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Gradient—-Based Inverse Risk-Sensitive Reinforcement Learning

Eric Mazumdar, Lillian J. Ratliff, Tanner Fiez, and S. Shankar Sastry

Abstract— We address the problem of inverse reinforcement
learning in Markov decision processes where the agent is risk-
sensitive. In particular, we model risk-sensitivity in a reinforce-
ment learning framework by making use of models of human
decision-making having their origins in behavioral psychology
and economics. We propose a gradient-based inverse reinforce-
ment learning algorithm that minimizes a loss function defined
on the observed behavior. We demonstrate the performance of
the proposed technique on two examples, the first of which is
the canonical Grid World example and the second of which is
an MDP modeling passengers’ decisions regarding ride-sharing.
In the latter, we use pricing and travel time data from a ride-
sharing company to construct the transition probabilities and
rewards of the MDP.

I. INTRODUCTION

The modeling and learning of human behaviors is becom-
ing increasingly important as critical systems begin to rely
more on automation and artificial intelligence. Yet, in this
task we face a number of challenges, not least of which is
the fact that humans are known to behave in ways that are not
completely rational. For example, there is mounting evidence
to support the fact that humans often use reference points—
experiences that are perceived to be related to the decision
the human is making. It has also been observed that their
decisions are impacted by their perception of the external
world (exogenous factors) and their present state of mind
(endogenous factors) as well as how the decision is framed
or presented [1], [2].

The success of descriptive behavioral models in capturing
human behavior has long been touted by the psychology
community and, more recently, by the economics community.
Meanwhile, in the engineering context, humans have largely
been modeled, under rationality assumptions, from the so-
called normative point of view where things are modeled
as they ought to be, which is counter to a descriptive as
is point of view. However, risk-sensitivity has been fairly
extensively explored in engineering and computer science in
the context of learning to control stochastic dynamic systems
(see, e.g., [3], [4]). Many of these approaches are targeted at
mitigating risks due to uncertainties in controlling a system
such as a plant or robot. Much of this work simply handles
risk-aversion by leveraging techniques such as exponential
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utility functions or minimizing variance. Human decision
makers, on the other hand, can be at once risk-averse and
risk-seeking depending their frame of reference. The com-
plex risk-sensitive behavior arising from human interaction
with automation is only recently coming into focus. Indeed,
the adoption of diverse behavioral models in engineering—
in particular, in learning and control—is growing due to the
fact that humans are increasingly playing an integral role in
automation both at the individual and societal scale.

The problem of learning accurate models of human
decision-making is becoming increasingly important for both
prediction and description. For example, control/incentive
schemes need to predict human behavior as a function of
external stimuli. On the other hand, policy makers, e.g., are
interested in interpreting human reactions to implemented
regulations and policies. A few approaches for integrating
the risk-sensitivity of humans in the control and reinforce-
ment learning problems via behavioral models [5]-[8] have
recently emerged. These approaches largely assume a risk-
sensitive Markov decision process (MDP) formulated based
on a behavioral model and determine the optimal policy via,
e.g., a learning procedure. We refer to this as the forward
problem. We are interested in solving the so-called inverse
problem which seeks to estimate the decision-making model
given a set of demonstrations.

In particular, in this paper we model human decision-
makers as risk-sensitive Q-learning agents where we exploit
very rich behavioral models from behavioral psychology
and economics that capture a whole spectrum of risk-
sensitivity. We propose a gradient-based learning algorithm
for inferring the decision-making model parameters from
demonstrations—that is, we propose a novel framework
for solving the inverse risk-sensitive reinforcement learning
problem. We demonstrate the efficacy of the learning scheme
on i) the canonical Grid World example and ii) a passenger’s
view of ride-sharing as an MDP with model parameters
estimated from real-world data.

