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Abstract—Timely exchange of information over multi-hop
wireless networks is gaining increasing relevance with growing
interests in applications such as internet of things (IoT) and
autonomous vehicular networks. Age-of-information (AoI) is
a recently proposed performance metric that measures infor-
mation freshness at the destination node. AoI at a destination
node is the time since last update was received. We study AoI
for multi-hop networks with general interference constraints
with R source-destination pairs, and derive simple stationary
policies in which links are activated according to a stationary
probability distribution. We first consider a line network with a
single source-destination pair, and characterize AoI as a convex
function of link activation rates. We then use this result to obtain
the optimal policy, in the class of stationary policies, for multi-
hop network, with several source-destination pairs. We prove
an important separation principle, which says that the optimal
scheduling policy for the multi-hop problem can be obtained by
solving an equivalent problem in which all source-destination
pairs are single-hop away.

I. INTRODUCTION

Exchanging fresh information updates over multi-hop

wireless networks is gaining increasing relevance with advent

of ad-hoc networked wireless systems such as internet of

things (IoT), vehicular networks, and network of unmanned

aerial vehicles. In unmanned aerial vehicular networks, for

example, exchanging position, velocity, and other control in-

formation in a timely fashion can help in collision avoidance

and efficient path planning [1], [2]. In IoT, and other cyber

physical systems, timely feedback of sensor data is vital to

the overall system performance.

These systems differ from the traditional communication

systems in two ways. In traditional communication systems,

data or packet arrival is assumed to be an exogenous process

that cannot be controlled. However, in these networks, the

update packets, such as sensor data, can be generated at will.

Generating update packets at the right rate may be more

efficient [3], as high rate of generation results in network

clogging and low rate results in updates being sent too

infrequently.

Secondly, traditional communication systems use packet

centric performance measures such as throughput or delay

to characterize performance. These performance measures

do not fully capture the information freshness paradigm.

For example, delay of a stale packet, that got caught in
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Fig. 1. Age of Information (AoI) as a function of time. Here, ti is the

time of generation of the ith packet at the source, and t
′
i is the time of its

reception at the destination node.

the network due to network clogging, doesn’t need to be

accounted for as long as the intended ground station gets

fresh information regularly via other, promptly received,

update packets.

A new performance measure, called Age of information

(AoI), was proposed in [3], [4] to measure information

freshness at the destination node. AoI at the destination node

at time t, is the time elapsed since the last received update

packet was generated. Figure 1, plots AoI evolving in time.

Whenever the destination node receives a fresh update packet,

the AoI drops to the time elapsed since the received packet’s

generation time, while it grows linearly otherwise.

AoI was first studied in [4] for a vehicular network using

simulation. Vehicles periodically generated update packets to

be transmitted to other nodes in the network. An optimal

rate of packet generation was observed. To better understand

this phenomena, [3] modeled the network between the source

and destination as a single first-in-first-out (FIFO) queue, and

proved that there is indeed an optimal rate at which AoI is

minimized.

Since then, most of the work on AoI has focused on

single queue models. Age for FIFO M/M/1, M/D/1, and

D/M/1 queues was analyzed in [3], multiclass FIFO M/G/1

and G/G/1 queues were studied in [5], while last-in-first-

out (LIFO) queues under various arrival and service time

distributions were studied in [6]–[8]. AoI for M/M/2 and

M/M/∞ queues was analyzed in [9], [10], which primarily

studied the impact of out-of-order delivery of packets on age.

Effects of packet error or packet drop on age for the M/M/1

queue, with FIFO service, was studied in [11].

AoI over multi-hop networks with general interference

constraints, however, has received very little attention.

In [12], a switch type network was considered under phys-
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ical interference constraints, and the problem of scheduling

finitely many update packets was shown to be NP-hard for

this network. Multiple access type network with nodes and a

single base station, where only a single link can be activated

at any given time, was studied in [13], [14]. Slotted ALOHA-

like random access for AoI minimization was studied in [15].

To the best of our knowledge, AoI over multi-hop networks

has been considered only in [16] where LIFO queue service

was shown to reduce age.

We consider the age minimization problem over a multi-

hop network with general interference constraint. We con-

sider a set of R source-destination pairs or flows, with each

flow associated with a source-destination path. Our objective

is to device simple scheduling policy that minimizes weighted

age over flows. We therefore limit ourselves to simple,

stationary policies in which links are activated according to

a stationary probability distribution.

