RECTIFIABILITY AND ELLIPTIC MEASURES ON 1-SIDED NTA
DOMAINS WITH AHLFORS-DAVID REGULAR BOUNDARIES

MURAT AKMAN, MATTHEW BADGER, STEVE HOFMANN, AND JOSE MARIA MARTELL

1.

1.1.
1.2.
1.3.
2.

2.1.
2.2.
2.3.
2.4.
2.5.
3.

3.1.

ABsTRACT. Let Q c R™! 5 > 2, be 1-sided NTA domain (also known as uniform
domain), i.e. a domain which satisfies interior Corkscrew and Harnack Chain
conditions, and assume that 0Q is n-dimensional Ahlfors-David regular. We
characterize the rectifiability of dQ in terms of the absolute continuity of surface
measure with respect to harmonic measure. We also show that these are equiv-
alent to the fact that 0Q can be covered H"-a.e. by a countable union of por-
tions of boundaries of bounded chord-arc subdomains of © and to the fact that
0Q possesses exterior corkscrew points in a qualitative way H"-a.e. Our meth-
ods apply to harmonic measure and also to elliptic measures associated with real
symmetric second order divergence form elliptic operators with locally Lipschitz
coefficients whose derivatives satisfy a natural qualitative Carleson condition.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

A well known result of F. and M. Riesz says that if Q is a simply connected
planar domain whose boundary is a Jordan curve of finite length, then harmonic
measure w and arclength H'|sq are mutually absolutely continuous. A quantita-
tive version of this theorem was proved by Lavrentiev in [29]. Due to examples
of Bishop and Jones in [7] in the planar case, and of Ziemer in [38] and Wu in
[37] in higher dimensions, neither H"|s0 < w nor w <« H" are true for arbitrary
simply connected domains Q ¢ R™! with H"(dQ) < oo without imposing addi-
tional topological and/or non-topological conditions on dQ2. Quantitative mutual
absolute continuity of harmonic measure and surface measure in higher dimen-
sions was proven when Q is a Lipschitz domain by Dahlberg in [11], and when Q
is non-tangentially accessible (NTA) (see Definition 1.9) and 9Q is Ahlfors-David
regular (ADR, see Definition 1.5) independently by David and Jerison in [13] and
by Semmes in [35]. It is now known that if Q is a 1-sided NTA domain (see Defi-
nition 1.8) with ADR boundary, then the following are equivalent:

(i) 0Q is Uniformly Rectifiable,
(i1) Q is an NTA domain (and therefore Q is a chord-arc domain),

(.1 (i) w € Aw,

(iv) w € weak — An.

Here (iii) and (iv) should be understood in a scale invariant sense (see Definition
1.13). The implication (i) implies (ii) was proved in [3]; (ii) implies (iii) was proved
independently in [13, 35] as mentioned above; (iii) implies (iv) is trivial; and (iv)
implies (i) was proved in [25]. On the other hand, in [6], it was shown that if Q
is an NTA domain with H"(9Q) < oo, then dQ is n-rectifiable and H"|go < w.
Moreover, it was also shown in [6] that if Q is an NTA domain, then w < H" < w
on A, where

A= {x €0Q: limiglfw (6Q :B(X’ r) < oo} .
r— r

However, due to an example of Azzam, Mourgoglou, and Tolsa in [4], harmonic
measure is not necessarily absolutely continuous with respect to surface measure
on the entire boundary of an NTA domain of locally finite perimeter. In particular,
the authors of [4] constructed Reifenberg flat domains Q with locally finite surface
measure H"|3q and Borel sets E ¢ 0Q with w(E) > 0 = H"(E). (In fact, the sets E
have Hausdorff dimension less than n.) Therefore, in order to ensure that w < H"
on the full boundary of an NTA domain of locally finite perimeter, one needs to
identify some additional qualitative or quantitative conditions on 9. For related
results on p-harmonic measure, see [30].
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The main result proved in this article is the following qualitative version of (1.1)
(see Section 1.2 for the precise definitions).

Theorem 1.2. Let Q c R™! n > 2, be a 1-sided NTA domain whose boundary is
ADR. Write w := X for the harmonic measure of Q with pole at X, any given
point in Q, and write o := H"|sq for surface measure on dQ. Then the following
statements are equivalent:

(a) 0Q is rectifiable;

(b) there exists a set F C 0Q and a constant ¢y, 0 < ¢o < 1 such that o(F) = 0
and for all x € 0Q \ F there is ry > 0 for which A(x,r) = dQ N B(x, r) has
an exterior corkscrew point (that is, a corkscrew point with respect to the
open set Qext = R\ Q) for all 0 < r < ry with implicit constant co;

(c) o< won dQ;
(d) 0Q = Fo U (UN FN), where a(Fg) = 0 and Fy = 0Q N dQy for some
bounded chord-arc domain Qn C Q;

(e) 0QQ = FpuU (UN FN), where o(Fo) = 0 and for each N there exist constants
Oy, 0y > 0 and Cy > 1 such that

Clo(F)N < w(F) <Cyo(F) Y F CFy.

The proof of Theorem 1.2 is in Section 2 and goes as follows. First, observe
that (e) easily gives (c). Second, (d) yields (a), because the boundary of any chord
arc domain is rectifiable (e.g., see [13] or [6]). In Section 2.1, we use a notion
of approximate tangent planes from geometric measure theory to show that (a)
implies (b). Next, we prove in Section 2.2 that (b) implies (d) by constructing
certain sawtooth domains Qg ., which are bounded chord-arc subdomains of Q.
In Section 2.3, we verify (d) implies (c) by a straightforward use of the maximum
principle. In Section 2.4, we first show that some family of bad cubes (for which
the exterior corkscrew condition fails) satisfies a Carleson packing condition. From
there, we obtain that another suitable family of sawtooth domains Qg ¢, are chord-
arc domains and show that (c) implies (d). To complete the proof, in Section 2.5 we
demonstrate that (b) implies (e) by using a variant of the Dahlberg-Jerison-Kenig
sawtooth lemma and a certain projection operator.

Although our main result is written in terms of harmonic measure, our methods
allow for more general elliptic measures. In particular, in Theorem 1.2 we can
replace harmonic measure w with elliptic measures wy, corresponding to a class of
divergence form elliptic operators whose coefficients are locally Lipschitz and obey
a natural Carleson measure condition. Our class of operators is motivated by the
results in [28] and the recent work [23]. The operators considered in [28] have the
property that they are good (i.e. their elliptic measure is Ay,) in NTA subdomains.
This is relevant in the proof of (b) implies (e), where such a property is used for the
Laplacian. On the other hand, [23] contains a generalized version of the implication
(iv) = (ii) in (1.1), valid for a class of elliptic operators. In [23], there is an
“integration by parts” argument that allows the authors to obtain localized square
functions estimates and we use a similar argument here in the proof of (c) implies
(d). Here we shall assume qualitative versions of the conditions in [28], [23] that
allow us to follow their ideas in a qualitative way. The precise result is as follows:
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Theorem 1.3. Ler Q ¢ R™! n > 2, be a 1-sided NTA domain whose bound-
ary is ADR. Let Lu := —div(A Vu) and assume that A is uniformly elliptic, real,
symmetric, A € Lip,.(Q), and for every ball B = B(x,R) with x € 0Q and
0 < R < diam(0Q), there exists Cp such that

1
(1.4) sup — f f ( sup |VA(Z)|) dX < Cp,
yeBnaQ ™ JJIBr.nna \ zeB(x.s(x)/2)

0<r<R

where 6(X) = dist(X, 0Q). Write wy, .= a))L(O for the elliptic measure of Q associated
to L with pole at Xy, any given point in Q, and write o := H"|9q for surface
measure on 0Q). Then the equivalent statements (a)—(e) in Theorem 1.2 are also
equivalent to the following statements:

(¢’) o < wr on 0Q;

(e’) 0Q = FyuU (UN FN), where o(Fo) = 0 and for each N there exist constants
On, 0y > 0and Cy > 1 such that

Cylo(F)V < wi(F) < Cyo(F)™ YV F C Fy.

