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Abstract—Timely exchange of information over multi-hop
wireless networks is gaining increasing relevance with growing
interests in applications such as internet of things (IoT) and
autonomous vehicular networks. Age-of-information (Aol) is
a recently proposed performance metric that measures infor-
mation freshness at the destination node. Aol at a destination
node is the time since last update was received. We study Aol
for multi-hop networks with general interference constraints
with R source-destination pairs, and derive simple stationary
policies in which links are activated according to a stationary
probability distribution. We first consider a line network with a
single source-destination pair, and characterize Aol as a convex
function of link activation rates. We then use this result to obtain
the optimal policy, in the class of stationary policies, for multi-
hop network, with several source-destination pairs. We prove
an important separation principle, which says that the optimal
scheduling policy for the multi-hop problem can be obtained by
solving an equivalent problem in which all source-destination
pairs are single-hop away.

I. INTRODUCTION

Exchanging fresh information updates over multi-hop
wireless networks is gaining increasing relevance with advent
of ad-hoc networked wireless systems such as internet of
things (IoT), vehicular networks, and network of unmanned
aerial vehicles. In unmanned aerial vehicular networks, for
example, exchanging position, velocity, and other control in-
formation in a timely fashion can help in collision avoidance
and efficient path planning [1], [2]. In I0T, and other cyber
physical systems, timely feedback of sensor data is vital to
the overall system performance.

These systems differ from the traditional communication
systems in two ways. In traditional communication systems,
data or packet arrival is assumed to be an exogenous process
that cannot be controlled. However, in these networks, the
update packets, such as sensor data, can be generated at will.
Generating update packets at the right rate may be more
efficient [3], as high rate of generation results in network
clogging and low rate results in updates being sent too
infrequently.

Secondly, traditional communication systems use packet
centric performance measures such as throughput or delay
to characterize performance. These performance measures
do not fully capture the information freshness paradigm.
For example, delay of a stale packet, that got caught in
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Fig. 1. Age of Information (Aol) as a function of time. Here, ¢; is the
. . . . . .
time of generation of the ith packet at the source, and ¢; is the time of its
reception at the destination node.

the network due to network clogging, doesn’t need to be
accounted for as long as the intended ground station gets
fresh information regularly via other, promptly received,
update packets.

A new performance measure, called Age of information
(Aol), was proposed in [3], [4] to measure information
freshness at the destination node. Aol at the destination node
at time ¢, is the time elapsed since the last received update
packet was generated. Figure 1, plots Aol evolving in time.
Whenever the destination node receives a fresh update packet,
the Aol drops to the time elapsed since the received packet’s
generation time, while it grows linearly otherwise.

Aol was first studied in [4] for a vehicular network using
simulation. Vehicles periodically generated update packets to
be transmitted to other nodes in the network. An optimal
rate of packet generation was observed. To better understand
this phenomena, [3] modeled the network between the source
and destination as a single first-in-first-out (FIFO) queue, and
proved that there is indeed an optimal rate at which Aol is
minimized.

Since then, most of the work on Aol has focused on
single queue models. Age for FIFO M/M/1, M/D/1, and
D/M/1 queues was analyzed in [3], multiclass FIFO M/G/1
and G/G/1 queues were studied in [5], while last-in-first-
out (LIFO) queues under various arrival and service time
distributions were studied in [6]-[8]. Aol for M/M/2 and
M/M/oco queues was analyzed in [9], [10], which primarily
studied the impact of out-of-order delivery of packets on age.
Effects of packet error or packet drop on age for the M/M/1
queue, with FIFO service, was studied in [11].

Aol over multi-hop networks with general interference
constraints, however, has received very little attention.
In [12], a switch type network was considered under phys-
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ical interference constraints, and the problem of scheduling
finitely many update packets was shown to be NP-hard for
this network. Multiple access type network with nodes and a
single base station, where only a single link can be activated
at any given time, was studied in [13], [14]. Slotted ALOHA-
like random access for Aol minimization was studied in [15].
To the best of our knowledge, Aol over multi-hop networks
has been considered only in [16] where LIFO queue service
was shown to reduce age.