The remainder of this paper is organized as follows. In
Section II, we briefly overview the Q-learning model we
assume for risk-sensitive agents and show that it is amenable
to integration with the behavioral models. In Section III,
we formulate the inverse risk sensitive RL problem and
propose a gradient—based algorithm to solve it. Examples that
demonstrate the ability of the proposed scheme to capture
a wide breadth of risk-sensitive behaviors are provided in
Section IV. Finally, we conclude with some discussion and
comments on future work in Section V.
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II. RISK-SENSITIVE REINFORCEMENT LEARNING

Risk-sensitivity has been long covered in the stochastic
decision-making literature. The typical way in which risk is
dealt with is through transformations of the reward by expo-
nential value functions. As an alternative approach, transfor-
mation of the temporal differences in a Q-learning scheme
according to a risk model has recently been proposed [6]-
[8]. This avoids certain pitfalls of the reward transformation
approach such as poor convergence performance. Further,
this framework allows for integration of behavioral decision-
making models [5]-[7].

Under the assumption that the agent of interest is making
decisions according to this model, we formulate a gradient—
based method for learning the parameters of the agent’s value
function from data. In this section, we briefly review rele-
vant features of risk-sensitive Q-learning. A more thorough
treatment of the subject can be found in [6]—[8].

A. Markov Decision Process

We consider a class of finite MDPs which consist of
a state space X, an admissible action space A(x) C A for
each x € X, a transition kernel P(x’|x,a) (which denotes the
probability of moving from state x to x' given action a),
and a reward function r: X X A x W — R where W is the
disturbance space and has distribution P,(:|x,a). Including
disturbances w allows us to model random rewards for which
use the notation R(x,a) to denote the random reward having
distribution P,(-|x,a).

In the classical expected utility maximization framework,
an agent with utility function u seeks to maximize the
expected discounted utility by selecting a Markov policy 7.
That is, for an infinite horizon MDP, the optimal policy is
obtained by maximizing

J(xo0) = maxz B[} 57, Yu(R(xi, ar))] (D

where xo is the initial state and y € [0,1) is the discount
factor. The risk-sensitive RL problem transforms the above
problem to account for a salient features of human decision-
making such as loss aversion, reference point dependence,
and framing effects.

B. Value Functions

In the risk-sensitive setting, just like the standard expected
utility framework, an agent makes choices based on the value
of their outcome as defined by their value function u: R — R.

One particularly rich class of value functions is the para-
metric class of value functions introduced in Prospect Theory
by Kahneman and Tvsersky [9], [10]. This class captures
many of the most salient features of human decision-making
including framing effects, reference dependence and loss
aversion. The value function is given by:

cr(y=y0)P*,  y>o

u(y) = )
) {—C—(yo—y)”i y<Yo

where yo is the reference point that the decision-maker

compares outcomes against when determining if the outcome

is a loss or gain. The parameters (c4,c—,p+,p—) control

the degree of risk-sensitivity and loss-aversion, allowing the
value function to capture a rich set of behaviors. For example,
0 < p+,p— < 1 leads to risk-averse preferences on gains and
risk-seeking preferences on losses (concave in gains, convex
in losses) while p4,p_ > 1 leads to risk-averse preferences
on losses and risk-seeking preferences on gains (convex in
gains, concave in losses).

We introduce a class of logarithm—based value functions
that approximate the shape of the prospect theory value
function for p;,p_ < 1, the range of values that are typical
of human decision-making [11]-[13].

_ [ cilog(l+ps(y=y0)),  y>)o
uby) = { —c_log(1+p_(o—3), y<w O

This new value function improves the performance (in
terms of convergence speed) of the gradient-based IRL
algorithm we propose in Section III.

Outside of the prospect theory value function, other map-
pings have been proposed to capture risk-sensitivity. One
example is the entropic map, u(y) = exp(Ay), where the
one parameter, A controls the degree of risk-sensitivity. This
value function has been primarily used in finance and control
theory.

C. Valuation Functions

More complex value functions are not enough to capture
risk-sensitive behavior. To further extend classical RL to risk-
sensitive RL, valuation functions are used to generalize the
expectation operator.