By an easy compactness argument, to invoke Theorem 1.3 it is enough to verify
that (1.4) holds on balls B = B(x, R,) for every x € 9Q, for some R, > 0 depending
on x. Examples of operators Lu := — div(A Vu) where this result applies include the
case of coeflicients A which are locally Lipschitz in Q, with |[VA| € L*(B(x, r,)NQ)
for every x € 0Q, for some r, > 0. More generally, one may assume that there is
€ > 0 such that [VA(X)| 6(X)' ¢ — 0 as X — x along X € Q for every x € 0Q.

The proof of Theorem 1.3 is given in Section 3. Note that (e’) easily implies
(c’). To complete the proof, we show that (c¢’) implies (d) in Section 3.1 and (b)
implies (e’) in Section 3.2.

Finally, in Section 4, we construct an example of a domain Q, satisfying the
required background hypotheses (i.e. 1-sided NTA with ADR boundary) for which
(a)—(e) in Theorem 1.2 hold, but (i)—(iv) in (1.1) fail. In particular, for this example,
harmonic measure (and the elliptic measures in Theorem 1.3) belongs to neither
A, nor to weak-A,, but nevertheless satisfies the weaker absolutely continuity
conditions (¢), (e) (and (¢’), (e)).

We note that some interesting related work has recently appeared, or been car-
ried out, while this manuscript was in preparation, due to Mourgoglou [32], Azzam,
Mourgoglou and Tolsa [5], and Mayboroda, Tolsa, Volberg and the two last authors
of the present paper [22] which sharpens our results in the special case of Laplace’s
equation. In the first manuscript, the author obtains the implication (a) implies (c)
of our Theorem 1.2, but with the upper ADR bound on 9Q replaced by the weaker
qualitative condition that H"|sq is locally finite. Moreover, in [5], the authors
obtain the converse direction (c) implies (a) (as well as results concerning rectifia-
bility of harmonic measure, provided that w <« o), replacing the ADR hypothesis
by the weaker qualitative assumption that H"|sq is positive and locally finite, and
assuming only a “porosity” (i.e. Corkscrew) condition in the complement of 9Q,
in lieu of the stronger 1-sided NTA assumption. In [22] the same result is proved
removing the porosity assumption. Both [5] and the follow-up version [22] rely
on recent deep results of [33], [34], concerning connections between rectifiability
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and the behavior of Riesz transforms. The use of these Riesz transform results
allows for non-trivial weakening of the hypotheses as described above, but on the
other hand, the Riesz transforms are tied explicitly to harmonicity. Our methods
in the present paper, involving localized square function estimates, seem to require
a stronger connectivity hypothesis (i.e. the 1-sided NTA, also known as “uniform
domain”, assumption), but are more robust in the sense that they allow treatment
of variable coefficient operators.

A related result has been also obtained by the last two authors of the present pa-
perin [21]: if Q is an open set with ADR boundary and harmonic measure satisfies
a weak A, condition on 92 then JQ is Uniformly Rectifiable. This corresponds to
a quantitative version of the implication (c) implies (a) of our Theorem 1.2 in a set-
ting without connectivity assumptions. This result and the corresponding version
for the p-Laplacian will appear in a forthcoming paper by the same two authors in
collaboration with Le and Nystrom [19]. The converse of this result, that is, that
the complement of a Uniformly Rectifiable set has “interior big pieces of good har-
monic measure estimates”, has been recently proved by Bortz and the third author
of this paper [8]. This can be seen as a quantitative version of (c) (or (e)) implies
(a) in Theorem 1.2.

1.1. Notation and conventions.

e We use the letters ¢, C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend on at most dimension and the constants
appearing in the hypotheses of the theorems (that is, on “allowable parameters™).
Unless otherwise specified, upper case constants are greater than 1 and lower
case constants are smaller than 1. We write a < b or a =~ b to denote a < Cb or
0 < ¢ < a/b < C for some constants ¢ and C following the convention above,
respectively.

e Given a domain Q c R™!, we shall use lower case letters x, y, z, etc. to denote
points on dQ, and capital letters X, Y, Z, etc. to denote generic points in R™**!
(especially those in R"*! \ 9Q).

o The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on dQ, and denoted B(X, r) when the center X € R"*1\ Q.
A surface ball is denoted A(x, r) := B(x, r) N 0.

o If 0Q is bounded, it is always understood (unless otherwise specified) that all
surface balls have radii controlled by the diameter of dQ: that is, if A = A(x, r),
then r < diam(9Q2). Note that in this way A = 9Q if diam(9Q) < r < diam(0Q).

e Letdist(A, B) := inf,c4 infpep |a—b| denote the usual Euclidean distance between
sets A and B. For X € R, let §(X) := dist(X, 6Q).

o Let H" denote n-dimensional Hausdorff measure and let o := H" |, . denote the

surface measure on 9Q.

o0

e For a generic set A C R™! we let int(A) denote the interior of A. However,
when A C 02, we let int(A) denote the interior of A relative to 0Q2; that is, int(A)
is the largest relatively open set in €2 contained in A. In addition, for A C 9Q,
we define the boundary 0A := A\ int(A) using our convention on int(A).
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e We shall use the letter / (and sometimes J) to denote a closed (n+ 1)-dimensional
Euclidean cube with sides parallel to the co-ordinate axes, and we let £(/) denote
the side length of 1.

e We use Q to denote a dyadic “cube” on dQ, which exists whenever dQ is ADR
(see [10, 15]) and enjoy certain properties enumerated in Lemma 1.15 below.

1.2. Some definitions.

Definition 1.5 (Ahlfors-David regular). We say that a closed set £ C R™! i
n-dimensional ADR (or simply ADR) if there is some uniform constant C such
that

1
ol M <HY ENBx,r))<Cr" Yre(0,diam(E)), x € E.

Following [27], we state the definition of Corkscrew condition, Harnack Chain
condition, and NTA domains.

