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Abstract: In many applications, linear models fit the data poorly. This
article studies an appealing alternative, the generalized regression model.
This model only assumes that there exists an unknown monotonically in-
creasing link function connecting the response Y to a single index XTβ∗ of
explanatory variables X ∈ Rd. The generalized regression model is flexible
and covers many widely used statistical models. It fits the data generat-
ing mechanisms well in many real problems, which makes it useful in a
variety of applications where regression models are regularly employed. In
low dimensions, rank-based M-estimators are recommended to deal with
the generalized regression model, giving root-n consistent estimators of β∗.
Applications of these estimators to high dimensional data, however, are
questionable. This article studies, both theoretically and practically, a sim-
ple yet powerful smoothing approach to handle the high dimensional gen-
eralized regression model. Theoretically, a family of smoothing functions is
provided, and the amount of smoothing necessary for efficient inference is
carefully calculated. Practically, our study is motivated by an important
and challenging scientific problem: decoding gene regulation by predicting
transcription factors that bind to cis-regulatory elements. Applying our
proposed method to this problem shows substantial improvement over the
state-of-the-art alternative in real data.
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1. Introduction

Regression models play a fundamental role in characterizing the relation among
variables. Nonparametric and semiparametric regression models are commonly
used alternatives to linear regression when the latter fails to fit the data well.
Their advantages over simple linear regression models have been established in
various fields [1, 2].

In this article, we study a semiparametric generalization of linear regression
as such an alternative. We assume

Y = D ◦ Λ(XTβ∗, ε), where Y, ε ∈ R and X,β∗ ∈ R
d. (1.1)

Here Y is the scalar response variable, D(·) is an unknown increasing function,
Λ(·, ·) is an unknown strictly increasing function regarding each of its arguments,
X represents the vector of explanatory variables, ε is an unspecified noise term
independent of X, and β∗ is the regression coefficient characterizing the relation
between X and Y . The coefficient β∗ is assumed to be sparse. Model (1.1) is
referred to as the generalized regression model. It was first proposed in econo-
metrics [3], and is a very flexible semiparametric model, containing a parametric
part, encoded in the linear term XTβ∗, and a nonparametric part, encoded in
link functions D(·),Λ(·, ·), and the noise term ε. In practice, we assume that
n independent realizations of (Y,X), denoted as {(Yi,Xi), i = 1, . . . , n}, are
observed. These observations will be used to fit the model.

1.1. A motivating genomic challenge

Model (1.1) naturally occurs in many applications. Below we elaborate a chal-
lenging scientific problem that motivates our study. To help put the model into
context, some background introduction is necessary. One fundamental question
in biology is how genes’ transcriptional activities are controlled by transcription
factors (TFs). TFs are an important class of proteins that can bind to DNA
to induce or repress the transcription of genes nearby the binding sites (Fig-
ure 1(a)). Human has hundreds of different TFs. Each TF can bind to 102-105

different genomic loci to control the expression of 10-103 target genes. The ge-
nomic sites bound by TFs are also called cis-regulatory elements or cis-elements.
Promoters and enhancers are typical examples of cis-elements. TF binding ac-
tivities are context-dependent. The binding activity of a given TF at a given
cis-element varies from cell type to cell type. It depends on the TF’s expression
level in each cell type as well as numerous other factors. One cis-element can
be bound by multiple collaborating TFs that form a protein complex. Different
TFs can bind to different cis-elements. In order to comprehensively understand
the gene regulatory program, a crucial step is to identify all active cis-elements
and their binding TFs in each cell type and biological condition.

The state-of-the-art technology for mapping genome-wide TF binding sites
(TFBSs) is Chromatin Immunoprecipitation coupled with sequencing (ChIP-
seq) [4]. Unfortunately, each ChIP-seq experiment can only analyze one TF.
Using this technology to map binding sites of all human TFs would require one
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Fig 1. Background. (a) An illustration of TF, motif, cis-element, and DNase I hypersensi-
tivity measured by DNase-seq. For each cell type, two panels are displayed. In the top panel,
the horizontal line represents the genome. TFs (ellipse and triangle) bind to cis-elements to
activate or repress the transcription of nearby genes (rectangle). Each TF binds to a spe-
cific DNA motif located within the cis-element. In the bottom panel, DNase I hypersensitivity
measured by DNase-seq at each cis-element correlates with the TF binding activity. Since TF
binding activities are different in different cell types, the DNase-seq signals also vary across
cell type. (b) Data structure used for predicting a cis-element’s binding TFs. For each cis-
element, Y is the DNase-seq signal measured in different cell types, and X is gene expression
levels for d TFs in the same cell types.

to conduct hundreds of such experiments. Moreover, ChIP-seq requires high-
quality antibodies which are not available for all TFs. Therefore, mapping bind-
ing sites for all TFs using ChIP-seq is both costly and technically infeasible. An
alternative approach to mapping TFBSs is based on genome-wide sequencing of
DNase I hypersensitive sites (DNase-seq) [5]. TFBSs are often sensitive to the
cleavage of DNase I enzyme. Thus, DNase I hypersensitivity (DH), which can
be measured in a genome-wide fashion using DNase-seq, can be used to locate
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cis-elements actively bound by TFs (Figure 1(a)). This approach is capable of
mapping binding sites of all TFs in a biological sample through a single ex-
perimental assay. However, a major limitation of DNase-seq is that it does not
reveal the identities of TFs that bind to each cis-element. If one could solve this
problem by correctly predicting which TFs bind to each element, one would
then be able to combine DNase-seq with computational predictions to identify
all active cis-elements and their binding TFs in a biological sample using a single
experimental assay. This would help scientists to remove a major roadblock in
the study of gene regulation.

Many TFs recognize specific DNA sequence patterns called motifs (Figure
1(a)). Different TFs recognize different motifs. A conventional way to infer the
identities of TFs that bind to a cis-element is to examine which TFs’ DNA motifs
are present in the cis-element. Unfortunately, motifs for 2/3 of all human TFs are
unknown. Therefore, solely relying on DNA motifs is not sufficient to solve this
problem. This motivates development of an alternative solution that leverages
massive amounts of gene expression and DNase-seq data in public databases
to circumvent the requirement for DNA motifs. The Encyclopedia of DNA El-
ements (ENCODE) project [6] has generated DNase-seq and gene expression
data for a variety of different cell types. Using these data, one may examine
how the protein-binding activity measured by DNase-seq at a cis-element varies
across different cell types and how such variation is explained by variations in
the expression of TFs (Figure 1(b)). Through this analysis, one may infer which
TFs bind to each cis-element.

Formally, let Y be the activity of a cis-element in a particular cell type
measured by DNase-seq, and let X = (X1, . . . , Xd)

T be the expression level of
d different TFs in the same cell type (Figure 1(b)). The relationship between
cis-element activity and TF expression can be described using a generalized
regression model, Y = D◦Λ(XTβ∗, ε), with a high dimensional sparse regression
coefficient vector β∗. One expects the relationship between Y and XTβ∗ to
be monotonic since a TF has to be expressed in order to be able to bind to
cis-elements. Also, increased TF expression may lead to increased binding. The
relationship may not be linear and the noise may not be normal since DNase-seq
generates counts data. Although after normalization, the data may no longer be
integers, they usually are still non-normal and may be zero-inflated. The model
is high dimensional since there are hundreds of of TFs (i.e., d = 102 − 103),
whereas the sample size (i.e., the number of ENCODE cell types with both
DNase-seq and gene expression data) is small (n=50-100). Lastly, β∗ has to be
sparse since the number of TFs that can bind to a cis-element is expected to be
small. This is because cis-elements are typically short. Each element cannot have
physical contacts with too many different proteins. In this model, the non-zero
components of β∗ may be used to infer the identities of binding TFs.

1.2. Existing works on generalized regression

In order to properly position our results in the literature, below we briefly review
existing methodological works that are most relevant to our study on deciphering
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the generalized regression model. The generalized regression model contains
many widely-used econometrical and statistical models, including important
sub-classes such as the monotonic transformation model and monotonic single-
index model, of the following forms:

Y = G(XTβ∗ + ε) (monotonic transformation model), (1.2)

Y = G(XTβ∗) + ε (monotonic single-index model), (1.3)

where the univariate link function G(·) is assumed to be strictly increasing.
There has been research in estimating the generalized regression model or its

variants in low dimensions. These works follow two tracks. In the first track,
[3] and [7] proposed rank-based M-estimators for directly estimating β∗, while
treating link functions D(·) and Λ(·, ·) as nuisance parameters. The correspond-

ing estimator β̂ aims to maximize certain rank correlation measurement between
Y and XTβ, and hence often involves a discontinuous loss function. Based on
an estimate of β∗, [8], [9], and [10] further proposed methods to estimate the
link function D ◦ Λ(·, ·) under different parametric assumptions on link func-
tions. This method is also extended in [11] and [12] to ultra-high dimensional
settings via coupling it with a lasso-type penalty. In the second track, [13], [14],
[15], among many others, focused on studying more specific models in (1.2) and
(1.3), and suggested to approximate D ◦ Λ(·, ·) for estimating β∗ via exploiting
the kernel regression and sieve approximation. These approaches therefore nat-
urally require geometric assumptions and smoothness conditions on D ◦ Λ(·, ·).

In high dimensions when d could be much larger than the sample size n,
serious drawbacks are associated with methods in both tracks.

For the second track, first, simultaneous estimation of D ◦ Λ(·, ·) and β∗ re-
quires extra prior assumptions on D ◦ Λ(·, ·), which may not hold in practice.
Secondly, nonparametric estimation is well known to be difficult in high dimen-
sions. This could hurt the estimation of β∗. Thirdly, these estimation procedures
usually are very sensitive to outliers, which are common in real applications.

For the first track, rank-based M-estimators treat D ◦ Λ(·, ·) as nuisance
and hence could potentially gain efficiency and modeling flexibility in estimat-
ing β∗. However, these rank-based methods also have serious computational
and theoretical drawbacks. Computationally, the loss functions of rank-based
M-estimators are commonly discontinuous. This violates the regularity con-
ditions in most optimization algorithms [16, 17] and makes the optimization
problem intractable. It could create serious computational issues, especially in
high dimensions. Theoretically, the discontinuity of loss functions adds substan-
tial difficulty for analysis, especially in high dimensions. This further makes the
statistical performance of corresponding estimators intractable.

1.3. Overview of key results

This article studies a simple smooth alternative to the above rank-based meth-
ods. This results in estimators that are computationally efficient to calculate,
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while keeping the modeling flexibility in estimating β∗. The core idea is to re-
place the non-smooth rank-based loss function L̂(·) by a smooth loss function

L̂n(·), indexed by n. L̂n(·) is designed to become closer to L̂(·) when n increases.
A family of smoothing functions is accordingly studied.

Of note, the idea to approximate a non-smooth loss function using a smooth
one has proven its successfulness in literature: see, for example, [18], [19], [20],
[21], and [12] for smoothing Manski’s maximum score estimator, an estimator
targeting at the area under the receiver operating characteristic curve (AUC),
quantile regression estimator, and Han’s rank-based M-estimator in low and
high dimensions. However, our results add new observations to this track of
works both theoretically and in some new biological applications, which will be
outlined below.

Theoretically, although a fairly studied approach in low dimensions, smooth-
ing approximation to non-smooth and non-convex loss functions has received
little attention in high dimensions. This is mainly due to the extreme irregular-
ity of original loss functions, which form discontinuous U-processes [22]. Theo-
retically speaking, smoothing renders two types of errors: (i) the bias which

characterizes the error introduced by employing L̂n(·) to approximate L̂(·);
(ii) the variance which characterizes the error introduced by the randomness

of L̂n(·). Our study characterizes behaviors of both types of errors, based on
which one can calculate the amount of smoothing necessary to balance the bias
and variance. Our theory holds without any assumption on D ◦ Λ(·, ·) other
than monotonically increasing. Additionally, the noise term ε is allowed to be
non-centered, arbitrarily heavy-tailed, including these Cauchy distributed ones
with median possibly non-zero, and contain a substantial amount of outliers.
Our theory hence confirms, mathematically rigorously, several advantages of
smoothed Han’s maximum rank estimator.

Practically, the aforementioned advantages of the studied procedure are im-
portant for problems where a large number of different regression models need
to be fitted. Consider our motivating problem of predicting binding TFs of
cis-elements. Since different cis-elements behave differently, the relationship be-
tween Y and X may have different functional forms for different cis-elements
even though all these functions are monotonic. Additionally, different cis-elements
may have different noise distributions. Despite this heterogeneity, different cis-
elements can be conveniently handled in a unified fashion using our generalized
regression procedure regardless of the form of D◦Λ(·, ·) and ε. By contrast, man-
ually constructing parametric models of different forms for differet cis-elements
would be difficult due to the large number of models that need to be constructed.
The advantages of our approach over existing high dimensional linear and robust
regression couterparts (e.g., those in [23] and [24]) are hence clear.

Applying our method to the binding TF prediction problem, we find that our
approach is substantially more accurate than the competing lasso method for
predicting binding TFs. This demonstrates the practical utility of the smoothing
approach and shows that it can provide a solution to a long-standing open
problem in biology.
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1.4. Other related works

Monotonic single-index and transformation models are important subclasses of
the generalized regression model. In contrast to the monotonic transformation
model, there exists an increasing amount of research studying the monotonic
single-index model. These include [25], [15], and [26], to just name a few. How-
ever, they require much stronger modeling assumptions, and are sensitive to
different types of data contamination.

There are two more related semiparametric approaches to generalize the lin-
ear regression model. The first is the general single-index model, with no explicit
geometric constraint on G(·) in (1.3). In high dimensions, [27] and [28] studied
such a relaxed model. For this, besides being sensitive to data contamination,
they need to first sphericalize the data, which is extremely difficult in high di-
mensions. Recently, [29] proposed an alternative approach that does not require
data sphericity. However, boundedness assumption on X, subgaussianity of ε,
and certain smoothness conditions on G(·) are still required.

The second is sufficient dimension reduction. Related literature in this di-
rection includes [30], [31], [32], [33], and [34]. Sufficient dimension reduction
approaches only assume Y is independent of X conditional on some linear
projections of X. However, a data sphericalization step is also crucial in all
these approaches, and in each step of derivation, we need d/n → 0 to proceed.
These make the sufficient dimension reduction approaches vulnerable to high
dimensionality, which will be further illustrated in simulations and real data
experiments.

1.5. Paper organization

The rest of the paper is organized as follows. The next section presents our
smoothing approach to estimating the generalized regression model. In Sec-
tion 3, we use this method to solve our motivating scientific problem of de-
coding transcription factor binding. We demonstrate that this semiparametric
regression approach is capable of substantially improving the accuracy over the
state-of-the-art alternatives in real data. Section 4 gives theoretical results for
understanding the proposed approach and calculates the appropriate smooth-
ing amount. Section 5 provides discussions. Finite-sample simulation results and
proofs are relegated to an appendix.

1.6. Notation

Let v = (v1, . . . , vd)
T and M = [Mjk] ∈ R

d×d be a d dimensional real vector
and a d by d real matrix. For sets I, J ⊂ {1, . . . , d}, let vI be the subvector of
v with entries indexed by I, and MI,J be the submatrix of M with rows and
columns indexed by I and J . Let card(I) represent the cardinality of the set I.
For 0 < q < ∞, we define the vector �0, �q, and �∞ (pseudo-)norms of v to be

‖v‖0 := card({j : vj �= 0}), ‖v‖q := (
∑d

i=1 |vi|q)1/q, and ‖v‖∞ := max1≤i≤d |vi|.
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For the symmetric matrix M, let λmax(M) and λmin(M) represent the largest
and smallest eigenvalues of M. We write M 	 0 if M is positive semi-definite.
For any x ∈ R, we define the sign function sign(x) := x/|x|, where by convention

we write 0/0 = 0. For any two random vectors X,Y ∈ R
d, we write X

d
= Y if

X and Y are identically distributed. We let c, C be two generic absolute positive
constants, whose actual values may vary at different locations. We write 1(·) to
be the indicator function. We let Sd−1 represent the ball {v ∈ R

d : ‖v‖2 = 1}.
For any two real sequences {an} and {bn}, we write an � bn, or equivalently
bn � an, if there exists a constant C such that |an| ≤ C|bn| for any large enough

n. We write an � bn if an � bn and bn � an. The symbols
P

�,
P

�, and
P� are

analogous to �,�, and �, but these relations hold stochastically.

2. Problem setup and methods

In this section, we provide some background on the generalized regression model
and associated rank-based M -estimators. We further describe the class of non-
convex smoothness approximations that will be exploited and covered by our
theory.

