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ABSTRACT: We report a large kinetic isotope effect at 298 K,
ku/kp = 150, associated with an intramolecular 1,5-hydrogen
atom transfer (1,5-HAT) in the decay of PEGylated carbazyl
(aminyl) radical in solution. The experimental observations
surprisingly combine the hallmarks of tunneling, including
large KIEs and unusual activation parameters, with linear Ar-
rhenius and Eyring plots over an exceptionally wide tempera-
ture range of 16 K.

1,3,6,8-Tetra-tert-butyl carbazyl (TTBC) is one of very few ni-
trogen-centered (aminyl) radicals that are stable at ambient
conditions and can be isolated as a solid (Figure 1)."> Although
this structural motif is attractive as the building block for or-
ganic magnetic materials,37 TTBC has received little attention
since its report by Neugebauer and Fischer in 1971.! With our
recent development of polynitroxide scaffolds as organic rad-
ical contrast agents (ORCAs) for magnetic resonance imag-
ing,® we have been exploring the feasibility of using aminyl
radicals in the next generation of ORCAs. We were interested
in TTBC as a framework in the design of stable, water soluble
radicals. We envisioned that hydrophilic derivatives of the hy-
drophobic t-butyl groups in TTBC, as in the methoxy poly-
ethylene glycol (mPEG) substituted 1-H, would provide solu-
bility in water while maintaining adequate stability.
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Figure 1. TTBC and aminyl radicals 1-H and 1-D.

We prepared radical 1-H and found that it had a short half-
life, 1,/, ~ 1 min, at 298 K. We suspected that an intramolecular
1,5-hydrogen atom transfer (1,5-HAT)™" from the -CH,-O-
fragment'>3 might be the factor in the short half-life of 1-H.
We investigated the Dg-isotopomer 1-D and found that it had
a much longer half-life, 1,/, > 1 h, with extremely large room-
temperature kinetic isotope effect (KIE), e.g., ku/kp = 150 in
acetone. This magnitude of KIE suggests the possibility of

quantum mechanical tunneling (QMT),*#' a fascinating phe-
nomenon. Intramolecular HAT, has been widely investigated?
116 and recognized in regioselective radical C-H activation.
1,5-HAT involving nitrogen-centered radicals may be relevant
to organocatalysis.”

Here we report the synthesis and decay kinetics of aminyl rad-
ical 1-H and its isotopomer 1-D.

The synthesis of 1-H and 1-D, starting from 1,8-dibromo-3,6-
di-tert-butylcarbazole® (2), is outlined in Scheme 1.

Scheme 1. Synthesis of 1-H and 1-D.
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Pd-catalyzed cross-coupling of malonate with carbazole 2 af-
forded 3, which was alkylated with methyl iodide® to provide
4. Reduction of 4 with LiAlH, or LiAID, afforded either 5-H or
5-D. Subsequent Williamson etherification gave the carba-
zoles 6-H and 6-D. 'H NMR spectra indicated >99% deuter-
ation in 6-D. Treating 6-H and 6-D with n-Buli, followed by
one-electron oxidation of the resultant N-centered anion us-
ing ferrocenium cation ([FeCp,][BF,]) at low temperature pro-
vided aminyl radicals 1-H and 1-D. The blue solution of the
radical was diluted with cold pentane and purified by column
chromatography at -95 °C (for 1-H) and —40 °C (for 1-D) using
deactivated silica gel.>° After removal of the solvents at -40 °C,
1-D was characterized by paramagnetic 'H NMR spectroscopy,



which shows broadened peaks of 1-D accompanied by sharp
peaks of unreacted carbazole 6-D. EPR spin counting determi-
nations indicated spin concentration of 32-45% for 1-H and
51-63% for 1-D. The spin concentration of 1-H notably corre-
lated inversely with the length of time for removal of solvents
at —40 °C. These results provide initial clues about the stabil-
ities of 1-H and isotopomer 1-D.

The decays of 1-H and 1-D were studied by EPR spectroscopy
and superconducting quantum interference device (SQUID)
magnetometry. First order rate constants, k, were obtained by
monitoring the decay of the mid-field EPR peak height and
SQUID paramagnetic susceptibility of the aminyls. Data de-
rived from the double integrated EPR spectra were found to
produce similar values of k (see: the Supporting Information
(SI)). Arithmetic means of multiple EPR measurements and,
at selected temperatures, of two or more different samples
were obtained to ensure reproducibility of k values. At least 10
data points were fit to the first order rate equation in each
case. For 1-H and 1-D, k values were determined at 13 and 1
different temperatures in the 182 - 298 K and 232.5 - 316 K
ranges (spanning 16 K and 93 K). The temperatures of the
measurements were limited by the liquid range of solvent and
decay half-lives (t,,). Long ty, in the low temperature range,
e.g., Ty» = 106 days for 1-D at 232.5 K, required long measure-
ment times and good accuracy.