We first consider a L-hop line network with a single

flow with general interference constraints. We completely

characterize the peak and average age, two popular measures

of AoI, as a convex function of link activation rates, and

show that the two measures are equal. We then apply

these results to general, R-flow multi-hop network, with

general interference constraints, and formulate a weighted

age minimization problem. We prove an important separation
principle, that says that the optimal stationary scheduling

policy for multi-hop age can be obtained by solving a single-

hop problem, where each link is considered to be a flow. To

the best of our knowledge, this is the first work to consider

scheduling policies for age minimization problem for multi-

hop networks, with general interference constraints.

We describe the system model in Section II. The specific

case of line network with general interference constraint

is considered in Section III. In Section IV, we extend the

results obtained for the line network to general networks with

general interference constraint. We conclude in Section V.

II. SYSTEM MODEL

Consider a network G = (V,E), where V denotes the set

of communicating nodes and E denotes the set of directed

communication links. Not all links in E can be activated

simultaneously in the network due to interference constraints.

We call m ⊂ E a feasible activation set if all links in m can

be activated simultaneously without interference. We let A
to denote the collection of all feasible activation sets. We

assume time to be slotted with slot durations normalized to

unity.

The network G contain a set R = {1, 2, . . . R} source-

destination pairs. For every r ∈ R, let s(r) and d(r) denote

the source and the destination nodes, respectively. The source

s(r) has to send update packets to the destination d(r). We

refer to R as set of flows and a r ∈ R as flow. The destination

d(r) may be multiple hops away from the source s(r), and

as a result, the updates need to be routed to the destination

node with the aid of other nodes in the network. The source

Fig. 2. Illustration of age propagation in a network with R = {r1, r2}.
Snapshot of the network taken at time t = 100. Also shown is the time of
generation of the last received packet at each node, for each flow.

s(r) chooses a path p(r) in G from s(r) to d(r) to send

update packets.

The source s(r) generates and transmits update packet.

Update packets are time stamped at the time of their gen-

eration to ensure that every receiving node, especially the

destination node, knows the age of the information contained

in the packet. We assume all the nodes in the network to

be active, i.e., they retain the latest generated packet for

every flow r ∈ R. In particulate, the source nodes always

have a fresh update packet for transmission. In Figure 2, for

example, nodes 2 has retained the latest update packet for

both flows, namely, r1 and r2, that pass through it. The last

received update packets at node 2 were generated at t = 98
and t = 90 for flows r1 and r2, respectively.

For every flow r, the age of a node i ∈ V at time t is

the time since the last received update packet of that flow

was generated; we denote it by Ar
i (t). In Figure 2, we see

that nodes 2 and 3 have update packets of flow r1 that were

generated at times t = 98 and t = 95, respectively. The age

now (at t = 100) is the time elapsed since then. Therefore,

Ar1
2 (t) = t − 98 = 100 − 98 = 2 and Ar1

3 (t) = t − 95 =
100− 95 = 5. The age evolution equation can be written as

Ar
i (t+1) =

{
t−Gr

i (t) + 1 if i receives a pkt. at t
Ar

i (t) + 1 otherwise
, (1)

where Gr
i (t) is the time of generation of the update packet

delivered to node i in slot t. The evolution of age Ar
i (t) is

illustrated in Figure 3 for a line network. Age Ar
i (t) drops

abruptly when the destination node receives a fresh packet

and increases linearly at rate 1 when it doesn’t. Notice that

not every transmission results in reduction of age as the

transmitting node may not have received a new update since

the last transmission.

We define three measures of age. Since the goal is to

send fresh update packets to the destination node d(r) for

each flow, all the age measures are a function of age at the

destination Ar
d(r)(t), for all r ∈ R. The weighted average

age is given by

Aave = lim
T→∞

1

T

T−1∑
t=0

wrAr
d(r)(t), (2)
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Fig. 3. Age evolution at nodes in a three link line graph G = (V,E),
where V = {0, 1, 2, 3} and E = {e1, e2, e3}, and a single flow R = {r}
with s(r) = 0, d(r) = 3, and path p(r) = {e1, e2, e3}. Figure plots age
at node 1, 2, and 3 as a function of time; denoted as A1(t), A2(t), and
A3(t), respectively.

