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ABSTRACT

Plug-and-Play ADMM is a recently developed variation of the clas-
sical ADMM algorithm that replaces one of the subproblems using
an off-the-shelf image denoiser. Despite its apparently ad-hoc na-
ture, Plug-and-Play ADMM produces surprisingly good image re-
covery results. However, since in Plug-and-Play ADMM the de-
noiser is treated as a black-box, behavior of the overall algorithm
is largely unknown. In particular, the internal parameter that con-
trols the rate of convergence of the algorithm has to be adjusted
by the user, and a bad choice of the parameter can lead to severe
degradation of the result. In this paper, we present a parameter-free
Plug-and-Play ADMM where internal parameters are updated as part
of the optimization. Our algorithm is derived from the generalized
approximate message passing, with several essential modifications.
Experimentally, we find that the new algorithm produces solutions
along a reliable and fast converging path.

Index Terms— Plug-and-Play, ADMM, image restoration,
parameter-free, generalized approximate message passing

1. INTRODUCTION

1.1. Plug-and-Play ADMM

With the astonishing number of applications of the alternating di-
rection method of multiplier (ADMM, [1]), it is reasonably safe to
say that ADMM is almost the workhorse of most, if not all, image
restoration algorithms we use nowadays [2-4]. ADMM is a generic
algorithm that solves optimization problems in the form

minimize f(x) + A\g(x) (1)

for some cost function f and regularization function g. In model-
based image processing, f is called the data fidelity term, and g is
called the prior term [5].

ADMM has many attractive features. Apart from its simple im-
plementation and broad applicability, the variable splitting nature of
the algorithm offers additional degrees of freedom in designing the
steps of the algorithm. In particular, if we use ADMM to solve (1),
the algorithm proceeds by solving a sequence of subproblems in the
following modules:
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and u'® is called the Lagrange multiplier. In this set of equa-
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Fig. 1: Image deblurring using Plug-and-Play ADMM with BM3D
denoiser compared to conventional ADMM with total variation (TV)
prior. In this example, the regularization parameter is optimally
tuned to A = 10~* for Plug-Play, and A\ = 5 x 10~2 for TV. The
internal parameter of Plug-Play is p = 1. The blur in this example is
Gaussian of size 9 x 9 with radius o = 1. The noise level is 5/255.

tions, subproblem (2) is an inversion module that minimizes f using
a quadratic regularization, whereas subproblem (3) is a denoising
module that denoises &%) using a regularization function g.
Recognizing the inversion-denoising modules of the ADMM al-
lows us to re-design the steps. One possibility is to replace the de-
noising module by an off-the-shelf image denoising algorithm, i.e.,

,U(k+1) =D, (,T)(k)) 7 3)

for some denoiser D, with a noise level ¢ & /X /p- The result-
ing algorithm is called the Plug-and-Play ADMM, with the name
attributed to Venkatakrishnan et al. [7].

Since the introduction of Plug-and-Play ADMM, many applica-
tions have been developed, e.g., X-ray computed tomography [8],
image interpolation [9], super-resolution [6, 10], Poisson denoising
[11], and single photon imaging [6]. In [12], the same framework
was used in camera processing, with a named coined flexible ISP.



To provide readers a quick comparison between Plug-and-Play
ADMM and conventional ADMM algorithms, we show in Figure 1
a deblurring result using Plug-and-Play ADMM with BM3D [13] as
the denoiser and the same result using conventional ADMM with
the total variation regularization. As can be seen in the figure, when
both algorithms are tuned to their best parameter A, Plug-and-Play
demonstrates more than 1dB improvement over the total variation.

1.2. Problem of Plug-and-Play

While Plug-and-Play ADMM offers promising image restoration re-
sults, it has a significant problem due to the parameter p. p controls
the strength of the intermediate regularization, and is typically as-
signed by the user. If p is set too large, the quadratic regularization
in (3) dominates and so the denoiser is weak. If p is set too small, the
denoiser is strong but the subproblem (2) becomes ill-conditioned.
Therefore, finding an optimal p is essential to the convergence of the
algorithm.