Definition 1 ( [6], [14], [15]): A mapping ¥ : R x
& — R is called a valuation function if for each u € &,
() 7(Y,u) < ¥(Z,u) whenever Y < Z (monotonic) and
() Y (Y +yL,u) =¥ (Y,u)+y for any y € R (translation
invariant).

Such a map is used to characterize an agent’s preferences—
that is, one prefers (Y,u) to (Z,v) whenever ¥ (Z,v) <
V(Y1)

In the context of MDPs, we can define a valuation function
for each state—action pair. We refer to ¥ (Y |x,a) : RIl x X x
A — R as a valuation map such that %, = ¥ (-|x,a) is a
valuation function.

If we let 77 (Y) =3 seax) ®(alx) ¥:,q(Y ), the optimization
problem in (1) generalizes to

fT(n,xo) :”I/xgo [R[XO,ao] —I-YVXT] [R[xl,al]—l—

"'+Y7CCJTTT[R(XT,GT)]"'H- (4)

Let us define max;J(7,x9) = limy o J7 (7, X0).

The particular valuation function we employ in our for-
ward model is the shortfall valuation, which incorporates
reference dependence in the decision-making model. It origi-
nated in mathematical finance [14], [16] where it was shown
to be a valuation function and it has been used in a risk-
sensitive MDP context in [3] and in a RL context in [6].
The shortfall ¥ induced by a value function u : R — R and
an acceptance level ry is given by

Y (Y)=sup{m e R|E, [u(Y —m)] > ro} 5)
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where we suppress the dependence of ¥ on u, the distribu-
tion of the random variable for outcomes Y.

D. Risk-Sensitive Q-Learning

Given the value and valuation functions, we are now in-
troduce risk-sensitive Q-learning. In the classical RL frame-
work, the Bellman equation is used to derive a Q-learning
procedure. Generalizations of the Bellman equation for risk-
sensitive RL have been derived in [3], [7]. These generaliza-
tions are then used to formulate a Q-learning procedure for
the risk-sensitive RL problem.

Given (4), it is shown in [3] that if V* satisfies

V*(X()) = MaX,cA(x) %c,u (R(xv a) + ’}/V*)v (6)

then V* = max, J(7,x0) holds for all x € X.
We now define the Q-function, Q*(x,a) = ¥ 4(R(x,a) +
YV*), such that (6) becomes

0 (x,a) = ¥.a (R(x,a) + ymax e vy O* (,a)), (D

for all (x,a) € X X A.

If u is continuous and strictly increasing, we can evaluate
(7) for the shortfall valuation, and get the following fixed
point equation for Q* (see [14, Prop. 4.104] or [6, Prop. 3.1]):

E [I/t (V()C,CLW) + ymaXa’EA(x’) Q* ()C/7(1/) - Q*()C,Cl))] =70
®)

where the expectation is taken with respect to u =
P(xX'|x,a)P.(w|x,a). Further it is shown that in finite MDPs,
and with further technical conditions on u, there exists a
unique Q-function Q* satisfying (8) for all (x,a) € X X A [6,
Thm. 3.2].

III. GRADIENT-BASED INVERSE RISK-SENSITIVE RL

We now assume that an agent has performed risk-sensitive
Q-learning to obtain their policy and formulate the inverse
risk-sensitive RL problem in a general form as follows:

First, we select a parametric class of policies, {7g}g,
Ty € IT and parametric utility function {ug }g, ug € .# where
Z is a family of utility functions and 6 € ® C R?. We
try to tune the parameters so as to minimize some loss
¢(mg;2) which is a function of the parameterized policy
g and a set of demonstrations given as state-action pairs,
7 = {(w,a) iy -

We will use the shorthand notation £(0) = £(7; P), and
for mappings u and Q, we will now indicate their dependence
on O—that is, we will write Q(x,a,0) and u(y,6) where
u:Y x®— R. Note that since y is the temporal difference
it also depends on 6 and we will indicate that where not
obvious by writing y(6).

