ν(s − m − 1, n − m − 1) = ν(s − 1, n − 1) − ν(s − m − 1, n + 2rn − m − 1),

ν(s + m − 2s0, n) = ν(s + 2m − 2s0, n + m) − ν(s + m − 2s0, n + 2rn),

ν(s − 2s0 + j − 1, n − m − 1) = ν(s + m − 2s0 + j − 1, n − 1)

− ν(s − 2s0 + j − 1, n + 2rn − m − 1).

Substituting these equations in our equation for S, we obtain S = 0.
Case2(b): Let us assume that 2s0 ≤ m. By applying the recursive to each of the terms of

S,

S = ν(s − 1, n − 1) + ν(s + m − 2s0, n + m) − ν(s − m − 1, n + 2rn − m − 1)

− ν(s − 2s0, n + 2rn) − ν(s − m − 1, n − m − 1) − ν(s − 2s0, n).
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Again by using the induction hypothesis we get

ν(s − m − 1, n − m − 1) = ν(s − 1, n − 1) − ν(s − m − 1, n + 2rn − m − 1),

ν(s − 2s0, n) = ν(s + m − 2s0, n + m) − ν(s − 2s0, n + 2rn).

Substituting these equations in our equation for S, we obtain S = 0. The remaining cases
can be proven similarly and we leave the details to the reader. ��

6.6 We shall use Proposition 6.5 to establish a closed formula for the generating series
Am→m+1
n (x). For this we define polynomials dn(x), n ≥ 0 with nonnegative integer coeffi-

cients as follows. For 0 ≤ n ≤ m set

dn(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if n = 0, m,

1 + xm−2n if 1 < n ≤ 
m−2
2 �,

1 + δres2(m),1x if n = 
m−1
2 �,

1 + x2m−2n if 
m
2 � ≤ n ≤ m − 1.

The polynomials dn(x) for n > m are defined by requiring that the following equality
holds for all p ≥ 1:

[
d(m+1)p(x) d(m+1)p+1(x) · · · d(m+1)p+m(x)

]T = Kp
[
d0(x) d1(x) · · · dm(x)

]T
, (6.6)

where K is a (m + 1) × (m + 1) matrix defined as

K =
⎧
⎨

⎩
K1 + K2,0 ifm is even

K1 + K2,1 ifm is odd ,

and the three (m + 1) × (m + 1) matrices K1, K2,0 and K2,1 are defined below. Set

K1 =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 1
0 1

. . .
. . .

0 1
xm−1 1

. . .
. . .

xm−1 1
xm−1,

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

where number of zeros on the diagonal of the matrix K1 is 
m+1
2 � and the number of

entries equal to xm−1 is �m+1
2 �. Set
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K2,0 =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

xm−1

xm−3 xm−2

. .
. xm−4

x . .
.

0 x2

0 0

. .
. xm−2

. .
. xm−4

0 . .
.

0 x2

0 1 ,

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

where the number of antigonal elements equal to zero in thematrixK2,0 is equal to 
m+1
2 �.

Set

K2,1 =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

xm−1

xm−3 xm−2

. .
. xm−4

x2 . .
.

0 x
0 0

. .
. xm−3

. .
. xm−5

0 . .
.

0 x2

0 1 ,

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

where the number of antigonal elements equal to zero in thematrixK2,1 is equal to 
m+3
2 �.

Theorem 4 Let m ≥ 1. Then, for all n ≥ 0, we have

Am→m+1
n (x) = dn(x)

(1 − xm)
⌊

n
m+1

⌋
+1

.

Proof Let n, pn ∈ Z+, 0 ≤ rn ≤ m such that n = (m+ 1)pn − rn. To simplify the notation
in the proof we set An := Am→m+1

n (x) and

en(x) = An(1 − xm)
⌊

n
m+1

⌋
+1.

The strategy of the proof is to show by induction on p that

[
e(m+1)p(x) e(m+1)p+1(x) · · · e(m+1)p+m(x)

]T = Kp
[
d0(x) d1(x) · · · dm(x)

]T
. (6.7)

From Proposition 5.2, it is easy to see that

An = dn(x)

(1 − xm)
⌊

n
m+1

⌋
+1

for 0 ≤ n ≤ m
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and the induction begins. First we verify certain recursive formulae for the en(x)’s using
Theorem 6.5.