Definition 1.6 (Corkscrew condition). We say that an open set Q C R™*! satisfies
the (interior) Corkscrew condition if for some uniform constant ¢, 0 < ¢ < 1, and
for every surface ball A := A(x, r), with x € dQ and 0 < r < diam(dQ), there is
a ball B(Xa,cr) € B(x,r) N Q. The point X5 C Q is called a (interior) corkscrew
point relative to A, (or, relative to B). We note that we may allow r < C diam(0<Q2)
for any fixed C, simply by adjusting the constant c.

Analogously, we say that an open set Q c R™*! satisfies the exterior Corkscrew
condition if the open set Qext = R\ Q satisfies the (interior) Corkscrew condition.
Also, if we say that X, is an exterior corkscrew point relative to A, (or, relative to
B), we mean that Xp € Qe is an (interior) corkscrew point relative to A, (or,
relative to B) for the open set Qe:.

Definition 1.7 (Harnack Chain condition). We say that Q satisfies the Harnack
Chain condition if there is a uniform constant C such that for every p > 0, A > 1,
and every pair of points X, X’ € Q with §(X), 6(X’) > p and |[X — X’| < Ap, there
is a chain of open balls By,...,By C Q, N < C(A), with X € By, X’ € By,
By N By # @ and C~! diam(By) < dist(Bg, 0Q) < C diam(By). The chain of balls
is called a Harnack Chain.

Definition 1.8 (1-sided NTA domain). If Q satisfies both the Corkscrew and Har-
nack Chain conditions, then we say that Q is a /-sided NTA domain.

Definition 1.9 (NTA domain). We say that a domain € is an NTA domain if it
is a 1-sided NTA domain and if, in addition, Qe := R™"!' \ Q also satisfies the
Corkscrew condition.

Remark 1.10. The abbreviation NTA stands for non-tangentially accessible. In the
literature, 1-sided NTA domains are also called uniform domains. We remark that
the 1-sided NTA condition is a quantitative form of path connectedness.

Definition 1.11 (Chord-arc domain). A chord-arc domain Q is an NTA domain
with ADR boundary.

We next give definition of rectifiability. For general background, see [31].
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Definition 1.12 (Rectifiability). A setin E c R"*! is called n-rectifiable if there
exist Lipschitz maps f; : R” — R"*! i=1,2,..., such that

H" <E U f,-(R”)) = 0.
i=1

Definition 1.13 (A, weak-Ay). Given Q c R™*! a l-sided NTA domain with
ADR boundary, let w be the associated harmonic measure. We say that w is weak-
A if there exist positive constants C and 6 (depending on n and the 1-sided NTA
and ADR constants) such that for every surface ball Ay = ByNd<, with By centered
at 0Q and radius smaller than diam(9Q2), and for every surface ball A = B N 9Q,
with B centered at 9Q and 2 B C By,

a(F)\’
(1.14) WX (F) < C (—> Wt (2 A), VF CA.

o(B)
Analogously, we say that w € A if the previous condition holds with B C By, in
place of 2 B C By, and if we can write w*%(A), in place of w*% (2 A), in the right
hand side of (1.14)

1.3. Dyadic grids and sawtooths. In this subsection we give a lemma concerning
the existence of “dyadic grid” which can be found in [15, 14, 10].

Lemma 1.15 (Existence and properties of the “dyadic grid”). If E c R™! js
ADR, then there exist constants ay > 0, n > 0, and C; < oo, depending only on
dimension and the ADR constant, and for each k € Z there exists a collection of
Borel sets (“cubes”)
Dy = {Qj C E: j €3,

where 3 denotes some (possibly finite) index set depending on k, satisfying the
following properties.

(i) E = UjQ’J‘. foreach k € Z.

(ii) If m > k then either Q7" C Q]; or Q"N Qlj =0.

(iii) For each (j, k) and each m < k, there is a unique i such that Qlj‘- c o

(iv) The diameter of each Q’;- is at most C127%.

(v) Each Q’; contains some surface ball A(xlj‘., a02_k) = B(xlj‘., a02_"') NE.

(vi) H" ({x € 0 : dist(x, E\ 0Y) < 72_"}) < O TH" (Q’;.) for all k and j
and for all T € (0, ay).

Some notations and remarks are in order concerning this lemma.

e In the setting of a general space of homogeneous type, this lemma has been
proved by Christ [10], with the dyadic parameter 1/2 replaced by some constant
6 € (0,1). In fact, one may always take 6 = 1/2 (cf. [26, Proof of Proposition
2.12]). In the presence of ADR property, the result already appears in [14, 15].

e For our purposes, we may ignore those k € Z such that 27 > diam(E) whenever
E is bounded.
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e We shall denote by D = D(E) the collection of all relevant Q’J‘.. That is,
D := | JDx,
k

where the union runs only over those k such that 27% < diam(E) whenever E is
bounded.

e Given a cube Q € D, we set
Dg:={Q' eD:Q cQ}.

e For a dyadic cube Q € Dy, we set £(Q) = 27% and we call this quantity the
“length” of Q. Evidently, £(Q) ~ diam(Q).

e Properties (iv) and (v) imply that for each cube Q € Dy, there exists a point
xp € E, a Euclidean ball B(xg, rg) and corresponding surface ball A(xg, rg) :=
B(xg, rg) N E such that

(1.16) cl(Q)<rg<lQ) and  A(xg.2rg) C Q C A(xg,Cro)

for some uniform constants ¢ and C. We shall denote this ball and surface ball
by By := B(xg,rg) and Agp := A(xg, rp), respectively, and we shall refer to the
point xg as the “center” of Q.

It will be useful to dyadicize the Corkscrew condition and to specify precise
Corkscrew constants. Let us now specialize to the case that £ = dQ is ADR with
Q satisfying the Corkscrew condition. Given Q € D(9Q2), we shall sometimes refer
to a corkscrew point Xy relative to Q, which define to be a corkscrew point Xa
relative to the surface ball A := Ay We note that 6(Xp) ~ dist(Xp, Q) ~ diam(Q).

Definition 1.17 (cy-exterior Corkscrew condition). Fix a constant co € (0, 1) and
let Q ¢ R™! be a domain with ADR boundary. We say that a cube Q € D(9Q)
satisfies the the co-exterior Corkscrew condition if there is a point zp € Agp and
a point X, € B(zg, ro/4) \ Q such that B(X;, co €(Q)) C B(zg,ro/4) \ Q, where
Ag = A(xg, ro) is the surface ball associated to Q.

Following [20, Section 3] we next introduce the notion of Carleson region and
discretized sawtooth. Given a cube Q € D(0Q), the discretized Carleson region
Dy relative to Q is defined by

Dg ={Q € D@OQ): Q' c Q}.
Let ¥ be family of disjoint cubes {Q;} C D(6€2). The global discretized sawtooth
region relative to 7 is the collection of cubes Q € D that are not contained in any
Qjef;
Dy :=D\ | J Dy,
QjeF

For a given Q € D the local discretized sawtooth region relative to ¥ is the
collection of cubes in Dy that are not in contained in any Q; € ¥

Df;r,Q = DQ \ U DQ/. =Ds N DQ.
QjeF
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We also introduce the “geometric” Carleson regions and sawtooths. In the sequel,
Q c R™! (n > 2) will be a 1-sided NTA domain with ADR boundary. Let ‘W =
W(Q) denote a collection of (closed) dyadic Whitney cubes of Q (see [36, Chapter
VI]), so that the cubes in ‘W form a covering of Q with non-overlapping interiors,
and which satisfy

(1.18) 4 diam (1) < dist(41,0Q) < dist({, 0Q) < 40 diam (1)
and
(1.19) diam(/;) = diam(l»), whenever I; and I, touch.