If f is convex and if the denoiser D, has a doubly stochastic
gradient, Sreehari et al. [8] showed that D, is a non-expansive prox-
imal operator and so p does not affect the final solution. As a rule-
of-thumb, our experience shows that p = 1 is often a reliable choice.
However, for the broader class of bounded denoisers, D, could be
expansive and so the convergence depends on p. In this case, one
possible solution is to define a sequence of increasing p’s such that
Pk+1 = 7ypr for some constant v > 1 [6]. This will ensure that
the iterates ) and v® can converge to a fixed point. However,
we now have to choose the initial value po and the update constant
~. Therefore, if we like to choose p properly, an automatic update
scheme within the algorithm would be desirable.

1.3. Related Work and Contributions

The contribution of this paper is a parameter-free Plug-and-Play
ADMM. Here, by parameter-free we mean that the internal param-
eter p is updated as part of the ADMM algorithm, thus is free of
tuning. It does not, however, mean that the regularization param-
eter A is automatically tuned. Should A be tuned automatically, a
few existing methods can be considered, e.g., SURE [14] and cross
validation [15], etc.

Our key idea behind the parameter-free Plug-and-Play ADMM
is the Generalized Approximate Message Passing (GAMP) in the
compressive sensing literature [16-20]. GAMP is a generic algo-
rithm that solves problems in the form of (1), typically for f(x) =
|Ax — y||* with a random matrix A and a regularization function
g(z) = ||x||1. In GAMP, the internal parameters are self-updated,
which is a feature this paper attempts to obtain. Another piece of
related work is the Denoiser-AMP by Metzler et al. [21], where a
denoiser was used to replace the shrinkage step in the classical AMP.
Convergence of Denoiser-AMP is known for i.i.d. Gaussian matrix
A but not for general matrices.

The goal of this paper is to derive a parameter-free Plug-and-
Play ADMM from GAMP. In Section II we provide a brief introduc-
tion to the GAMP algorithm. Then in Section III, we show how the
GAMP algorithm can be modified into a parameter-free Plug-and-
Play ADMM. Experimental results are shown in Section I'V.

2. GENERALIZED APPROXIMATE MESSAGE PASSING

In this section we provide a brief introduction to the generalized ap-
proximate message passing (GAMP) algorithm. For full discussions
of GAMP, we refer the readers to [18]. Among all image restoration

problems, we are particularly interested in the deblurring problem
with f in the form

f(@) = 3l Az — |,

where & € R" is the unknown variable, A € R™*™ a convolu-
tion matrix, and y € R" is the observed signal. The regularization
function ¢ is unimportant for Plug-and-Play ADMM, because we
will later replace it by a denoiser. However, since the conventional
GAMP requires an explicit g, we will keep the function ¢ in this
section with the assumption that it is separable. We will remove g in
Section III.

2.1. GAMP

The GAMP algorithm begins by considering the following problem

minimize sl Az — y|* + Ag(v) ©
subjectto x =w.

Clearly, at the optimal point, (6) has the same solution as the original
unconstrained problem.

The next step GAMP does is to separately consider f(x) and
g(v) as the output node and the input node of a bipartite graph,
respectively. Then the algorithm seeks the equilibrium of the two
sides, by passing intermediate variables (called messages) forward
and backward between the nodes. Specifically, by initializing two
vectors T&O) = 1,x1 and ul® = 0. %1, the computation on the
output node involves:

FHD ) _ (), (k) @

2+ = prox_l_(mk)f(i(k))7 (8)
(k1) _ (k) O =

Ty =Tz Br pI'OXTu(rk)f(m) sezk)’ ©)

T = () = w). () (10)

w®T = (gF D gy (), (11)

In this set of equations, the function prox, ; is the proximal operator,
defined as

~ o1 1 ~
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where the norm || - || is a weighted norm given by ||z|% =
S | 7ix;. The variable T, can be regarded as a vector version of
the internal parameter p in ADMM, and 7, can be regarded as a
measure of the variance & conditioned on w.

The computation on the input node involves
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For separable g(v) = > gi(v;), the proximal operator prox.,. ,(v)
reads as

prox, ,,(v;) = argmin 7;Ag;(v) + %(v — )2 (17)

v



2.2. Equivalence between GAMP and ADMM

In the above input and output computation, if we ignore Equations
(9)—~(10) and (15)—(16), we will arrive at an ADMM algorithm with
vector-valued parameters T, and T, instead of a common scalar
parameter p. More specifically, GAMP and ADMM are related ac-
cording to the following theorem [17]:

Theorem 1 The iterates of the GAMP satisfy
. . . 1 .
v* Y = argmin L™, v, u™®) + §H’U — v(k)Hi(k“
» »

. . 1

2 Y = argmin L(z, v ™ u®) + §||w - v(k+1)|\f_(k)7
(b1) _ o0 4 1
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where L(z,v,u) = f(x) 4+ Ag(v) +u” (x — v) is the Lagrangian
Sfunction.