Throughout the paper, we assume Model (1.1) holds, and we have n inde-
pendent and identically distributed (i.i.d.) observations {(Yi,Xi), i = 1, . . . , n}
generated from (1.1). We do not pose any parametric assumption on either the
link functions D(·),Λ(·, ·) or the noise term ε, except for assuming ,

D(·) is non-degenrate, D(a) ≥ D(b), Λ(a, ·) > Λ(b, ·), and Λ(·, a) > Λ(·, b),
(2.1)

as long as a > b. For model identifiability, in the sequel, we assume we know at
least one specific entry of β∗ that is nonzero, and fix it to be one. Without loss
of generality, we assume β∗

1 = 1.
The generalized regression model of form (1.1) represents a large class of

models. These include the monotonic transformation and single-index models
of the forms (1.2) and (1.3). More specifically, the generalized regression model
covers the linear regression model, with D ◦ Λ(u, v) = u + v; the Box-Cox
transformation model [35], with D ◦ Λ(u, v) = (u + v)λ for some λ > 0; the
log-linear model and accelerated failure time model [36], with D ◦ Λ(u, v) =
exp(u + v); the binary choice model [37], with D ◦ Λ(u, v) = 1(u + v ≥ 0); the
censored regression model [38], with D ◦ Λ(u, v) = (u+ v)1(u+ v ≥ 0).

We focus on the following rank-based M-estimator, called the maximum rank
correlation (MRC), which is first proposed in [3]:

argmax
β∈Rd,β1=1

{ 2

n(n− 1)

∑

1≤i<i′≤n

sign(Yi − Yi′)sign(X
T

i β −XT

i′β)
}
. (2.2)

The formulation of MRC is a U-process [39, 21].
Intrinsically, MRC aims to maximize the Kendall’s tau correlation coefficient

[40] between Y and XTβ, while treating the link functions as nuisance. This
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is attainable only via assuming D ◦ Λ(·, ·) is monotonic, and has its roots in
transformation and copula models [41]. For such models, rank-based approaches
have been well-known to be of certain efficiency properties [42, 43].

For fully appreciating the rationality of MRC, we provide a proposition that
characterizes MRC’s relation to the linear regression model, and further ad-
dresses the identifiability issue. Although the result in the first part is very
straightforward, we do not find an explicit one in the literature that shows this
relation,

Proposition 2.1. Suppose X is continuous and has a positive definite covari-
ance matrix. We have, (i) when the link function D◦Λ(u, v) = u+v corresponds
to the linear regression model (without requiring X and ε to be centered), β∗ is
the unique optimum to maximize the Pearson correlation between Y and XTβ

up to a scaling:

argmax
β∈Rd

{
E[(Y1 − Y2)(X

T
1 β −XT

2 β)]√
Cov(Y1 − Y2)

√
Cov(XT

1 β −XT
2 β)

}
;

(ii) As long as the link functions D(·) and Λ(·, ·) satisfy (2.1), β∗ is the unique
optimum to maximize the Kendall’s tau correlation coefficient between Y and
XTβ up to a scaling:

argmax
β∈Rd

{
E

(
sign(Y1 − Y2)sign(X

T

1 β −XT

2 β)
)}

.

Throughout, we are interested in the settings where the dimension d could
be much larger than the sample size n. In such settings, due to restrictive in-
formation obtainable, we have to further regularize the parameter space. In
particular, sparsity on the parametric space is commonly assumed. A seemingly
natural regularized MRC estimator is as follows:

argmax
β∈Rd,β1=1

{ 2

n(n− 1)

∑

1≤i<i′≤n

sign(Yi − Yi′)sign(X
T

i β −XT

i′β)− λn

d∑

j=2

|βj |
}
,

(2.3)

or its equivalent formulation:

argmax
β∈Rd,β1=1

{ 2

n(n− 1)

∑

1≤i<i′≤n

(
1(Yi > Yi′)1(X

T

i β>XT

i′β)+

1(Yi < Yi′)1(X
T

i β < XT

i′β)
)
− λn

d∑

j=2

|βj |
}
.

However, (2.3) involves a discontinuous loss function that has abrupt changes.
As stated in the introduction, this incurs serious computational and statisti-
cal issues. For tackling such issues, we propose the following smoothing ap-
proximation to (2.3), using a set of cumulative distribution functions (CDFs)
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{Fii′(·), 1 ≤ i < i′ ≤ n} to approximate the indicator function 1(·):

β̂αn ∈ local-argmax
β∈Rd,β1=1

{ 2

n(n− 1)

∑

1≤i<i′≤n

(
Sii′Fii′(αnZii′(β))

+(1− Sii′)(1− Fii′(αnZii′(β)))
)
− λn

d∑

j=2

|βj |
}
.

Here “local-argmax{·}” and “local-argmin{·}” represent the sets of local max-
ima and minima for a given function respectively. In addition, we write

Zii′(β) := (Xi −Xi′)
Tβ and Sii′ := 1(Yi > Yi′).

Of note, αn is an explicitly stated smoothness parameter controlling the ap-
proximation speed, presumably increasing to infinity with n. For any pair (i, i′),
Fii′(·) is a pre-determined fixed smooth continuous CDF, satisfying Fii′(−u) =
1− Fii′(u) for arbitrary u ≥ 0.

Note we can equivalently write

β̂αn ∈ local-argmin
β∈Rd,β1=1

{
− 2

n(n− 1)

∑

1≤i<i′≤n

Fii′(S̃ii′αnZii′(β))

︸ ︷︷ ︸
L̂n(β)

+λn

d∑

j=2

|βj |
}
,

(2.4)

where S̃ii′ := sign(Yi − Yi′) is the signed pairwise difference.

On one hand, the smoothed loss function L̂n(β) is close to the MRC loss
function in (2.3) when αn is large enough. This guarantees “the bias term” is

small enough. On the other hand, L̂n(β) is smooth, giving computational and
statistical guarantees for convergence in optimizing the loss function (2.4).

There are several notable remarks for the proposed smoothing approach.

Remark 2.2. In practice, we can take the approximation function Fii′(u) of
the following forms:

• sigmoid function: Fs(u) := 1/(1 + exp(−u));
• standard Gaussian CDF: Fg(u) := Φ(u), where Φ(·) represents the stan-

dard Gaussian CDF;
• standard double exponential CDF: Fe(u) := 1/2+sign(u)(1−exp(−|u|))/2.

As will be shown later, the above approximation functions all guarantee efficient
inference. For the approximation parameter αn, theoretically, we recommend
choosing it using a specific rate. Such a rate depends on n, d, and a sparseness
parameter, and will be stated more explicitly in Section 4. In practice, cross-
validation is recommended [44].

Remark 2.3. We note the formulation (2.4) is related to those smoothing
approaches introduced in [45], [21], and [12]. Actually, their approaches could
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be regarded as special cases of (2.4), by taking Fii′(·) to be the Gaussian CDF
or sigmoid function. However, as will be seen in Sections 3 and 4, we will add
new contributions to literature in both theory and applications.

Remark 2.4. It is also worth comparing the formulation in (2.4) to the other
robust regression formulations introduced in the high dimensional statistics lit-
erature. The original lasso estimator is well-known to be vulnerable to non-linear
link functions [46], and heavy-tailed noise term ε [47]. [48], [24], and [23] pro-
posed different robust (non)convex approaches to address the possible heavy-
tailedness issue of ε. In particular, [23] provided a framework for investigating
a group of (non)convex loss functions (e.g., Huber’s loss and Tukey’s biweight),
and studied the corresponding estimators. However, these procedures all stick
to the linear link function, and hence will lead to inconsistent estimation, invalid
statistical inference, and erroneous predictions when the link function is non-
linear. As is discussed in the introduction, non-linearity is common in complex
biology systems.

3. Real data example

In this section, we apply our approach to the motivating scientific problem – pre-
dicting TFs that bind to individual cis-elements. As introduced before, solving
this problem is crucial for studying gene regulation. DNase-seq experiments can
be used to map active cis-elements in a genome-wide fashion. If one can correctly
predict which TFs bind to each cis-element, one would be able to couple DNase-
seq with computational predictions to efficiently predict genome-wide binding
sites of a large number of TFs simultaneously in a new biological sample. This
cannot be achieved using any other existing experimental technology.

The conventional approach that predicts binding TFs based on DNA motifs is
contingent on the availability of known TF motifs. However, 2/3 of human TFs
do not have known motifs. This motivates us to investigate an alternative solu-
tion that does not require DNA motif information. This new approach leverages
large amounts of publicly available DNase-seq and gene expression data gener-
ated by the ENCODE project. Using data from multiple ENCODE cell types,
this approach models the relationship between a cis-element’s protein-binding
activity Y measured by DNase-seq and the gene expression levels of d TFs,
X, measured by exon arrays. It predicts binding TFs by identifying important
variables in X in the regression model. Below we present real data results from
a small-scale pilot study as a way to illustrate our semiparametric regression
approach and compare it with other methods. A comprehensive whole-genome
analysis and investigation of biology are beyond the scope of this article and
will be addressed elsewhere.

In our pilot study, human DNase-seq and matching gene expression exon
array data from 57 cell types were obtained from the ENCODE project. After
data processing and normalization (see the appendix Section C.1 for details),
169 TFs whose gene expression varies across the 57 cell types were obtained.
In parallel, 1,000 cis-elements were randomly sampled from a total of over 106
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cis-elements in the human genome for method evaluation. For each cis-element,
the objective is to identify which of the 169 TFs may bind to it. Let Y be a
cis-element’s DNase I hypersensitivity (a surrogate for protein-binding activity),
measured by its normalized and log-transformed DNase-seq read count, in a cell
type. Let X be the normalized gene expression values of the 169 TFs in the
same cell type. We want to use Y and X observed from 57 different cell types
to learn their relationship and subsequently predict binding TFs.

Six competing methods are compared, listed below. For all methods except
random prediction, the non-zero components of the estimate were used to predict
which TFs can bind to a cis-element. The code that implements our method has
been released online (https://github.com/zji90/RMRCE).

• RMRCE: the generalized regression model Y = D ◦Λ(XTβ∗, ε) was fitted
using Regularized Maximum Rank Correlation Estimator (RMRCE) in
(2.4). The tuning parameter αn was selected using cross validation and
the Gaussian smoothing approximation was used.

• Hinge: the indicator function in Han’s proposal is replaced by a hinge loss
approximation. Specifically, the loss function is changed to:

local-argmax
β∈Rd,β1=1

{ 1

n(n− 1)

∑

i �=i′

1I(Yi > Yi′)[max{0, (Xi−Xi′)
T
β+1}]−λn

d∑

j=2

|βj |
}
.

• Lasso: the lasso [49] was used.
• SIM: the method as proposed by [29].
• SDR: the sufficient dimension reduction method as proposed by [34].
• Random: TFs randomly sampled from the 169 TFs were treated as the

predicted binding TFs.

Among these methods, the lasso represents the state-of-the-art linear model
for characterizing the relationship between a response and sparse predictors.
SIM and SDR represent competing semiparametric regression models. Hinge
is a simple convex relaxation of Han’s proposal. We include this comparison
to find out whether the smoothed rank correlation is better than convex re-
laxation. The random method serves as a negative control. For all methods
except random prediction, we tried different tuning parameters (αn in RMRCE
was selected using cross validation) and calculated the overall accuracy under
each parameter setting. Detailed implementation strategy for the methods is
presented in Section A.1 in the appendix.

Prediction accuracy of different methods is compared using DNA motif in-
formation. The rationale is that DNA motifs were not used to make predictions,
therefore they provide an independent source of information for validation. For
a method with better prediction accuracy, one should expect that its predicted
binding TFs for a cis-element are more likely to be supported by the presence
of corresponding motifs in the cis-element. By contrast, it is less likely to find
motifs in a cis-element for incorrectly predicted binding TFs. Based on this rea-
soning, we downloaded all known vertebrate motif matrices from the JASPAR
database [50] and mapped them to human genome using the CisGenome soft-
ware [51] under its default setting. For a given TF, if its motif(s) occurred one or
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Fig 2. Overall accuracy of RMRCE (αn selected by cross validation, Gaussian smoothing
approximation), Hinge, the lasso, SIM, SDR, and the random prediction method. X-axis
shows the averaged percentage of selected TFs out of all 169 TFs. Y-axis shows the overall
accuracy.

multiple times within 500 base pairs (bp’s) of the center of a cis-element, then
the TF’s motif was called to be found in the cis-element. Let i ∈ {1, . . . , 1, 000}
be the index of cis-elements. Let Mi denote the set of TFs whose motifs were
found in cis-element i. In order to characterize a method’s prediction accuracy,
we applied the method to predict binding TFs for each cis-element. If a predicted
TF does not have any known DNA motif, we lack information for evaluating the
correctness of the prediction. Therefore, for each cis-element, we only retained
the predicted TFs that had known DNA motifs in the JASPAR database for
estimating the prediction accuracy. Among all the 169 TFs, 63 TFs had known
DNA motifs and were included in the evaluation. Let Ai be the set of retained
TFs for cis-element i, and let |Ai| be the number of TFs in Ai. Let Bi = Ai

⋂
Mi

be the subset of TFs in Ai whose motifs were found in cis-element i (and hence
validated), and let |Bi| be the number of TFs in Bi. The prediction accuracy of
a method was characterized by the following ratio

1,000∑

i=1

|Bi|
/ 1,000∑

i=1

|Ai|.

This ratio is the percentage of all testable predictions that were validated by the
presence of DNA motifs. The higher the ratio, the more accurate a method is.

Figure 2 compares the accuracy of different methods. For each method, we
gradually increased the number of reported TFs by relaxing the tuning param-
eter (e.g., setting a smaller tuning parameter λn will result in more TFs being
reported by RMRCE), and the accuracy was plotted as a function of increasing
number of predicted binding TFs. This figure shows that RMRCE is significantly



Smoothing approach for high dimensional generalized regression 4361

more accurate than all the other methods, and the random prediction method
has the worst performance. Of note, as the number of selected TFs increases, the
accuracy of all methods drops (except for the random, which remains stable).
This is as expected since the overall signal strength decreases as more TFs are
reported. RMRCE performance with different choices of αn is presented in the
appendix (Section C.2). A model diagnostic heuristic is developed to check the
monotonicity assumption of the proposed model. The detailed descriptions and
model diagnostic results in real data application can be found in the appendix
(Section C.3).

To shed light on why RMRCE substantially outperformed the lasso, Figure 3
shows data from two cis-elements as examples. For each cis-element, we used the
lasso to identify binding TFs from the 169 TFs. The observed response Y was
then plotted against its fitted valueXTβ̂lasso in Figure 3(a) and Figure 3(c). The
blue curve in each plot represents a smooth curve fitted using the generalized
additive model with cubic splines and default parameters as implemented in
the R package mgcv. It treats Y as response and XTβ̂lasso as independent
variable. Clearly, Y and XTβ̂lasso do not have a linear relationship. Moreover,
the figures show that the relationship between Y and XTβ̂lasso for different
cis-elements have different functional forms. This makes the use of parametric
models complicated as one would need to build models with different functional
forms for different cis-elements, which would be tedious if one wants to analyze
millions of cis-elements in the whole genome. Figure 3(b) and Figure 3(d) show
the normal qqplots for the residuals that were obtained from the fitted smooth
curves. These figures show that, even when a non-linear smoothed function was
fitted to the data, the residuals are still non-normal and may have a complicated
distribution.

Figure 4 shows a similar analysis using RMRCE. In Figure 4(a) and Fig-

ure 4(c), Y was plotted against the RMRCE fitted XTβ̂RMRCE. Clearly, the

relationship between Y and XTβ̂RMRCE is non-linear, but such a non-linear,
yet monotonically increasing, relationship can be handled by our method in a
unified fashion regardless of the specific functionnon-linearal forms. Figure 4(b)
and Figure 4(d) are the residual qqplots where the residuals were obtained from
the fitted smooth curves in Figure 4(a) and Figure 4(c). These qqplots show
that the distributions of the residuals are non-normal. The non-normal residu-
als, however, can be naturally handled by our generalized regression model.

The above analyses demonstrate the value of our approach for handling noisy,
monotonic, non-normal, and non-linear data. Whereas the simple linear regres-
sion and marginal screening cannot fully capture the delicateness of such a com-
plex system, RMRCE handles these challenges very well. Thus, RMRCE is a
more appealing method to tackle the studied problem than simple linear models
based methods such as the lasso. Similar conclusion applies to the comparison
with the other four competing methods. In particular, as will be shown in the
Section of synthetic data analysis (Section A), Hinge is usually a convex approx-
imation too crude to the studied method, and when the generalized regression
model is reasonable in modeling the data (which is hinted by the experimental
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Fig 3. Fitted curves and residual qqplots using the lasso for two cis-elements. For each
cis-element, the lasso was fitted to obtain the regression coefficients β̂lasso. Blue lines in
(a) and (c) are fitted smoothed curves treating Y as response and XTβ̂lasso as independent
variable. (b) and (d) are residuals qqplots for the smoothed curves. The quantiles of the
residuals (sample quantiles) are compared to the quantiles of a normal distribution (theoretical

quantiles). The residuals are calculated as Y − g(XTβ̂lasso) where g represents the smoothed
functions fitted in (a) and (c).

results in this section), SIM and SDR are much less efficient in handling the
data than RMRCE.