Let X(I) denote the center of I, let £(I) denote the side length of I, and write k = k;
if £(1) = 275,

Given 0 < A < 1 and I € ‘W we write I* = (1 + A)I for the “fattening” of /. By
taking A small enough, we can arrange matters so that, first, dist(/*, J*) ~ dist(/, J)
forevery I, J € ‘W, and secondly, [* meets J* if and only if 4] meets dJ. (Fattening
ensures [* and J* overlap for any pair /, J € ‘W whose boundaries touch. Thus, the
Harnack Chain property holds locally in I* U J* with constants depending on A.)
By picking 4 sufficiently small, say 0 < 4 < Ag, we may also suppose that there is
T € (1/2,1) such that for distinct I, J € ‘W, tJ N I* = @. In what follows we will
need to work with dilations I** = (1 + 2 2)I and in order to ensure that the same
properties hold we further assume that 0 < 4 < 4p/2.

For every Q we can construct a family Wy, ¢ ‘W and define
(1.20) Up:=|J I,
le W,

satisfying the following properties: Xy € Ug and there are uniform constants k*
and Ky such that

(1.21) k(Q) — k* < k; < k(Q) + k* VIeWp,
X(I) -y, Xg VieWy,
dist(1, Q) < Ky 27KO VIieW,.

Here X(I) -y, X means that the interior of U contains all the balls in a Harnack
Chain (in Q) connecting X(/) to X, and moreover, for any point Z contained in
any ball in the Harnack Chain, we have dist(Z, 0Q2) ~ dist(Z, Q \ Up) with uniform
control of the implicit constants. The constants k*, K¢ and the implicit constants in
the condition X(I) -y, Xg in (1.21) depend on at most allowable parameters and
on A. The reader is referred to [20] for full details.

For a given Q € D, the Carleson box relative to Q is defined by

T :=int U Uy
Q'eDg
For a given family ¥ of disjoint cubes {Q;} C D, the global sawtooth region
relative to F is
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Finally, for a given Q € D we define the local sawtooth region relative to # by

Qy*’Q = int U Uy
Q'eDr o

For later use we recall [20, Proposition 6.1]:

(1.22) 0\ ( U Qj> cIQNIQFpc O\ ( U int(Qj)).

QjGT QI‘ET

Given a pairwise disjoint family ¥ € D and a constant p > 0, we derive another
family (o) ¢ D from F as follows. Augment F by adding cubes Q € D whose
side length £(Q) < p and let ¥ (p) denote the corresponding collection of maximal
cubes. Note that the corresponding discrete sawtooth region Dy, is the union of
all cubes Q € Dg such that £(Q) > p. For a given constant p and a cube Q € D,
let Dg(,,0 denote the local discrete sawtooth region and let Q) o denote the
geometric sawtooth region relative to disjoint family 7 (p).

2. Proor oF THEOREM 1.2

2.1. Proof of (a) implies (b). Our goal in this section is to prove that (a) implies
(b) in Theorem 1.2. To this purpose, we first recall a useful notion from geometric
measure theory. For any affine n-plane  and 7 > 0, set P(n) := {X : dist(X,P) <

n}.

Definition 2.1 (Linear approximation). A set E in R"*! is called n-linearly ap-
proximable if for H"-a.e a € E the following holds: if 7 is a positive number, there
are positive numbers rg, 4 and an affine n-plane # such that @ € # and for any
0<r<r,

(@) H"(E N B(X,nr)) = Ar", for every X € P N B(a, r);
@) H™(E N B(a,r)\ P(nr)) < nr'.

See Figure 2.1 for visualization of Definition 2.1.

The surface measure of the portions of £
in the gray area is smaller than nr"

Ficure 2.1. Linear approximation of set E.
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Lemma 2.2 ([31, Theorem 15.11]). If E is an H" measurable n-rectifiable subset
of R" with H"(E) < o, then E is n-linearly approximable.

We want to show that n-rectifiability implies existence of two-sided corkscrews
in the presence of Ahlfors-David regularity. Fix any n-rectifiable, n-dimensional
ADR set E ¢ R"™!. Let us observe that the ADR condition implies that E is
H"-locally finite and then E is n-linearly approximable by Lemma 2.2 (note that
the n-linear approximability is a local property and hence Lemma 2.2 immediately
extends to any E having locally finite measure). Thus, we may fix a € E for which
(i) and (i) in Definition 2.1 holds for some 0 < 7 <« 1/4 to be chosen and some
constants g and A and n-plane $ depending on E, a and 5. After a harmless rotation
and translation, we assume ¢ = 0 and # = {x € R"*! : x,,; = 0} with 0 € P. Let
N > 1 be a large constant to be chosen and fix 0 < r < nrg. Set B = B(0,r),
¢ =y, and let

B* = {(X=X1,....Xu+1) €B: £X41 > 471}
denote the upper and lower parts of B \ (4 { r). We also set

4
T = {XeR"” \ E : dist(X, E) < %}

See Figure 2.2.

B0, r)

Fiure 2.2. Sets B, B, X.

Lemma 2.3. We can take N > 1 large enough and 0 < n < 1/4 small enough
depending only on the ADR constants and dimension so that if B := B(0, r) for some
0 < r < nry, then there exist X* € B*\ X. Hence B(X*,2{r/N) c B(0,2r)\ E,
where ¢ = na+i.

Proof. We work with B* (the proof for B~ is identical). Our aim is to show that
(2.4) BT\ x| 2 L
It then easily follows that B* \ £ # @ and we can pick any X* € B" \ X.

To show (2.4), we let ‘W = W(R"™! \ E) be the Whitney decomposition of
R™I\E andset WK = {I e W : €U)=27%). Let] € ‘W hbesuchthat /NB,NZ # @
andpick Y = Y; = (Yy,..., Y1) € INBLNZ. Then £(I) = dist(/, E) < dist(Y, E) <
4 ¢ r/N and hence I € ‘W* for some k verifying 27% < £ r/N.
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From the definition of the dyadic grid we can associate to each I € ‘W a nearest
dyadic cube Q; € D(FE) such that
€0n) =€) and dist(, Qy) = dist({, E) = £(I).

(Just pick one if there are several choices available.) For every y € Q;, we have
[y = Y| = dist(l, E) = €(I) < {r/N. In particular, we have |y,+1 — Yu+1] < {r/N.
Since Y € B* (i.e., Y41 > 4(r), taking N large enough depending on the ADR
constants and dimension, we conclude that y,+; > 2 r. Thus, choosing n (and
hence ¢) small enough depending on the ADR constants and dimension, we obtain

QI CENBO0,2n\PR2Lr) c ENBO.2{n ' n\Pm Q" r).