where wr is a positive weight assigned to each r ∈ R, the

weighted peak age is given by

Ap = lim
N→∞

1

N

N∑
i=1

wrAr
d(r)(S

r(i)), (3)

where Sr(i) denote the time slots in which an update packet

was received by d(r),1 and the average instantaneous age

given by

Ainst = lim
t→∞E

[∑
r∈R

wrAr
d(r)(t)

]
. (4)

It is important to note that all the age measures depend on the

policy π of activating links. This dependence can be made

explicit by using the notation Aave(π), Ap(π), and Ainst(π) for

average, peak, and instantaneous age, respectively. In general,

the age measures as stated in (2), (3), and (4) may not be

well defined for any policy π. However, for the stationary

policies considered in this paper, these limits are indeed well

defined.

A. Stationary Policies

We shall restrict our attention to simple stationary policies.

This is primarily because they are easy to implement using

random access. Let

Be(t) = {link e is successfully activate at time t} , (5)

1This is not the average of peaks in the age evolution curve, but average
of age sampled at times when an update is delivered to the destination node.
This definition coincides with the classical peak age definition when every
flow is a single-hop flow.

be the event that link e ∈ E is activated successfully at time

t. We define stationary policies as follows.

Definition A policy π is stationary if

1) For each e ∈ E, events Be(t) are independent across t
2) P [Be(t)] = P [Be(t

′)] for all slots t, t′, and links e

Note that every stationary policy π is associated with

fe = P [Be(t)] , (6)

for all e ∈ E. We call fe as the link activation frequency
of link e, and use f = (fe)e∈E to denote the vector of link

activation frequencies. The following are two examples of

stationary policies.

Stationary Centralized Policies: Let x ∈ R
|A| be a prob-

ability distribution over the set of all feasible activation sets

A. In each slot t, activate a feasible activation set m ∈ A
with probability xm, independent across t. This is a stationary

policy, and the probability P [Be(t)] can written as

P [Be(t)] = (Mx)e , (7)

where M is a |E| × |A| matrix such that

Me,m =

{
1 if e ∈ m
0 otherwise

. (8)

In order to minimize age over the space of all centralized

stationary policies ΠC , we need to characterize the set of

all achievable link activation frequencies by such policies;

namely, the set

FC =
{
f ∈ R

|E| | fe = fe(π) for some π ∈ ΠC

}
. (9)

From (7), we can conclude that the set FC is given by

FC =
{
f ∈ R

|E| | f = Mx,1Tx ≤ 1, and x ≥ 0
}
. (10)

It is not always possible to implement stationary cen-

tralized policy in wireless networks without a centralized

controlling node. We, thus, consider distributed policies.

Stationary Distributed Policies: For each e ∈ E let ae ∈
(0, 1) be the probability that link e attempts transmission in

a slot t with probability ae, independent across slot t. Under

the pairwise interference model, in which for each e ∈ E
there is a subset of links Ne ⊂ E that interfere with it, the

link activation frequencies can be written as

fe = P [Be(t)] = ae
∏

e′∈Ne

(1− ae′) , (11)

for all e ∈ E and slots t. Therefore, the space of all link

activation frequencies achievable by stationary distributed

policies is given by

FD =

{
f ∈ R

|E| | fe = ae
∏

e′∈Ne

(1− ae′)

and 0 ≤ ae ≤ 1 ∀ e ∈ E

}
. (12)

In the next section, we derive average, peak, and instanta-

neous age for a line network under a stationary policy. We

488



show all the age measures to be simple convex functions of

link activation frequencies. The general network case is then

considered in Section IV.

III. AGE MINIMIZATION FOR A LINE NETWORK

Consider line network G = (V,E), where V =
{0, 1, . . . L} and E = {(0, 1), (1, 2), . . . (L − 1, L)} denote

the L+ 1 nodes and L links, respectively. For convenience,

we shall use el to denote link (l− 1, l) for all l = 1, 2, . . . L.

The network contains a single flow with source node s = 0
and destination node d = L. The source s generates fresh

update packets that are transmitted over the line network to

reach the destination node d.

The age evolution given in (1) can be simplified as follows.

Lemma 1: The age evolution of (1) can be written as

Al(t+ 1) =

{
Al−1(t) + 1 if el activated at t
Al(t) + 1 otherwise

,

for all l ∈ {1, 2, . . . L}.

