
Gradient–Based Inverse Risk-Sensitive Reinforcement Learning

Eric Mazumdar, Lillian J. Ratliff, Tanner Fiez, and S. Shankar Sastry

Abstract— We address the problem of inverse reinforcement
learning in Markov decision processes where the agent is risk-
sensitive. In particular, we model risk-sensitivity in a reinforce-
ment learning framework by making use of models of human
decision-making having their origins in behavioral psychology
and economics. We propose a gradient-based inverse reinforce-
ment learning algorithm that minimizes a loss function defined
on the observed behavior. We demonstrate the performance of
the proposed technique on two examples, the first of which is
the canonical Grid World example and the second of which is
an MDP modeling passengers’ decisions regarding ride-sharing.
In the latter, we use pricing and travel time data from a ride-
sharing company to construct the transition probabilities and
rewards of the MDP.

I. INTRODUCTION

The modeling and learning of human behaviors is becom-

ing increasingly important as critical systems begin to rely

more on automation and artificial intelligence. Yet, in this

task we face a number of challenges, not least of which is

the fact that humans are known to behave in ways that are not

completely rational. For example, there is mounting evidence

to support the fact that humans often use reference points—

experiences that are perceived to be related to the decision

the human is making. It has also been observed that their

decisions are impacted by their perception of the external

world (exogenous factors) and their present state of mind

(endogenous factors) as well as how the decision is framed

or presented [1], [2].

The success of descriptive behavioral models in capturing

human behavior has long been touted by the psychology

community and, more recently, by the economics community.

Meanwhile, in the engineering context, humans have largely

been modeled, under rationality assumptions, from the so-

called normative point of view where things are modeled

as they ought to be, which is counter to a descriptive as

is point of view. However, risk-sensitivity has been fairly

extensively explored in engineering and computer science in

the context of learning to control stochastic dynamic systems

(see, e.g., [3], [4]). Many of these approaches are targeted at

mitigating risks due to uncertainties in controlling a system

such as a plant or robot. Much of this work simply handles

risk-aversion by leveraging techniques such as exponential

E. Mazumdar and S. S. Sastry are with the Electrical Engineering and
Computer Sciences Department at the University of California, Berkeley.
email: {mazumdar, sastry}@eecs.berkeley.edu

T. Fiez and L. Ratliff are with the Electrical Engineering De-
partment at the University of Washington, Seattle. email: {fiezt,
ratliffl}@uw.edu

This work is supported by NSF CRII Award CNS-1656873, NSF
US-Ignite Award CNS-1646912, NSF FORCES (Foundations Of Re-
silient CybEr-physical Systems) Award CNS-1238959, CNS-1238962, CNS-
1239054, CNS-1239166”

utility functions or minimizing variance. Human decision

makers, on the other hand, can be at once risk-averse and

risk-seeking depending their frame of reference. The com-

plex risk-sensitive behavior arising from human interaction

with automation is only recently coming into focus. Indeed,

the adoption of diverse behavioral models in engineering—

in particular, in learning and control—is growing due to the

fact that humans are increasingly playing an integral role in

automation both at the individual and societal scale.

The problem of learning accurate models of human

decision-making is becoming increasingly important for both

prediction and description. For example, control/incentive

schemes need to predict human behavior as a function of

external stimuli. On the other hand, policy makers, e.g., are

interested in interpreting human reactions to implemented

regulations and policies. A few approaches for integrating

the risk-sensitivity of humans in the control and reinforce-

ment learning problems via behavioral models [5]–[8] have

recently emerged. These approaches largely assume a risk-

sensitive Markov decision process (MDP) formulated based

on a behavioral model and determine the optimal policy via,

e.g., a learning procedure. We refer to this as the forward

problem. We are interested in solving the so-called inverse

problem which seeks to estimate the decision-making model

given a set of demonstrations.

In particular, in this paper we model human decision-

makers as risk-sensitive Q-learning agents where we exploit

very rich behavioral models from behavioral psychology

and economics that capture a whole spectrum of risk-

sensitivity. We propose a gradient-based learning algorithm

for inferring the decision-making model parameters from

demonstrations—that is, we propose a novel framework

for solving the inverse risk-sensitive reinforcement learning

problem. We demonstrate the efficacy of the learning scheme

on i) the canonical Grid World example and ii) a passenger’s

view of ride-sharing as an MDP with model parameters

estimated from real-world data.