Therefore, the key difference between GAMP and ADMM is the pa-
rameters ‘rq(Jk) and ‘r(zk). This suggests that if we want to derive a
Plug-and-Play ADMM from GAMP, we must first define the param-

eters Tz(,k) and ‘rék).

3. PARAMETER-FREE PLUG-AND-PLAY

We now derive the parameter-free Plug-and-Play using the GAMP
formulation above. There are two major modifications we need for
the derivation.

e The vector-valued parameters 7, and 7T, should become
scalars 7, and 7,. This would allow us to consider arbitrary
denoisers which are not-necessarily separable.

e The proximal operator in (14) is replaced by an off-the-shelf
denoiser as defined in (5) so that it fits the Plug-and-Play
framework.

With these two modifications we can consider the output and the
input nodes. We also note that among the equations (7)-(16), the
biggest challenges are the proximal operators. The following two
subsections will address these operators.

3.1. Output Node

For a convolution matrix A, the proximal operator can be shown as
~ . Tax 2 1 ~12
prox,, (%) = argmin || Az — y|” + 5 |}z - 7|
xT

-1
- (TZATA + I) (TIATy + 5) L))
Taking derivative with respect to & yields
9 prox. (@) = (TZATA + I) 1 (19)
aw 7o f

Note that this is a vector of gradients. Since we are looking for a
scalar, one option is to consider the divergence. This yields

1

div{prox_rzf(i)} = ng (T,CATA + I)i1 1 (20)
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where in (a) we used the fact that a convolution matrix A is diago-
nalizable by the Fourier transform matrix F' to yield A = FTAF,
and in (b) we observe that F'1 = 1/n[1,0,...,0]". The scalar A1,
is the first entry of the eigenvalue matrix A, which is 1 for convolu-
tional matrices. Substituting this result into (9), we have

ﬂ-;k+1) _ Tz(k)/(Tcgk) + 1) (21)

3.2. Input Node

On the input node, we have to replace the proximal operator by a
denoiser D,. Here, the noise level of the denoiser, o, should be
defined as 0 = /75 A. This explains (14).

For the derivative in (15), we note that since 7, is now a scalar,
we have to replace the derivative by its divergence (which is the sum
of gradients). This gives

D = 2 givD, (5*)). (22)

Calculating the divergence can be performed numerically using a
Monte Carlo scheme. More specifically, the divergence of the de-
noiser at ¥ can be approximated by

divD, (%) = lim Ep {bT <fo(5 +eb) — Da(5)> }

e—0 €

BT <DU(6+eb)—DU(6)>7 03

ne

where b ~ N(0, I) is a random vector, and € < 1 is a small con-
stant (typically e = 10~%). The approximation of the expectation
generally holds for large n due to concentration of measure [14].
Numerically, computing (23) only requires evaluating the de-
noiser twice: once for D, (v), and the other time for D, (v + €b).

3.3. Final Algorithm

The final algorithm can be derived by substituting (18) into (8), (21)
into (9) for the output nodes, and (5) into (14), (22) into (15) for the
input nodes. Moreover, we can simplify steps by defining

px:1/7—x7 Pvzl/TU« (24)

Then we can show that the GAMP algorithm can be simplified to
Algorithm 1. We call the resulting algorithm Plug-and-Play general-
ized approximate message passing (PAMP).

As shown in Algorithm 1, the difference between PAMP and
Plug-and-Play ADMM is the parameters p, and p,. In Plug-and-
Play, the parameters share the same value p and is fixed throughout
the iterations. In PAMP, p,. and p, are automatically updated as part
of the algorithm. Therefore, PAMP is a parameter-free algorithm.

4. EXPERIMENTAL RESULTS

In this section we present experimental results to evaluate the per-
formance of the proposed PAMP algorithm. We focus on the image
deblurring problem, although the method can easily be extended to
image interpolation and image super-resolution.