The kinetic observations (Table 1 and Fig. 2) have many re-
markable features. The decay of 1-H still proceeds at 182 K, in-
dicating a low AH* (10.0 kcal mol™) despite a calculated AH*

Table 1. Decay Kinetics of 1-H and 1-D in Acetone.*?

T Ea In A AH? AS*

(K) (kcal/mol) (kcal/mol) (e.n.)
1-H 182-298 10.5+03 135+0.8 10.0+0.3 -333+1.4
1-D 232-316 155+08 17.1+15 149+08 -264+29

? First order rate constants determined by either mid-field peak height of the
EPR spectrum or paramagnetic susceptibility measured by SQUID (Fig. 2).
b Error bars correspond to the 95% confidence intervals (Tables S5 — S10,
SI).
(see below) of >20 kcal mol™. The KIE of ~150 at room tem-
perature is unusually large and is one of the largest known at
this temperature.? > The most striking feature of the KIE,
however, is the degree to which it increases at the temperature
decreases. KIEs normally increase with decreasing tempera-
ture (with some interesting exceptions),>? but the observed
KIE here rises to ~360 at 253 K and 1380 at 232 K, far more than
is consistent with an ordinary isotopic difference in activation
parameters. The unusual nature of this rise is easily recog-
nized from the Eyring plots where the slopes for 1-H versus 1-
D differ substantially. This is reflected in the anomalously
large difference in the enthalpies of activation, with AAH¥ =
4.90 £ 0.38 kcal mol* (mean + SEM). Analogous anomalous
values are found for Arrhenius activation energies and pre-ex-
ponential factors, i.e., AAE, = 4.97 £ 0.38 kcal mol™ and An/Ap
= 0.027 + 0.020 (mean + SEM). For reference, the difference in
zero-point energy for an aliphatic C-H versus C-D stretching
vibration is only ~1.1 kcal mol™ and An/Ap should be greater
than about 0.7.2° Thus, the observed difference in the activa-
tion parameters (AAH* and AAE,) upon isotopic substitution
far exceeds the semiclassical maximum for an over-the-barrier

reaction.?2° Unusual activation parameters have often been
observed for isotope effects, and these are normally under-
stood to be a consequence of the curvature of Arrhenius or
Eyring plots.> However, the obtained Eyring and Arrhenius
plots are indistinguishable from linear over the broad 116 and 93
K temperature range (Fig. 2). This is not in line with the typical
signature of QMT and it is most likely indicative of thermally
(vibrationally) activated tunneling,® e.g., analogous to that
observed in 1,5-H-shift in derivatives of cyclopentadiene and
cis-1,3-pentadiene.?728
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Figure 2. Decay kinetics of 1-H and 1-D in acetone: numerical
fits to the Arrhenius (top) and Eyring (bottom) equations. The
first order rate constants (k) were measured using mid-field
peak height of the EPR spectrum and paramagnetic suscepti-
bility using SQUID.

A series of experimental observations were obtained to delin-
eate the reactions of 1-H and 1-D and the specific step defining
the isotope effect being observed. Decay of 1-H (32-45% spin
concentration, containing 6-H) at room temperature showed
a mixture of carbazole 6-H and aldehyde 7-H, as indicated by
'H NMR and mass spectroscopic analyses. Isolation by prepar-
ative thin layer chromatography (PTLC) provided 6-H and the
low polarity aldehyde 7-H in 59% and 17% yields. The struc-
ture of 7-H was confirmed using 2-D NMR spectroscopy and
correlations between the DFT-calculated and experimental
'H/3C NMR chemical shifts. Aldehyde 7-H is possibly the
product of B-scission (fragmentation) of the C-centered radi-
cal 1-H-C1 formed by 1,5-HAT, or more likely, of dispropor-
tionation of 1-H-C1, followed by reaction of a product carbo-
cation with trace amounts of water,? thus providing indirect
evidence for the C-centered radical intermediate (Scheme 2).