The remainder of this paper is organized as follows. In

Section II, we briefly overview the Q-learning model we

assume for risk-sensitive agents and show that it is amenable

to integration with the behavioral models. In Section III,

we formulate the inverse risk sensitive RL problem and

propose a gradient–based algorithm to solve it. Examples that

demonstrate the ability of the proposed scheme to capture

a wide breadth of risk-sensitive behaviors are provided in

Section IV. Finally, we conclude with some discussion and

comments on future work in Section V.
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II. RISK-SENSITIVE REINFORCEMENT LEARNING

Risk-sensitivity has been long covered in the stochastic

decision-making literature. The typical way in which risk is

dealt with is through transformations of the reward by expo-

nential value functions. As an alternative approach, transfor-

mation of the temporal differences in a Q-learning scheme

according to a risk model has recently been proposed [6]–

[8]. This avoids certain pitfalls of the reward transformation

approach such as poor convergence performance. Further,

this framework allows for integration of behavioral decision-

making models [5]–[7].

Under the assumption that the agent of interest is making

decisions according to this model, we formulate a gradient–

based method for learning the parameters of the agent’s value

function from data. In this section, we briefly review rele-

vant features of risk-sensitive Q-learning. A more thorough

treatment of the subject can be found in [6]–[8].

A. Markov Decision Process

We consider a class of finite MDPs which consist of

a state space X , an admissible action space A(x) ⊂ A for

each x ∈ X , a transition kernel P(x′|x,a) (which denotes the

probability of moving from state x to x′ given action a),

and a reward function r : X ×A×W → R where W is the

disturbance space and has distribution Pr(·|x,a). Including

disturbances w allows us to model random rewards for which

use the notation R(x,a) to denote the random reward having

distribution Pr(·|x,a).
In the classical expected utility maximization framework,

an agent with utility function u seeks to maximize the

expected discounted utility by selecting a Markov policy π .

That is, for an infinite horizon MDP, the optimal policy is

obtained by maximizing

J(x0) = maxπ E [
∑

∞

t=1 γ tu(R(xt ,at))] (1)

where x0 is the initial state and γ ∈ [0,1) is the discount

factor. The risk-sensitive RL problem transforms the above

problem to account for a salient features of human decision-

making such as loss aversion, reference point dependence,

and framing effects.

B. Value Functions

In the risk-sensitive setting, just like the standard expected

utility framework, an agent makes choices based on the value

of their outcome as defined by their value function u :R→R.

One particularly rich class of value functions is the para-

metric class of value functions introduced in Prospect Theory

by Kahneman and Tvsersky [9], [10]. This class captures

many of the most salient features of human decision-making

including framing effects, reference dependence and loss

aversion. The value function is given by:

u(y) =

ß

c+(y− y0)
ρ+ , y > y0

−c−(y0 − y)ρ− , y ≤ y0
(2)

where y0 is the reference point that the decision-maker

compares outcomes against when determining if the outcome

is a loss or gain. The parameters (c+,c−,ρ+,ρ−) control

the degree of risk-sensitivity and loss-aversion, allowing the

value function to capture a rich set of behaviors. For example,

0 < ρ+,ρ− < 1 leads to risk-averse preferences on gains and

risk-seeking preferences on losses (concave in gains, convex

in losses) while ρ+,ρ− > 1 leads to risk-averse preferences

on losses and risk-seeking preferences on gains (convex in

gains, concave in losses).

We introduce a class of logarithm–based value functions

that approximate the shape of the prospect theory value

function for ρ+,ρ− < 1, the range of values that are typical

of human decision-making [11]–[13].

u(y) =

ß

c+ log(1+ρ+(y− y0)), y > y0

−c− log(1+ρ−(y0 − y)), y ≤ y0
(3)

This new value function improves the performance (in

terms of convergence speed) of the gradient-based IRL

algorithm we propose in Section III.

Outside of the prospect theory value function, other map-

pings have been proposed to capture risk-sensitivity. One

example is the entropic map, u(y) = exp(λy), where the

one parameter, λ controls the degree of risk-sensitivity. This

value function has been primarily used in finance and control

theory.

C. Valuation Functions

More complex value functions are not enough to capture

risk-sensitive behavior. To further extend classical RL to risk-

sensitive RL, valuation functions are used to generalize the

expectation operator.