Note that with k € Z fixed, the family {Q;};cy has bounded overlap (with overlap
independent of k). Therefore,

Y~y oc@nse| U o

TeWwk Te Wk Je Wk
<o (EnBO.2¢{n ' n\P@ QL™ ) <n (247 r) =2"n'

where in the last estimate we have used (ii) in Definition 2.1 along the fact that
0 < r < nry and that 7 is small enough (depending on n). We conclude that

2.5 1B NZ=) IInB,nzl< Y > oy

IeW k: 2-"5% IeWk
S § 2—k E f([)” S nl—n é«l’t+1 rn+1 — nrn+1.
k2 k<& TeWk

This and [20, Lemma 5.3] easily imply
P BN(X eR™ 10 < Xy <447} + BT NE[+ BT\ X
SC+m T +1BT\ I,

Taking now 1 > 0 small enough depending only on ADR constants and dimension,
we can hide the first time in the last term and conclude as desired (2.4). O

We are now ready to establish the main result of this section:

Proposition 2.6. Let Q be a 1-sided NTA domain with ADR boundary and assume
that 0) is n-rectifiable. There exists 0 < ¢ < 1 depending on the 1-sided NTA and
ADR constants such that for o-a.e. x € 0 there is a scale ry > 0 such that for
all 0 < r < ry there exist Xgl(tx’r), XZ’&J) € B(x,r) that are respectively interior and
exterior corkscrew points relative to A(x, r) with implicit constant c.

Proof. We can use Lemma 2.2 to find a subset of dQ with full c-measure on which
(i) and (ii) of Definition 2.1 hold. We can make the previous reductions and find
X* as in Lemma 2.3 associated with B := B(0, r) whenever 0 < r < nry, where
N > 1is a fixed small number and 7 is small enough but at our disposal.

We claim that if 77 is small enough depending on the 1-sided NTA and ADR
constants, then at least one of X* belongs to Qcx;. Suppose otherwise that X* € Q
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(by construction X.. ¢ 0Q). Since Q is a 1-sided NTA domain, Q is also a uniform
domain. In fact, the two notions are equivalent; see [3] for the definition of a
uniform domain and for a proof of the direction that is relevant here. Thus, there
exist 0 < ¢; < 1 and C; > 1 depending only the 1-sided NTA constants and a path
v connecting X* and X~ in Q so that

{(y) <Ci1X™ —X"| and dist(Z,0Q) > ¢ dist(Z,{X",X*}) VZey.
In the previous expression, £(y) denotes the length of y. For every Y € y, we have
YI<|Y =X |+ X <diam(y) + r < €(y) +r<Ci | X = X'|+r<Q2Cy+ Dr,

since X* € y. Hence y C B(0,(2Cy + 1)r). On the other hand X* € B*. Hence
X* lies above P and X~ lies below P. In particular, we can thus find Z € PNy C
PN B@O,(2Cy + 1) r). If we assume that (2C; + 1) r < rg, then we can apply (i) in
Definition 2.1 to find z € dQ such that dist(Z,0Q) < |Z -z <n(2C; + 1) r. Also
note that since Z € P and X* € B*,

Z - X*| 2 |Xpy| > 40 r=4niir.

n

Hence
nQ2Cy+ 1) r> dist(Z,0Q) > ¢; distZ (X", X*}) > c14nw r.

We can clearly take 7 arbitrarily small depending only on Cj, ¢; and 7 so that the
previous estimate does not hold and this brings us to a contradiction.

Let us summarize the argument so far. We can pick 79 small enough (depending
on the 1-sided NTA and ADR constants) so that if

0 < r < ry:=romin{ny, 2C; + )71,

then X* or X~ is in Qex;. Let X' denote one of the points in Qex. By Lemma 2.3,
B(X**'. 2y r/N)) C B(0,2r) \ dQ and hence X**' is an exterior corkscrew point
relative to A(0, 2 r) with implicit constant {p/N. On the other hand since Q is a 1-
sided NTA domain it satisfies the (interior) corkscrew condition and hence we can
find X'" an interior corkscrew point relative to A(0O, 2 r) with implicit constant co.
This readily leads to the desired conclusion with r, as above and ¢ = min{{y/N, co}.
This completes the proof. O

2.2. Proof of (b) implies (d). In this section, we prove (b) implies (d). Suppose
there exist a Borel measurable set Fy c 0Q with o(Fy) = 0 and constant 0 < 2 ¢g <
1 such that:

For each x € 9Q \ Fy, there is a scale 0 < r, < diam(dQ) such that
for every 0 < r < r, there exist interior and exterior corkscrew
points relative to A(x, r) with implicit constant 2 cg.

By taking r, smaller if needed, we may assume that r, = 27% for some k, € Z.
Given k € Z we consider the closed set (and therefore measurable set)

Ep :={x€dQ\Fy: r, =27k}

Then dQ = Fo U |J;ez Ex. In turn, for each k we can write Ej = UQGDk Ey N Q0.
To establish (d), it suffices to show that for every k € Z and Q € Dy, there exists a
bounded-chord arc domain Q, C Q such that £, N Q € dQ N 0.
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Fix k € Z and Qg € Dy, for which Ex N Qg # @. Suppose x € E and 0 < r < 27k,
Then there exists y € dQ \ Fy such that r, = 27 and |x — y| < r/2. Let X* be
interior/exterior corkscrew points relative to A(y, r/2) with implicit constant 2¢g
and note that

B(X*,cor) = B(X*,2¢o(r/2)) C B(y,r/2) N Q* C B(x,r)NQF,

where Q* and Q™ denote Q and Qey, respectively. We conclude that for every x €
Eyandforevery0 < r < 2% there are interior/exterior corkscrew points X* relative
to A(x,r) with implicit constant cg. This is the key property for the rest of the
argument in this section. To continue, set F = E; N Qg and dyadically subdivide
Qo, stopping whenever Q N F, = @. If we never stop, set ¥ = @. Otherwise,
F =1{Qj}j=1 € Dg, \ Qo is the pairwise collection of stopping time dyadic cubes
and it follows that Q; N Fy = @ and Q N Fy # @ whenever Q; & O C Q. We
remark that we did not stop at Qg, because Fy # @. Also, Fx = Qo \ U =1 Qjs
because Ej is a closed set.

Set Q, = Qg ¢, (Where it is understood that Q, = Ty, if ¥ = @). Then Q, is
a bounded 1-sided NTA domain with ADR boundary by [20, Lemma 3.61], where
all implicit constants for (2, depend only on the corresponding constants for Q. By
(1.22), we only need to check that Q, satisfies the exterior corkscrew condition,
which will follow from the definition of the set F;.