We test the algorithm using 10 standard gray-scale images. Each
image is blurred by a spatially invariant Gaussian blur kernel of size
9 x 9 and standard deviation 1. Additive i.i.d. Gaussian noise of
zero mean and standard deviation o = 5/255 is added to the blurred
image. Two denoisers D, are considered in this experiment: total
variation denoising [22], and BM3D [13]. For total variation, we
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Fig. 2: PSNR of PAMP compared to Plug-and-Play ADMM using a fixed p. (a) using total variation denoising as the denoiser; (b) using
BMB3D as the denoiser. In this figure, all PSNR values are averaged over 10 testing images.

Algorithm 1 Proposed Algorithm: PAMP
O =1

1: Initialize ©¥ = 2® =0, p
2: fork=0,1,...,kmax do

3: % (v-subproblem)

4 v=a® 41/ )ut

5. o) = D, (¥), where 0 = )\/pz(,k)
6 Y = o /divD, (T)
7
8
9

% (x-subproblem)
. 3= D (l/pgckﬂ))u(k)
10 kD — (ATA + pgckH)I)*l(ATy + p;kﬂ)i)
el = (Y

13: % (Multiplier update)
14 D = (0 0D (kD) gy (k1)

15: end for

use the MATLAB implementation in [4], whereas for BM3D, we
use the code available on author’s website. When total variation is
used, we set the regularization parameter A = 10~2. When BM3D
is used, we set A = 107>, These values are selected as they produce
the best overall result for the entire dataset.

Since the objective of PAMP is to automatically select p, we
compare PAMP with Plug-and-Play ADMM which uses a fixed p.
We select 10 values of p from 10~ to 10? in the logarithmic scale.
For each p, we run Plug-and-Play ADMM for 50 iterations and
record the PSNR values. For PAMP, we initialize the algorithm with
p£°> = 1 and let the algorithm to update p. and p,, internally.

The results are shown in Figure 2. In this figure, the PSNR val-
ues are averaged over the 10 testing images. As can be observed, the
parameter p has important influence to the Plug-and-Play ADMM
algorithm where large p tends to converge slower and approaches
a solution with low PSNR. If p is too small, e.g., p = 0.01 in the
BM3D case, the PSNR actually drops rapid after the first iteration.
As for PAMP, we observe that in both denoisers the solution picks a
rapid convergence path with almost the highest PSNR.

Additional results, including other types of blur and other noise
levels, can be found at https://engineering.purdue.edu/ChanGroup/

5. DISCUSSION AND CONCLUSION

Why it works? Line 6 and Line 11 of Algorithm 1 reveals that there
are two opposite forces in updating p,, and p:

Pz < pv/divDs(V), (25)
po = 0o/ (pa +1) = pa div {prox (@) ). 26)

Divergence of a function is an indicator of the sensitivity with respect
to the input. When divD, is large, the denoiser D, behaves sensi-
tively at © and so the denoised output is less reliable. Thus, PAMP
makes p, small to attenuate the influence of the denoiser when solv-
ing the inversion. Now, since p, becomes small, the inversion is
weak and so in the next iteration a strong denoiser is needed. This is
achieved by decreasing p,, in (26). These two opposite forces form
a trajectory of the pair (pz, pv). As k — oo, one can show that
(pz, pv) approaches a steady state where the two divergence terms

coincides: divD,(v) = div {prox(l/pz)f(i)}.

Convergence? Convergence of GAMP is an open problem. The
best result we know so far is that with appropriately designed damp-
ing strategies, GAMP converges for strictly convex functions f and
g [23]. However, when damping is not used, there are examples
where GAMP diverges [24]. Moving from an explicit g to an im-
plicit denoiser D, will cause additional challenges yet to be studied.

Conclusion. Plug-and-Play generalized approximate message pass-
ing (PAMP) is a new algorithm that automatically updates the inter-
nal parameters of a conventional Plug-and-Play ADMM. The update
rules are based on the measure of the divergence of the subproblems,
and are derived from the generalized approximate message passing
(GAMP). At the current stage, numerical results show that PAMP
is a promising algorithm as it generates solutions through a rapid
convergence path. Intuitive arguments of the algorithm are made.
Future work should focus on the convergence analysis.
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