We consider the age minimization problem over a multi-
hop network with general interference constraint. We con-
sider a set of R source-destination pairs or flows, with each
flow associated with a source-destination path. Our objective
is to device simple scheduling policy that minimizes weighted
age over flows. We therefore limit ourselves to simple,
stationary policies in which links are activated according to
a stationary probability distribution.

We first consider a L-hop line network with a single
flow with general interference constraints. We completely
characterize the peak and average age, two popular measures
of Aol, as a convex function of link activation rates, and
show that the two measures are equal. We then apply
these results to general, R-flow multi-hop network, with
general interference constraints, and formulate a weighted
age minimization problem. We prove an important separation
principle, that says that the optimal stationary scheduling
policy for multi-hop age can be obtained by solving a single-
hop problem, where each link is considered to be a flow. To
the best of our knowledge, this is the first work to consider
scheduling policies for age minimization problem for multi-
hop networks, with general interference constraints.

We describe the system model in Section II. The specific
case of line network with general interference constraint
is considered in Section III. In Section IV, we extend the
results obtained for the line network to general networks with
general interference constraint. We conclude in Section V.

II. SYSTEM MODEL

Consider a network G = (V, E), where V denotes the set
of communicating nodes and E denotes the set of directed
communication links. Not all links in E can be activated
simultaneously in the network due to interference constraints.
We call m C E a feasible activation set if all links in m can
be activated simultaneously without interference. We let A
to denote the collection of all feasible activation sets. We
assume time to be slotted with slot durations normalized to
unity.

The network G contain a set R = {1,2,...R} source-
destination pairs. For every r € R, let s(r) and d(r) denote
the source and the destination nodes, respectively. The source
s(r) has to send update packets to the destination d(r). We
refer to R as set of flows and a r € R as flow. The destination
d(r) may be multiple hops away from the source s(r), and
as a result, the updates need to be routed to the destination
node with the aid of other nodes in the network. The source
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Fig. 2. Tllustration of age propagation in a network with R = {r1,r2}.
Snapshot of the network taken at time ¢ = 100. Also shown is the time of
generation of the last received packet at each node, for each flow.

s(r) chooses a path p(r) in G from s(r) to d(r) to send
update packets.

The source s(r) generates and transmits update packet.
Update packets are time stamped at the time of their gen-
eration to ensure that every receiving node, especially the
destination node, knows the age of the information contained
in the packet. We assume all the nodes in the network to
be active, i.e., they retain the latest generated packet for
every flow r € R. In particulate, the source nodes always
have a fresh update packet for transmission. In Figure 2, for
example, nodes 2 has retained the latest update packet for
both flows, namely, r; and 79, that pass through it. The last
received update packets at node 2 were generated at ¢ = 98
and ¢ = 90 for flows r; and rs, respectively.

For every flow r, the age of a node ¢+ € V at time ¢ is
the time since the last received update packet of that flow
was generated; we denote it by A7 (¢). In Figure 2, we see
that nodes 2 and 3 have update packets of flow r; that were
generated at times ¢ = 98 and ¢ = 95, respectively. The age
now (at ¢ = 100) is the time elapsed since then. Therefore,
A3 (t) =t —98 =100 —-98 = 2 and A5'(t) =t —95 =
100 — 95 = 5. The age evolution equation can be written as

- [ t—GI(t)+1 if i receives a pkt. at ¢
Ai(t+1) = { Ar(t) +1 otherwise

where G7(t) is the time of generation of the update packet
delivered to node 7 in slot ¢. The evolution of age Al (¢) is
illustrated in Figure 3 for a line network. Age A”(¢) drops
abruptly when the destination node receives a fresh packet
and increases linearly at rate 1 when it doesn’t. Notice that
not every transmission results in reduction of age as the
transmitting node may not have received a new update since
the last transmission.