It is common in the IRL literature to adopt a smooth map
G that operates on the space of Q-functions for defining
the parametric policy space. A common class of parametric
policies are Boltzmann policies of the form

— __exp(BO(x.a,8))
GG(Q)(CI|X) - Za’eAexP(ﬁQ(x’a/ﬂ)) 9

where B > 0 controls how close Gg(Q) is to a greedy
policy which we define to be any policy such that

> aea To(alx)Q(x,a,0) = max,eq Q(x,a,0). We will utilize
policies of this form.

We will use value functions such as those described in
Section II-B. For example, if u is the prospect theory value
function defined in (2), then the parameter vector is 6 =

(C+7C*ap+ap*7Y7B)'
The optimization can be stated generally as

mingce{/(0)| T = Go(Q*),up € F} (10)

Given a set of demonstrations 9 = {(xy,ax)}y_,, it is our
goal to recover the policy and estimate the value function.
A possible loss function is the negative log-likelihood of
the demonstrated behavior which is given by
(6) =

S aes " log(me (x.a)) (an
where where n(x,a) is the frequency of (x,a) in 2. An
alternative to the log-likelihood is the relative entropy or
KullbackLeibler (KL) divergence between the empirical dis-
tribution of the state-action trajectories and their distribution
under the learned policy—that is, we could minimize

€(0) = > req, Dxu(R(-|x)||7o (-|x))

where Dk (P||Q) = >, P(i)log(P(i)/Q(i)), D« C Z is the
sequence of observed states and 7 is the empirical distribu-
tion on the trajectories of 2.

We propose to solve the problem of estimating the pa-
rameters of the agent’s value function and approximating the
agent’s policy via gradient methods. This requires computing
the derivative of g with respect to 6, an element of 6 € @,
which in turn requires computing the derivative of Q*(x,a, 6)
with respect to 6. Indeed, given the smooth map G, the
dependence of Dy, 7 (a|x) on Dg,Q*(x,a,0) is clear:

12)

Dg, g (alx) = g (a|x)Dg,In(mg (alx)) (13)
= mg(alx)B (D, Q" (x,a,0)... (14)
—> me(dx)D, 0" (x,d',0)) (15

a'eA
Hence, given the form of the Q-learning procedure where the
temporal differences are transformed as in [6], we need to
derive a mechanism for obtaining the optimal Q, show that it
is in fact differentiable, and derive a procedure for obtaining
the derivative.

We will show that Dg, Qp can be calculated almost every-
where on ® by solving fixed-point equations similar to the
Bellman-optimality equations.

We first describe our our assumptions on u.

Assumption 1: The value function u:Y x ® — R satisfies
the following: (i) it is strictly increasing in y and for each
0 € O, there exists a y such that u(y,0) = rp; (ii) for each
6 € O, it is Lipschitz in y with constant L,(6) and locally
Lipschitz on ® with constant Lg; (iii) there exists € > 0 such
that € < %W for y #y; and (iv) u € C' (Y x ®,R).

Define Ly, = ming L,(0) and L = maxe{L,(6),Lg}. Let
i =u—rog. We define the map T such that

(TQ)(X,CZ,O) = O‘Ex,a,wﬁ(y(e)’e)+Q(~xva’0) (16)
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where y(0) = r(x,a,w)+ymaxycs Q(X',a,0) — Q(x,a,0).
Under our assumptions, this mapping is a contraction, with

Q* as its unique fixed point. For cases where ro = 0, this

was first shown in [7] and in the more general setting using

similar techniques in [6].

Given the map T, we now state our main theorem:
Theorem 1 ( [17]): Assume that u:Y x ® — R satisfies

Assumption 1. Then the following statements hold:

(a) Qp is locally Lipschitz-continuous as a function of 6—
that is, for any (x,a) € X x A, 6,0’ € ©, |Q*(x,a,0) —
0*(x,a,0")] <R||6 — 6| for some R > 0;

(b) Except on a set of measure zero, the gradient DgQj is
given by the solution of the fixed—point equation

(PG (x,a) :aEx,a,w [DGﬁ(y(e)v 9) +Dyﬁ(y(6)v 9)
(Y90 (x',ay) — o (x,a))] + o (x,a)

where ¢ : X x A — RY.