Proof: If link el is not activated then from (1) it follows

that Al(t + 1) = Al(t) + 1. In the case when link el is

activated at time t two possibilities arise. Either node (l− 1)
has received a fresh update since the last activation of el or it

hasn’t. If it has then this fresh update packet is transmitted to

node l at time t, and we get Al(t+1) = Al−1(t)+1. However,

if node (l − 1) hasn’t received a fresh update since the last

activation of link el, then we have Al(t) = Al−1(t). This

is because both nodes have the same update packet that was

communicated in the last activation of el. The age evolution,

in the absence of a fresh update therefore becomes Al(t +
1) = Al(t) + 1 = Al−1(t) + 1.

The age evolution equation of Lemma 1 is true irrespective

of the scheduling policy. We now focus on stationary policies

described in Section II-A. We saw in Section II-A that

every stationary policy π is associated with a link activation

frequency fe, for each link e. Using this, we now characterize

the average instantaneous age at the destination node d.

Theorem 1: If fl > 0 is the link activation frequency

of link el = (l − 1, l) under a stationary policy π then the

average instantaneous age at node d is given by

Ainst
d = E [Ad(t)] =

L∑
l=1

1

fl
. (13)

Proof: Let π be a stationary policy, and fl be the link

activation frequency of link el = (l−1, 1) under policy π, for

all l ∈ {1, 2, . . . L}. Further, let τl(t) denote the last instance,

when link el was activated. For example, if link activations

occurred at time slots 2, 10, 14, and 21 then τl(t) = 10 for

all t = 11, 12, 13, and 14.

Since π is a stationary policy the inter-activation times

must be geometrically distributed with mean 1
fl

. The mem-

oryless property, therefore, implies that

P [τl(t) = t− k] = fl (1− fl)
k−1

, (14)

for all k = 1, 2, . . .. Thus, τl(t) has the same distribution

as t−Xel , where Xel is a geometrically distributed random

variable given by

P [Xel = k] = fl (1− fl)
k−1

, (15)

for all k ∈ {1, 2, . . .}, with mean

E [Xel ] =
1

fl
, (16)

for all l ∈ {1, 2, . . . L}.

Consider age at node 1. Since the source node always

transmits fresh information, the age of node 1 is the just

the time elapsed since the last activation of link e1 = (0, 1).
This is given by

A1(t) = t− τ1(t), (17)

as τ1(t) was the last time a fresh update packet was sent to

node 1.

Next, consider age at node 2. By Lemma 1, whenever link

e2 is activated, node 2 resets its age to node 1’s age A1(·).
Thus, A2(t) is given by

A2(t) = t− τ2(t) +A1 (τ2(t)) , (18)

where A1 (τ2(t)) is the age of node 1 at the time of the last

activation of link e2 = (1, 2), namely τ2(t), and t − τ2(t)
is the time elapsed since then. Substituting (17) in (18), we

obtain

A2(t) = t− τ2(t) + [τ2(t)− τ1 (τ2(t))] , (19)

= t− τ1 (τ2(t)) . (20)

Iterating this over l links, we get

Al(t) = t− τ1 (τ2 (· · · τl (t) · · · )) , (21)

for all t and l ∈ {1, 2, . . . L}. Taking expectation, we get

E [Al(t)] = t− E [τ1 (τ2 (· · · τl (t) · · · ))] , (22)

=
l∑

k=1

1

fk
, (23)

where the last equality follows from the following Lemma 2,

and substituting l = L we obtain the result.

Lemma 2: τl(t) for l ∈ {1, 2, . . . L} satisfy

E [τ1 (τ2 (· · · τl (t) · · · ))] = t−
l∑

k=1

1

fl
. (24)

Proof of Lemma 2 is given in Appendix A.

We now show that for a stationary policy, all the three age

measures are equal.

Theorem 2: If fl > 0 is the link activation frequency of

link el = (l− 1, l) under a stationary policy π then the peak

and average age at node d are equal, and is given by

Aave
d = Ap

d = Ainst
d =

L∑
l=1

1

fl
. (25)
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Proof: Consider age at node l. Peak age is the average

of Al(t) sampled at activation times of link el. Since el is

activated at epoches of a memoryless process with geometric

inter-activation times, the poisson-arrivals-see-time-average

(PASTA) property implies that peak age and average age are

equal:

Aave
l = Ap

l . (26)

Furthermore, the process A(t) = (A1(t), A2(t), . . . AL(t))
is ergodic and stationary, as A(t) is an aperiodic, positive

recurrent Markov chain with a single communicating class.