4. Theory

This section is devoted to investigating the statistical performance of the smooth-
ing estimator β̂αn in (2.4). For characterizing the estimation error of β̂αn to β∗,
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Fig 4. Fitted curves and residual qqplots using RMRCE for two cis-elements. For each
cis-element, RMRCE was fitted to obtain the regression coefficients β̂RMRCE. Blue lines in (a)

and (c) are fitted smoothed curves treating Y as response and XTβ̂RMRCE as independent
variable. (b) and (d) are residuals qqplots for the smoothed curves. The quantiles of the
residuals (sample quantiles) are compared to the quantiles of a normal distribution (theoretical

quantiles). The residuals are calculated as Y −g(XTβ̂RMRCE) where g represents the smoothed
functions fitted in (a) and (c).

we separately study the approximation error (bias part) and the stochastic error
(variance part).

Before introducing main theorems, let’s first introduce some additional no-
tation. Let’s first define the population approximation minimizer β∗

αn
as

β∗
αn

∈ local-argmin
β∈Rd,β1=1

Ln(β),
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where Ln(β) := EL̂n(β) can be easily derived as

Ln(β) = − 2

n(n− 1)

∑

1≤i<i′≤n

E

{
Sii′Fii′(αnZii′(β)) + (1− Sii′)(1− Fii′(αnZii′(β)))

}
.

(4.1)

Note, analogously, Proposition 2.1 shows

β∗ = argmin
β∈Rd,β1=1

−E
(
Sii′1(Zii′(β) > 0) + (1− Sii′)1(Zii′(β) < 0)

)
︸ ︷︷ ︸

L(β)

. (4.2)

We decompose the statistical error ‖β̂αn − β∗‖2 into two parts:

‖β̂αn − β∗‖2 ≤ ‖β∗
αn

− β∗‖2︸ ︷︷ ︸
approximation error

+ ‖β̂αn − β∗
αn

‖2︸ ︷︷ ︸
stochastic error

.

We will first characterize the approximation error in the next section. Studies
of the stochastic error are in Section 4.2.

Because the loss functions L(β), Ln(β), and L̂n(β) are all non-convex, adopt-
ing a similar argument as in [23], we first focus on the following specified minima:

β̂r,αn := argmin
β1=1,‖β−β∗‖2≤r

{
L̂n(β)+λn

d∑

j=2

|βj |
}

and β
∗
r,αn

:= argmin
β1=1,‖β−β∗‖2≤r

Ln(β).

The estimators β̂r,αn and β∗
r,αn

are constructed merely for theoretical purposes.
In addition, the parameter r there, controlling the convexity region around the
truth β∗, is no need to be specified in practice.

As will be shown in the next two subsections, β̂r,αn and β∗
r,αn

are local

optima to L̂n(·) and Ln(·) under some explicitly characterized regularity condi-
tions. Thus, we will end this section with a general theorem for quantifying the
behaviors of some local optimum β̂αn .

4.1. Approximation error

This section first shows Ln(·) in (4.1) could well approximate L(·) in (4.2). We
will then study the behaviors of minima of Ln(·) and L(·).

4.1.1. Generalized regression model

For the generalized regression model of the form (1.1), to guarantee the fast
approximation of Ln(·) to L(·), we require the following two assumptions on
data generating schemes and approximation functions {Fii′(·), 1 ≤ i < i′ ≤ n}.

(A1). Model (1.1) and the constraint (2.1) hold with β∗ non-degenerate,

{Xi, i = 1, . . . , n} i.i.d.∼ Nd(µ,Σ) and independent of i.i.d. absolutely
continuous noises {εi, i = 1, . . . , n}. Of note, the noise term εi is not
necessarily of mean or median zero.
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(A2). Assume Fii′(u) satisfies Fii′(−u) = 1− Fii′(u) for arbitrary u ≥ 0.
Further assume there exist some absolute constants C1, C2 > 0 such that
1− Fii′(u) ≤ C1 exp(−C2u) for any u > 0.

On one hand, Assumption (A1) is a commonly adopted assumption in the
high dimensional regression literature [52, 53]. Of note, Assumption (A1) is
by no means necessary. By checking the proof of Lemma 4.1, we could readily
relax it to a multivariate subgaussian assumption [54]. However, for presentation
clearness, this paper is focused on the multivariate Gaussian case. On the other
hand, Assumption (A2) is mild. It is easy to check sigmoid function, Gaussian,
and double exponential CDFs discussed in Remark 2.2 all satisfy (A2).

Under Assumptions (A1) and (A2), the next lemma investigates the ap-
proximation error of Ln(·) to L(·).
Lemma 4.1. Assume Assumptions (A1) and (A2) hold. We then have

sup
β:β1=1

|Ln(β)− L(β)| ≤ 2C1

C2αn
sup

β:β1=1

1√
2βTΣβ

,

where absolute constants C1 and C2 are given in Assumption (A2).

Lemma 4.1 shows Ln(·) uniformly approximates L(·) linearly with regard
to 1/αn. However, it is not enough to show convergence for β∗

αn
to β∗. For

guaranteeing this, we require a “local strong convexity” of L(·) around the truth
β∗. To this end, we write

Γ := ∇2L(β∗) ∈ R
d×d

to be the second derivative of the population loss function L(·) in (4.2). The
next assumption regularizes the behavior of Γ’s spectrum.

(A3). Assume λmin(Γ) and λmax(Γ) are respectively lower and upper
bounded by two absolute positive constants.

Assumption (A3) is also posed inexplicitly in [22]. With Assumption (A3), the
next proposition, essentially coming from [22], shows the local strong convexity
of L(·).
Proposition 4.2 ([22]). Assume Assumptions (A1) and (A3) hold. We can
then pick positive absolute constant set γ := {γ1, γ2} with γ2/γ1 − 1 close to
0, such that for some small enough r(γ) > 0 only depending on γ, as long as
‖β − β∗‖2 ≤ r(γ), we have

γ1λmin(Γ)‖β − β∗‖22 ≤ L(β)− L(β∗) ≤ γ2λmax(Γ)‖β − β∗‖22.
Combining Lemma 4.1 and Proposition 4.2, the next lemma characterizes the

approximation error of β∗
r(γ),αn

to the truth β∗.

Lemma 4.3. Assume Assumptions (A1), (A2), and (A3) hold. We then have

‖β∗
r(γ),αn

− β∗‖22 � α−1
n · sup

β:β1=1

1√
2βTΣβ

.
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Lemma 4.3 verifies that, when we choose αn to increase to infinity with n,

the approximation error decays to zero at a rate α
−1/2
n while assuming the

boundedness of the eigenvalues of Γ. We are focused on such β∗
r(γ),αn

and the

corresponding estimator β̂r(γ),αn
.

4.1.2. Monotonic transformation model

This section aims to study how sharp the results in the last subsection are. We
focus on the monotonic transformation model (1.2). We first show Lemma 4.1
cannot be improved too much, even under a much more restrictive monotonic
transformation model.

Lemma 4.4. Under Model (1.2), assume Assumption (A1) and Fii′(u) satisfies
Fii′(−u) = 1−Fii′(u) for arbitrary u ≥ 0. For arbitrary vectors ‖β‖2 = ‖β∗‖2 =
M < ∞, we then have the following three statements true.

(1). Supposing βTΣβ∗ = 0, we have Ln(β) = L(β) for any αn > 0.
(2). With ε Gaussian distributed with bounded parameters, fixing αn and
supposing Σ = Id, |Ln(β)− L(β)| is an increasing function of |βTβ∗| for
all three examples of approximations given in Remark 2.2.
(3). If we further assume sigmoid approximation and ε Gaussian dis-
tributed with bounded parameters, we have

|Ln(β
∗)− L(β∗)| � α−2

n .

Furthermore, Combined with the second fact yields, for any ‖β‖2 = M ,

|Ln(β)− L(β)| � α−2
n .

Lemma 4.4 shows, even under a very ideal parametric model, the approx-
imation error in Lemma 4.1 can only be improved slightly from linearly to
quadratically decaying.

Secondly, we note Proposition 4.2 relies on an inexplicit assumption (A3).
To fully appreciate this proposition, we provide an alternative way to clearly
reveal its connection to the data generating parameter Σ. For this, we assume
the monotonic transformation model (1.2) and one more assumption.

(A3’). Assume Model (1.2) holds with explanatory variables {Xi, i =
1, . . . , n} and noises {εi, i = 1, . . . , n} satisfying Assumption (A1). We
further assume the noises are absolutely continuous, satisfying

∫ 0

−∞

fε(x) exp(−x2/(2b2n))dx = Cbn(1 + o(1)) as bn → 0.

Here fε(·) represents the probability density function (PDF) of ε2 − ε1.

We note the noise assumption in (A3’) is mild. It does not require any moment
condition on the noises {εi, i = 1, . . . , n}. In particular, the next proposition
shows both Gaussian and Cauchy distributions satisfy Assumption (A3’).
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Proposition 4.5. Suppose noises {εi, i = 1, . . . , n} are arbitrarily Gaussian
or Cauchy distributed with bounded parameters. Then they satisfy Assumption
(A3’).

With Assumption (A3’), we are now ready to prove the local strong convexity
of L(·).
Lemma 4.6. Assume Assumptions (A1) and (A3’) hold. We can then pick
positive absolute constant set γ := {γ1, γ2} with γ2/γ1 − 1 close to 0, such that
for some small enough r(γ) > 0 only depending on γ, as long as ‖β−β∗‖2 ≤ r(γ),
we have

γ1 ·
(
1− βTΣβ∗

√
βTΣβ

√
β∗TΣβ∗

)
≤ L(β)−L(β∗) ≤ γ2 ·

(
1− βTΣβ∗

√
βTΣβ

√
β∗TΣβ∗

)
.

As a simple consequence, for Σ = Id and ‖β∗‖2 = ‖β‖2 = M , we have

γ1
2M2

‖β − β∗‖22 ≤ L(β)− L(β∗) ≤ γ2
2M2

‖β − β∗‖22.

Remark 4.7. Compared to the result in Proposition 4.2, Lemma 4.6 gives
explicit inequalities based on Σ, and the proof techniques exploited are utterly
different from these in [22] that are based on Taylor’s expansion.

4.2. Stochastic error

This section investigates the stochastic error term ‖β̂αn − β∗
αn

‖2. This falls in
the application regime of the high dimensional M-estimators theory [53] with
some slight modifications due to the additional constraint on β : β1 = 1 and
‖β − β∗‖2 ≤ r.

4.2.1. A general framework for constrained M-estimators

In this section we consider studying general M-estimators. In detail, let’s be
focused on the following constrained M-estimator:

θ̂ := argmin
θ∈A⊂Rd

{
Ln(θ) + λnP (θ)

}
,

which aims to estimate the truth

θ∗ := argmin
θ∈A⊂Rd

ELn(θ).

Here A ⊂ R
d is a subset of the d-dimensional real space, Ln(·) is the loss

function, and P (·) is the penalty term. We pose the following five assumptions
on A, Ln(·), and P (·).

• (B1). Assume A − θ∗ := {v ∈ R
d : v = θ − θ∗ for some θ ∈ A} is

star-shaped.
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• (B2). Assume Ln(·) is convex differentiable in A, and P (·) is a semi-norm.
• (B3). (Decomposability). There exist subspaces M ⊂ M ⊂ R

d such that

P (θ + γ) = P (θ) + P (γ) for all θ ∈ M and γ ∈ M⊥
.

• (B4). (Restricted strong convexity). Define the set

C(M,M⊥
;θ∗) := {Δ ∈ {A − θ∗} : P (Δ

M
⊥) ≤ 3P (ΔM) + 4P (θ∗

M⊥)},

where ΔN represents the projection of Δ to N for arbitrary subspace N
of Rd. We assume, for all Δ ∈ C(M,M⊥

;θ∗), we have

Ln(θ
∗ +Δ)− Ln(θ

∗)− 〈∇Ln(θ
∗),Δ〉 ≥ κL‖Δ‖22 − δL‖Δ‖2 − τ2L(θ

∗),

where κL, δL, and τ2L(θ
∗) are three constants.

• (B5). We assume

Ψ(M) := sup
v∈M\0

P (v)

‖v‖2
< ∞ and λn ≥ 2P ∗(∇Ln(θ

∗)).

Here P ∗(·) is the dual norm of P (·).
Assumptions (B1)-(B5) are posed for the purpose of involving estimators

like β̂αn , and hence also (slightly) generalize the corresponding ones in [53].
Under the above assumptions, we have the following theorem hold, which is a
straightforward extension to Theorem 1 in [53].

Theorem 4.8. Assume Assumptions (B1)-(B5) hold. We then have

‖θ̂ − θ∗‖22 ≤ (2λnΨ(M) + δL)
2/κ2

L + 2(τ2L(θ
∗) + 2λnP (θ∗

M⊥))/κL.

4.2.2. Stochastic error analysis

For analyzing the high dimensional stochastic error, sparsity is commonly en-
couraged for model identifiability and efficient inference. We adopt this idea. In
particular, we assume the following regularity condition:

(A0). The data {(Yi,Xi), i = 1, . . . , n} are generated in a triangular array
setting as in [55]. We assume, for some pre-specified αn, ‖β∗

r(γ),αn
‖0 ≤ sn,

while the parameter sn changes with n. Note, in this setting, β∗ is not
necessarily sparse.

This formulation of sparseness can be regarded as a working assumption, and
intrinsically comes from the sieve idea [56, 57]. Note a similar assumption is
inexplicitly stated in [24].

For guaranteeing efficient inference, we still require three more assumptions,
listed below.
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(A4). Assume Fii′(·) is twice-differentiable, and there exists an absolute
constant C3 > 0 such that supu∈R

| d
duFii′(u)| ≤ C3 for arbitrary pair (i, i′)

with 1 ≤ i �= i′ ≤ n.
(A5). We assume ∇2L̂n(β) 	 0 for arbitrary β ∈ R

d with β1 = 1 such
that ‖β − β∗

r(γ),αn
‖2 ≤ C4 · r(γ) for some C4 > 1.

(A6). There exists an absolute constant C5 > 0 such that C−1
5 ≤ λmin(Σ) ≤

λmax(Σ) ≤ C5.

Here Assumption (A4) is easy to check. Actually, it is straightforward to verify
sigmoid function, Gaussian, and double exponential CDFs as approximation
functions introduced in Remark 2.2 all satisfy Assumption (A4). On the other
hand, for Assumption (A6), we require a little bit more stringent assumption
on λmin(Σ) than what is required for the lasso. This is because of the additional
effort on controlling the smoothness approximation error. Finally, noticing

∇2L̂n(β) = − 2

n(n− 1)

∑

i<i′

α2
n(Xi −Xi′)(Xi −Xi′)

TF ′′
ii′(S̃ii′αnZii′(β))

is very easy to calculate, we note Assumption (A5) could be verified empirically.
As a matter of fact, in the appendix, we will show a lot of statistical models
satisfy Assumption (A5) via exhaustive simulation studies.

Remark 4.9. Of note, [22] has shown that, under certain regularity condi-
tions, ∇2L(β∗) is positive definite. Using very similar arguments, we can show

∇2Ln(β
∗) = E∇2L̂n(β

∗) is positive definite. Accordingly, by continuity, As-
sumption (A5) holds with high probability when d/n is relatively small. How-
ever, empirical results in the appendix Section B.1 show that, even when the
population design matrix’s condition number is very small and for d/n very
large (e.g., n = 50 and d = 800), the convexity property still holds with high
probability.

Before presenting the main result in this section, let’s define an additional
parameter. We write the cone

H := {v ∈ R
d : v1 = 1, ‖v − β∗‖2 ≤ r(γ), ‖vSc‖1 ≤ 3‖vS‖1}

with S representing the index set of nonzero-entries in β∗
r,αn

. We define a pa-

rameter κn controlling the uniform convergence of L̂n(·) to Ln(·) within the
cone H:

κn := E sup
H

|L̂n(β)− Ln(β)|,

where the expectation is in the outer probability sense. Of note, because both
L̂n(β) and Ln(β) are bounded, we have κn � 1, but κn could be much smaller.
In particular, we have κn = O(n−1/2) by standard U-statistics empirical process
theory [58, 59, 60] when we fix d and choose r(γ) = o(1). More refined theoretical
evaluation on the order of κn could be found in [61].

With Assumptions (A0)-(A6), the following lemma then characterizes the

stochastic error of the specified minimum β̂r(γ),αn
to its population counterpart

β∗
r(γ),αn

.
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Lemma 4.10. If Assumptions (A0)-(A6) all hold, we then have, when λn �
αn

√
log d/n, for large enough n, ‖β̂r(γ),αn

−β∗
r(γ),αn

‖22
P

� α2
nsn log d/n+α−1

n +
κn.

4.3. Main results

Combining Lemmas 4.3 and 4.10, we are now ready to provide the main theorem.
It characterizes the consistency property of the proposed smoothing estimators
under a specified scaling condition.