Definition 1 ( [6], [14], [15]): A mapping V : R
|I| ×

P → R is called a valuation function if for each µ ∈ P ,

(i) V (Y,µ) ≤ V (Z,µ) whenever Y ≤ Z (monotonic) and

(ii) V (Y + y1,µ) = V (Y,µ)+ y for any y ∈ R (translation

invariant).

Such a map is used to characterize an agent’s preferences—

that is, one prefers (Y,µ) to (Z,ν) whenever V (Z,ν) ≤
V (Y,µ).

In the context of MDPs, we can define a valuation function

for each state–action pair. We refer to V (Y |x,a) : R|I|×X ×
A → R as a valuation map such that Vx,a ≡ V (·|x,a) is a

valuation function.

If we let V π
x (Y )=

∑

a∈A(x) π(a|x)Vx,a(Y ), the optimization

problem in (1) generalizes to

J̃T (π,x0) =V
π0

x0

[

R[x0,a0]+ γV
π1

x1

[

R[x1,a1]+

· · ·+ γV
πT

xT
[R(xT ,aT )] · · ·

]

]

. (4)

Let us define maxπ J̃(π,x0) = limT→∞ J̃T (π,x0).
The particular valuation function we employ in our for-

ward model is the shortfall valuation, which incorporates

reference dependence in the decision-making model. It origi-

nated in mathematical finance [14], [16] where it was shown

to be a valuation function and it has been used in a risk-

sensitive MDP context in [3] and in a RL context in [6].

The shortfall V induced by a value function u : R→ R and

an acceptance level r0 is given by

V (Y ) = sup
{

m ∈ R|Eµ [u(Y −m)]≥ r0

}

(5)
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where we suppress the dependence of V on µ , the distribu-

tion of the random variable for outcomes Y .

D. Risk-Sensitive Q-Learning

Given the value and valuation functions, we are now in-

troduce risk-sensitive Q-learning. In the classical RL frame-

work, the Bellman equation is used to derive a Q-learning

procedure. Generalizations of the Bellman equation for risk-

sensitive RL have been derived in [3], [7]. These generaliza-

tions are then used to formulate a Q-learning procedure for

the risk-sensitive RL problem.

Given (4), it is shown in [3] that if V ∗ satisfies

V ∗(x0) = maxa∈A(x)Vx,a(R(x,a)+ γV ∗), (6)

then V ∗ = maxπ J̃(π,x0) holds for all x0 ∈ X .

We now define the Q-function, Q∗(x,a) = Vx,a(R(x,a)+
γV ∗), such that (6) becomes

Q∗(x,a) = Vx,a

(

R(x,a)+ γ maxa∈A(x′) Q∗(x′,a)
)

, (7)

for all (x,a) ∈ X ×A.

If u is continuous and strictly increasing, we can evaluate

(7) for the shortfall valuation, and get the following fixed

point equation for Q∗ (see [14, Prop. 4.104] or [6, Prop. 3.1]):

E
[

u
(

r(x,a,w)+ γ maxa′∈A(x′) Q∗(x′,a′)−Q∗(x,a)
)]

= r0

(8)

where the expectation is taken with respect to µ =
P(x′|x,a)Pr(w|x,a). Further it is shown that in finite MDPs,

and with further technical conditions on u, there exists a

unique Q-function Q∗ satisfying (8) for all (x,a) ∈ X ×A [6,

Thm. 3.2].

III. GRADIENT–BASED INVERSE RISK-SENSITIVE RL

We now assume that an agent has performed risk-sensitive

Q-learning to obtain their policy and formulate the inverse

risk-sensitive RL problem in a general form as follows:

First, we select a parametric class of policies, {πθ}θ ,

πθ ∈Π and parametric utility function {uθ}θ , uθ ∈F where

F is a family of utility functions and θ ∈ Θ ⊂ R
d . We

try to tune the parameters so as to minimize some loss

�(πθ ;D) which is a function of the parameterized policy

πθ and a set of demonstrations given as state-action pairs,

D = {(xk,ak)}
N
k=1.

