
PARAMETER-FREE PLUG-AND-PLAY ADMM FOR IMAGE RESTORATION

Xiran Wang and Stanley H. Chan

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907.

ABSTRACT

Plug-and-Play ADMM is a recently developed variation of the clas-

sical ADMM algorithm that replaces one of the subproblems using

an off-the-shelf image denoiser. Despite its apparently ad-hoc na-

ture, Plug-and-Play ADMM produces surprisingly good image re-

covery results. However, since in Plug-and-Play ADMM the de-

noiser is treated as a black-box, behavior of the overall algorithm

is largely unknown. In particular, the internal parameter that con-

trols the rate of convergence of the algorithm has to be adjusted

by the user, and a bad choice of the parameter can lead to severe

degradation of the result. In this paper, we present a parameter-free

Plug-and-Play ADMM where internal parameters are updated as part

of the optimization. Our algorithm is derived from the generalized

approximate message passing, with several essential modifications.

Experimentally, we find that the new algorithm produces solutions

along a reliable and fast converging path.

Index Terms— Plug-and-Play, ADMM, image restoration,

parameter-free, generalized approximate message passing

1. INTRODUCTION

1.1. Plug-and-Play ADMM

With the astonishing number of applications of the alternating di-

rection method of multiplier (ADMM, [1]), it is reasonably safe to

say that ADMM is almost the workhorse of most, if not all, image

restoration algorithms we use nowadays [2–4]. ADMM is a generic

algorithm that solves optimization problems in the form

minimize
x

f(x) + λg(x) (1)

for some cost function f and regularization function g. In model-

based image processing, f is called the data fidelity term, and g is

called the prior term [5].

ADMM has many attractive features. Apart from its simple im-

plementation and broad applicability, the variable splitting nature of

the algorithm offers additional degrees of freedom in designing the

steps of the algorithm. In particular, if we use ADMM to solve (1),

the algorithm proceeds by solving a sequence of subproblems in the

following modules:

x
(k+1) = argmin

x∈Rn

f(x) +
ρ

2
‖x− x̃

(k)‖2, (2)

v
(k+1) = argmin

v∈Rn

λg(v) +
ρ

2
‖v − ṽ

(k)‖2, (3)

u
(k+1) = u

(k) + ρ(x(k+1) − v
(k+1)), (4)

where x̃(k) def
= v(k) − (1/ρ)u(k), ṽ(k) def

= x(k+1) + (1/ρ)u(k),

and u(k) is called the Lagrange multiplier. In this set of equa-

E-Mails: {wang470, stanleychan}@purdue.edu.

(a) Input (b) Ground Truth

(c) Total Variation [4] 29.97dB (d) Plug-Play [6] 31.29dB

Fig. 1: Image deblurring using Plug-and-Play ADMM with BM3D

denoiser compared to conventional ADMM with total variation (TV)

prior. In this example, the regularization parameter is optimally

tuned to λ = 10−4 for Plug-Play, and λ = 5 × 10−3 for TV. The

internal parameter of Plug-Play is ρ = 1. The blur in this example is

Gaussian of size 9× 9 with radius σ = 1. The noise level is 5/255.

tions, subproblem (2) is an inversion module that minimizes f using

a quadratic regularization, whereas subproblem (3) is a denoising

module that denoises ṽ
(k)

using a regularization function g.

Recognizing the inversion-denoising modules of the ADMM al-

lows us to re-design the steps. One possibility is to replace the de-

noising module by an off-the-shelf image denoising algorithm, i.e.,

v
(k+1) = Dσ

(
ṽ
(k)

)
, (5)

for some denoiser Dσ with a noise level σ
def
=

√
λ/ρ. The result-

ing algorithm is called the Plug-and-Play ADMM, with the name

attributed to Venkatakrishnan et al. [7].

Since the introduction of Plug-and-Play ADMM, many applica-

tions have been developed, e.g., X-ray computed tomography [8],

image interpolation [9], super-resolution [6, 10], Poisson denoising

[11], and single photon imaging [6]. In [12], the same framework

was used in camera processing, with a named coined flexible ISP.