To complete the proof, let M > 1 denote a large constant to be chosen below.
Fix any boundary point x € dQ, and any scale 0 < r < 27K = £(Qp) ~ diam(6Q,),
and set A, = B(x,r) N 9Q,. We consider two cases:

Case 1: Suppose that 0 < 6(x) < r/M, where 6(x) = dist(x, 9Q). We first claim that
there exists Q € Dg, with £(Q) ~ r/M such that |x — xg| < r/M. To see this, note
that on one hand, if x € 8Q, NIQ, then x € O (see (1.22)) and we can find Q € Dy,
with £(Q) ~ r/M and x € Q. On the other hand, if x € dQ, N Q, then by the
definition of the sawtooth region, x € 9I* for some I € W, with O’ € Dy g, and
|x — xor| = dist(I, Q") = £(Q") ~ {(I) = 6(x) < r/M. Let us now take Q € Dy, an
ancestor of Q’, such that £(Q) = r/M and hence |[x—x| < [x—x¢ [+|xg —x¢| S /M.
This verifies the claim.

Take Q as in the claim and consider two cases. Suppose first that there exists
y € QN F; # @. Then, as shown above, there is X~ such that B(X~,cor/2) C
B(y, r/2) N Qex:. Therefore, for M large enough, we have

B(X",cor/2) C B(y,r/2) N Qext C B(x, 1) N (Qy )ext-

Suppose otherwise that Q N Fy = @. Then Q C szl Qj, say QN Q; # @ for some

Q; € F. Recall that é,-, the father of Q;, meets F; and therefore Q c Q;. Thus,
by [20, Lemma 5.9], there is a ball B’ C R™1\ Q, whose center is xo and whose
radius is of the order of £(Q) ~ r/M. For M large enough, this gives the desired
exterior corkscrew condition relative to A,. This completes Case 1.

Case 2: Suppose that §(x) > r/M. Then x € Q, and by definition of the sawtooth
region, x € dI* N J for some Whitney cubes I € W*Q, Q € Dg g,, and J € W with
7J C Q\Q, forsome 7 € (1/2,1). Note that £(I) ~ £(J) ~ §(x) > r/M. Hence we
can easily find an exterior corkscrew in the segment joining x with the center of J
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with corkscrew constant that depends only on M and the implicit constants in the
previous estimates. This completes Case 2.

This finishes the proof of (b) implies (d).

2.3. Proof of (d) implies (c). The argument is quite simple. Let ' C 9Q be a
Borel set and suppose that w(F) = 0. Then w(FNFy) = 0 for every N and it suffices
to show that oo(F N Fy) = 0 for each N. Fix N and write wy for the harmonic
measure of Qy with pole at Xy, any point of Qy. By Harnack’s inequality and the
maximum principle (see the justification below), 0 < wy(FNFy) < w™(FNFy) =
0. But wy € A(0Qy), since Qp is a chord-arc domain (see [13, 35]). Hence
wy and H ”‘ a0y are mutually absolutely continuous. Therefore, o(F N Fy) = 0,
because wy(F N Fy) = 0.

Let us justify the use of maximum principle. One can use Perron’s method (see
[16, Chapter 2] for more details) to easily see that every superfunction relative to
XFnFy for Qis also a superfunction relative to y rnr, for Qy, since Qy € Q and FN
Fy c 0QNdQy. Hence the desired inequality follows after taking the infimum over
such superfunctions. This works for the Laplacian and does not require Wiener
regularity. However, since below we are also interested in the case of variable
coeflicients, we now present a more robust, alternative argument, borrowed from
[24]. Fix a compact set FcFNF ~ and a small error € > 0. Since w*V is outer
regular, there exists a bounded, relatively open set U C 9 such that FcUand

WU < N(F) + e

By Urysohn’s lemma there exists ¢ € C.(0€2) suchthat0 <o < 1,9 =1o0n F and
¢ =00n0Q\ U. Let u denote the Poisson extension of ¢, i.e.,

u(X) ::/ o) do*(y) VXeQ.
0Q

Because 0Q2 is ADR, every x € 0Q) is regular in the sense of Wiener. Indeed, by the
dual characterization of capacity using Wolft’s potential, see [1, Theorems 2.2.7
and 4.5.2] and [18, Theorem 2.38 and Example 2.12], one can see that ADR yields
that Q satisfies the “capacity density condition” (see [2] for the precise defintion)
which, in turn, is a stronger quantitative version of Wiener regularity (details can
be found in the forthcoming papers [19, 24]). Hence u € C(Q), where ulso = ¢,
and thus, u € C(Qy), as well. It follows that

(2.7) wn(F) = / 1z(») dwn(y) < / u(y) dwn(y) = u(Xn),
0Qy 0Qy

where the last equality holds by the strong maximum principle and the fact that Qy
is bounded. On the other hand,

(2.8) u(Xy) < / xu dw ¥ (y) = N(U) < NF) + €.
4Q
Combining (2.7) and (%.8) and letting e — 0, we conclude that wN(ﬁ ) < WV (}7 )

for every compact set F' ¢ F N Fy Therefore, since wy and w*V are inner regular,
wn(F N Fy) < 0 (F N Fy), as claimed above.
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2.4. Proof of (c) implies (d). In this section we prove (c) implies (d). Assume
that o < w. Fix Qg € Dy, where kg € Z is taken so that 27" <« diam(AQ). From
the construction of T, one can easily see that Tg, C ko Bg := By, , where ko is
a constant depending on the ADR and 1-sided NTA constants and the parameters
in (1.21) (see [20]). Let Xy be an interior corkscrew point for KA*QO where « is
a large, but fixed constant, for which Xy ¢ 4 By, . Note that implicitly, we need
£(Qp) < diam(9Q). Since 0Q is ADR, Bourgain’s alternative [9] implies that there
exist0 < ¢ < 1 and C > 1 depending only on n and ADR such that for every x € 9Q
and 0 < r < diam(AQ) one has that 0¥ (A(x, r)) > C~! for every Y € QN B(x,cr).
This and Harnack’s inequality gives wX0(Qp) > Co ! where Cy > 1 depends on
ADR constants and «. Thus, w := Co 07(Qp) w*° satisfies

< w(Qo) < Co.

a(Qo)
Let N > Cp and let Fy = {Q;} C Dg, \ {Qo} be the collection of descendants of Qg
that are maximal with respect to the property that either

w(Q) 1 w(Q;)
< — or

o(Qj)) N a(Q))
By maximality, it follows that

Q.11 1 .29y vyoe D, 0,

N o(Q)

On the other hand, we can write

(2.12) Qo = ( N U Q,-) u( U (e U Q,,-)) =: E0U< U EN).

Nz2Co Q;eFfn N>Cy Q;eFn N>Cy

(2.9) 1

(2.10) > N.

The fact that o < w implies
(2.13) o(Eg) <o({x€ Qo: do/dw =0 or do/dw = oo}) = 0.
The following proposition is the core result of this section.

Proposition 2.14. Qg o, is chord-arc domain for every N > Cy.

Observe that Ey = Qo\ |J Q) € 0QNdQs, o, (cf. (1.22)). This, (2.12), (2.13)
Qjefn
and the previous proposition give (d) for the portion of the boundary corresponding
to Qp. Now we observe that 9Q = UQEDkO Q and (d) follows.

The proof of Proposition 2.14 being somewhat long, we break the argument into
several steps. Fix any integer N > Cy. Let n(N) be a sufficiently small constant
depending on N to be specified below. Recalling Definition 1.17 we set

BN .= {Q € Dg, : Q does not satisfy the n(N)-exterior Corkscrew condition} .