We will use the shorthand notation �(θ) = �(πθ ;D), and

for mappings u and Q, we will now indicate their dependence

on θ—that is, we will write Q(x,a,θ) and u(y,θ) where

u : Y ×Θ → R. Note that since y is the temporal difference

it also depends on θ and we will indicate that where not

obvious by writing y(θ).
It is common in the IRL literature to adopt a smooth map

G that operates on the space of Q-functions for defining

the parametric policy space. A common class of parametric

policies are Boltzmann policies of the form

Gθ (Q)(a|x) = exp(βQ(x,a,θ))
∑

a′∈A
exp(βQ(x,a′,θ))

(9)

where β > 0 controls how close Gθ (Q) is to a greedy

policy which we define to be any policy such that

∑

a∈A πθ (a|x)Q(x,a,θ) = maxa∈A Q(x,a,θ). We will utilize

policies of this form.

We will use value functions such as those described in

Section II-B. For example, if u is the prospect theory value

function defined in (2), then the parameter vector is θ =
(c+,c−,ρ+,ρ−,γ ,β ).

The optimization can be stated generally as

minθ∈Θ{�(θ)| πθ = Gθ (Q
∗),uθ ∈ F} (10)

Given a set of demonstrations D = {(xk,ak)}
N
k=1, it is our

goal to recover the policy and estimate the value function.

A possible loss function is the negative log-likelihood of

the demonstrated behavior which is given by

�(θ) =
∑

(x,a)∈D

n(x,a)
N

log(πθ (x,a)) (11)

where where n(x,a) is the frequency of (x,a) in D . An

alternative to the log-likelihood is the relative entropy or

KullbackLeibler (KL) divergence between the empirical dis-

tribution of the state-action trajectories and their distribution

under the learned policy—that is, we could minimize

�(θ) =
∑

x∈Dx
DKL(π̂(·|x)||πθ (·|x)) (12)

where DKL(P||Q) =
∑

i P(i) log(P(i)/Q(i)), Dx ⊂ D is the

sequence of observed states and π̂ is the empirical distribu-

tion on the trajectories of D .

We propose to solve the problem of estimating the pa-

rameters of the agent’s value function and approximating the

agent’s policy via gradient methods. This requires computing

the derivative of πθ with respect to θk, an element of θ ∈ Θ,

which in turn requires computing the derivative of Q∗(x,a,θ)
with respect to θk. Indeed, given the smooth map G, the

dependence of Dθk
πθ (a|x) on Dθk

Q∗(x,a,θ) is clear:

Dθk
πθ (a|x) = πθ (a|x)Dθk

ln(πθ (a|x)) (13)

= πθ (a|x)β (Dθk
Q∗(x,a,θ)... (14)

−
∑

a′∈A

πθ (a
′|x)Dθk

Q∗(x,a′,θ)) (15)

Hence, given the form of the Q-learning procedure where the

temporal differences are transformed as in [6], we need to

derive a mechanism for obtaining the optimal Q, show that it

is in fact differentiable, and derive a procedure for obtaining

the derivative.

We will show that Dθk
Q∗

θ can be calculated almost every-

where on Θ by solving fixed-point equations similar to the

Bellman-optimality equations.

We first describe our our assumptions on u.

Assumption 1: The value function u : Y ×Θ →R satisfies

the following: (i) it is strictly increasing in y and for each

θ ∈ Θ, there exists a y such that u(y,θ) = r0; (ii) for each

θ ∈ Θ, it is Lipschitz in y with constant Ly(θ) and locally

Lipschitz on Θ with constant Lθ ; (iii) there exists ε > 0 such

that ε ≤ u(y,θ)−u(y′,θ)
y−y′

for y 
= y′; and (iv) u ∈C1(Y ×Θ,R).

Define Ly = minθ Ly(θ) and L = maxθ{Ly(θ),Lθ}. Let

ũ ≡ u− r0. We define the map T such that

(T Q)(x,a,θ) = αEx,a,wũ(y(θ),θ)+Q(x,a,θ) (16)
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where y(θ) = r(x,a,w)+ γ maxa′∈A Q(x′,a,θ)−Q(x,a,θ).
Under our assumptions, this mapping is a contraction, with

Q∗ as its unique fixed point. For cases where r0 = 0, this

was first shown in [7] and in the more general setting using

similar techniques in [6].