To provide readers a quick comparison between Plug-and-Play

ADMM and conventional ADMM algorithms, we show in Figure 1

a deblurring result using Plug-and-Play ADMM with BM3D [13] as

the denoiser and the same result using conventional ADMM with

the total variation regularization. As can be seen in the figure, when

both algorithms are tuned to their best parameter λ, Plug-and-Play

demonstrates more than 1dB improvement over the total variation.

1.2. Problem of Plug-and-Play

While Plug-and-Play ADMM offers promising image restoration re-

sults, it has a significant problem due to the parameter ρ. ρ controls

the strength of the intermediate regularization, and is typically as-

signed by the user. If ρ is set too large, the quadratic regularization

in (3) dominates and so the denoiser is weak. If ρ is set too small, the

denoiser is strong but the subproblem (2) becomes ill-conditioned.

Therefore, finding an optimal ρ is essential to the convergence of the

algorithm.

If f is convex and if the denoiser Dσ has a doubly stochastic

gradient, Sreehari et al. [8] showed that Dσ is a non-expansive prox-

imal operator and so ρ does not affect the final solution. As a rule-

of-thumb, our experience shows that ρ = 1 is often a reliable choice.

However, for the broader class of bounded denoisers, Dσ could be

expansive and so the convergence depends on ρ. In this case, one

possible solution is to define a sequence of increasing ρ’s such that

ρk+1 = γρk for some constant γ > 1 [6]. This will ensure that

the iterates x(k) and v(k) can converge to a fixed point. However,

we now have to choose the initial value ρ0 and the update constant

γ. Therefore, if we like to choose ρ properly, an automatic update

scheme within the algorithm would be desirable.

1.3. Related Work and Contributions

The contribution of this paper is a parameter-free Plug-and-Play

ADMM. Here, by parameter-free we mean that the internal param-

eter ρ is updated as part of the ADMM algorithm, thus is free of

tuning. It does not, however, mean that the regularization param-

eter λ is automatically tuned. Should λ be tuned automatically, a

few existing methods can be considered, e.g., SURE [14] and cross

validation [15], etc.

Our key idea behind the parameter-free Plug-and-Play ADMM

is the Generalized Approximate Message Passing (GAMP) in the

compressive sensing literature [16–20]. GAMP is a generic algo-

rithm that solves problems in the form of (1), typically for f(x) =
‖Ax − y‖2 with a random matrix A and a regularization function

g(x) = ‖x‖1. In GAMP, the internal parameters are self-updated,

which is a feature this paper attempts to obtain. Another piece of

related work is the Denoiser-AMP by Metzler et al. [21], where a

denoiser was used to replace the shrinkage step in the classical AMP.

Convergence of Denoiser-AMP is known for i.i.d. Gaussian matrix

A but not for general matrices.

The goal of this paper is to derive a parameter-free Plug-and-

Play ADMM from GAMP. In Section II we provide a brief introduc-

tion to the GAMP algorithm. Then in Section III, we show how the

GAMP algorithm can be modified into a parameter-free Plug-and-

Play ADMM. Experimental results are shown in Section IV.

2. GENERALIZED APPROXIMATE MESSAGE PASSING

In this section we provide a brief introduction to the generalized ap-

proximate message passing (GAMP) algorithm. For full discussions

of GAMP, we refer the readers to [18]. Among all image restoration

problems, we are particularly interested in the deblurring problem

with f in the form

f(x) =
1

2
‖Ax− y‖2,

where x ∈ R
n is the unknown variable, A ∈ R

n×n a convolu-

tion matrix, and y ∈ R
n is the observed signal. The regularization

function g is unimportant for Plug-and-Play ADMM, because we

will later replace it by a denoiser. However, since the conventional

GAMP requires an explicit g, we will keep the function g in this

section with the assumption that it is separable. We will remove g in

Section III.

2.1. GAMP

The GAMP algorithm begins by considering the following problem

minimize
x,v

1
2
‖Ax− y‖2 + λg(v)

subject to x = v.
(6)

Clearly, at the optimal point, (6) has the same solution as the original

unconstrained problem.