Let us introduce some additional notation. For every Q € Dy, , we set

{ o(Q), ifQeQeDg,NBY,
on =

(2.15)
0, otherwise.
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For any subcollection D’ c Dg,, we set

(2.16) m’) := Y ap.

Qel’

We shall see that the family Dg, o, N BN satisfies a packing condition with respect
to the surface measure provided that (V) is small enough; that is, m is a discrete
Carleson measure. In the argument that follows, we emphasize that constants are
allowed to depend on N.

Lemma 2.17. Under the setup above, for each N > Cy there exists 0 < Cy < o0
(independent of Qu) such that if n(N) is small enough (depending on N and the
ADR and 1-sided NTA constants of Q), then m is a discrete Carleson measure:

m(Dg) 1
(2.18) sup —— = up ——— Y o(Q)<Cy<w.
Q)eDg, U_(Qo) Q)eDg, O'(Qo) 0Dy,
0

QGDTN-QO ngN

Proof. We first normalize the Green function G(X, -) as we did with w*°. Set

G(Y) := Co 0(Qo) G(Xo, Y),

where X) is the corkscrew point relative to k Ay, as explained above and Cy is the

constant as in (2.9). Note that our choice of X guarantees that G € W5’2(2 By, NQ)
and G is harmonic in 2 B, N Q. Because all of our estimates below take place in
2By, NQ (since Ty, C By NQ), this observation ensures the computations below
are meaningful. Also, use of a Caffarelli-Fabes-Mortola-Salsa estimate and dou-
bling of w in 2 Ay, are legitimate under this regime. We note that in the harmonic
case that we are currently considering these estimates have been proved when the
domain is bounded in [2]. Passing from bounded to unbounded requires a limit-
ing argument along the lines in [20, Section 3]. Further details will appear in the
forthcoming paper [24].

Fix a cube Q € Dy, 9, N BY and a point zg € Ag € Q. Set By := B(zg,ro/4)
and let g9 € C3'(Bp) with 0 < ¢g < 1, ¢ = 1 on %B’Q, and ||[Véglleo < rél,
where rg = £(Q). Then, from (2.11) and [24] (see also [20]), there exists a uniform
constant C; > 1 (depending only on the ADR and 1-sided NTA constants of Q)
such that

(2.19)
(NC)™'o(Q) < €Tl w(Q) < /¢de = _fng'V¢QdX

0Q Q
:—ff(vg—&)-wng—ff&-V¢de+ff&-V¢de
Q cht

Rn+l

:_ff(vg—&)V¢QdX+ffa7V¢QdX
Q chl

=-I+171.
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Here @ is a constant vector given by

where € is a small constant depending on N that we specify below and Ug, :=
Qg y(erp).0 18 the geometric sawtooth region relative to Fy(erp) defined in §1.3.
Note that (see Figure 2.3)

Q\Upe CEc:i={XeQ: 6X) < el(Q)).

Uge = Qfy(erg).0

2 B’Q
Fiure 2.3. Ugp and Z..

Next, observe that for every X € Ug . one has € £(Q) < 6(X) < dist(X, Ag) < €(Q).
Moreover, |Uge| 2 £(Q)"™! with implicit constant independent of the number e.
Indeed, since Q € Dy, g,, we have that Q € Dy, (e ry),0 provided € is small enough.
Also, since Wy # @, there is I € ‘W such that £(]) =~ £(Q) and dist(/, Q) < £(Q).
In particular I € Qg (e ry).0 = Ug.e- Therefore,

(2.20) Ug.el > 1| = £(Q)",

and this estimate does not depend on € (provided € is small enough).

We now show |@| < Cy. To this end, first observe that Up . C T, where Ty
is the Carleson box relative to Q. Using this observation, Caccioppoli’s inequality,
Harnack’s inequality, a Caffarelli-Fabes-Mortola-Salsa estimate, and doubling of
w (see [2] in the bounded case or [24] in general), we obtain

(2.21) @| < €@y~ D f VG| dX
To
<qo 0 > 3 ( f f VG dx)’
Q'eDg IeW*, r

- GgXi))
’ (n+1) I
< (Q) QE/GD IEW* X
Q € Q/
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~ (n+1) w(Q")
ORI =

Q’eDy IeW*

UMD Y W) UQ)

Q’eDg
=0y 27F YT w(@)
k=0 0’'eDg

«(QH=27"* Q)
L Q) _
S ©

Note that the last estimate follows from (2.11), because Q € D, ¢, and there is no
dependence on €.

We are now ready to estimate 7.7 in (2.19). Recall that Q € 8". By [20, Lemma
5.7], failure of the n(N)-exterior Corkscrew property implies that [Qexe N Byl <

n(N) rg'. This and (2.21) give

(222) |TT1 51817 1Qex N Byl S N(N) rly ~ N (N) o(Q) <

ANC, a(Q),

where in the last estimate we have chosen n(N) sufficiently small (7(N) < (N 2 M)t
with M > 1 depending only on the ADR and 1-sided NTA constants).

‘We next estimate 7. To start,

@23) 1< ( f f VG - dldX + f VG - @ldx)

(@\Ug.nB, Uge

gf(Q)-l(ff |Vg—&|dx+f |vg—&|dx> = (Q) (1) + I2).

BNz, Upe

Using [20, Lemma 5.3], we obtain
(2.24)
I 51@l|By NZel + f IVGIdX < Nel(Q)™' + I3 < Nel(Q)o(Q) + I5.
BmeE

We estimate 73, as follows. Given I € W, let Q7 denote one of its nearest cubes
with £(Q7) = €(I). Using the same ideas as in (2.21),

< Y fflVQldX< 3 |1|%<fl|vg|dx)%

IeW: mB’ +0 IeW:mB’Q;&@
5(1)<€{’(Q) tH<el(Q)
Q(X(I)) w(Q7)
DD > ==t
IeW:INB, 20 SX(D) [eW:INB, 20 (@)
1INB), :INB,,

UDset(Q) UD<et(Q)
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s Y wopan= > 27F N wop.

IeW:INBy#0 k:27*k<e €(Q) IeW:I"NB,#0
UD<el(Q) on=27*
Note that if k is fixed, then the family {Q}};cqy.¢)=2+ has bounded overlap. Also,
if I meets B’Q, then €(I) < ro = €(Q). Hence Q; C CA’Q = CB’Q N 0Q for some
uniform constant C. Thus,

(2.25) I3sw(CAY) > 25 w(Qel(Q) < Nel(Q)a(Q),
k2 k<e 6(Q)

where we used doubling of w (see [2] in the bounded case or [24] in general)
and Harnack’s inequality; moreover, in the last estimate we invoked (2.11), since
O € Dgy, g, Gathering (2.23), (2.24), and (2.25), we obtain

(2.26) Il SNeoa(Q)+ Q)" I, < Q)+ Q)" I,

1
4NC,
provided we choose € sufficiently small (¢ < (N> M)~! with M > 1 depending only
on the ADR and 1-sided NTA constants will suffice). For later use, we assume that
€ = 27K< for some K, € N.