Given the map T , we now state our main theorem:

Theorem 1 ( [17]): Assume that u : Y ×Θ → R satisfies

Assumption 1. Then the following statements hold:

(a) Q∗
θ is locally Lipschitz-continuous as a function of θ—

that is, for any (x,a) ∈ X ×A, θ ,θ ′ ∈ Θ, |Q∗(x,a,θ)−
Q∗(x,a,θ ′)| ≤ R‖θ −θ ′‖ for some R > 0;

(b) Except on a set of measure zero, the gradient Dθ Q∗
θ is

given by the solution of the fixed–point equation

φθ (x,a) =αEx,a,w

[

Dθ ũ(y(θ),θ)+Dyũ(y(θ),θ)

· (γφθ (x
′,a∗x′)−φθ (x,a))

]

+φθ (x,a) (17)

where φθ : X ×A → R
d .

The proof of the above theorem is provided in our paper [17].

Theorem 1 gives us a procedure—namely, a fixed–point

equation which is a contraction—to compute the derivative

Dθk
Q∗ so that we can compute the derivative of our loss

function �(θ). Hence the gradient method provided in Al-

gorithm 1 for solving risk-sensitive IRL problem is well

formulated.

Algorithm 1 Gradient-Based Inverse Risk-Sensitive RL

1: procedure RISKIRL(D)

2: Initialize: θ ← θ0

3: while k < MAXITER & ‖�(θ)− �(θ−)‖ ≥ δ do

4: θ− ← θ
5: ηk ← LINESEARCH(�(θ−),Dθ �(θ−))
6: θ ← θ−+ηkDθ �(θ−)
7: k ← k+1

8: return θ

Remark 1: The prospect theory u given in (2) is not

globally Lipschitz in y—in particular, it is not Lipschitz near

the reference point y0—for values of ρ+ and ρ− in less

than one. Moreover, for certain parameter combinations, it

may not even be differentiable. In [6], the authors propose

some techniques such as truncation for handling the RL

problem numerically when u is not globally Lipschitz. This

also motivates the use of the logarithm–based value function

that well-approximates the prospect theory u and retains the

convex-concave structure.

IV. EXAMPLES

We now demonstrate the proposed methods performance

on two examples. While we are able to formulate the risk-

sensitive IRL problem for parameter vectors θ that include

γ and β , in the following examples we use γ = 0.95 and

β = 0.5. Further, we fix the reference points of the log and

prospect value functions to 0 and the acceptance level for

the shortfall valuation to 0. The purpose of doing this is to

explore the effects of changing only the parameters of the

value function on the resulting policy. For both experiments,

the loss function considered is the negative log-likelihood

(11), and data is generated by sampling the given policy.1

A. Prospecting in Grid World

We tested Algorithm 1 on data from agents operating on

the canonical Grid World MDP example shown in Fig. 1

where the agents all start in the blue box, aim to maximize

their value function over an infinite horizon. In particular,

each square represents a state, and the action space is

A = {N,NE,E,SE,S,SW,W,NW}. Each action corresponds

to a movement in the specified direction. With probability

0.93, the agent moves in the desired direction and with

probability 0.01, they move in any of the other 7 directions.

To make the grid finite, any action taking the agent out of

the grid has probability zero, and the other actions are re-

weighted accordingly. The black and hatched green states are

absorbing and give rewards of −1 and +1, respectively. All

other states give rewards of 0.1.

Fig. 1: True and Learned paths extracted from the optimal policies
for agents with logarithmic value functions. The true and learned
paths align exactly with one another. ’Hide’,’Long’, and ’Mid’ cor-
respond to increasingly risk-averse agents while ’Fast’ corresponds
to a risk-neutral agent.

Fig. 1 provides a visualization of the agent’s risk sensi-

tivity resulting from different parameter combinations using

the logarithm–based value function for the true and learned

agents. There are four general classes of behaviors each

having different risk/reward tradeoffs. Each path in Fig. 1

presents a different risk profile, with the ‘Fast’ path being

the riskiest but potentially the most rewarding, and the ‘Hide’

path being the most conservative.

In our first experiment, we trained true agents with the

prospect, entropic, and log value functions as described in

Section II-B, with various sets of parameters to generate the

four behaviors. We then collected 10,000 sample trajectories

from these agents, and learned the parameters of the value

functions using our gradient–based approach. We calculated

the distance in the L1 norm between the policy in state x of

the true agent and the policy in state x of the learned agent.