The next step GAMP does is to separately consider f(x) and

g(v) as the output node and the input node of a bipartite graph,

respectively. Then the algorithm seeks the equilibrium of the two

sides, by passing intermediate variables (called messages) forward

and backward between the nodes. Specifically, by initializing two

vectors τ
(0)
x = 1n×1 and u(0) = 0n×1, the computation on the

output node involves:

x̃
(k+1) = x

(k) − τ
(k)
x · u(k), (7)

x
(k+1) = prox

τ
(k)
x f

(x̃(k)), (8)

π
(k+1)
x = τ (k)

x · ∂

∂x̃
prox

τ
(k)
x f

(x̃)
∣∣∣
x̃=x̃(k)

, (9)

τ
(k+1)
v = (τ (k)

x − π
(k+1)
x)./(τ (k)

x)2, (10)

u
(k+1) = (x(k+1) − x̃

(k+1))./τ (k)
x . (11)

In this set of equations, the function prox
τf is the proximal operator,

defined as

prox
τf (x̃) = argmin

x

1

2
‖Ax− y‖2τ +

1

2
‖x− x̃‖2, (12)

where the norm ‖ · ‖2τ is a weighted norm given by ‖x‖2τ =∑n
i=1 τix

2
i . The variable τx can be regarded as a vector version of

the internal parameter ρ in ADMM, and πx can be regarded as a

measure of the variance x conditioned on u.

The computation on the input node involves

ṽ
(k+1) = v

(k) + τ
(k+1)
v · u(k+1), (13)

v
(k+1) = prox

τ
(k+1)
v λg

(ṽ(k)), (14)

π
(k+1)
v = τ

(k+1)
v · ∂

∂ṽ
prox

τ
(k)
v λg

(ṽ)
∣∣∣
ṽ=ṽ(k)

, (15)

τ
(k+1)
x = π

(k+1)
v . (16)

For separable g(v) =
∑n

i=1 gi(vi), the proximal operator prox
τg(ṽ)

reads as

proxτiλg
(ṽi) = argmin

v
τiλgi(v) +

1

2
(v − ṽi)

2. (17)

2.2. Equivalence between GAMP and ADMM

In the above input and output computation, if we ignore Equations

(9)–(10) and (15)–(16), we will arrive at an ADMM algorithm with

vector-valued parameters τx and τ v , instead of a common scalar

parameter ρ. More specifically, GAMP and ADMM are related ac-

cording to the following theorem [17]:

Theorem 1 The iterates of the GAMP satisfy

v
(k+1) = argmin

v

L(x(k),v,u(k)) +
1

2
‖v − v

(k)‖2
τ
(k)
v

,

x
(k+1) = argmin

x

L(x,v(k+1),u(k)) +
1

2
‖x − v

(k+1)‖2
τ
(k)
x

,

u
(k+1) = u

(k) +
1

τ
(k)
x

(x(k+1) − v
(k+1)),

where L(x,v,u) = f(x)+λg(v)+uT (x−v) is the Lagrangian

function.

Therefore, the key difference between GAMP and ADMM is the pa-

rameters τ
(k)
v and τ

(k)
x . This suggests that if we want to derive a

Plug-and-Play ADMM from GAMP, we must first define the param-

eters τ
(k)
v and τ

(k)
x .

3. PARAMETER-FREE PLUG-AND-PLAY

We now derive the parameter-free Plug-and-Play using the GAMP

formulation above. There are two major modifications we need for

the derivation.

• The vector-valued parameters τx and τ v should become

scalars τx and τv . This would allow us to consider arbitrary

denoisers which are not-necessarily separable.

• The proximal operator in (14) is replaced by an off-the-shelf

denoiser as defined in (5) so that it fits the Plug-and-Play

framework.

With these two modifications we can consider the output and the

input nodes. We also note that among the equations (7)-(16), the

biggest challenges are the proximal operators. The following two

subsections will address these operators.