From (2.19), (2.22), and (2.26), it follows that
1
(2.27) €N o (Q) < 1T+ 1T < INC D «e " 1,.

Upon rearranging the inequality, we conclude that
0(Q)$2CNUQ) I5.

Recall that at this point 77(N) and € = €(N) are fixed and depend on N and the ADR
and 1-sided NTA constants of Q.

To continue with the previous estimate, we again use Harnack’s inequality,
a Caffarelli-Fabes-Mortola-Salsa estimate and that w is doubling (see [2] in the
bounded case or [24] in general):

GX) G w(©) _
«o " sx a0
Next we need a sharper version of a Poincaré inequality from [20, Lemma 4.8].
In that reference such estimate takes place on the set Ug, but its right hand has
a slight fattening of the Whitney regions. However, a careful examination of the
proof of [20, Lemma 4.8] reveals that one can obtain the Poincare inequality with-
out fattening the Whitney regions since theay are comprised of Whitney cubes.
Details of the latter approach will appear in [23]. This and (2.28) give

(2.28)

N 1, VXEUQ,G.

229 (0 s 00 Wok ( [[ wg-aPax)’

Ugp.e

v 0@ ([[w6oorax)’ sy ot ( [[ weo0rgmoax)”.

Upe Upe



RECTIFIABILITY AND ELLIPTIC MEASURES 21

Hiding this time cr(Q)%, we conclude that
(2.30) 7@ sy [[IV6PGax.  voeDrg 08
Uge

Recall that our goal is to obtain (2.18). Fix Q; c Dp,. We may assume that
Q) € Dg,,0, (otherwise m(DQé) = 0 and the desired estimate follows), in which
case we have Q; ¢ Q; whenever O N Q; # . Hence

DTXJ’QEJ = DQ6 N Dyy.00 where ?1(/ ={0;eFfn: OQ; C Qé}
Recall that we chose € to be of the form e = 27X¢ for some K, € N. Let

= U {Q eDg: €Q)=27%Q) = et(0)}.
0T}

Note that 7 C Dy, and it is a disjoint family. For ease of notation, we let
* * e **
Q" = QD‘EG-QEJ = int < U ) = int ( U U )
QGD?.[G'QZ) QED?}G’Qz) IGW
where I"* = (1 + 2 4) 1. Thus,

23 |J Ueec U U Upc |J Ug

QGD,]:/‘ ’ QGD o Q ED QED * of
v % o)<t i
cim( |J vp)=0"
0Pr5.04

This, the fact that the family {Ug ¢}pep has have bounded overlap (depending on €
and hence on N), see [3] or [23], and (2.30) yield

(2.32)
nog s > w@sv Y. [[vereax sy f [ vgrgax
QeD% Qqu,-/ Qo Uge
QGD‘FN,QOQB

We now claim that

w(Q)
a(Q)
This is clear if Q € Dg; o C Dy 0, by (2.11). Suppose next that Q € Dgx o \
DT[(I’QE)' Then there is Q; € ¥, such that Q C Q;. We can split Q; into its e-
descendants (recall that e = 27%¢) and we can find Q)€ Fx such that QiNnQ# Q.
In turn, since Q € Dy o, necessarily Q; C Q c Q; with f(Q}) = e€l(Q)). Using
this, ADR, doubling of w, and (2.11) which clearly holds for the father Q jof Qj,
we conclude that

(2.33) syl VQeDg o

as desired.
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In order to integrate by parts, we need to get away from the boundary. We would
like to introduce a new domain as in Figure 2.4 but in a way that the new domain
has ADR boundary with bounds that are independend of M. To do so, we introduce
a large parameter M and define 7y ,, = ™M ¢(Qp)); that is, Fam C Doy is the
family of maximal cubes of the collection 5 augmented to include all dyadic
cubes of size smaller than or equal to 2~ M (Qp). In particular, Q € DpM 0, if

and only if Q € DT* 0, and £(Q) > 2°M £(Qg). Clearly, DT;GM’QE) c DTA?MHQO if
M < M’, and therefore, Q}, := Q + C Q7. CQp o = Q*. This and

QO M/ QO R
the monotone convergence theorem glve

(2.34) f f V2G> GdX = Nllim f f VG G dX.
Q* —00 ;{

Thus, we may bound each of the right hand terms in (2.32) with bounds that are
uniform in M using integration by parts.

0Q

FiGure 2.4. The domain Q}, where we do integration by parts.

Fix M large. Note that Q;{,[ C @ c?2 BQS N Q, and therefore, we again have the
needed PDE properties at our disposal. Let “9” denote a fixed generic derivative.
Easy calculations show that in 2 Bg; N  we can use that G is harmonic and then

A(06)H) = 2 div(06) V(IG)] = 2IV (IS

and

A(06)H) G = divIV((06)H) Gl - V(06))) - VG = div[V((08)*) G] - div[(G)*VG].

Since the domain Qj; is comprised of a finite union of fattened Whitney cubes,
its boundary consists of portions of faces of those cubes. Thus, its (outward) unit
normal v is well defined a.e. on 9Q}; and the divergence theorem can be applied.
Hence

(2.35) 2 f f IV2GI* GdX = f f A(06)H) GdX
o, o,

_ / VOGHG - 06 VG] - vdH" |,

o,
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< / (IV2GIIVGIG + IVGF] dH" s,

oz,

s / () ]y,

oQr,
where in the last inequality we have used standard interior estimates for harmonic
functions. Note that for every X € 0Q}, C Q we have that there exists € W such
that X € oI"" with [ € W, and Q € Dgs o C Dy o Hence, by Harnack’s
inequality, the Caffarelli-Fabes-Mortola-Salsa estimate, the fact that w is doubling
(see [2] in the bounded case or [24] in general) and (2.33), we conclude that

6X) _GXW) (@

oX) ~ U a(Q) ~
Plugging this into (2.35) and using that 9Q}; is ADR (since it is a sawtooth domain)
with bounds that are uniform in N and M (see [20, Lema 3.61]), we conclude that

f IV2GP GdX <y H"(0Q}) ~ diam(8Q})" < €(Q4)" ~ o (Qp).

Qy
Combining this with (2.32) and (2.34) it follows that m(]DQé) <Sn 0(Q), as desired.
This completes the proof of (2.18). O

Equipped with the previous technical lemma, we immediately see that for every
0y € Dy, g, there exists Qi € Dy, such that

(2.36) 27Ny < 6QF) < €(Qy)  and  Qf ¢ Dy g, N BY,
where Cy is the constant in (2.18). Otherwise,
(Cy + 1) (Qp) = > Q=< > Q) < Cyo(Q)),
QEDQé QEDQ6
27CN £(Qy)<UQ)<(Q)) QeBN Dy, 0,

which is absurd.

‘We now claim that

For all Q) € Dy, ,, there exists QO € Dg; such that

(2.37) 2—Cy 5(@6) 1 and eith Y o~ BN

< wop < 1 and either Qo eFnor Q¢ B

To verify this claim, fix <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>