In Table I we report the mean distance across states, as well

as the variance in the distance across states.

We first note that in all the cases considered in Table I,

the learned value functions produce policies that correctly

1We note that learning the decision-making model is different than
learning a reward function that can recreate the behavior (which is the
classical IRL problem), thus, benchmarking our approach against standard
IRL is not suitable.
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Prospect Log Entropic Map
Mean Var Mean Var Mean Var

Fast 0.033 0.029 4.5e-3 5.1e-3 3e-4 6e-4
Mid 0.026 0.020 0.011 6.5e-3 9.3e-3 7.3e-3
Long 0.076 0.051 0.014 8.3e-3 1.7e-3 1.1e-3
Hide 0.144 0.011 0.050 0.043 9e-4 7e-4

TABLE I: Error mean and variance, as measured by the L1 norm,
between the learned and true behaviors for various degrees of risk-
aversion in agents with different types of value functions. The ‘Fast’
agent is risk-neutral; and ‘Mid’, ’Long’, and ‘Hide’ have increasing
degree of risk-aversion. For the prospect value function agents the
behaviors were generated by keeping c+,ρ−,ρ+ fixed to: c+ = 1
and ρ− = ρ+ = 0.5 and varying c−. The parameter values for the log
value function agents are described under Fig. 1. For the entropic
map value function agents we varied lambda from 0.1 to −0.3 to
generate the 4 behaviors.

match the maximum likelihood path of the true agent. We

also note that performance for learning a prospect value

function was markedly worse than learning entropic map or

log value functions. This is most likely due to the fact that the

prospect value function is not Lipschitz around the reference

point. Thus, we have no guarantees of differentiability of

Q∗ with respect to θ , and the results are of worse quality.

The entropic map performs best of the three value functions,

mainly because there is only one parameter to learn, and the

rewards and losses are all relatively small.

In our second experiment, we learned parameters for

Fig. 2: Maximum Likelihood paths extracted from the optimal
policies for agent’s with a prospect value function learned with an
entropic and logarithm value function. The true and learned paths
coincide exactly for the true prospect and learned entropic value
functions while the learned logarithmic value function over approx-
imates how risk-averse the true agent is. The true prospect agent
has parameters (c+,c−,ρ+,ρ−) = (10,1,0.5,0.5). The learned log-
arithmic agent has parameters (c+,c−,ρ+,ρ−) = (4.6,0.3,1,1.5)
and the learned entropic agent has λ =−0.13.

agents operating under the entropic map and log value func-

tions from data collected from an agent operating under the

prospect value function and exhibiting the ‘Mid’ behavior.

The maximum likelihood path of the true prospect agent

and the learned entropic map and log value function agents

is shown in Fig. 2. The mean L1 distance between the true

prospect agent and the learned agents is shown in Table II

Of note with the experiments on learning prospect agents

with log and entropic agents is the fact that, though the

log value function fails to capture the correct maximum

likelihood path, it is closer, on average to the true policy than

the entropic map which does learn the correct path. Thus, the

Mean Var

Prospect 0.026 0.019
Entropic Map 0.095 4.3e-3

Log 0.021 1e-4

TABLE II: Error mean and variance, as measured by the L1 norm,
between learned and true behavior for an true prospect agent learned
by prospect, entropic, and logarithmic agents.

log value function may generalize better, since it has learned

the policy in general, better than the entropic map. Further,

we note that the log function better recreates the policy than

the prospect value function. This is most likely due to the fact

that the log value function approximates the prospect value

function, but is globally Lipschitz. Thus, we have stronger

guarantees of convergence which translate into better results.

B. A Passenger’s View of Ride-Sharing

We derive a toy model based on pricing data collected

from the Uber API and travel time data collected via Uber

Movement2. The pricing data was collected at 3-minute

intervals across 276 locations in Washington, D.C. (specified

by Census blocks) from 2016 November 14–283.