We define three measures of age. Since the goal is to
send fresh update packets to the destination node d(r) for
each flow, all the age measures are a function of age at the
destination AQ(T) (t), for all » € R. The weighted average
age is given by

» (D)

T-1
s 1 T T

Aave:T]gr(l)of g w Ad(r)(t)’ 2)
t=0
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Fig. 3. Age evolution at nodes in a three link line graph G = (V, E),
where V' = {0,1,2,3} and E = {e1, e2,e3}, and a single flow R = {r}
with s(r) = 0, d(r) = 3, and path p(r) = {e1, ez, e3}. Figure plots age
at node 1, 2, and 3 as a function of time; denoted as A1(t), A2(t), and
As(t), respectively.

where w"” is a positive weight assigned to each r € R, the
weighted peak age is given by
1
P . - T AT (.

AP = Tim le Ay (ST (D)), (3)
where S” (i) denote the time slots in which an update packet
was received by d(r),! and the average instantaneous age
given by

Ainst — Jlim E [Z wTAg(r)(t)] . 4)
reR

It is important to note that all the age measures depend on the
policy 7 of activating links. This dependence can be made
explicit by using the notation A(7), AP(r), and A™(7) for
average, peak, and instantaneous age, respectively. In general,
the age measures as stated in (2), (3), and (4) may not be
well defined for any policy 7. However, for the stationary
policies considered in this paper, these limits are indeed well
defined.

A. Stationary Policies

We shall restrict our attention to simple stationary policies.
This is primarily because they are easy to implement using
random access. Let

B (t) = {link e is successfully activate at time ¢}, (5)

I'This is not the average of peaks in the age evolution curve, but average
of age sampled at times when an update is delivered to the destination node.
This definition coincides with the classical peak age definition when every
flow is a single-hop flow.

be the event that link e € E is activated successfully at time
t. We define stationary policies as follows.

Definition A policy 7 is stationary if
1) For each e € E, events B,.(t) are independent across ¢
2) P[B.(t)] = P[Be(t')] for all slots ¢, ¢’, and links e

Note that every stationary policy 7 is associated with
fe =P[Bc(t)], (6)

for all e € E. We call f. as the link activation frequency
of link e, and use f = (f.).. to denote the vector of link
activation frequencies. The following are two examples of
stationary policies.

Stationary Centralized Policies: Let x € RIA! be a prob-
ability distribution over the set of all feasible activation sets
A. In each slot ¢, activate a feasible activation set m € A
with probability x,,, independent across ¢. This is a stationary
policy, and the probability P [B,(t)] can written as

P[B.(t)] = (Mx),, @)
where M is a |E| x |A| matrix such that
1 ifeem

Me.m = { 0 otherwise ®)

In order to minimize age over the space of all centralized
stationary policies I, we need to characterize the set of
all achievable link activation frequencies by such policies;
namely, the set

Fco = {f e RIZI | fe = fe(m) for some 7 € Hc}. 9)
From (7), we can conclude that the set F is given by
Fo = {feR‘El | f=Mx,1Tx <1, and x > o}. (10)

It is not always possible to implement stationary cen-
tralized policy in wireless networks without a centralized
controlling node. We, thus, consider distributed policies.

Stationary Distributed Policies: For each e € E let a, €
(0,1) be the probability that link e attempts transmission in
a slot ¢ with probability a., independent across slot ¢. Under
the pairwise interference model, in which for each e € FE
there is a subset of links N, C FE that interfere with it, the
link activation frequencies can be written as

Je :P[Be(t)} = Qe H (1—ae),

e’€N,

(1)

for all e € E and slots t. Therefore, the space of all link
activation frequencies achievable by stationary distributed
policies is given by

]-"D:{feRE | fo=a.

H (1—ae)

e’€N,

and0<ae<1Ve€E}. (12)

In the next section, we derive average, peak, and instanta-
neous age for a line network under a stationary policy. We
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show all the age measures to be simple convex functions of
link activation frequencies. The general network case is then
considered in Section IV.