The proof of the above theorem is provided in our paper [17].

Theorem 1 gives us a procedure—namely, a fixed—point
equation which is a contraction—to compute the derivative
Dg, Q" so that we can compute the derivative of our loss
function £(60). Hence the gradient method provided in Al-
gorithm 1 for solving risk-sensitive IRL problem is well
formulated.

A7)

Algorithm 1 Gradient-Based Inverse Risk-Sensitive RL

1: procedure RISKIRL(Z)

2 Initialize: 0 < 6,

3 while k < MAXITER & ||¢(0)—¢(6-)]| > 6 do
4 6_«<06

5: M < LINESEARCH(£(0-),Dgl(6-))

6

7

8

0 < 6_+mDel(6-)
k< k+1
return 6

Remark 1: The prospect theory u given in (2) is not
globally Lipschitz in y—in particular, it is not Lipschitz near
the reference point yp—for values of py and p_ in less
than one. Moreover, for certain parameter combinations, it
may not even be differentiable. In [6], the authors propose
some techniques such as truncation for handling the RL
problem numerically when u is not globally Lipschitz. This
also motivates the use of the logarithm—based value function
that well-approximates the prospect theory u and retains the
convex-concave structure.

IV. EXAMPLES

We now demonstrate the proposed methods performance
on two examples. While we are able to formulate the risk-
sensitive IRL problem for parameter vectors 6 that include
y and B, in the following examples we use ¥ = 0.95 and
B = 0.5. Further, we fix the reference points of the log and
prospect value functions to 0 and the acceptance level for
the shortfall valuation to 0. The purpose of doing this is to
explore the effects of changing only the parameters of the
value function on the resulting policy. For both experiments,

the loss function considered is the negative log-likelihood
(11), and data is generated by sampling the given policy.!

A. Prospecting in Grid World

We tested Algorithm 1 on data from agents operating on
the canonical Grid World MDP example shown in Fig. 1
where the agents all start in the blue box, aim to maximize
their value function over an infinite horizon. In particular,
each square represents a state, and the action space is
A ={N,NE,E,SE,S,SW,W ,NW}. Each action corresponds
to a movement in the specified direction. With probability
0.93, the agent moves in the desired direction and with
probability 0.01, they move in any of the other 7 directions.
To make the grid finite, any action taking the agent out of
the grid has probability zero, and the other actions are re-
weighted accordingly. The black and hatched green states are
absorbing and give rewards of —1 and +1, respectively. All
other states give rewards of 0.1.
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B Mid
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Fig. 1: True and Learned paths extracted from the optimal policies
for agents with logarithmic value functions. The true and learned
paths align exactly with one another. "Hide’,’Long’, and "Mid’ cor-
respond to increasingly risk-averse agents while "Fast’” corresponds
to a risk-neutral agent.

Fig. 1 provides a visualization of the agent’s risk sensi-
tivity resulting from different parameter combinations using
the logarithm-based value function for the true and learned
agents. There are four general classes of behaviors each
having different risk/reward tradeoffs. Each path in Fig. 1
presents a different risk profile, with the ‘Fast’ path being
the riskiest but potentially the most rewarding, and the ‘Hide’
path being the most conservative.

In our first experiment, we trained frue agents with the
prospect, entropic, and log value functions as described in
Section II-B, with various sets of parameters to generate the
four behaviors. We then collected 10,000 sample trajectories
from these agents, and learned the parameters of the value
functions using our gradient—based approach. We calculated
the distance in the L; norm between the policy in state x of
the true agent and the policy in state x of the learned agent.
In Table I we report the mean distance across states, as well
as the variance in the distance across states.