Theorem 4.11. Assume Assumptions (A0)-(A6) hold for some pre-chosen

αn � {n/(sn log d)}1/3.
Assume β̂αn is a stationary point of optimization problem (2.4), satisfying

‖β̂αn − β∗‖2 ≤ r for some constant r depending on r(γ). Then β̂αn exists and

satisfies that, as long as sn log d/n → 0 and κn → 0, we have ‖β̂αn −β∗‖2 P→ 0.

In particular, when d is fixed, we have ‖β̂αn − β∗‖2 P→ 0.

In practice, it is very difficult to theoretically calculate exactly how large d
is allowed to be using Theorem 4.11. However, a rule of thumb in our case,
mimicking the corresponding ones in robust statistics (cf. [62]), is 10 log d ≤
n1/3.

5. Discussions

In the manuscript, we are focused on studying the lasso-type penalty of formula-
tion (2.3). It should be highlighted that SCAD [63] and MCP [64] type penalties
could be implemented and studied in the same manner, and similar theoretical
and empirical performances can be expected. Since the extension from lasso-
type penalty to non-convex ones is beyond the interest of this paper, we decide
to leave them for future studies. Another important issue which is only mildly
touched is model diagnostic check. To our knowledge, there has not been much
study on goodness-of-fit test of Han’s model (1.1) in high dimensions. In this
manuscript we provided several heuristics to check monotonicity of Y and a
single index of X (cf. Section 3 and Section C.3 in the appendix). In the future,
it will be interesting to develop a theoretically solid test for it.

This manuscript has shown the advantage of smoothed maximum rank cor-
relation method both theoretically and empirically. We close this section with a
discussion on some limitations. (i) Computationally, as shown in the appendix
Section A.2.3, though better than several semiparametric competitors, RMRCE
is significantly worse than the lasso in terms of demanding much more time in
implementation. (ii) Theoretically, if the true generating model is linear and the
noise is Gaussian, RMRCE loses efficiency compared to the lasso. Accordingly,
if the practitioner has a strong belief that, for instance, a simple linear model
of Gaussian noise applies to the studied data, then the lasso is recommended
compared to RMRCE.
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Appendix A: Synthetic data analysis

This section empirically examines the finite sample performance of the proposed
Regularized Maximum Rank Correlation Estimator (RMRCE) β̂αn in (2.4) us-
ing the synthetic data. We demonstrate various empirical results to compare
the proposed methods to the competing methods. Our simulation highlights the
distinctive attributes of the proposed method, that is, it has comparable per-
formance to the lasso under the high dimensional linear model, but beats the
lasso under non-linear models. The proposed methods outperform Hinge, SIM,
and SDR under both linear and non-linear models.

A.1. Algorithm description

We exploit the coordinate descent algorithm [65] without penalization for the
first term to solve (2.4). This problem falls in the application regime of the
coordinate descent algorithm theory [17]. For the comparison fairness, in the
sequel we also do not penalize the first term in implementing the lasso.

One issue in the implementation is on choosing the tuning parameter λn and
the smoothing parameter αn. For tuning λn and αn, we propose to use five-fold
cross-validation. Using five randomly split subsets of equal size, we define the
following loss function (A.1):

CV (λn, αn) :=
1

5

5∑

k=1

(
nk
2 )−1

∑

1≤l<l′≤nk

sign(Yil − Yil′
)sign(XT

il
β̂
(−k)
αn (λn)−XT

il′
β̂
(−k)
αn (λn)),

(A.1)

where nk is the number of data points in the k-th part, and β̂
(−k)
αn (λn) is ob-

tained from the other 4 parts of the training data with the tuning parameter
λn and smoothing parameter αn. We then select the λn and αn that maximize
CV (λn, αn) over a grid of possible values (λn, αn). In addition, when αn is
pre-chosen, λn is chosen to optimize (A.1) with the chosen αn.

Another issue in the implementation is on choosing the starting point for
the coordinate descent algorithm. For this, we consider the following strategy
proposed in [66]. Specifically, let {ej ∈ R

d, 1 ≤ j ≤ d} be the standard basis
with the j-th entry equal to 1, and 0 at all the other entries. The algorithm
starts with β̂(0) = sign(Lj∗)ej∗ by selecting the j∗-th coordinate with the index
j∗ that maximizes the absolute value of Lj with respect to j ∈ {2, . . . , d}, i.e.,

j∗ = argmax
j∈{2,...,d}

⎧
⎨
⎩|Lj | : Lj := (n2 )

−1
∑

1≤i<i′≤n

sign(Yi − Yi′)sign(Xij −Xi′j)

⎫
⎬
⎭ .

In practice, we could combine other starting point candidates like the lasso
and sieve solutions, and select the one that maximizes the objective function
in (2.2). However, our numerical results indicate that the above simple strategy
has worked very well in a variety of applications.
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A.2. Synthetic data analysis

This section investigates the empirical performance of the proposed methods via
synthetic data analysis. We compare the proposed methods to Hinge, the lasso,
SIM, and SDR. The descriptions of these methods are in Section 3. First, we
show, under the high dimensional linear model, the proposed methods perform
reasonably well compared to the lasso. Secondly, we show the proposed meth-
ods beat the lasso under a monotonic transformation model (1.2). Thirdly, the
proposed methods beat Hinge, SIM, and SDR under both linear and non-linear
models.

We also explore the performance of the proposed methods with the tuning
parameter αn chosen by cross validation or set to be fixed values 1, 3, 5, 7, 9. The
results show that, as long as αn is comparatively large (αn ≥ 3), the estimates
and selection results are not sensitive to αn. In addition, choosing αn by cross
validation only leads to marginal improvement of performance compared to
fixed αn.

We tried d = 50 and 200 with a series of sample sizes for variable selection
and estimation. Due to the space limit, below we mainly show the results about
variable selection and estimation performance with d = 200. Similar patterns
hold for d = 50, some of whose results are put in later sections.

A.2.1. High dimensional linear model

This section is focused on the high dimensional linear model1,

Yi = XT

i β
0 + εi, i = 1, 2, · · · , n, (A.2)

with β0 = (5, 4, 3, 2, 1,−1,−3,−5, 0, · · · , 0)T and Xi a d dimensional random
vector generated from a multivariate normal distribution Nd(0,Σ = ((σjk)))
with σjk = 0.5|j−k| for 1 ≤ j, k ≤ d. Here the noise was generated from the
standard normal and independent of the covariates. Note the difference between
(A.2) and (1.2) in terms of β∗ = β0/β0

1 . We also consider all three smoothing
approximations.

We first compare the variable selection performance with d = 200. To this
end, Figures 5 and 6 plot the receiver operating characteristic (ROC) curves for
RMRCE with different choices of tuning parameter αn, and all the competing
methods. These results are calculated based on 200 replications. It shows that
the proposed methods have overall good variable selection performance com-
pared to the competing methods. Detailed comments are as follows. (i) With
sample size increasing, the ROC curves shift towards the upper left corner, as
what we expect. (ii) The difference between different smoothing approxima-
tions and different choices of tuning parameter αn is very slight via observing
Figure 5. The performance of RMRCE with αn selected using cross validation

1We have tried a lot of different combinations of D(·) and Λ(·, ·), confirming that the
results are very similar to the linear case. Due to the space limit, we do not list them all in
this paper.
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Fig 5. ROC curves for RMRCE under the high dimensional linear model. αn is selected
by cross validation (CV) or set to be 1, 3, 5, 7, 9. The results for Sigmoid, Gaussian and double
exponential smoothing approximations are presented. The results are based on 200 replications
with d = 200.

is slightly better than those with fixed αn. (iii) The lasso has slightly better
variable selection performance as shown in Figure 6, especially regarding the
small sample size. This is reasonable since the simulation setup in (A.2) is the
right model for the lasso. (iv) RMRCE has better performance than Hinge. This
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Fig 6. ROC curves for all competing methods under the high dimensional linear model.
Methods included are: RMRCE (αn selected by cross validation, Gaussian smoothing approx-
imation), Hinge, the lasso, SIM, and SDR. The results are based on 200 replications with
d = 200.

shows that the smoothed rank correlation in RMRCE is better than the convex
relaxation in Hinge. (v) RMRCE has better performance than the other two
semiparametric regression methods: SIM and SDR. Table 1 gives the averaged
false positive rates and the averaged true positive rates for all the competing
methods. Similar observations to Figure 6 were observed.

Secondly, we focus on comparing the estimation errors with d = 200. Tables
2 and 3 present the estimation errors to β∗ compared to the tuning parame-
ter λn for RMRCE with different choices of tuning parameter αn, and all the
competing methods across 200 replications. Note, for lasso, the estimation error
is calculated as ‖β̂lasso(λn)/β̂

lasso
1 (λn)− β∗‖2. The estimation errors are calcu-

lated in the same way for SIM and SDR. The results show that for RMRCE,
Hinge, and the lasso, the estimation error decreases first and then increases as
tuning parameter increases. For SIM and SDR, the estimation error decreases
first and then almost stays constant as the number of selected variables in-
creases. Besides, with increased sample size, the estimation error curves shift
downward to 0. Table 2 also shows that the difference between the proposed
methods with different approximation functions and different choices of αn is
very mild as long as αn is large enough (αn ≥ 3). The performance of RMRCE
with αn = 1 is comparatively worse than RMRCE with αn ≥ 3. Table 2 and
3 further show, under the high dimensional linear model (A.2), the proposed
methods perform reasonably well, although slightly worse than the lasso2. In

2Note that for fair comparison, the results for the lasso are based on the standardized
estimation error ‖β̂lasso/β̂lasso

1 − β∗‖2 with the lasso estimator β̂lasso of β0. Same for SIM
and SDR.
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Table 1

Variable selection performance for all competing methods under the high dimensional
linear model. Methods included are: RMRCE (αn selected by cross validation, Gaussian
smoothing approximation), Hinge, the lasso, SIM, and SDR. The results are based on 200
replications with n = 100 and d = 200. “FPR” stands for averaged false positive rates with
standard deviations in parentheses. “TPR” stands for averaged true positive rates with

standard deviations in parentheses. For SIM and SDR, N stands for the number of selected
variables.

(a) RMRCE

λn FPR TPR

0.005 0.321 (0.022) 0.999 (0.012)

0.010 0.234 (0.025) 0.999 (0.012)

0.030 0.009 (0.012) 0.858 (0.111)

0.050 0.001 (0.002) 0.792 (0.062)

0.100 0.001 (0.002) 0.751 (0.110)

(b) Hinge

λn FPR TPR

0.040 0.870 (0.166) 0.994 (0.027)

0.060 0.687 (0.188) 0.986 (0.039)

0.080 0.472 (0.141) 0.980 (0.049)

0.100 0.360 (0.307) 0.906 (0.098)

0.150 0.060 (0.081) 0.815 (0.117)

(c) Lasso

λn FPR TPR

0.100 0.157 (0.022) 1.000 (0.000)

0.300 0.014 (0.009) 0.999 (0.009)

0.500 0.001 (0.003) 0.937 (0.080)

0.700 0.000 (0.001) 0.833 (0.081)

1.000 0.000 (0.000) 0.775 (0.050)

(d) SIM

N FPR TPR

5.000 0.000 (0.001) 0.623 (0.015)

10.000 0.018 (0.003) 0.818 (0.076)

20.000 0.166 (0.262) 0.948 (0.083)

30.000 0.309 (0.354) 0.976 (0.054)

50.000 0.719 (0.352) 0.996 (0.025)

(e) SDR

N FPR TPR

2.000 0.009 (0.004) 0.789 (0.059)

5.000 0.022 (0.011) 0.736 (0.091)

10.000 0.031 (0.020) 0.748 (0.086)

25.000 0.097 (0.004) 0.805 (0.089)

50.000 0.390 (0.033) 0.908 (0.070)

addition, the proposed methods have better performance than Hinge, SIM, and
SDR.

A.2.2. High dimensional generalized regression model

This section considers the monotonic transformation model (1.2) withG(x)=x3:

Yi = (XT

i β
0 + εi)

3, i = 1, 2, · · · , n, (A.3)

where Xi and β0 are the same as in Model (A.2), and εi follows the standard
normal distribution and is independent of Xi. This is the setting where the lasso
could still possibly provide a consistent estimator [67]. But the estimation/model
selection efficiency is expected to be low, which will be demonstrated empirically
here. Note that under Model (A.3), the proposed methods and Hinge have ex-
actly the same results as under Model (A.2). For the convenience of comparison,
we still include the results of Hinge and RMRCE (αn chosen by cross validation,
Gaussian approximation).
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Table 2

Averaged estimation errors for RMRCE under the high dimensional linear model.
Standard deviations are shown in parentheses. αn is selected by cross validation or set to be

1, 3, 5, 7, 9. The results for Sigmoid, Gaussian and double exponential (DE) smoothing
approximations are presented. The results are based on 200 replications with d = 50 or

d = 200.

(a) αn selected by cross validation

n Sigmoid (d=50) Sigmoid (d=200) Gaussian (d=50) Gaussian (d=200) DE (d=50) DE (d=200)
50 0.068 (0.038) 0.139 (0.089) 0.099 (0.047) 0.137 (0.104) 0.081 (0.039) 0.136 (0.101)
100 0.021 (0.013) 0.033 (0.018) 0.026 (0.014) 0.035 (0.026) 0.028 (0.017) 0.046 (0.022)
150 0.013 (0.006) 0.010 (0.008) 0.012 (0.017) 0.006 (0.010) 0.014 (0.008) 0.016 (0.014)
200 0.008 (0.004) 0.008 (0.009) 0.003 (0.004) 0.003 (0.008) 0.010 (0.005) 0.006 (0.008)
250 0.006 (0.003) 0.007 (0.005) 0.002 (0.003) 0.004 (0.002) 0.006 (0.005) 0.005 (0.004)
300 0.004 (0.003) 0.002 (0.004) 0.001 (0.007) 0.004 (0.002) 0.004 (0.003) 0.003 (0.002)

(b) αn = 1

n Sigmoid (d=50) Sigmoid (d=200) Gaussian (d=50) Gaussian (d=200) DE (d=50) DE (d=200)
50 0.239 (0.136) 0.242 (0.197) 0.113 (0.047) 0.137 (0.104) 0.109 (0.049) 0.136 (0.101)
100 0.150 (0.061) 0.156 (0.061) 0.088 (0.022) 0.077 (0.021) 0.081 (0.022) 0.088 (0.022)
150 0.133 (0.044) 0.123 (0.038) 0.084 (0.019) 0.071 (0.011) 0.082 (0.018) 0.066 (0.015)
200 0.130 (0.037) 0.114 (0.022) 0.083 (0.013) 0.071 (0.008) 0.078 (0.015) 0.066 (0.011)
250 0.125 (0.031) 0.110 (0.017) 0.078 (0.013) 0.070 (0.008) 0.078 (0.014) 0.066 (0.009)
300 0.120 (0.025) 0.112 (0.015) 0.074 (0.011) 0.080 (0.008) 0.076 (0.012) 0.070 (0.007)

(c) αn = 3

n Sigmoid (d=50) Sigmoid (d=200) Gaussian (d=50) Gaussian (d=200) DE (d=50) DE (d=200)
50 0.068 (0.038) 0.139 (0.089) 0.099 (0.047) 0.169 (0.098) 0.081 (0.039) 0.170 (0.091)
100 0.021 (0.013) 0.033 (0.018) 0.026 (0.014) 0.035 (0.026) 0.028 (0.017) 0.046 (0.022)
150 0.015 (0.009) 0.010 (0.008) 0.013 (0.006) 0.006 (0.010) 0.014 (0.008) 0.016 (0.014)
200 0.011 (0.007) 0.008 (0.004) 0.003 (0.004) 0.003 (0.008) 0.010 (0.005) 0.006 (0.008)
250 0.009 (0.005) 0.007 (0.003) 0.002 (0.003) 0.004 (0.002) 0.006 (0.005) 0.005 (0.004)
300 0.007 (0.004) 0.007 (0.002) 0.001 (0.002) 0.004 (0.002) 0.004 (0.003) 0.003 (0.002)

(d) αn = 5

n Sigmoid (d=50) Sigmoid (d=200) Gaussian (d=50) Gaussian (d=200) DE (d=50) DE (d=200)
50 0.095 (0.045) 0.175 (0.099) 0.119 (0.054) 0.208 (0.098) 0.111 (0.051) 0.169 (0.090)
100 0.025 (0.014) 0.051 (0.020) 0.036 (0.073) 0.072 (0.027) 0.033 (0.015) 0.061 (0.021)
150 0.013 (0.006) 0.026 (0.008) 0.012 (0.017) 0.042 (0.016) 0.017 (0.007) 0.036 (0.011)
200 0.008 (0.004) 0.017 (0.006) 0.009 (0.011) 0.013 (0.013) 0.011 (0.005) 0.023 (0.010)
250 0.006 (0.003) 0.009 (0.006) 0.008 (0.008) 0.010 (0.007) 0.008 (0.004) 0.013 (0.008)
300 0.004 (0.002) 0.002 (0.004) 0.008 (0.005) 0.008 (0.005) 0.006 (0.003) 0.005 (0.005)

(e) αn = 7

n Sigmoid (d=50) Sigmoid (d=200) Gaussian (d=50) Gaussian (d=200) DE (d=50) DE (d=200)
50 0.104 (0.050) 0.171 (0.091) 0.140 (0.068) 0.304 (0.130) 0.122 (0.056) 0.232 (0.105)
100 0.030 (0.016) 0.046 (0.027) 0.044 (0.022) 0.064 (0.037) 0.040 (0.020) 0.063 (0.033)
150 0.017 (0.007) 0.017 (0.012) 0.018 (0.012) 0.031 (0.018) 0.021 (0.009) 0.028 (0.015)
200 0.010 (0.007) 0.008 (0.009) 0.012 (0.009) 0.019 (0.009) 0.012 (0.008) 0.015 (0.011)
250 0.007 (0.005) 0.007 (0.005) 0.008 (0.006) 0.016 (0.006) 0.009 (0.006) 0.012 (0.006)
300 0.004 (0.003) 0.006 (0.003) 0.001 (0.007) 0.017 (0.005) 0.006 (0.004) 0.011 (0.004)

(f) αn = 9

n Sigmoid (d=50) Sigmoid (d=200) Gaussian (d=50) Gaussian (d=200) DE (d=50) DE (d=200)
50 0.120 (0.055) 0.211 (0.099) 0.157 (0.073) 0.395 (0.389) 0.140 (0.065) 0.313 (0.133)
100 0.037 (0.018) 0.075 (0.027) 0.049 (0.023) 0.076 (0.041) 0.044 (0.022) 0.100 (0.035)
150 0.020 (0.009) 0.021 (0.019) 0.026 (0.012) 0.021 (0.067) 0.024 (0.011) 0.029 (0.023)
200 0.014 (0.007) 0.013 (0.011) 0.013 (0.010) 0.023 (0.010) 0.017 (0.008) 0.019 (0.013)
250 0.008 (0.005) 0.011 (0.006) 0.009 (0.007) 0.019 (0.007) 0.010 (0.007) 0.015 (0.007)
300 0.006 (0.004) 0.010 (0.004) 0.001 (0.007) 0.019 (0.005) 0.008 (0.004) 0.014 (0.005)
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Table 3

Averaged estimation errors for all competing methods under the high dimensional
linear model. Standard deviations are shown in parentheses. Methods included are:

RMRCE (αn selected by cross validation, Gaussian smoothing approximation), Hinge, the
lasso, SIM, and SDR. The results are based on 200 replications with d = 50 or d = 200. The
tuning parameter λn (RMRCE, Hinge, and the lasso) or number of selected variables (SIM

and SDR) is determined through cross-validation.