III. AGE MINIMIZATION FOR A LINE NETWORK

Consider line network G = (V,E), where V =
{0,1,...L} and E = {(0,1),(1,2),...(L — 1, L)} denote
the L + 1 nodes and L links, respectively. For convenience,
we shall use ¢; to denote link (I —1,1) forall{=1,2,... L.
The network contains a single flow with source node s = 0
and destination node d = L. The source s generates fresh
update packets that are transmitted over the line network to
reach the destination node d.

The age evolution given in (1) can be simplified as follows.

Lemma /: The age evolution of (1) can be written as

a1 = {40

forall I € {1,2,...L}.

Proof: If link e; is not activated then from (1) it follows
that A;(t + 1) = A;(t) + 1. In the case when link ¢; is
activated at time ¢ two possibilities arise. Either node (I —1)
has received a fresh update since the last activation of e; or it
hasn’t. If it has then this fresh update packet is transmitted to
node [ at time ¢, and we get A;(t+1) = A;_1(¢)+1. However,
if node (I — 1) hasn’t received a fresh update since the last
activation of link e;, then we have A;(t) = A;_1(t). This
is because both nodes have the same update packet that was
communicated in the last activation of e;. The age evolution,
in the absence of a fresh update therefore becomes A;(t +
1) = Al(t) +1= Al_l(t) + 1. |

The age evolution equation of Lemma 1 is true irrespective
of the scheduling policy. We now focus on stationary policies
described in Section II-A. We saw in Section II-A that
every stationary policy 7 is associated with a link activation
frequency f,, for each link e. Using this, we now characterize
the average instantaneous age at the destination node d.

Theorem /: If f; > 0 is the link activation frequency
of link ¢; = (I — 1,1) under a stationary policy 7 then the
average instantaneous age at node d is given by

if e; activated at ¢
otherwise

b

L
. 1
AP =FE[Aq(t)] = E —. (13)

~

Proof: Let w be a stationary policy, and f; be the link
activation frequency of link e; = (I—1, 1) under policy , for
alll € {1,2,... L}. Further, let 7;(¢) denote the last instance,
when link e; was activated. For example, if link activations
occurred at time slots 2,10, 14, and 21 then 7,(¢) = 10 for
all t =11,12,13, and 14.

Since 7 is a stationary policy the inter-activation times
must be geometrically distributed with mean % The mem-
oryless property, therefore, implies that

Pln(t)=t—k=f(1-f)"", (14)

for all ¥ = 1,2,.... Thus, 7;(t) has the same distribution
as t — X,,, where X,, is a geometrically distributed random
variable given by

P[X., =kl = fi(1—f)"",

for all k € {1,2,...}, with mean

15)

(16)

foralll € {1,2,...L}.

Consider age at node 1. Since the source node always
transmits fresh information, the age of node 1 is the just
the time elapsed since the last activation of link e; = (0, 1).
This is given by

Ay (t) =t —mi(t), 7

as 71(t) was the last time a fresh update packet was sent to
node 1.

Next, consider age at node 2. By Lemma 1, whenever link
eq is activated, node 2 resets its age to node 1’s age A;(-).
Thus, As(t) is given by

Ag(t) =1t— Tg(t) + Al (Tg(t)) s

where Ap (72(t)) is the age of node 1 at the time of the last
activation of link eo = (1,2), namely 75(¢), and t — 72(¢t)
is the time elapsed since then. Substituting (17) in (18), we
obtain

(18)

Ag(t) =t — 7o(t) + [12(t) — 71 (m2(D))], (19)
=t—1 (12(t)). (20)

Iterating this over [ links, we get
At)=t—m(r2(-7(t))), 21

for all ¢t and [ € {1,2,...L}. Taking expectation, we get
ElA®)] =t =E[n (r2 (- (@t)---))],
vk
— fx
where the last equality follows from the following Lemma 2,

and substituting [ = L we obtain the result.
Lemma 2: 7,(t) for [ € {1,2,... L} satisfy

(22)

(23)

l
En(mlon@-)=t-Y 5 @
k=171

Proof of Lemma 2 is given in Appendix A. [ ]
We now show that for a stationary policy, all the three age
measures are equal.
Theorem 2: If f; > 0 is the link activation frequency of
link e; = (I — 1,1) under a stationary policy 7 then the peak
and average age at node d are equal, and is given by