Therefore, average age equals instantaneous age:

Aave
l = Ainst

l . (27)

Substituting l = d in (26) and (27) yields the result. In

Appendix B, we give an alternative derivation of the average

age, which may be of interest.

A. Age Minimization

Theorem 2 imply that all age measures are equivalent

under a stationary policy π. Thus, all three age measures

can be minimized simultaneously if we restrict to stationary

policies for scheduling. This minimization problem can be

formulated as:

Line-Network Age Problem

Minimize
f

L∑
l=1

1

fl
,

subject to f ∈ F
(28)

where F is FC for stationary centralized policies and

is FD for stationary distributed policies.

Notice that we have ignored the flow weight w1 as the

network contains only one flow, i.e., R = {1}. The set F is

the space of feasible link activation frequencies which depend

on the interference constraints, and the type of policy. As we

saw in Section II-A, that the space F can be significantly

different for centralized and distributed policies, respectively.

We discuss the solvability of (28) in the next section, where

we consider age minimization for a general network.

IV. AGE MINIMIZATION FOR GENERAL NETWORK

In this section, we consider the problem of age mini-

mization for a general network, where we have a network

G = (V,E) with a collection of feasible activation sets

A, and R = {1, 2, . . . R} flows. Given that every flow is

assigned a path we obtain the optimal stationary scheduling

policy.

Before we proceed, we briefly review the single-hop age

problem from [17], in which all flows are single-hop, i.e.,

for every flow r ∈ R the source s(r) and destination d(r)
share a link, and the path is that very link. We discuss the

multi-hop case in Section IV-B.

A. Single-Hop Age Problem

Assume that all the flows in R are just single-hop flows,

i.e., for each flow r ∈ R the source s(r) and destination d(r)
share a link e(r) � (s(r), d(r)), and the assigned path for

the flow is p(r) = {(s(r), d(r))}.

Without loss of generality we assume that each link in G
corresponds to a source destination pair. If a link e ∈ E
does not correspond to a source destination pair then it also

doesn’t contribute to age for any flow, as every flow is one

hop. In this case, the problem can be reduced by eliminating

the link activation frequency variable fe associated with link

e. Therefore, each link e ∈ E corresponds to a source

destination pair r ∈ R; which implies |E| = |R|.
A single-hop flow is a special case of a line network. Thus,

Theorem 2 imply that for a stationary policy π, all three age

measures are equal, and are given by

Ainst
r = Ap

r = Aave
r =

1

fe(r)
, (29)

for all r ∈ R, where fe(r) is the link activation frequency

of link e(r) under policy π. The weighted average age (2),

weighted peak age (3), and the weighted instantaneous

age (4) are all given by

∑
r∈R

wr

fe(r)
. (30)

This can also be written as

∑
e∈E

we

fe
, (31)

where we is the weight of link e, and is given by we(r) = wr.

Therefore, the age minimization problem can be written as:

Single-Hop Age Problem

Minimize
f

∑
e∈E

we

fe
,

subject to f ∈ F
(32)

where F is FC for stationary centralized policies and

is FD for stationary distributed policies.

Notice that the single-hop age problem and the line-

network age problem are equivalent if all link weights we

are equal. This implies that the optimal stationary policy

that minimizes age for the line network can be obtained by

considering each link in the line network to be a separate

flow. As we shall see in Section IV-B, this is in fact true in

for the general network with R flows.

We now consider the two cases of stationary centralized

and stationary distributed policies, and discuss solvability of

the single-hop age problem.
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1) Stationary Centralized Policy under Matching Con-
straints: The single-hop age problem when F = FC can

be written as

Minimize
f∈R|E|

∑
e∈E

we

fe
,

subject to f = Mx,

1Tx ≤ 1 and x ≥ 0

(33)

where M is a |E| × |A| matrix give in (8). Here, x can be

interpreted as a probability distribution over the activation

sets A.
We let the interference in the network to be such that

two links interfere if they share a node. This implies that

a feasible activation must necessarily be a matching in the

network graph. Therefore, A, in this case, is a collection of

all matchings in G. Under this structure on A, the set of

all link activation frequencies FC can be shown to be the

matching polytope [18]. Therefore, the problem (33) reduces

to minimizing a convex objective, namely,∑
e∈E

we

fe
, (34)

over a matching polytope. This can be efficiently solved by

using the Frank-Wolfe algorithm [19], and the separation

oracle for matching polytope developed in [20].
2) Stationary Distributed Policy under Pairwise Inter-

ference Constraints: We can obtain an optimal stationary

distributed policy, under pairwise interference constraint, by

solving the single-hop age problem for F = FD. This can

be written as:

Minimize
a∈[0,1]|E|,f∈R|E|

∑
e∈E

we

fe

subject to fe = ae
∏

e′∈Ne

(1− ae′) ∀ e ∈ E

fe ≥ 0 for all e ∈ E

(35)

This is a non-convex program, as the constraint set is non-

convex. However, substituting be = 1 − ae the optimization

problem (35) reduces to

Minimize
a≥0,b≥0

∑
e∈E

we

ae
∏

e′∈Ne
be′

subject to ae + be ≤ 1 ∀e ∈ E

(36)

This is a convex program and can be solved using standard

techniques [21].

B. Multi-Hop Age Problem
We now consider the general multi-hop age minimization

problem. Where the paths p(r) may be more than a single-

hop away. Let π be a stationary policy with link activation

frequencies f . Let fr
e denote the fraction of times link e

activates successfully to transmit update of source-destination

pair r. If e /∈ p(r) then fr
e = 0. Since fe is the net link

activation frequency, we have

fe =
∑

r∈R,e∈p(r)
fr
e , (37)

for all e ∈ E. Now, using Theorem 1, the instantaneous age

can be written as

Ainst = E

[∑
r∈R

wrAr(t)

]
=

∑
r∈R

wr
∑

e∈p(r)

1

fr
e

, (38)

which is equivalent to

Ainst =
∑
e∈E

∑
r∈R

wr

fr
e

I{e∈p(r)}, (39)

where we interpret 0
0 as 0. Theorem 2 tells us that the average

and peak are also given by (39). Therefore, we define the age

minimization problem as follows:

General-Network Age Problem:

Minimize
f

∑
e∈E

∑
r∈R

wr

fr
e

I{e∈p(r)},

subject to
∑
r∈R

fr
e I{e∈p(r)} ≤ fe ∀e ∈ E

f ∈ F

(40)

where F is FC for stationary centralized policies and

is FD for stationary distributed policies.

The following theorem proves that the general-network age

problem is equivalent to the single-hop age problem.

Theorem 3: The general-network age problem is equiva-

lent to the single-hop age problem with

we =

(∑
r∈R

√
wrIe∈p(r)

)2

, (41)

for all e ∈ E. Further, if f∗ solves the single-hop age problem

then the optimal (fr∗
e |e ∈ E, r ∈ R) for the general-network

age problem are given by

fr∗
e =

[ √
wr∑

u∈R
√
wuI{e∈p(u)}

]
f∗e , (42)

for all e ∈ p(r) and r ∈ R.

Proof: See Appendix C.

Theorem 3 proves an important separation principle in

designing stationary policies for age minimization over gen-

eral network. It states that the optimal stationary policy can

be obtained by converting all the flows to single-hop, with

suitable edge weights. Another implication of Theorem 3

is that given the link activation frequency f∗e , the per-flow

frequency fr∗
e can be determined locally.

V. CONCLUSIONS

We considered the problem of minimizing age-of-

information (AoI) for a general multi-hop network with

R source-destination pairs, with general interference con-

straints. We derived AoI optimal stationary scheduling poli-

cies, in which links are activated according to a stationary

probability distribution.
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We first considered a simple line network, with a single

source-destination pair, and showed that the age is a simple

separable convex function of link activation frequencies.