We first note that in all the cases considered in Table I,
the learned value functions produce policies that correctly

'We note that learning the decision-making model is different than
learning a reward function that can recreate the behavior (which is the
classical IRL problem), thus, benchmarking our approach against standard
IRL is not suitable.
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Prospect Log Entropic Map
Mean Var Mean Var Mean Var
Fast 0.033 | 0.029 4.5e-3 | 5.1e-3 3e-4 6e-4
Mid 0.026 | 0.020 0.011 | 6.5e-3 9.3e-3 | 7.3e-3
Long 0.076 | 0.051 0.014 | 8.3e-3 1.7¢-3 | 1.1e-3
Hide 0.144 | 0.011 0.050 0.043 9e-4 Te-4

TABLE I: Error mean and variance, as measured by the L norm,
between the learned and true behaviors for various degrees of risk-
aversion in agents with different types of value functions. The ‘Fast’
agent is risk-neutral; and ‘Mid’, "Long’, and ‘Hide’ have increasing
degree of risk-aversion. For the prospect value function agents the
behaviors were generated by keeping ci,p—,p+ fixed to: c4 =1
and p_ = p4+ = 0.5 and varying c_. The parameter values for the log
value function agents are described under Fig. 1. For the entropic
map value function agents we varied lambda from 0.1 to —0.3 to
generate the 4 behaviors.

match the maximum likelihood path of the true agent. We
also note that performance for learning a prospect value
function was markedly worse than learning entropic map or
log value functions. This is most likely due to the fact that the
prospect value function is not Lipschitz around the reference
point. Thus, we have no guarantees of differentiability of
Q* with respect to 6, and the results are of worse quality.
The entropic map performs best of the three value functions,
mainly because there is only one parameter to learn, and the
rewards and losses are all relatively small.

In our second experiment, we learned parameters for

Il True

'J Ent
BN Log
S

Fig. 2: Maximum Likelihood paths extracted from the optimal
policies for agent’s with a prospect value function learned with an
entropic and logarithm value function. The true and learned paths
coincide exactly for the true prospect and learned entropic value
functions while the learned logarithmic value function over approx-
imates how risk-averse the true agent is. The true prospect agent
has parameters (c4,c—,p+,p—) = (10,1,0.5,0.5). The learned log-
arithmic agent has parameters (c4+,c—,p+,p—) = (4.6,0.3,1,1.5)
and the learned entropic agent has A = —0.13.

agents operating under the entropic map and log value func-
tions from data collected from an agent operating under the
prospect value function and exhibiting the ‘Mid’ behavior.
The maximum likelihood path of the true prospect agent
and the learned entropic map and log value function agents
is shown in Fig. 2. The mean L; distance between the true
prospect agent and the learned agents is shown in Table II
Of note with the experiments on learning prospect agents
with log and entropic agents is the fact that, though the
log value function fails to capture the correct maximum
likelihood path, it is closer, on average to the true policy than
the entropic map which does learn the correct path. Thus, the

Mean Var
Prospect 0.026 0.019
Entropic Map 0.095 | 4.3e-3
Log 0.021 le-4

TABLE II: Error mean and variance, as measured by the L; norm,
between learned and true behavior for an true prospect agent learned
by prospect, entropic, and logarithmic agents.

log value function may generalize better, since it has learned
the policy in general, better than the entropic map. Further,
we note that the log function better recreates the policy than
the prospect value function. This is most likely due to the fact
that the log value function approximates the prospect value
function, but is globally Lipschitz. Thus, we have stronger
guarantees of convergence which translate into better results.

B. A Passenger’s View of Ride-Sharing

We derive a toy model based on pricing data collected
from the Uber API and travel time data collected via Uber
Movement®. The pricing data was collected at 3-minute
intervals across 276 locations in Washington, D.C. (specified
by Census blocks) from 2016 November 14-283.

From the passenger’s view point, we model the ride-
sharing MDP as follows. The action space is A = {ride, wait}
and the state space X = 2" x 7 U {x;} where 2 =
{1.0,1.4,1.8,2.2} is the part of the state corresponding to
the price multiplier, .7 = {0,...,T;} is the part of the state
corresponding to the time index, and xf is a terminal state
representing the completed ride that occurs when a ride is
taken. At time 7, the state is notationally given by (x,7).
The reward r; is modeled as a random variable that depends
on the current price as well as a random variable Z(r) for
travel time whose distribution is estimated from the Uber
Movement travel time data. In particular, for any time ¢ < Tt
the reward is given by

a; = wait

a; = ride (18)

r?