(a) RMRCE

d

n 50 200

50 0.099 (0.047) 0.137 (0.104)

100 0.026 (0.014) 0.035 (0.026)

150 0.012 (0.017) 0.006 (0.010)

200 0.003 (0.004) 0.003 (0.008)

250 0.002 (0.003) 0.004 (0.002)

300 0.001 (0.007) 0.004 (0.002)

(b) Hinge

d

n 50 200

50 1.963 (0.248) 2.143 (0.353)

100 2.580 (0.230) 2.199 (0.271)

150 2.430 (0.203) 2.220 (0.232)

200 2.260 (0.212) 2.259 (0.155)

250 2.323 (0.191) 2.591 (0.121)

300 2.362 (0.217) 2.257 (0.109)

(c) Lasso

d

n 50 200

50 0.034 (0.021) 0.064 (0.035)

100 0.012 (0.007) 0.020 (0.009)

150 0.008 (0.004) 0.011 (0.005)

200 0.006 (0.003) 0.008 (0.004)

250 0.004 (0.002) 0.006 (0.003)

300 0.003 (0.002) 0.005 (0.002)

(d) SIM

d

n 50 200

50 1.109 (0.424) 2.080 (0.937)

100 0.822 (0.535) 0.902 (0.000)

150 0.815 (0.004) 0.831 (0.014)

200 0.812 (0.003) 0.824 (0.008)

250 0.809 (0.002) 0.816 (0.000)

300 0.810 (0.002) 0.814 (0.000)

(e) SDR

d

n 50 200

50 1.952 (3.210) 2.931 (2.246)

100 1.038 (3.691) 1.046 (3.630)

150 0.950 (3.734) 0.921 (0.015)

200 0.888 (3.746) 1.025 (3.452)

250 0.861 (3.728) 0.876 (3.676)

300 0.854 (3.764) 0.854 (3.729)

First, we reveal the variable selection performance for all competing methods
under Model (A.3) by plotting the ROC curves in Figure 7 with d = 200. It
confirms that the lasso as well as other competing methods perform much worse
than the proposed methods. Table 4 further illustrates the averaged TPRs and
FPRs along with their standard deviations over 200 replications. As shown in
Table 4, Hinge, the lasso, SIM, and SDR have much worse performance than the
proposed methods. Secondly, Table 5 shows the normalized �2 estimation error.
For the lasso, the estimation error is calculated as ‖β̂lasso(λn)/β̂

lasso
1 (λn)−β∗‖2.

The estimation errors are calculated in the same way for SIM and SDR. With
d = 200, the comparison between the methods confirms the advantage of the
proposed method.
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Fig 7. ROC curves for all competing methods with G(x) = x3. Methods included are:
RMRCE (αn selected by cross validation, Gaussian smoothing approximation), Hinge, the
lasso, SIM, and SDR. The results are based on 200 replications with d = 200.

Table 4

Variable selection performance for all competing methods with G(x) = x3. Methods
included are: RMRCE (αn selected by cross validation, Gaussian smoothing

approximation), Hinge, the lasso, SIM, and SDR. The results are based on 200 replications
with n = 100 and d = 200. “FPR” stands for averaged false positive rates with standard
deviations in parentheses. “TPR” stands for averaged true positive rates with standard

deviations in parentheses. For SIM and SDR, N stands for the number of selected variables.

(a) RMRCE

λn FPR TPR
0.005 0.321 (0.022) 0.999 (0.012)
0.010 0.234 (0.025) 0.999 (0.012)
0.030 0.009 (0.012) 0.858 (0.111)
0.050 0.001 (0.002) 0.792 (0.062)
0.100 0.001 (0.002) 0.751 (0.110)

(b) Hinge

λn FPR TPR
0.040 0.870 (0.166) 0.994 (0.027)
0.060 0.687 (0.188) 0.986 (0.039)
0.080 0.472 (0.141) 0.980 (0.049)
0.100 0.360 (0.307) 0.906 (0.098)
0.150 0.060 (0.081) 0.815 (0.117)

(c) Lasso

λn FPR TPR
1.000 0.881 (0.076) 0.985 (0.044)
5.000 0.600 (0.042) 0.889 (0.094)
10.000 0.542 (0.032) 0.859 (0.095)
50.000 0.432 (0.032) 0.832 (0.098)
100.000 0.365 (0.044) 0.828 (0.093)
500.000 0.116 (0.061) 0.774 (0.089)

(d) SIM

N FPR TPR
5 0.012 (0.005) 0.327 (0.132)
10 0.052 (0.102) 0.393 (0.191)
20 0.423 (0.379) 0.652 (0.324)
30 0.578 (0.387) 0.756 (0.304)
40 0.646 (0.380) 0.796 (0.280)
50 0.727 (0.201) 0.883 (0.204)

(e) SDR

N FPR TPR
5 0.071 (0.035) 0.779 (0.098)
10 0.096 (0.050) 0.795 (0.098)
20 0.126 (0.068) 0.809 (0.084)
30 0.354 (0.217) 0.851 (0.096)
40 0.531 (0.397) 0.916 (0.099)
50 0.390 (0.033) 0.902 (0.066)
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Table 5

Averaged estimation errors for all competing methods with G(x) = x3. Standard
deviations are shown in parentheses. Methods included are: RMRCE (αn selected by cross
validation, Gaussian smoothing approximation), Hinge, the lasso, SIM, and SDR. The
results are based on 200 replications with d = 50 or d = 200. The tuning parameter λn

(RMRCE, Hinge, and the lasso) or number of selected variables (SIM and SDR) is
determined through cross-validation.

(a) RMRCE

d
n 50 200
50 0.099 (0.047) 0.137 (0.104)
100 0.026 (0.014) 0.035 (0.026)
150 0.012 (0.017) 0.006 (0.010)
200 0.003 (0.004) 0.003 (0.008)
250 0.002 (0.003) 0.004 (0.002)
300 0.001 (0.007) 0.004 (0.002)

(b) Hinge

d
n 50 200
50 1.963 (0.248) 2.143 (0.353)
100 2.580 (0.230) 2.199 (0.271)
150 2.430 (0.203) 2.220 (0.232)
200 2.260 (0.212) 2.259 (0.155)
250 2.323 (0.191) 2.591 (0.121)
300 2.362 (0.217) 2.257 (0.109)

(c) Lasso

d
n 50 200
50 1.514 (0.347) 2.163 (0.293)
100 0.629 (0.129) 0.998 (0.213)
150 0.478 (0.092) 0.614 (0.133)
200 0.407 (0.076) 0.415 (0.084)
250 0.306 (0.058) 0.382 (0.077)
300 0.260 (0.045) 0.306 (0.054)

(d) SIM

d
n 50 200
50 2.589 (0.277) 2.806 (0.926)
100 0.898 (1.301) 2.061 (0.812)
150 0.860 (1.491) 0.910 (0.243)
200 0.831 (0.023) 0.897 (0.928)
250 0.836 (2.932) 0.859 (3.495)
300 0.827 (1.480) 0.850 (0.007)

(e) SDR

d
n 50 200
50 3.947 (1.824) 2.504 (3.062)
100 1.096 (3.586) 1.054 (3.636)
150 1.009 (3.636) 0.970 (3.712)
200 0.889 (3.759) 1.599 (3.606)
250 0.862 (3.746) 0.883 (3.732)
300 0.857 (3.763) 0.858 (3.702)

A.2.3. Comparison of computation time

Table 6 shows the median of the computation time of 200 replicated runs for
RMRCE, Hinge, the lasso, SIM, and SDR with different n and d = 50. For
demonstration purpose we only present the computation time with fixed tuning
parameters. For RMRCE, the Gaussian approximation is used and the tuning
parameters are set as αn = 5 and λn = 1. For Hinge and the lasso we set the
tuning parameter as λn = 1. SIM and SDR are run with the default parameters.
The results are similar with other choices of the tuning parameters, as long as
they are in a reasonable scale.

The lasso is the most efficient among all methods, and its computation time
is close to zero. RMRCE takes significantly more time to finish compared to
the lasso, but is still much faster than SIM and SDR. In addition, RMRCE
is slightly slower than Hinge since in Hinge the non-convex rank correlation is
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Table 6

Median computation time (seconds) for all competing methods. Methods included are:
RMRCE, Hinge, the lasso, SIM, and SDR. The results are based on 200 replications with

different n, d = 50, and fixed tuning parameters αn and λn.

n
Method 50 100 150 200 250 300
RMRCE 1.350 5.177 14.872 24.83 30.638 33.771
Hinge 0.263 0.822 1.627 3.242 4.910 6.618
Lasso 0.002 0.011 0.157 0.002 0.002 0.002
SIM 72.202 144.404 168.132 190.23 218.331 316.347
SDR 59.849 122.514 132.736 157.172 198.831 237.852

replaced with a convex function, making the optimization faster. In summary
RMRCE is much faster compared to SIM and SDR, but not as efficient as Hinge
and the lasso.

Appendix B: Empirical verification of the theory

This section examines Theorem 4.11 and Assumption (A5) in Section 4.2 using
synthetic data.

B.1. Convexity verification

For investigating the stochastic error ‖β̂αn − β∗
αn

‖2, Assumption (A5) is re-
quired to hold. In this section, we verify Assumption (A5) via various empirical
studies on the positive definiteness of the following Hessian matrix:

∇2L̂n(β
∗) = − 2

n(n− 1)

∑

i<i′

α2
n(Xi −Xi′)(Xi −Xi′)

TF ′′
ii′(S̃ii′αnZii′(β

∗)).

For presentation clearness, we focus on the high dimensional linear model
(A.2) with β0 = (5, 4, 3, 2, 1,−1,−3,−5, 0, · · · , 0)T and Xi a d dimensional
random vector generated from a multivariate normal distribution Nd(0,Σ =
((σjk))) with σjk = 0.5|j−k| for 1 ≤ j, k ≤ d. We further generate εi from a
mixture of the standard normal and δ = 0% or 20% of the outliers following
Cauchy(0, 0.01). The noise is independent of Xi.

We demonstrate the results under different situations with different noise
distributions as well as different smoothing approximations. Table 7 gives the
results, considering all three examples of smoothing approximations in Remark
2.2, with pure Gaussian noise and the mixture of Gaussian noise with 20%
Cauchy outliers. Here, via exhaustive simulation studies, αn is recommended to
be 5 for sigmoid, Gaussian, and double exponential CDF approximations. The
results are calculated based on 200 replications.

There are several noteworthy discoveries. First, the performances of all cases
are similar. Specifically, as sample size n increases, the proportion of positive
definite Hessian matrices increases to 1. In addition, small dimension d leads
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Table 7

Proportion of positive definite Hessian matrices. Results are based on 200 replications.
The first row is for δ = 0 and the second row is for δ = 0.2. “DE” stands for double

exponential CDF approximation.

(a) Sigmoid, δ = 0

d

n 50 200 800

50 0.830 0.815 0.850

100 1.000 0.925 0.910

150 1.000 0.985 0.935

200 1.000 1.000 0.955

250 1.000 1.000 0.940

300 1.000 1.000 0.970

(b) Gaussian, δ = 0

d

n 50 200 800

50 0.865 0.840 0.875

100 1.000 0.955 0.930

150 1.000 0.990 0.975

200 1.000 1.000 0.965

250 1.000 1.000 0.970

300 1.000 1.000 0.980

(c) DE, δ = 0

d

n 50 200 800

50 0.815 0.845 0.870

100 1.000 0.920 0.925

150 1.000 0.975 0.950

200 1.000 0.995 0.945

250 1.000 1.000 0.980

300 1.000 1.000 0.975

(d) Sigmoid, δ = 0.2

d

n 50 200 800

50 0.890 0.845 0.880

100 1.000 0.925 0.925

150 1.000 0.945 0.955

200 1.000 0.980 0.950

250 1.000 0.990 0.960

300 1.000 0.990 0.965

(e) Gaussian, δ = 0.2

d

n 50 200 800

50 0.900 0.870 0.910

100 1.000 0.930 0.930

150 1.000 0.975 0.945

200 1.000 0.990 0.955

250 1.000 0.990 0.950

300 1.000 0.995 0.960

(f) DE, δ = 0.2

d

n 50 200 800

50 0.845 0.865 0.865

100 1.000 0.945 0.925

150 1.000 0.965 0.935

200 1.000 0.970 0.930

250 1.000 0.985 0.955

300 1.000 0.995 0.950

to higher proportion of convexity. Secondly, for comparison between different
noise terms, we find pure Gaussian noise enjoys higher proportion of convexity
compared to the mixture noise with large n. Thirdly, for comparison between
different smoothing approximations, they perform similarly, though the Gaus-
sian CDF approximation enjoys slightly higher proportions of positive definite
Hessian matrices.
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Fig 8. Estimation error curves for different methods. The first row is for estimation
error curves compared to the sample size n, and the second row is for estimation error curves
compared to the rescaled sample size n/(s log d).

B.2. Verification of the theorem

This section verifies the property given in Theorem 4.11. Simulations with differ-
ent generating models have shown that the proposed methods are robust to the
monotonic functions D(·) and Λ(·, ·). Hence to demonstrate the scaling property

of the estimation errors ‖β̂αn − β∗‖2, we only focus on the high dimensional
linear model (A.2) with εi generated from the standard normal and independent
of Xi. For simplicity, we only show the results for RMRCE with α = 5. The
results are similar for other choices of αn.

To this end, Figure 8 illustrates the scaling property of the averaged estima-
tion errors ‖β̂αn − β∗‖2 compared to n and n/(s log d) across 200 replications
for different approximation functions. The performance is also compared to the
lasso.

Figure 8 clearly shows a “stacking curve” phenomena. Specifically, regarding
the rescaled sample size n/(s log d), the error curves corresponding to different
d’s are all aligned together. In addition, the error decays to zero as sample size n
increases, and increases as d increases. Hence Figure 8 confirms the theoretical
discovery in Theorem 4.11. For comparison, we also include the lasso’s stacking
curves in Figure 8(d) and 8(h). They show similar “stacking curve” phenomena.

Appendix C: Additional materials for real data example

C.1. Data processing and normalization for TF prediction

We downloaded DNase-seq and gene expression exon array data from 57 different
cell types generated by ENCODE at the University of Washington [68]. Exon
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array samples were consistently normalized using the GeneBASE software [69].
The output of GeneBASE was gene-level expression values for all genes. From
these values, we extracted expression values for all human TFs documented in
the Animal Transcription Factor Database (AminalTFDB) [70]. We then filtered
out TFs whose expression values were nearly constant across all samples (defined
as coefficient of variation < 0.2) because one would expect them to behave
like an intercept term in a regression model. These nearly-constant TFs were
not expected to provide much information to explain variation of the response
variable across different cell types. After filtering, 169 TFs were retained and
they were used as predictors X in our regression models. We obtained the
observed values of X for all samples. Replicate samples from the same cell type
were averaged. This resulted in a gene expression matrix X with 57 rows and 169
columns. Here rows correspond to 57 cell types (n = 57). Columns correspond
to 169 TFs (d = 169). Each row is a realization of X.