We then used this result to prove an important separation
principle for the general multi-hop network with R source-

destination pairs. The separation principle states that the

optimal stationary policy for the multi-hop network can be

obtained by solving an equivalent problem in which all

source-destination pairs are just a single-hop away.
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APPENDIX

A. Proof of Lemma 2

From (14), we know that

τl(t)
d
= t−Xel , (43)

Fig. 4. Computation of average age. We compute the area under the age
curve Al(t) between two successive activations of link el, namely, between
time S(i) and S(i+ 1), and then add them up.

where Xel is a geometrically distributed random variable

given by (15), and therefore,

E [τl(t)] = E [t−Xel ] = t− 1

fl
, (44)

for all l ∈ {1, 2, . . . L}. Now from (43), we can obtain

τl (τl−1(t))
d
= τl−1(t)−Xel , (45)

and therefore,

E [τl (τl−1(t))] = E [τl−1(t)]− E [Xel ] , (46)

= t− 1

fl−1
− 1

fl
, (47)

where the last equality follows from (44) and (16). Iterating

this l times we obtain the result.

B. Proof of Theorem 2

Figure 4 plots age Al−1(t) and Al(t) as a function of time.

Also shown are the activation times of link el as black dots

on time axis. In order to compute the average age Aave
l , we

need to compute the area under the age curve Al(t). Let S(i)
denote the ith activation time of link el under the stationary

policy π. Area under the age curve Al(t) can be computed

by adding up area under Al(t) between times S(i − 1) and

S(i), and dividing by T (i) to get the average age per slot;

see Figure 4.

Consider a node l 	= 0 and link el. Let M(t) be a counting

process that counts the number of times link el was activated

until, and including, time t. Let S(i) denote the epoches

of M(t) and T (i) be the time between ith and (i + 1)th
activation of link el, i.e.,

T (i) = S(i+ 1)− S(i). (48)
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Then the average age is given by

Aave
l = lim

N→∞

∑N
i=1

[
Al−1 (S(i))T (i) +

∑T (i)
k=1 k

]
∑N

i=1 T (i)
, (49)

= lim
N→∞

∑N
i=1 Al−1 (S(i))T (i) +

1
2T (i) (T (i)− 1)∑N

i=1 T (i)
,

(50)

as this is the area under the age curve Al(t), where Al (S(i))
is the age evaluated at the ith epoch of M(t). We illustrate

this in Figure 4. This can be shown to be equal to2

Aave
l =

E [Al−1 (S(i))T (i)] +
1
2E [T (i) (T (i)− 1)]

E [T (i)]
. (51)

Note that Al−1 (S(i)) and T (i) are independent random

variables as Al−1 (S(i)) is dependent only on events prior

to the epoch S(i) while T (i) is the time between ith and

i+ 1th epoch of Mel . Therefore, (51) reduces to

Aave
l =

E [Al−1 (S(i))]E [T (i)] + 1
2E [T (i) (T (i)− 1)]

E [T (i)]
,

= E [Al−1 (S(i))] +
1

2

E [T (i) (T (i)− 1)]

E [T (i)]
. (52)

Using Theorem 1, it can be deduced that

E [Al−1 (S(i))] =

l−1∑
k=1

1

fk
. (53)

Further, {T (i)}i≥1 are i.i.d. and geometrically distributed as

P [T (i) = k] = fl (1− fl)
k−1

, (54)

for all k ∈ {1, 2, . . .}, where fl is the link activation

frequency of link el. From this we can compute

1

2

E [T (i) (T (i)− 1)]

E [T (i)]
=

1

fl
. (55)

Using (53) and (55) we obtain

Aave
l =

l∑
k=1

1

fk
. (56)

Substituting l = L = d yields the result.

C. Proof of Theorem 3

The problem (40) can be written as

Minimize
f∈F

∑
e∈E

Ge(fe), (57)

where Ge(fe) are given by

Ge(fe) = Minimize
fr
e ∀r∈R

∑
r∈R

wr

fr
e

I{e∈p(r)}

subject to
∑
r∈R

fr
e I{e∈p(r)} ≤ fe.

(58)

2This follows because {(Al (S(i)) , T (i))}i≥0 is a stationary ergodic
process.

The minimum for the optimization problem (58) is attained

at

fr
e =

[ √
wr∑

u∈R
√
wuI{e∈p(u)}

]
fe, (59)

for all r ∈ R. Substituting this in (58), we obtain

Ge(fe) =

[∑
r∈R

√
wrI{e∈p(r)}

]2
fe

. (60)

Therefore, the optimization problem (57), and therefore (40),

can be written as

Minimize
f∈F

∑
e∈E

we

fe
, (61)

where we =
[∑

r∈R
√
wrI{e∈p(r)}

]2
for all e ∈ E.
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