L
. 1
A= A= AP =Y 4 (25)
=1 /!
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Proof: Consider age at node [. Peak age is the average
of A;(t) sampled at activation times of link e;. Since ¢; is
activated at epoches of a memoryless process with geometric
inter-activation times, the poisson-arrivals-see-time-average
(PASTA) property implies that peak age and average age are
equal:

AP = AD. (26)

Furthermore, the process A (t) = (A1 (¢), A2(t),... AL(t))

is ergodic and stationary, as A(t) is an aperiodic, positive
recurrent Markov chain with a single communicating class.
Therefore, average age equals instantaneous age:
AP = AP 27)

Substituting | = d in (26) and (27) yields the result. In
Appendix B, we give an alternative derivation of the average
age, which may be of interest. ]

A. Age Minimization

Theorem 2 imply that all age measures are equivalent
under a stationary policy m. Thus, all three age measures
can be minimized simultaneously if we restrict to stationary
policies for scheduling. This minimization problem can be
formulated as:

Line-Network Age Problem

I
1
Minimize =
f ; i (28)
subject to f e F

where F is JF¢ for stationary centralized policies and
is Fp for stationary distributed policies.

Notice that we have ignored the flow weight w! as the
network contains only one flow, i.e., R = {1}. The set F is
the space of feasible link activation frequencies which depend
on the interference constraints, and the type of policy. As we
saw in Section II-A, that the space F can be significantly
different for centralized and distributed policies, respectively.
We discuss the solvability of (28) in the next section, where
we consider age minimization for a general network.

IV. AGE MINIMIZATION FOR GENERAL NETWORK

In this section, we consider the problem of age mini-
mization for a general network, where we have a network
G = (V,E) with a collection of feasible activation sets
A, and R = {1,2,... R} flows. Given that every flow is
assigned a path we obtain the optimal stationary scheduling
policy.

Before we proceed, we briefly review the single-hop age
problem from [17], in which all flows are single-hop, i.e.,
for every flow r € R the source s(r) and destination d(r)
share a link, and the path is that very link. We discuss the
multi-hop case in Section IV-B.

A. Single-Hop Age Problem

Assume that all the flows in R are just single-hop flows,
i.e., for each flow r € R the source s(r) and destination d(r)
share a link e(r) £ (s(r),d(r)), and the assigned path for
the flow is p(r) = {(s(r),d(r))}.

Without loss of generality we assume that each link in G
corresponds to a source destination pair. If a link e € F
does not correspond to a source destination pair then it also
doesn’t contribute to age for any flow, as every flow is one
hop. In this case, the problem can be reduced by eliminating
the link activation frequency variable f. associated with link
e. Therefore, each link e € FE corresponds to a source
destination pair r € R; which implies |E| = |R].

A single-hop flow is a special case of a line network. Thus,
Theorem 2 imply that for a stationary policy , all three age
measures are equal, and are given by

At = AP = AT = ! : (29)
f e(r)
for all » € R, where f.(,) is the link activation frequency
of link e(r) under policy 7. The weighted average age (2),
weighted peak age (3), and the weighted instantaneous

age (4) are all given by

w’l‘

. (30)
rer Jew
This can also be written as
o, 31)
eelE fe

where w, is the weight of link e, and is given by we(,) = w".
Therefore, the age minimization problem can be written as:

Single-Hop Age Problem
We
Minimi We
inimize Z 7.
eck

(32)
subject to f e F

where F is F¢ for stationary centralized policies and
is Fp for stationary distributed policies.

\ J

Notice that the single-hop age problem and the line-
network age problem are equivalent if all link weights w,
are equal. This implies that the optimal stationary policy
that minimizes age for the line network can be obtained by
considering each link in the line network to be a separate
flow. As we shall see in Section IV-B, this is in fact true in
for the general network with R flows.