From the passenger’s view point, we model the ride-

sharing MDP as follows. The action space is A= {ride,wait}
and the state space X = X × T ∪ {xf} where X =
{1.0,1.4,1.8,2.2} is the part of the state corresponding to

the price multiplier, T = {0, . . . ,Tf} is the part of the state

corresponding to the time index, and xf is a terminal state

representing the completed ride that occurs when a ride is

taken. At time t, the state is notationally given by (xt , t).
The reward rt is modeled as a random variable that depends

on the current price as well as a random variable Z(t) for

travel time whose distribution is estimated from the Uber

Movement travel time data. In particular, for any time t < Tf

the reward is given by

R(xt+1,at ,xt) =

ß

r̄, at = wait

r̃(t), at = ride
(18)

with r̄ < 0 a constant and r̃(t) = St − xt(pbase + pmileD +
p minZ(t)) where D is the distance in miles, St is a time

dependent satisfaction (we selected it to linearly decrease in

time from some initial satisfaction level), and pbase, pmile, and

pmin are the base, per mile, and per min prices, respectively.

These prices are chosen based on Washington, DC Uber

prices4. At the final time Tfinal, the agent is forced to take the

ride if they have not selected to take a ride at a prior time.

This reflects the fact that the agent presumably needs to get

from their origin to their destination and the reward structure

reflects the dissatisfaction the agent feels as a result of having

to ultimately take the ride despite the potential desire to wait.

The transition probability kernel P : X ×A×X → [0,1] is

estimated from the ride-sharing data. The travel-time data we

2Uber Movement: https://movement.uber.com/cities
3The data was originally collected by and has been made pub-

licly available here: https://github.com/comp-journalism/

2016-03-wapo-uber
4The base, per min, and per mile prices can be found here: http://

uberestimate.com/prices/Washington-DC/
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(a) risk-neutral, ρ+ = ρ− = 1.0 (b) risk-seeking in losses, ρ− = 0.5

Fig. 3: Prospect Agents with c+ = c− = 1.0 and ρ+ = 1.0. The
plots show the probabilities of taking a ride in each state under the
true and learned optimal policies. The more risk-seeking an agent
is in losses, the more likely they are to take a ride.

have is available on an hourly basis. Hence, we use the 3 min

price change data for each hour to derive a static transition

matrix by empirically estimating the transition probabilities

where we bin prices in the following way. For prices in

[1.0,1.2), x = 1.0; for prices in [1.2,1.6), x = 1.4; for prices

in [1.6,2.0), x = 1.8; otherwise x = 2.2. In the time periods

we examined, the max price multiplier was 2.0. We selected

the reference point to be r0 = 0.

We examined several locations and hours which had

different characteristics in terms of travel time and price

statistics. However, the core risk-sensitive behaviors were

the same. For the examples depicted in Fig. 3, we

generated a ride-sharing MDP for Washington D.C. ori-

gin GPS= (−77.027046,38.926749) and destination GPS=
(−76.935773,38.885964)5 at 5AM.

The transition matrix for the price multipliers is given by

P =

⎡

⎢

⎢

⎣

0.876 0.099 0.017 0.008

0.347 0.412 0.167 0.074

0.106 0.353 0.259 0.282

0.086 0.219 0.143 0.552

⎤

⎥

⎥



(19)

for each time. The travel time distribution is a standard

normal distribution truncated to the upper and lower bounds

specified by the Uber Movement data. Measured in seconds,

we use location parameter 2371, scale parameter 100, and

1554 and 3619 as the upper and lower bound, respectively.

In Fig. 3, for a passenger (assumed to be an agent with

a prospect value) that is risk-averse, risk-neutral, and risk-

seeking in losses and risk neutral in gains, we show the state

space as a grid with the probability of taking a ride under

the true and learned optimal policy overlaid on each state.

As the agent becomes more risk-seeking in losses, they are

less likely to take the ride when in a high price state and

5Note that these correspond to Uber Movement id’s 197 and 113,
respectively.

more likely to take the ride when in a low price state. This

is likely due to the fact that they are more willing to risk it

in high price states by waiting for a lower price and in low

price states by jumping on the low price opportunity.

V. DISCUSSION

We presented a new gradient based technique for learning

risk-sensitive decision making models of humans amidst au-

tomation. We find that while there are a number of technical

issues related to learning prospect theory based agents—

namely, their value functions are not Lipschitz for parameter

combinations that best capture human decision making—we

are able to still numerically learn the policies of these agents.

Moreover, we introduce a logarithm-based value function

that well-approximates the convex-concave structure of the

prospect theory values while satisfying the assumptions of

our theorems. We demonstrated the algorithms performance

for agents based on several types of behavioral models and

do so on two test cases.
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