For the responses, we processed the DNase-seq data from the same 57 cell
types as follows. First, the human genome was divided into 200 base pair (bp)
non-overlapping windows, yielding approximately 1.65× 107 windows. For each
window and each DNase-seq sample, we calculated the DNase-seq signal by
counting the number of DNase-seq reads overlapping with the window. The
read count was then normalized by the library size. To do so, the window read
count was divided by the total read count of the sample and then multiplied with
a constant 17,002,867, which is the minimum sample read count of all samples.
The normalized counts were log2 transformed after adding a pseudocount of 1.
Since windows without any DNase-seq signal are unlikely to be cis-elements, we
only retained windows that had non-zero read count in at least 10 cell types
and had coefficient of variation no less than 1. From these retained windows,
we randomly sampled 1,000 windows to serve as our testing cis-elements. For
each cis-element, we extracted the normalized and log-transformed read count
from all DNase-seq samples to serve as the measurements of their DNase I
hypersensitivity. Replicate samples from the same cell type were averaged. This
produced a matrix Y with 57 rows and 1,000 columns. The rows represent 57 cell
types, and the columns represent 1,000 cis-elements. Each column corresponds
to a response Y , and it contains the observed values of Y in all 57 cell types.

Lastly, we used X and Y to perform the analyses. Our regression model was
fitted for each cis-element (i.e., each column of Y) separately. Each regression
has sample size n = 57 and dimension d = 169. An analysis of the whole dataset
involves fitting 1,000 regression models.

C.2. RMRCE performance with difference choices of αn

With regard to the real data experiment in Section 3, Figure 9 further compares
the accuracy of RMRCE with αn chosen by cross validation or set to be fixed
values 1, 3, 5, 7, 9. The performances are similar for RMRCE with difference
choices of αn. αn chosen by cross validation only leads to marginal performance
gain compared to fixed αn. This agrees with the conclusion from the synthetic
data analysis.
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Fig 9. Overall accuracy of RMRCE with αn chosen by cross validation (CV) or set to be
fixed values 1, 3, 5, 7, 9. X-axis shows the averaged percentage of selected TFs out of all 169
TFs. Y-axis shows the overall accuracy.

In real data applications, since different choices of αn (as long as αn is large
enough) lead to fairly robust results, we recommend using a fixed αn = 5,
although choosing the optimal αn via a cross validation procedure is encouraged
if enough time and resource for computation are available.

C.3. A model diagnostic heuristic

The monotonicity assumption is the most important and intrinsic feature of the
proposed generalized regression model (1.1), and this section provides another
heuristic to examine this assumption in real data applications. Figures 3 and
4 provide some empirical illustrations that Y has a monotonically increasing
relationship with XTβ̂RMRCE for two cis-elements. In this section we further
discuss a model diagnostic tool to check the monotonicity assumption of our
model, and we apply this tool to the real data example.

For model (1.1), our goal is to verify the assumption that the response Y has a
monotonically increasing relationship with the linear term XTβ∗. However, this
assumption cannot be directly verified in reality since β∗ is unknown. Instead we
develop a model diagnostic heuristic by replacing β∗ with β̂RMRCE and checking
whether Y has a monotonically increasing relationship with XTβ̂RMRCE in a
cross-validation procedure. Specifically, we split the response and explanatory
variables (Y,X) into two parts with equal number of observations: the first part
(Y1,X1) has the first half of all observations and the second part (Y2,X2) has the

second half of all observations. We fit RMRCE and obtain β̂RMRCE on (Y1,X1)
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Table 8

Model diagnostic results for RMRCE in 1,000 studied real datasets. The percentage of
1,000 adjusted p-values that are smaller than 0.05 for Spearman’s rank correlation tests, or
equivalently the percentage of 1,000 cis-elements that pass the model diagnostic heuristic

tests. Results for different αn and λn are shown.

αn

λn 1 3 5 7 9
0.01 0.796 0.761 0.747 0.732 0.725
0.02 0.759 0.756 0.722 0.709 0.701
0.03 0.775 0.752 0.725 0.716 0.703
0.04 0.772 0.722 0.707 0.727 0.709
0.05 0.775 0.747 0.711 0.696 0.693

and calculate the Spearman’s rank correlation between Y2 and XT
2 β̂

RMRCE.
We use the one-sided Spearman’s rank correlation test [71] to test whether the
Spearman’s rank correlation is significantly positive.

As a demonstration, we apply the model diagnostic heuristic to the real data
example of TF prediction. For the protein-binding activity Y and gene expres-
sion level X of each of the 1,000 cis-elements, we split (Y,X) into (Y1,X1) and
(Y2,X2), fit RMRCE on (Y1,X1), and lastly perform the one-sided Spearman’s

rank correlation test on Y2 and XT
2 β̂

RMRCE to examine the monotonicity as-
sumption. 1,000 p-values are obtained and adjusted for multiple testing using
Bonferroni method. With an adjusted p-value smaller than 0.05, we reject the
null hypothesis that there is none or a negative association. The whole proce-
dure is repeated for different choices of RMRCE tuning parameters αn and λn.
Table 8 shows the percentage of the adjusted p-values that are smaller than
0.05. Most of the adjusted p-values are smaller than 0.05.

Appendix D: Proofs

This section collects the proofs of the results in the paper. Recall Zii′(β) :=
(Xi−Xi′)

Tβ, and Sii′ := 1(Yi > Yi′). In the sequel, we define p0(Xi,Xi′ ;β
∗) :=

P(Sii′ = 0|Xi,Xi′) = P(Yi < Yi′ |Xi,Xi′), and p1(Xi,Xi′ ;β
∗) := P(Sii′ =

1|Xi,Xi′) = P(Yi > Yi′ |Xi,Xi′).

D.1. Proof of Proposition 2.1

Proof. (i) Given the link function D ◦ Λ(u, v) = u+ v, we have Y = XTβ∗ + ε
but without requiring X and ε to be centered. First, by simple calculation, using
the fact that X is independent with ε, it immediately follows

E[(Y1 − Y2)(X
T
1 β −XT

2 β)]√
Cov(Y1 − Y2)

√
Cov(XT

1 β −XT
2 β)

=
E[β∗T(X1 −X2)(X1 −X2)

Tβ]√
Cov(Y1 − Y2)

√
Cov(XT

1 β −XT
2 β)

.
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Noticing that X1 −X2 is a random vector with mean 0 and covariance 2Σ, we
have

argmax
β∈Rd

{
E[(Y1 − Y2)(X

T
1 β −XT

2 β)]√
Cov(Y1 − Y2)

√
Cov(XT

1 β −XT
2 β)

}
= argmax

β∈Rd

β∗TΣβ√
βTΣβ

,

since Cov(Y1 − Y2) is a constant as a function of β. Let a := Σ1/2β∗ and b :=
Σ1/2β/‖Σ1/2β‖2. Using Cauchy-Schwarz inequality yields that maxb:‖b‖2=1 a

Tb
achieves at b = a/‖a‖2. From the inversibility of Σ, it then follows

argmaxβ∈Rd β∗TΣβ/
√
βTΣβ = β∗ up to a scaling.

(ii) This follows directly from the proof of Theorem 1 in [3].
Hence we complete the proof of the proposition.

D.2. Proof of Lemma 4.1

Proof. First of all, recall L(β) = −E
(
Sii′1(Zii′(β) > 0) + (1− Sii′)1(Zii′(β) <

0)
)
and Ln(β) = −2

∑
i<i′ E

{
Sii′Fii′(αnZii′(β))+(1−Sii′)(1−Fii′(αnZii′(β)))

}

/{n(n−1)}. By the definition of p0(Xi,Xi′ ;β
∗), and p1(Xi,Xi′ ;β

∗), after tak-
ing conditional expectation of the response given the covariates, we have

L(β)− Ln(β) =
2

n(n− 1)

∑

i<i′

E

{
p1(Xi,Xi′ ;β

∗)
[
Fii′ (αnZii′ (β))− 1(Zii′ (β) > 0)

]

+ p0(Xi,Xi′ ;β
∗)
[
1− Fii′ (αnZii′ (β))− 1(Zii′ (β) < 0)

]}
.

According to whether Zii′(β) > 0 or not, we rewrite the above expression as
follows,

L(β)− Ln(β)

=
2

n(n− 1)

∑

i<i′

E

{[
p1(Xi,Xi′ ;β

∗)− p0(Xi,Xi′ ;β
∗)
]
Fii′(αnZii′(β))1(Zii′(β) < 0)

+
[
p0(Xi,Xi′ ;β

∗)− p1(Xi,Xi′ ;β
∗)
][
1− Fii′(αnZii′(β))

]
1(Zii′(β) > 0)

}
.

Because of |p1(Xi,Xi′ ;β
∗)− p0(Xi,Xi′ ;β

∗)| ≤ 1, it yields

L(β)− Ln(β) ≤
2

n(n− 1)

∑

i<i′

E

{
Fii′(αnZii′(β))1(Zii′(β) < 0)

+
[
1− Fii′(αnZii′(β))

]
1(Zii′(β) > 0)

}
. (D.1)

Following Assumption (A1), we have Zii′(β) ∼ N1(0, σ
2
β) with σ2

β := 2βTΣβ

for all 1 ≤ i �= i′ ≤ n. Hence with the expectation E in (D.1) taken with respect
to Pβ(z) ∼ N1(0, σ

2
β), it follows

L(β)− Ln(β) ≤
2

n(n− 1)

∑

i<i′

{ ∫ ∞

0

{1− Fii′(αnz)}dPβ(z) +

∫ 0

−∞

Fii′(αnz)dPβ(z)
}
.
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Notice that with Assumption (A2), we have Fii′(−u) = 1−Fii′(u) for arbitrary
u ≥ 0, together with Pβ(z) ∼ N1(0, σ

2
β), simple calculation immediately yields

L(β)− Ln(β) ≤
4

n(n− 1)

∑

i<i′

∫ ∞

0

1√
2πσβ

{1− Fii′(αnz)} exp
(
− z2

2σ2
β

)
dz.

Assumption (A2) also assumes the existence of some absolute constants
C1, C2 > 0 such that 1 − Fii′(u) ≤ C1 exp(−C2u) for any u > 0. Thus we
further have

L(β)− Ln(β) ≤ 2

∫ ∞

0

C1√
2πσβ

exp
(
− z2

2σ2
β

− C2αnz
)
dz

= 2C1e
σ2
βC2

2α
2
n(1− Φ(σβC2αn)) ≤

2C1

C2σβαn
.

And similarly we can prove −(L(β)− Ln(β)) ≤ 2C1

C2σβαn
. So we finally obtain

sup
β:β1=1

|Ln(β)− L(β)| ≤ 2C1

C2αn
sup

β:β1=1

1√
2βTΣβ

.

This ends the proof.

D.3. Proof of Lemma 4.3

Proof. We begin by introducing some additional notation. For any function
f : Rd → R, define inf f := infβ:β1=1 f(β). Given r > 0 and β∗ ∈ R

d, we denote
infr f := infβ:β1=1,‖β−β∗‖2≤r f(β). And similarly we define the corresponding
versions for “sup f” and “supr f”. With

β∗
r,αn

= argmin
β1=1,‖β−β∗‖2≤r

Ln(β) and β∗ = argmin
β1=1

L(β),

we immediately have

L(β∗
r,αn

)− L(β∗) = | − inf L+ L(β∗
r,αn

)| = | − inf L+ inf
r
Ln − inf

r
Ln + L(β∗

r,αn
)|.

By the triangular inequality, L(β∗
r,αn

)−L(β∗) ≤ |−inf L+infr Ln|+|L(β∗
r,αn

)−
infr Ln|. Since β∗

r,αn
is the minimizer of Ln(β) under the restrictions β1 = 1

and ‖β − β∗‖2 ≤ r, we further have

L(β∗
r,αn

)− L(β∗) ≤ | − inf
r
Ln + inf L|+ |L(β∗

r,αn
)− Ln(β

∗
r,αn

)|

≤ | − inf
r
Ln + inf L|+ sup |L − Ln|.

Notice that

− inf
r
Ln + inf L = sup

r
(−Ln)− sup(−L) = sup

r
(−Ln + L − L)− sup(−L)
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≤ sup
r
(|Ln − L| − L)− sup(−L)

≤ sup
r

|Ln − L|+ sup
r
(−L)− sup(−L) ≤ sup |Ln − L|,

and similarly, infr Ln − inf L ≤ sup |Ln −L|. They lead to | − infr Ln + inf L| ≤
sup |Ln − L|. Hence we have L(β∗

r,αn
)− L(β∗) ≤ 2 sup |L − Ln|.

Now using Assumptions (A1) and (A2), it follows from Lemma 4.1 that

L(β∗
r,αn

)− L(β∗) ≤ 2 sup
β:β1=1

|Ln(β)− L(β)| ≤ 4C1

C2αn
sup

β:β1=1

1√
2βTΣβ

. (D.2)

Given Assumptions (A1) and (A3), Proposition 4.2 guarantees that for any
given positive constants γ := {γ1, γ2} with γ2/γ1 − 1 arbitrarily close to 0,
such that for some small enough r(γ) > 0 only depending on γ, as long as
‖β − β∗‖2 ≤ r(γ), we have

L(β)− L(β∗) � ‖β − β∗‖22. (D.3)

Hence when ‖β∗
r(γ),αn

− β∗‖2 ≤ r(γ) holds, combining (D.2) and (D.3) implies

‖β∗
r(γ),αn

− β∗‖22 � α−1
n · sup

β:β1=1

1√
2βTΣβ

.

This completes the proof.

D.4. Proof of Lemma 4.4

Proof. Without loss of generality, assume M = 1. First of all, let us recall

Ln(β)− L(β) =E

{[
p1(Xi,Xi′ ;β

∗)− p0(Xi,Xi′ ;β
∗)
]
Fii′ (αnZii′ (β))1(Zii′(β) < 0)

+
[
p0(Xi,Xi′ ;β

∗)− p1(Xi,Xi′ ;β
∗)
][
1− Fii′ (αnZii′ (β))

]
1(Zii′ (β) > 0)

}
.

Under the monotonic transformation model (1.2), we have further derivation,

Ln(β)− L(β) = E

{[
2Fε(Zii′(β

∗))− 1
]
Fii′(αnZii′(β))1(Zii′(β) < 0)

}

+ E

{[
1− 2Fε(Zii′(β

∗))
][
1− Fii′(αnZii′(β))

]
1(Zii′(β) > 0)

}
.

Due to the fact Fε(−u) = 1− Fε(u) and the property Fii′(−u) = 1− Fii′(u), it
follows

Ln(β)− L(β) = E

{[
2Fε(Zii′(β

∗))− 1
]
Fii′(αnZii′(β))1(Zii′(β) < 0)

}

+ E

{[
2Fε(−Zii′(β

∗))− 1
][
Fii′(−αnZii′(β))

]
1(−Zii′(β) < 0)

}
.

(D.4)
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Under Assumption (A1), it yields immediately

(
Zii′(β

∗)
Zii′(β)

)
∼ −

(
Zii′(β

∗)
Zii′(β)

)
∼ N2

(
0,

(
2β∗ᵀΣβ∗ 2β∗ᵀΣβ

2βᵀΣβ∗ 2βᵀΣβ

))
,

which straightforwardly implies

E

{[
2Fε(−Zii′(β

∗))− 1
][
Fii′(−αnZii′(β))

]
1(−Zii′(β) < 0)

}

= E

{[
2Fε(Zii′(β

∗))− 1
][
Fii′(αnZii′(β))

]
1(Zii′(β) < 0)

}
.

Hence (D.4) can be further simplified as

Ln(β)− L(β) = 2E
{[

2Fε(Zii′(β
∗))− 1

]
Fii′(αnZii′(β))1(Zii′(β) < 0)

}
.

(D.5)

(1) If we have β∗ᵀΣβ = 0, that is Zii′(β
∗) is independent with Zii′(β), we

then have

Ln(β)− L(β) = 2E
{[

2Fε(Zii′(β
∗))− 1

]}
E

{
Fii′(αnZii′(β))1(Zii′(β) < 0)

}
.

Since Zii′(β
∗) has the same distribution as −Zii′(β

∗), with

2Fε(Zii′(β
∗))− 1 = 1− 2Fε(−Zii′(β

∗)),

it follows

E

{[
2Fε(Zii′(β

∗))−1
]}

= E

{[
2Fε(−Zii′(β

∗))−1
]}

= −E

{[
2Fε(Zii′(β

∗))−1
]}

,

which implies E
{[

2Fε(Zii′(β
∗))− 1

]}
= 0. Hence we obtain Ln(β)−L(β) = 0.