We now consider the two cases of stationary centralized
and stationary distributed policies, and discuss solvability of
the single-hop age problem.
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1) Stationary Centralized Policy under Matching Con-
straints: The single-hop age problem when F = F can

be written as
>
eckE f

subject to  f = Mx,
17x <landx>0

Minimize
feRIE|
(33)

where M is a |E| x |A| matrix give in (8). Here, x can be
interpreted as a probability distribution over the activation
sets A.

We let the interference in the network to be such that
two links interfere if they share a node. This implies that
a feasible activation must necessarily be a matching in the
network graph. Therefore, A, in this case, is a collection of
all matchings in G. Under this structure on A, the set of
all link activation frequencies F- can be shown to be the
matching polytope [18]. Therefore, the problem (33) reduces
to minimizing a convex objective, namely,

>

€€E

(34)

over a matching polytope. This can be efficiently solved by
using the Frank-Wolfe algorithm [19], and the separation
oracle for matching polytope developed in [20].

2) Stationary Distributed Policy under Pairwise Inter-
ference Constraints: We can obtain an optimal stationary
distributed policy, under pairwise interference constraint, by
solving the single-hop age problem for & = Fp. This can

be written as:
Z We
eck fe

fe = ae H (l1—aw) VeeE (35)
e’€N,

fe>0forallee E

This is a non-convex program, as the constraint set is non-
convex. However, substituting b, = 1 — a, the optimization
problem (35) reduces to

>
ae ]

eelE e’€N, be/

Minimize
ac[0,1]/El feRIE|

subject to

Minimize
a>0,b>0 (36)

subject to a.+b. <1Veec FE

This is a convex program and can be solved using standard
techniques [21].

B. Multi-Hop Age Problem

We now consider the general multi-hop age minimization
problem. Where the paths p(r) may be more than a single-
hop away. Let 7 be a stationary policy with link activation
frequencies f. Let f! denote the fraction of times link e
activates successfully to transmit update of source-destination
pair 7. If e ¢ p(r) then fI = 0. Since f. is the net link
activation frequency, we have

[

reR,e€p(r)

fes (37

for all e € E. Now, using Theorem 1, the instantaneous age
can be written as

AS=E |y wr AT =Y w" Y o, (38)
reR reER e€p(r f
which is equivalent to
At =% Z 7T Lieepryys (39)

ecEreR

where we interpret % as 0. Theorem 2 tells us that the average
and peak are also given by (39). Therefore, we define the age
minimization problem as follows:

e Y

General-Network Age Problem:

Mmumze ZZ Fr ]I{eEp(’r’)}v
e

e€EETreR

subject to Y frlieepyy < fo Vee B (40)
recR
feF

where F is JF¢ for stationary centralized policies and
is Fp for stationary distributed policies.

\. J

The following theorem proves that the general-network age
problem is equivalent to the single-hop age problem.

Theorem 3: The general-network age problem is equiva-
lent to the single-hop age problem with

2

reR

(41)

for all e € E. Further, if £* solves the single-hop age problem
then the optimal (f*|e € E,r € R) for the general-network
age problem are given by

f’f‘* _
e —

Vo ] @

[Zuen Vwlieepu)}

for all e € p(r) and r € R.
Proof: See Appendix C. [ ]
Theorem 3 proves an important separation principle in
designing stationary policies for age minimization over gen-
eral network. It states that the optimal stationary policy can
be obtained by converting all the flows to single-hop, with
suitable edge weights. Another implication of Theorem 3
is that given the link activation frequency f;, the per-flow
frequency f* can be determined locally.