Case 1: If 1 ≤ rn ≤ �m−2
2 �, we have

A(m+1)pn−rn = A(m+1)pn+m−rn − x2rnA(m+1)pn+rn , (6.8)

A(m+1)pn−(m−rn) = A(m+1)pn+rn − xm−2rnA(m+1)pn+(m−rn)

−xm−2rn−1A(m+1)pn−rn−1. (6.9)

Multiplying Eq. (6.8) by xm−2rn and adding the result to Eq. (6.9) gives

(1 − xm)A(m+1)pn+rn = A(m+1)pn−(m−rn) + xm−2rnA(m+1)pn−rn

+xm−2rn−1A(m+1)pn−rn−1.

It follows

e(m+1)pn+rn (x) = e(m+1)pn−(m−rn)(x) + xm−2rne(m+1)pn−rn (x)

+xm−2rn−1e(m+1)pn−rn−1(x). (6.10)

Case 2: If �m+3
2 � ≤ rn ≤ m − 1 we obtain

A(m+1)pn−rn = A(m+1)pn+m−rn − x2rn−mA(m+1)pn+rn

−x2rn−m−1A(m+1)pn+rn−m−1, (6.11)

A(m+1)pn−(m−rn) = A(m+1)pn+rn − x2m−2rnA(m+1)pn+m−rn . (6.12)

Multiplying Eq. (6.11) by x2m−2rn and adding the result to Eq. (6.12) gives

(1 − xm)A(m+1)pn+rn = A(m+1)pn−(m−rn) + x2m−2rnA(m+1)pn−rn (x)

+xm−1A(m+1)pn+rn−m−1.

This implies

e(m+1)pn+rn (x) = e(m+1)pn−(m−rn)(x) + x2m−2rne(m+1)pn−rn (x)

+xm−1e(m+1)(pn−1)+rn (x). (6.13)

Case 3: If rn = m, then

A(m+1)pn−m = A(m+1)pn − xmA(m+1)pn+m − xm−1A(m+1)pn−1

= (1 − xm)A(m+1)pn+m − xm−1A(m+1)pn−1.

Hence

e(m+1)pn+m(x) = e(m+1)(pn−1)+1(x) + xm−1e(m+1)(pn−1)+m(x). (6.14)

Case 4: Ifm is even and rn = m
2 , we get

A(m+1)pn−m
2

= A(m+1)pn+m
2

− xmA(m+1)pn+m
2

= (1 − xm)A(m+1)pn+m
2
.

This shows

e(m+1)pn+m
2
(x) = e(m+1)(pn−1)+m

2 +1(x). (6.15)
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Case 5: If m is odd, then we get the following two equations by setting rn = �m+1
2 � and

rn = m−1
2 , respectively:

A(m+1)pn−m+1
2

= A(m+1)pn+m−1
2

− xA(m+1)pn+m+1
2
(x), (6.16)

A(m+1)pn−m−1
2

= A(m+1)pn+m+1
2

− xm−1A(m+1)pn+m−1
2
. (6.17)

Multiplying Eq. (6.17) by x and adding the result to Eq. (6.16) yields

(1 − xm)A(m+1)pn+m−1
2

= A(m+1)pn−m+1
2
(x) + xA(m+1)pn−m−1

2
.

Thus

e(m+1)pn+m−1
2
(x) = e(m+1)pn−m+1

2
(x) + xe(m+1)pn−m−1

2
(x). (6.18)

Similarly multiplying Eq. (6.16) by xm−1 and adding the result to Eq. (6.17) gives

(1 − xm)A(m+1)pn+m+1
2

= A(m+1)pn−m−1
2
(x) + xm−1A(m+1)pn−m+1

2
,

which implies

e(m+1)pn+m+1
2
(x) = e(m+1)(pn−1)+m+1

2 +1(x) + xm−1e(m+1)(pn−1)+m+1
2
(x). (6.19)

Hence the recursive formulae for the en(x)’s from Eqs. (6.10), (6.13), (6.14), (6.15), (6.18)
and (6.19) imply for p > 0

K
[
e(m+1)(p−1)(x) e(m+1)(p−1)+1(x) · · · e(m+1)(p−1)+m(x)

]T

=
[
e(m+1)p(x) e(m+1)p+1(x) · · · e(m+1)p+m(x)

]T
.

Applying the induction hypothesis shows (6.7). ��
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