(2) With Σ = I, we have

(
Zii′(β

∗)
Zii′(β)

)
∼ N2

(
0, 2

(
1 ρ
ρ 1

))
,with ρ = β∗ᵀβ.

Using (D.5), with the above joint normal distribution, it follows

W (ρ) := Ln(β)− L(β) = 2

∫ ∞

−∞

∫ 0

−∞

[
2Fε(u)− 1

]
Fii′(αnv)

1

4π
√

1− ρ2
e
−u2+v2

−2ρuv

4(1−ρ2) dvdu.

After further simplification, we deduce

W (ρ) = 2

∫ ∞

0

∫ ∞

0

[
2Fε(u)− 1

][
1− Fii′(αnv)

] 1

4π
√

1− ρ2

{
e
−u2+v2+2ρuv

4(1−ρ2) − e
−u2+v2

−2ρuv

4(1−ρ2)

}
dvdu.
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Now suppose that the noise term ε follows a normal distribution with standard
deviation σ. It follows that we have Fε(u) = Φ(u/(

√
2σ)), which renders

W (ρ) = 2

∫ ∞

0

∫ ∞

0

[
2Φ(

u√
2σ

)− 1
][
1− Fii′(αnv)

] 1

4π
√
1− ρ2

{
e
−u2+v2+2ρuv

4(1−ρ2) − e
−u2+v2

−2ρuv

4(1−ρ2)

}
dvdu.

For sigmoid, Gaussian CDF, and double exponential CDF approximations, we
conclude that the corresponding W (ρ) is an increasing function of |ρ| by em-
ploying numeric integrations.

(3) With Fε(u) = Φ(u/(
√
2σ)) and Fii′(αnv) = 1/(1 + e−αnv), we have

Ln(β
∗)− L(β∗) = 2E

{[
2Fε(Zii′(β

∗))− 1
]
Fii′(αnZii′(β

∗))1(Zii′(β
∗) < 0)

}

=2

∫ 0

−∞

[
2Fε(u)− 1

]
Fii′(αnu)

1

2
√
π
e−

u2

4 du

=2

∫ ∞

0

[
1− 2Φ(

u√
2σ

)
] 1

1 + eαnu

1

2
√
π
e−

u2

4 du.

Based on this, numerical integrations show Ln(β
∗)−L(β∗) � α−2

n . And together
with the result in Item (2), we have for any β ∈ S

d−1, |Ln(β) − L(β)| � α−2
n .

This completes the proof.

D.5. Proof of Proposition 4.5

Proof. We aim to validate the following results for the i.i.d. noise terms {εi, i =
1, 2, · · · , n} with Gaussian or Cauchy distribution, i.e.,

∫ 0

−∞

fε(x) exp(−x2/(2b2n))dx = Cbn(1 + o(1)) as bn → 0,

where fε(·) represents the PDF of ε2 − ε1.

For the noise term εi ∼ N(μ, σ2), we have fε(x) = e−x2/(4σ2)/(2
√
πσ). With

bounded σ2, it yields

∫ 0

−∞

fε(x)e
− x2

2b2n dx =
1

√
2σ
√

1
2σ2 + 1

b2n

Φ(0) =
bn√

b2n + 2σ2
=

bn(1 + o(1))√
2σ2

,

as bn → 0, where Φ(·) is the CDF of standard normal distribution. For the noise
term εi ∼ Cauchy(μ, γ), it is easy to see fε(x) = 1/{2πγ(1 + (x/(2γ))2)}. By
simple calculation, we deduce

∫ 0

−∞

fε(x)e
− x2

2b2n dx =
1

π

∫ 0

−∞

1

(1 + x2)
e
− x2

2(bn/(2γ))2 dx
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=
1

π

π

2
e

1
2(bn/(2γ))2 [1− Φ(

√
2/
√
2(bn/(2γ))2)]

=
1

2
e2γ

2/b2n [1− Φ(2γ/bn)] . (D.6)

With φ(·) the PDF of standard normal distribution, using the fact

φ(x)/(x+ 1/x) < 1− Φ(x) < φ(x)/x for any x > 0,

we have

1√
2π

e−2γ2/b2n/[2γ/bn + bn/(2γ)] < 1− Φ(2γ/bn) <
1√
2π

e−2γ2/b2n/[2γ/bn].

(D.7)

Combining (D.6) and (D.7) leads to

γbn√
2π(4γ2 + b2n)

<

∫ 0

−∞

fε(x)e
− x2

2b2n dx <
bn

4
√
2πγ

.

Having bounded γ, we immediately have
∫ 0

−∞ fε(x)e
− x2

2b2n dx

= bn(1 + o(1))/(4
√
2πγ) as bn → 0. Hence we complete the proof of the propo-

sition for both Gaussian and Cauchy distributed noises.

D.6. Proof of Lemma 4.6

Proof. Recall L(β) = −E
(
Sii′1(Zii′(β) > 0) + (1− Sii′)1(Zii′(β) < 0)

)
. Under

the monotonic transformation model (1.2), i.e., Y = G(XTβ∗ + ε), we have

p0(Xi,Xi′ ;β
∗) = P(Yi < Yi′ |Xi,Xi′) = P

{
G(XT

i β
∗ + εi) < G(XT

i′β
∗ + εi′)

∣∣Xi,Xi′
}
,

and

p1(Xi,Xi′ ;β
∗) = P(Yi > Yi′ |Xi,Xi′) = P

{
G(XT

i β
∗ + εi) > G(XT

i′β
∗ + εi′)

∣∣Xi,Xi′
}
.

By the monotonicity of G(·), we can write

p0{Zii′(β
∗)} := p0(Xi,Xi′ ;β

∗) = P
{
Zii′(β

∗) < εi′ − εi
∣∣Xi,Xi′

}
, (D.8)

p1{Zii′(β
∗)} := p1(Xi,Xi′ ;β

∗) = P
{
Zii′(β

∗) > εi′ − εi
∣∣Xi,Xi′

}
. (D.9)

Notice in L(β) we have both of the two terms Zii′(β
∗) and Zii′(β) involved.

Using Assumption (A1), we immediately have the following joint distribution
for (Zii′(β

∗), Zii′(β))
T:

(
Zii′(β

∗)
Zii′(β)

)
∼ N2

(
0,

(
2β∗TΣβ∗ 2β∗TΣβ

2βTΣβ∗ 2βTΣβ

))
, (D.10)

which is independent of the indices i and i′. For convenience, let’s define

ρ :=
βTΣβ∗

√
βTΣβ

√
β∗TΣβ∗

. (D.11)
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After taking conditional expectations with respect to the response given the
covariates, we have

L(β)− L(β∗) = E
{
p1{Zii′(β

∗)}
[
1{Zii′(β

∗) > 0} − 1{Zii′(β) > 0}
]}

+ E
{
p0{Zii′(β

∗)}
[
1{Zii′(β

∗) < 0} − 1{Zii′(β) < 0}
]}

.

In order to further simplify the above expression, we define the following regions

A1 = {Zii′(β
∗) > 0;Zii′(β) > 0} ; A2 = {Zii′(β

∗) > 0;Zii′(β) < 0} ;
A3 = {Zii′(β

∗) < 0;Zii′(β) > 0} ; A4 = {Zii′(β
∗) < 0;Zii′(β) < 0} .

Simple calculation then leads to

L(β)− L(β∗)

=E
{[

p1{Zii′(β
∗)} − p0{Zii′(β

∗)}
]
1(A2) +

[
p0{Zii′(β

∗)} − p1{Zii′(β
∗)}

]
1(A3)

}

=E
{[

p1{Zii′(β
∗)} − p0{Zii′(β

∗)}
]
1(A2)

}
+ E

{[
p0{Zii′(β

∗)} − p1{Zii′(β
∗)}

]
1(A3)

}
.

With the monotonic transformation model (1.2), using monotonicity and the
assumption of i.i.d. noise terms {εi, i = 1, 2, · · · , n} assumed in Assumption
(A1), we have

[
p1{Zii′(β

∗)} − p0{Zii′(β
∗)}

]
1(A2) ≥ 0

and
[
p0{Zii′(β

∗)} − p1{Zii′(β
∗)}

]
1(A3) ≥ 0. (D.12)

According to the simplified notation in (D.8) and (D.9) under Model (1.2), with
the monotonicity of G, it follows

p1{Zii′(β
∗)} − p0{Zii′(β

∗)}
=P

{
Zii′(β

∗) > εi′ − εi
∣∣Xi,Xi′

}
− P

{
Zii′(β

∗) < εi′ − εi
∣∣Xi,Xi′

}

=1− 2P
{
Zii′(β

∗) < εi′ − εi
∣∣Xi,Xi′

}
= 1− 2Fε

{
− Zii′(β

∗)
}
,

where Fε is the CDF for εi−εi′ with i �= i′. Recall for any p > 0 and any random
variable U ≥ 0,

EUp =

∫ ∞

0

pup−1
P(U > u)du.

With (D.12), applying the above formula to the random variable

U =
[
p1{Zii′(β

∗)} − p0{Zii′(β
∗)}

]
1(A2)

gives us that

E
{[

p1{Zii′(β
∗)} − p0{Zii′(β

∗)}
]
1(A2)

}

=

∫ ∞

0

P
{
1− 2Fε

{
− Zii′(β

∗)
}
> a,A2

}
da

=

∫ ∞

0

P

{
−Zii′(β

∗) < F−1
ε

(1− a

2

)
,−Zii′(β) > 0

}
da. (D.13)
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By simple calculation, with σ2
1 := σ2

β∗ = 2β∗TΣβ∗ and σ2
2 := σ2

β = 2βTΣβ,

according to the joint distribution specified in (D.10), we have

H(x; ρ) := P {−Zii′(β
∗) < x,−Zii′(β) > 0}

=

∫ x

−∞

∫ 0

−∞

1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
u2

σ2
1

+
v2

σ2
2

+ 2ρ
uv

σ1σ2

]}
dudv

=
1

2πσ1

√
1− ρ2

∫ x

−∞

e
− u2

2σ2
1

[∫ 0

−∞

exp

{
− (v + ρu/σ1)

2

2(1− ρ2)

}
dv

]
du

=

∫ x

−∞

1√
2πσ1

e
− u2

2σ2
1 Φ(

ρu

σ1

√
1− ρ2

)du, (D.14)

where Φ(·) is the CDF of the standard normal distribution.
Combining (D.13) and (D.14), we deduce

K(ρ) := E
{[

p1{Zii′(β
∗)}− p0{Zii′(β

∗)}
]
1(A2)

}
=

∫ ∞

0

H

{
F−1
ε

(1− a

2

)
; ρ

}
da

= 2

∫ F−1
ε (1/2)

−∞

H(x; ρ)fε(x)dx.

(D.15)

Via exchange of taking derivative and integral, we have the first derivative of
the above function K(ρ) is of the form

K ′(ρ) = 2

∫ F−1
ε (1/2)

−∞

fε(x)

∫ x

−∞

1√
2πσ1

e
− u2

2σ2
1 φ(

ρu

σ1

√
1− ρ2

)
u

σ1(1− ρ2)3/2
dudx,

where φ(·) represents the PDF for the standard normal distribution. With simple
calculation, we can simplify K ′(ρ) further as follows:

K ′(ρ) =
1

πσ2
1(1− ρ2)3/2

∫ F−1
ε (1/2)

−∞

fε(x)

∫ x

−∞

ue
− u2

2σ2
1(1−ρ2) dudx

=
1

πσ2
1(1− ρ2)3/2

∫ F−1
ε (1/2)

−∞

fε(x)

{
−σ2

1(1− ρ2)e
− x2

2σ2
1(1−ρ2)

}
dx

=
−1

π
√

1− ρ2

∫ F−1
ε (1/2)

−∞

fε(x)e
− x2

2σ2
1(1−ρ2) dx. (D.16)

Due to F−1
ε (1/2) = 0 since Fε is the CDF for ε2− ε1, it yields immediately from

(D.16) that

K ′(ρ) =
−1

π
√

1− ρ2

∫ 0

−∞

fε(x)e
− x2

2σ2
1(1−ρ2) dx.

By Assumption (A3’), it follows

∫ 0

−∞

fε(x)e
− x2

2σ2
1(1−ρ2) dx = Cσ1

√
1− ρ2(1 + o(1)) as ρ → 1.
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It yields
K ′(ρ) = −C(σ1/π)(1 + o(1)) as ρ → 1.

When ρ = 1, we have β∗ = β, which leads to K(1) = 0. Applying Taylor
expansion at ρ = 1 gives us

K(ρ) = K(1) +K ′(ρ)(ρ− 1) + o(ρ− 1) = K ′(ρ)(ρ− 1) + o(ρ− 1), as ρ → 1.

Hence by the definition of K(ρ), we have

E
{[

p1{Zii′(β
∗)} − p0{Zii′(β

∗)}
]
1(A2)

}
= K(ρ) = C(σ1/π)(1−ρ)(1+o(1)), as ρ → 1.

Similarly, by symmetry, we conclude

E
{[

p0{Zii′(β
∗)} − p1{Zii′(β

∗)}
]
1(A3)

}
= C(σ1/π)(1− ρ)(1 + o(1)), as ρ → 1.

In summary, we have

L(β)− L(β∗)

=E
{[

p1{Zii′(β
∗)} − p0{Zii′(β

∗)}
]
1(A2)

}
+ E

{[
p0{Zii′(β

∗)} − p1{Zii′(β
∗)}

]
1(A3)

}

=c(1− ρ)(1 + o(1)), as ‖β − β
∗‖2 → 0,

for some absolute constant c > 0. We can then pick positive constant set γ :=
{γ1, γ2} with γ2/γ1 − 1 arbitrarily close to 0, such that for some small enough
r(γ) > 0 only depending on γ, as long as ‖β − β∗‖2 ≤ r(γ), we have

γ1 ·
(
1− βTΣβ∗

√
βTΣβ

√
β∗TΣβ∗

)
≤ L(β)−L(β∗) ≤ γ2 ·

(
1− βTΣβ∗

√
βTΣβ

√
β∗TΣβ∗

)
,

due to the definition of ρ in (D.11).

D.7. Proof of Theorem 4.8

Proof. The proof is split to three steps.
(1) In the first step, we show

Δ̂ := θ̂ − θ∗ ∈ C(M,M⊥
;θ∗). (D.17)

By Assumption (B3) and simple algebra, for any Δ ∈ R
d, we have

P (θ∗ +Δ)− P (θ∗) ≥ P (Δ
M

⊥)− P (ΔM)− 2P (θ∗
M⊥). (D.18)

In addition, due to the convex differentiability of Ln(·) (Assumption (B2)), we
have

Ln(θ
∗ + Δ̂)− Ln(θ

∗) ≥ −|〈∇Ln(θ
∗), Δ̂〉|.

Holder’s inequality then yields

Ln(θ
∗ + Δ̂)− Ln(θ

∗) ≥ −P ∗(∇Ln(θ
∗))P (Δ̂).
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Using Assumption (B5), we further have

Ln(θ
∗ + Δ̂)− Ln(θ

∗) ≥ −λn

2
(P (Δ̂M) + P (Δ̂

M
⊥)). (D.19)

Combining (D.18) and (D.19), and using the fact θ̂ minimizes Ln(θ)+λnP (θ),
we have

0 ≥ λn

2

(
P (Δ̂

M
⊥)− 3P (Δ̂M)− 4P (θ∗

M⊥)
)
.

This then proves (D.17).
(2). Let’s define

F(Δ) := Ln(θ
∗ +Δ) + λnP (θ∗ +Δ)− Ln(θ

∗)− λnP (θ∗).

In the second step, we proceed to prove the following assertion: if for all Δ ∈
C(M,M⊥

;θ∗) ∩ {‖Δ‖2 = γ} we have F(Δ) > 0, then ‖Δ̂‖2 ≤ γ. To this

end, let’s assume ‖Δ̂‖2 > γ. Then because C(M,M⊥
;θ∗) is star-shaped (by

Assumption (B1)), we can always find t∗ ∈ (0, 1) such that

t∗Δ̂ ∈ C(M,M⊥
;θ∗) ∩ {‖Δ‖2 = γ}.

However, by Assumption (B2) we have

F(t∗Δ̂) ≤ t∗F(Δ̂) ≤ 0.

Therefore, we have a contradiction, and accordingly ‖Δ̂‖2 ≤ γ.

(3). In the end, let’s prove the main theorem. For all Δ ∈ C(M,M⊥
;θ∗) ∩

{‖Δ‖2 = γ}, using Assumption (B4), we have

F(∆) = Ln(θ
∗ +∆)− Ln(θ

∗) + λn(P (θ∗ +∆)− P (θ∗))

≥− |〈∇Ln(θ
∗),∆〉|+ κL‖∆‖22 − δL‖∆‖2 − τ2

L(θ
∗) + λn(P (θ∗ +∆)− P (θ∗))

≥− λn

2
P (∆) + κL‖∆‖22 − δL‖∆‖2 − τ2

L(θ
∗) + λn

(
P (∆

M
⊥)− P (∆M)− 2P (θ∗

M⊥)
)

≥− 3

2
λnP (∆M)− 2λnP (θ∗

M⊥) + κL‖∆‖22 − δL‖∆‖2 − τ2
L(θ

∗).