For the decay of 1-H at 253.2 Kand of 1-D at 295.2 K, first order
rate constants are practically identical in acetone-hs and ace-
tone-de at 295.2 K, thus indicating that the solvent isotope ef-
fect is essentially negligible.3°2

We attempted a spin trapping® experiment (Scheme 2). Addi-
tion of 10 equiv of t-BuN=0O dimer (in the absence of light)
does not significantly affect the rate of decay of 1-H at 253 K.3
Formation of a relatively persistent nitroxide radical (g =
2.0058, an = 1.32 mT) was observed, and HR ESI- MS of the
product 11-H (in the mixture with 6-H) is consistent with spin
trapping of C-radical 1-H-C1.3'

The decay of 1-D at room temperature provided aldehyde 7-D
(d,-isotopomer of 7-H) and a lower polarity minor product,
which was tentatively assigned to a mixture of alkenes 8-D and

Scheme 2. Product Analyses for the Decay of Aminyl Radicals 1-H and 1-D.
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Scheme 3. UB3LYP/6-311+G(d,p)+ZPVE Energies in Acetone Using the IEF-PCM-UFF Solvent Model.
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9-D (21 relative intensity in ESI MS). Isolated yields for 6-D,
7-D, 8-D/9-D were 49%, 1%, and 4%; the PTLC fraction of 7-
D also contained a small amount of alkene 10-D. In addition,
a more polar fraction was isolated in 8% yield (SI). The lower
yield of 7-D, compared to 7-H, and the formation of alkenes 8-
D -10-D, suggests that the decay of 1-D includes not only the
intramolecular 1,5-HAT (D-transfer) but also intermolecular
or intramolecular HAT from other C-H bonds on the mPEG;
chains through 8- and higher-membered TS (Scheme 2). Alt-
hough the alternative HAT processes are not major, their con-
tribution indicates that the KIEs based on the rates of decay of
1-H and 1-D, may be viewed as lower limits.

To support our experimental findings, we located relevant
transition states on the potential energy surface (PES) of the
simplified model aminyl radical 1a (N-radical 1a) and its decay
products (Scheme 3).32 Two transition states (TS) for intramo-
lecular HATSs from N-radical 1a were identified. The lowest en-
ergy TS corresponded 6-membered ring with N-H-C angle of
147°, which had an activation energy, E, = 21.8 kcal mol?, and
led to C-radical 1a-C1, which was 5.7 kcal mol™ above 1a. An-
other TS corresponded to 8-membered ring with N-H-C angle
0f163°, which had an E, = 26.5 kcal mol?, and led to C-radical
1a-C2, which was 10.0 kcal mol™ above 1a. We modelled for-
mation of aldehyde 7a and alkene 8a via B-scission from the
corresponding C-radicals 1a-C1 and 1a-C2; as the relevant TS’s
have E, = 24.1 and 62.9 kcal mol™ (vs. 1a), they are not likely to
be significant contributors to the decay of 1-H.

We estimated contribution of QMT to the observed KIE using
UMo6-2X PES3 and asymmetric Eckart barrier for 1,5-HAT

step from 1a to 1a-C1;34 the computed ratios of tunneling cor-
rection factors (I'*1/I*p) for 1a and its D,-isotopomer are 399
and 34 at 232.5 and 298 K (Table 2). If the corresponding over-
the-barrier KIEs at 232.5 and 298 K are near their typical values
of 8 and 5,"°%" then estimated kp/kp ~ 3200 and 170 (Table Si4,
SI) are not far off from the experimental values ku/kp of 1380
and 156 (Table Su and Figure Sz, SI).35

Table 2. Eckart-Barrier Tunneling Correction Factors
(IT'*u and I'*p) for 1,5-HAT Step.?

Isotopomer 298 (K)  232.5 (K)
I Ha 683.9 317077
I*p D» 19.9 794.4

2 UMO06-2X/6-311+G(d,p)/IEF-PCM-UFF+ZPVE PES.*

In summary, aminyl radical 1-H was found to decompose via
1,5-HAT, with unusual activation parameters for isotope ef-
fects (H vs. D) and a large contribution from QMT. Neverthe-
less, Arrhenius and Eyring plots remain linear over a n6 K
range. These unusual results may provide inspiration for the-
oreticians to reproduce our experimental data.3> In particular,
it would also be interesting to see whether tunneling can affect
stereoselectivity of 1,5-HAT, e.g., in 1-H, the C-H bonds of
within each of methylene moieties are diastereotopic.
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