R(xi41,a:,%) = { #(t),

with 7 < 0 a constant and 7(r) = S; — x;(Pbase + PmileD +
PminZ(t)) where D is the distance in miles, S; is a time
dependent satisfaction (we selected it to linearly decrease in
time from some initial satisfaction level), and ppase, Pmile, and
Pmin are the base, per mile, and per min prices, respectively.
These prices are chosen based on Washington, DC Uber
prices4. At the final time Tjp,, the agent is forced to take the
ride if they have not selected to take a ride at a prior time.
This reflects the fact that the agent presumably needs to get
from their origin to their destination and the reward structure
reflects the dissatisfaction the agent feels as a result of having
to ultimately take the ride despite the potential desire to wait.
The transition probability kernel P: X x A x X — [0,1] is
estimated from the ride-sharing data. The travel-time data we

2Uber Movement: https://movement .uber.com/cities

3The data was originally collected by and has been made pub-
licly available here: https://github.com/comp-journalism/
2016-03-wapo—-uber

4The base, per min, and per mile prices can be found here: http://
uberestimate.com/prices/Washington-DC/
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Fig. 3: Prospect Agents with ¢y =c_ = 1.0 and p+ = 1.0. The
plots show the probabilities of taking a ride in each state under the
true and learned optimal policies. The more risk-seeking an agent
is in losses, the more likely they are to take a ride.

have is available on an hourly basis. Hence, we use the 3 min
price change data for each hour to derive a static transition
matrix by empirically estimating the transition probabilities
where we bin prices in the following way. For prices in
[1.0,1.2), x = 1.0; for prices in [1.2,1.6), x = 1.4; for prices
in [1.6,2.0), x = 1.8; otherwise x = 2.2. In the time periods
we examined, the max price multiplier was 2.0. We selected
the reference point to be rp = 0.

We examined several locations and hours which had
different characteristics in terms of travel time and price
statistics. However, the core risk-sensitive behaviors were
the same. For the examples depicted in Fig. 3, we
generated a ride-sharing MDP for Washington D.C. ori-
gin GPS= (—77.027046,38.926749) and destination GPS=
(—76.935773,38.885964)> at SAM.

The transition matrix for the price multipliers is given by

0.876 0.099 0.017 0.008

p_ 0.347 0412 0.167 0.074 (19)
0.106 0.353 0.259 0.282
0.086 0.219 0.143 0.552

for each time. The travel time distribution is a standard
normal distribution truncated to the upper and lower bounds
specified by the Uber Movement data. Measured in seconds,
we use location parameter 2371, scale parameter 100, and
1554 and 3619 as the upper and lower bound, respectively.

In Fig. 3, for a passenger (assumed to be an agent with
a prospect value) that is risk-averse, risk-neutral, and risk-
seeking in losses and risk neutral in gains, we show the state
space as a grid with the probability of taking a ride under
the true and learned optimal policy overlaid on each state.
As the agent becomes more risk-seeking in losses, they are
less likely to take the ride when in a high price state and

SNote that these correspond to Uber Movement id’s 197 and 113,
respectively.

more likely to take the ride when in a low price state. This
is likely due to the fact that they are more willing to risk it
in high price states by waiting for a lower price and in low
price states by jumping on the low price opportunity.

V. DISCUSSION

We presented a new gradient based technique for learning
risk-sensitive decision making models of humans amidst au-
tomation. We find that while there are a number of technical
issues related to learning prospect theory based agents—
namely, their value functions are not Lipschitz for parameter
combinations that best capture human decision making—we
are able to still numerically learn the policies of these agents.
Moreover, we introduce a logarithm-based value function
that well-approximates the convex-concave structure of the
prospect theory values while satisfying the assumptions of
our theorems. We demonstrated the algorithms performance
for agents based on several types of behavioral models and
do so on two test cases.
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