Finally, using Assumption (B5), we derive

F(Δ) ≥ −(
3

2
λnΨ(M) + δL)‖Δ‖2 + κL‖Δ‖22 − τ2L(θ

∗)− 2λnP (θ∗
M⊥).

Hence, by picking

γ2 = (2λnΨ(M) + δL)
2/κ2

L + 2(τ2L(θ
∗) + 2λnP (θ∗

M⊥))/κL,

we have, for all Δ ∈ C(M,M⊥
;θ∗) ∩ {‖Δ‖2 = γ},

F(Δ) ≥ 0.

This completes the proof.
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D.8. Proof of Lemma 4.10

Proof. In the following we only consider the constrainted version of L̂n that
takes value infinity outside of a small ball of β∗

r(γ),αn
. First, with Assumptions

(A1) and (A2), Lemma 4.1 gives us

sup
β:β1=1

|Ln(β)− L(β)| ≤ 2C1

C2αn
sup

β:β1=1

1√
2βTΣβ

. (D.20)

Secondly, using Assumptions (A1) and (A3), Equation (9) in [22] and Propo-
sition 4.2 implies that for Δ small enough with γ2/γ1 − 1 close to 0,

γ1λmin(Γ)‖Δ‖22 ≤ L(β∗ +Δ)− L(β∗) ≤ γ2λmax(Γ)‖Δ‖22
and L(β∗ +Δ)− L(β∗) = ΔTΓΔ(1/4 + o(1)). (D.21)

Thirdly, given Assumptions (A1)-(A3), Lemma 4.3 shows, under further As-
sumption (A6),

‖β∗
r(γ),αn

− β∗‖2 � α−1/2
n . (D.22)

Combining (D.20), (D.21), and (D.22) as well as Assumption (A6) yields

Ln(β
∗ +Δ)− Ln(β

∗) ≥ C ′
1‖Δ‖22 − C ′

2/αn,

and

Ln(β
∗
r(γ),αn

+Δ)− Ln(β
∗
r(γ),αn

) ≥ C ′
3‖Δ‖22 − C ′

4/αn − C ′
5α

−1/2
n ‖Δ‖2.

In fact, the first one is trivial and the second one can be derived in detail as
follows. First note

Ln(β
∗
r(γ),αn

+Δ)− Ln(β
∗
r(γ),αn

)

=Ln(β
∗
r(γ),αn

+Δ)− L(β∗
r(γ),αn

+Δ) + L(β∗
r(γ),αn

+Δ)− L(β∗
r(γ),αn

)

+ L(β∗
r(γ),αn

)− Ln(β
∗
r(γ),αn

),

where the first two terms and the last two terms can be lower bounded through
(D.20),

Ln(β
∗
r(γ),αn

+Δ)− L(β∗
r(γ),αn

) + L(β∗
r(γ),αn

)− Ln(β
∗
r(γ),αn

) ≥ −C ′
4/αn.

Hence it immediately follows

Ln(β
∗
r(γ),αn

+Δ)− Ln(β
∗
r(γ),αn

) ≥ −C ′
4/αn + L(β∗

r(γ),αn
+Δ)− L(β∗

r(γ),αn
).

(D.23)

Notice that by adding and subtracting same terms, we have

L(β∗
r(γ),αn

+∆)− L(β∗
r(γ),αn

) = L(β∗
r(γ),αn

+∆)− L(β∗)− (L(β∗
r(γ),αn

)− L(β∗)).
(D.24)
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In (D.24), following from (D.21), we have

L(β∗
r(γ),αn

+∆)−L(β∗) = 0.25(β∗
r(γ),αn

+∆−β
∗)TΓ(β∗

r(γ),αn
+∆−β

∗)(1 + o(1)),

L(β∗
r(γ),αn

)− L(β∗) = 0.25(β∗
r(γ),αn

− β
∗)TΓ(β∗

r(γ),αn
− β

∗)(1 + o(1)). (D.25)

Combining (D.23), (D.24), and (D.25) implies

Ln(β
∗
r(γ),αn

+Δ)− Ln(β
∗
r(γ),αn

)

≥− C ′
4/αn + 0.25(ΔTΓΔ+ 2ΔTΓ(β∗

r(γ),αn
− β∗))(1 + o(1)).

Further with Cauchy inequality, (D.22), and Assumption (A3), it follows

Ln(β
∗
r(γ),αn

+Δ)− Ln(β
∗
r(γ),αn

) ≥− C ′
4/αn − C ′

5α
−1/2
n ‖Δ‖2 + C ′

3‖Δ‖22.

By the definition of κn, it then follows

L̂n(β
∗
r(γ),αn

+Δ)−L̂n(β
∗
r(γ),αn

) ≥ C ′
3‖Δ‖22−C ′

4/αn−C ′
5α

−1/2
n ‖Δ‖2−OP (κn),

and accordingly

δL̂n(∆,β∗
r(γ),αn

) := L̂n(β
∗
r(γ),αn

+∆)− L̂n(β
∗
r(γ),αn

)− 〈∇L̂n(β
∗
r(γ),αn

),∆〉
≥ C′

3‖∆‖22 −C′
4/αn −OP (κn)−C′

5α
−1/2
n ‖∆‖2−〈∇L̂n(β

∗
r(γ),αn

),∆〉.

We then determine the value of 〈∇L̂n(β
∗
r(γ),αn

),Δ〉. By simple algebra, we have

∇L̂n(β) = − 2

n(n− 1)

∑

i<i′

S̃ii′αnX̃ii′F
′
ii′{S̃ii′αnZii′(β)}.

Now note ∇L̂n(β) is a U-statistic of order two, written as

∇L̂n(β) := − 2

n(n− 1)

∑

i<i′

h({Xi, εi}, {Xi′ , εi′}),

with h({Xi, εi}, {Xi′ , εi′}) = S̃ii′αnX̃ii′F
′
ii′{S̃ii′αnZii′(β)}. In addition, let

‖ · ‖ψ2 be the subgaussian norm defined in [72]:

‖X‖ψ2 := sup
p≥1

1√
p

(
E|X|p

)1/p

.

Combined with Assumption (A4) that supu∈R
|F ′

ii′(u)| ≤ C3, we have, for ar-
bitrary j ∈ {1, . . . , d},

∥∥∥S̃ii′αn[X̃ii′ ]jF
′
ii′{S̃ii′αnZii′(β)}

∥∥∥
ψ2

≤ C3αn

∥∥∥[X̃ii′ ]j

∥∥∥
ψ2

is upper bounded by an absolute constant. Therefore, for any pair (i, i′), we
have

h({Xi, εi}, {Xi′ , εi′})
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is subgaussian. Moreover, it is easy to see that

E∇L̂n(β
∗
r(γ),αn

) = ∇EL̂n(β
∗
r(γ),αn

) = ∇Ln(β
∗
r(γ),αn

) = 0.

Therefore, ∇L̂n(β
∗
r(γ),αn

) is a U-statistic of centered subgaussian distributed
elements. Employing the standard Hoeffding’s decoupling technique and Bon-
ferroni’s adjustment then yields

‖∇L̂n(β
∗
r(γ),αn

)‖∞
P

� αn

√
log d/n.

Cauchy inequality then gives us

|〈∇L̂n(β
∗
r(γ),αn

),Δ〉| ≤ ‖∇L̂n(β
∗
r(γ),αn

)‖∞‖Δ‖1,

which yields

δL̂n(∆,β∗
r(γ),αn

)
P

� C′
3‖∆‖22−C′

4/αn−C′
5α

−1/2
n ‖∆‖2−OP (κn)−C′

6αn

√
log d/n‖∆‖1.

Then under Assumption (A5) and Assumption (A0) that for some αn large
enough,

‖β∗
r(γ),αn

‖0 ≤ sn,

we have, letting Δ̂ := β̂r(γ),αn
− β∗

r(γ),αn
,

‖Δ̂‖1 ≤ 4‖Δ̂S‖1 ≤ 4
√
sn‖Δ̂‖2.

And by Theorem 4.8, setting P (θ) =
∑d

j=2 |θj | and A := {θ ∈ R
d : θ1 =

1, ‖θ − β∗‖2 ≤ r}, we have, when λn � αn

√
log d/n,

‖Δ̂‖22
P

� snλ
2
n + α−1

n + α2
nsn log d/n+ κn,

which implies, when λn � αn

√
log d/n,

‖Δ̂‖22
P

� α2
nsn log d/n+ α−1

n + κn.

This completes the proof.

D.9. Proof of Theorem 4.11

Proof. Picking αn � (n/(sn log d))1/3, Lemma 4.10 then yields

‖β̂r(γ),αn
− β∗

r(γ),αn
‖2

P

�
(sn log d

n

)1/6

+ κ1/2
n . (D.26)

Due to Lemma 4.3, we have ‖β∗
r(γ),αn

−β∗‖22
P

� α−1
n � (n/(sn log d))

−1/3, which

together with (D.26) leads to
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‖β̂r(γ),αn − β
∗‖2 ≤ ‖β̂r(γ),αn − β

∗
r(γ),αn

‖2 + ‖β∗
r(γ),αn

− β
∗‖2

P

�
( sn log d

n

)1/6

+ κ1/2
n .

Thus as long as sn log d/n → 0 and κn → 0, we have ‖β̂r(γ),αn
− β∗‖2 P→ 0.

Finally, noticing that for n large enough, by Lemma 4.3 and the above result,
β∗
r(γ),αn

and β̂r(γ),αn
are both within the ball of {β : β1 = 1, ‖β−β∗‖2 ≤ r(γ)}.

Since r(γ) only depends on γ, it could be picked as an absolute constant by fixing

γ1, γ2, with γ2/γ1 = 1.01 for example. Then we have β∗
r(γ),αn

and β̂r(γ),αn
are

indeed local minima for n large enough. This completes the proof.

Acknowledgements

We thank the Editor, AE, and two anonymous referees for their helpful com-
ments. We are grateful to Dr. Peter Radchenko and Dr. Haileab Hilafu for
providing codes to implement their methods.

The work of Fang Han is supported by NSF grant DMS-1712536 and a UW
faculty start-up grant. The work of Hongkai Ji and Zhicheng Ji is supported by
NIH grants R01HG006841 and R01HG006282. The work of Honglang Wang is
supported by an IUPUI faculty start-up grant.

References

[1] Peter J Huber and Elvezio M. Ronchetti. Robust Statistics. Wiley, 2011.
MR2488795

[2] David Ruppert, Matt P Wand, and Raymond J Carroll. Semiparametric
Regression. Cambridge University Press, 2003. MR1998720

[3] Aaron K Han. Non-parametric analysis of a generalized regression model:
the maximum rank correlation estimator. Journal of Econometrics,
35(2):303–316, 1987. MR0903188

[4] Peter J Park. ChIP–seq: advantages and challenges of a maturing technol-
ogy. Nature Reviews Genetics, 10(10):669–680, 2009.

[5] Alan P Boyle, Sean Davis, Hennady P Shulha, Paul Meltzer, Elliott H
Margulies, Zhiping Weng, Terrence S Furey, and Gregory E Crawford.
High-resolution mapping and characterization of open chromatin across
the genome. Cell, 132(2):311–322, 2008.

[6] ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA
elements) project. Science, 306(5696):636–640, 2004.

[7] Christopher Cavanagh and Robert P Sherman. Rank estimators for
monotonic index models. Journal of Econometrics, 84(2):351–381, 1998.
MR1630210

[8] Joel L Horowitz. Semiparametric estimation of a regression model with
an unknown transformation of the dependent variable. Econometrica,
64(1):103–137, 1996. MR1366143

[9] Jianming Ye and Naihua Duan. Nonparametric n−1/2-consistent estima-
tion for the general transformation models. The Annals of Statistics,
25(6):2682–2717, 1997. MR1604440



4400 F. Han et al.

[10] Songnian Chen. Rank estimation of transformation models. Econometrica,
70(4):1683–1697, 2002. MR1929984

[11] Peng-Jie Dai, Qing-Zhao Zhang, and Zhi-Hua Sun. Variable selection
of generalized regression models based on maximum rank correlation.
Acta Mathematicae Applicatae Sinica, English Series, 30(3):833–844, 2014.
MR3285979

[12] Xingjie Shi, Jin Liu, Jian Huang, Yong Zhou, Yang Xie, and Shuangge Ma.
A penalized robust method for identifying gene–environment interactions.
Genetic Epidemiology, 38(3):220–230, 2014.

[13] Hyungtaik Ahn, Hidehiko Ichimura, and James L Powell. Simple estimators
for monotone index models. Technical report, Department of Economics,
UC Berkeley, 1996.

[14] Hisatoshi Tanaka. Semiparametric least squares estimation of monotone
single index models and its application to the iterative least squares esti-
mation of binary choice models. Technical report, Citeseer, 2008.

[15] Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Effi-
cient learning of generalized linear and single index models with isotonic
regression. In Advances in Neural Information Processing Systems, pages
927–935, 2011.

[16] Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of
feasible descent methods: a general approach. The Annals of Operations
Research, 46(1):157–178, 1993. MR1260016

[17] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale opti-
mization problems. SIAM Journal on Optimization, 22(2):341–362, 2012.
MR2968857

[18] Joel L Horowitz. A smoothed maximum score estimator for the binary
response model. Econometrica, 60(3):505–531, 1992. MR1162997

[19] Shuangge Ma and Jian Huang. Regularized ROC method for disease clas-
sification and biomarker selection with microarray data. Bioinformatics,
21(24):4356–4362, 2005.

[20] Joel L Horowitz. Bootstrap methods for median regression models. Econo-
metrica, 66(6):1327–1351, 1998. MR1654307

[21] Junyi Zhang, Zhezhen Jin, Yongzhao Shao, and Zhiliang Ying. Statistical
inference on transformation models: a self-induced smoothing approach.
arXiv preprint arXiv:1302.6651, 2013.

[22] Robert P Sherman. The limiting distribution of the maximum rank corre-
lation estimator. Econometrica, 61(1):123–137, 1993. MR1201705

[23] Po-Ling Loh. Statistical consistency and asymptotic normality for high-
dimensional robust M-estimators. The Annals of Statistics (in press), 2015.
MR3650403

[24] Jianqing Fan, Quefeng Li, and Yuyan Wang. Robust estimation of high-
dimensional mean regression. Journal of the Royal Statistical Society: Se-
ries B (Methodological), 79(1):247–265, 2017. MR3664833

[25] Adam Tauman Kalai and Ravi Sastry. The isotron algorithm: High-
dimensional isotonic regression. In Conference on Learning Theory, 2009.



Smoothing approach for high dimensional generalized regression 4401

[26] Jared C Foster, Jeremy MG Taylor, and Bin Nan. Variable selection in
monotone single-index models via the adaptive lasso. Statistics in Medicine,
32(22):3944–3954, 2013. MR3102450

[27] Yaniv Plan, Roman Vershynin, and Elena Yudovina. High-dimensional
estimation with geometric constraints. Information and Inference, 6(1):1–
40, 2017. MR3636866

[28] Xinyang Yi, Zhaoran Wang, Constantine Caramanis, and Han Liu. Opti-
mal linear estimation under unknown nonlinear transform. arXiv preprint
arXiv:1505.03257, 2015.

[29] Peter Radchenko. High dimensional single index models. Journal of Mul-
tivairate Analysis, 139:266–282, 2015. MR3349492

[30] Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of
the American Statistical Association, 86(414):316–327, 1991. MR1137117

[31] Ker-Chau Li. On principal Hessian directions for data visualization and
dimension reduction: another application of Stein’s lemma. Journal of the
American Statistical Association, 87(420):1025–1039, 1992. MR1209564

[32] R Dennis Cook and Sanford Weisberg. Sliced inverse regression for dimen-
sion reduction: Comment. Journal of the American Statistical Association,
86(414):328–332, 1991.

[33] R Dennis Cook. Principal Hessian directions revisited. Journal of the
American Statistical Association, 93(441):84–94, 1998. MR1614584

[34] Xiangrong Yin and Haileab Hilafu. Sequential sufficient dimension reduc-
tion for large p, small n problems. Journal of the Royal Statistical Society:
Series B (Methodological), 77(4):879–892, 2015. MR3382601

[35] George EP Box and David R Cox. An analysis of transformations. Journal
of the Royal Statistical Society: Series B (Methodological), 26(2):211–252,
1964. MR0192611

[36] John D Kalbfleisch and Ross L Prentice. The Statistical Analysis of Failure
Time Data. John Wiley and Sons, 2011. MR0570114

[37] Gangadharrao S Maddala. Limited-Dependent and Qualitative Variables in
Econometrics. Cambridge University Press, 1986. MR0799154

[38] James Tobin. Estimation of relationships for limited dependent variables.
Econometrica, 26(1):24–36, 1958. MR0090462
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