V. CONCLUSIONS

We considered the problem of minimizing age-of-
information (Aol) for a general multi-hop network with
‘R source-destination pairs, with general interference con-
straints. We derived Aol optimal stationary scheduling poli-
cies, in which links are activated according to a stationary
probability distribution.
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We first considered a simple line network, with a single
source-destination pair, and showed that the age is a simple
separable convex function of link activation frequencies.
We then used this result to prove an important separation
principle for the general multi-hop network with R source-
destination pairs. The separation principle states that the
optimal stationary policy for the multi-hop network can be
obtained by solving an equivalent problem in which all
source-destination pairs are just a single-hop away.
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APPENDIX

A. Proof of Lemma 2
From (14), we know that

) Lt- X, (43)

A (ST T

Ay (S(i))

time ¢

Sii) T(i) Si+1)

Fig. 4. Computation of average age. We compute the area under the age
curve A;(t) between two successive activations of link e;, namely, between
time S(¢) and S(¢ + 1), and then add them up.

where X, is a geometrically distributed random variable
given by (15), and therefore,

1

]E[Tl(t)] = E[t - Xez] =1- ?7 (44)
l

for all [ € {1,2,...L}. Now from (43), we can obtain

(o (8) £ moa(t) = Xe,, (45)
and therefore,
E[n(n1(t)] =Eln1(t)] -E[X,],  (46)

where the last equality follows from (44) and (16). Iterating
this [ times we obtain the result.

B. Proof of Theorem 2

Figure 4 plots age A;_1(¢) and A;(t) as a function of time.
Also shown are the activation times of link e; as black dots
on time axis. In order to compute the average age A}, we
need to compute the area under the age curve A;(t). Let S(4)
denote the ith activation time of link e; under the stationary
policy 7. Area under the age curve A;(t) can be computed
by adding up area under A;(t) between times S(i — 1) and
S(7), and dividing by T'(¢) to get the average age per slot;
see Figure 4.

Consider a node [ # 0 and link e;. Let M (t) be a counting
process that counts the number of times link e; was activated
until, and including, time t¢. Let S(i) denote the epoches
of M(t) and T(i) be the time between ith and (i + 1)th
activation of link ¢;, i.e.,

T(i) = S(i+1) = S(i). (48)
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Then the average age is given by

Zf\;l [Al—1 (S(i)) T(i) + Zzill) k]

A?vezl\}gnoo ZN T() s (49)
i=1 42
o 2 A (S@) T + 5T (T6) — 1)
N S T) ’
(50)

as this is the area under the age curve A;(t), where A; (S(7))
is the age evaluated at the ith epoch of M (t). We illustrate
this in Figure 4. This can be shown to be equal to?

E[Ai—1 (S(i)) T())] + 3E[T(i) (T(i) — 1)]

E[T(z)] '
Note that A;_; (S(¢)) and T'(i) are independent random
variables as A;_1 (S(7)) is dependent only on events prior

to the epoch S(i) while T'(¢) is the time between ith and
1 4 1th epoch of M. Therefore, (51) reduces to

E[A1-1 (S@)IE[T()] + 3E[T(0) (T() — 1)]

A = (51)

A= ETG) ’
—E[A_1 (S()] + %]E [T(g g((z;] ) (52)
Using Theorem 1, it can be deduced that
-1
NS L
E[A;-1 (S(i)] = ; - (53)

Further, {T'(4)};>1 are i.i.d. and geometrically distributed as

PITG) =k =f01-f)"",

for all £k € {1,2,...}, where f; is the link activation
frequency of link e;. From this we can compute

1E[T@H(TEH -1 _ 1

(54)

. = —. (55)
2 E[T@) fi
Using (53) and (55) we obtain
L1
Ape =" —. (56)
= fr
Substituting [ = L = d yields the result.
C. Proof of Theorem 3
The problem (40) can be written as
Ml?él’;_}lle ;Ge(fe), (57)
where G.(f.) are given by
w”
Ge(fe) = Minimi —Leep(r
(fe) = Minimize Z’; Friteen(n)
re (58)
subject to Z Jelieepryy < fe-
reR

2This follows because {(A; (S(i)),T(3))}i>0 is a stationary ergodic
process.

The minimum for the optimization problem (58) is attained
at

1= [ - ] fe, (59)
> uer VW Lieepu)}
for all » € R. Substituting this in (58), we obtain
2
G (f,) = rer VOlieepon)] 60)
e fe '

Therefore, the optimization problem (57), and therefore (40),
can be written as

w
Minimize Z < s (6 1)
feF g fe

where we = [32, e Vi T{eep(ryy]” for all e € E.
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