3.1. Output Node

For a convolution matrix A, the proximal operator can be shown as

proxτxf (x̃) = argmin
x

τx
2
‖Ax− y‖2 + 1

2
‖x− x̃‖2

=
(
τxA

T
A+ I

)
−1 (

τxA
T
y + x̃

)
. (18)

Taking derivative with respect to x̃ yields

∂

∂x̃
proxτxf (x̃) =

(
τxA

T
A+ I

)
−1

1 (19)

Note that this is a vector of gradients. Since we are looking for a

scalar, one option is to consider the divergence. This yields

div
{
proxτxf (x̃)

}
=

1

n
1
T
(
τxA

T
A+ I

)
−1

1 (20)

(a)
=

1

n
1
T
F

T (
τx|Λ|2 + I

)−1
F1

(b)
= (τx|λ1,1|2 + 1)−1 = (τx + 1)−1,

where in (a) we used the fact that a convolution matrix A is diago-

nalizable by the Fourier transform matrix F to yield A = F T
ΛF ,

and in (b) we observe that F1 =
√
n[1, 0, . . . , 0]T . The scalar λ1,1

is the first entry of the eigenvalue matrix Λ, which is 1 for convolu-

tional matrices. Substituting this result into (9), we have

π(k+1)
x = τ (k)

x /(τ (k)
x + 1). (21)

3.2. Input Node

On the input node, we have to replace the proximal operator by a

denoiser Dσ. Here, the noise level of the denoiser, σ, should be

defined as σ =
√
τxλ. This explains (14).

For the derivative in (15), we note that since τv is now a scalar,

we have to replace the derivative by its divergence (which is the sum

of gradients). This gives

π(k+1)
v = τ (k+1)

v divDσ(ṽ
(k)). (22)

Calculating the divergence can be performed numerically using a

Monte Carlo scheme. More specifically, the divergence of the de-

noiser at ṽ can be approximated by

divDσ(ṽ) = lim
ǫ→0

Eb

{
b
T

(Dσ(ṽ + ǫb)−Dσ(ṽ)

ǫ

)}

≈ b
T

(Dσ(ṽ + ǫb)−Dσ(ṽ)

nǫ

)
, (23)

where b ∼ N (0, I) is a random vector, and ǫ ≪ 1 is a small con-

stant (typically ǫ = 10−3). The approximation of the expectation

generally holds for large n due to concentration of measure [14].

Numerically, computing (23) only requires evaluating the de-

noiser twice: once for Dσ(ṽ), and the other time for Dσ(ṽ + ǫb).

3.3. Final Algorithm

The final algorithm can be derived by substituting (18) into (8), (21)

into (9) for the output nodes, and (5) into (14), (22) into (15) for the

input nodes. Moreover, we can simplify steps by defining

ρx = 1/τx, ρv = 1/τv. (24)

Then we can show that the GAMP algorithm can be simplified to

Algorithm 1. We call the resulting algorithm Plug-and-Play general-

ized approximate message passing (PAMP).

As shown in Algorithm 1, the difference between PAMP and

Plug-and-Play ADMM is the parameters ρx and ρv . In Plug-and-

Play, the parameters share the same value ρ and is fixed throughout

the iterations. In PAMP, ρx and ρv are automatically updated as part

of the algorithm. Therefore, PAMP is a parameter-free algorithm.

4. EXPERIMENTAL RESULTS

In this section we present experimental results to evaluate the per-

formance of the proposed PAMP algorithm. We focus on the image

deblurring problem, although the method can easily be extended to

image interpolation and image super-resolution.

We test the algorithm using 10 standard gray-scale images. Each

image is blurred by a spatially invariant Gaussian blur kernel of size

9 × 9 and standard deviation 1. Additive i.i.d. Gaussian noise of

zero mean and standard deviation σ = 5/255 is added to the blurred

image. Two denoisers Dσ are considered in this experiment: total

variation denoising [22], and BM3D [13]. For total variation, we

0 5 10 15 20 25 30 35 40 45 50
20

21

22

23

24

25

26

27

iteration

P
S

N
R

 (
d

B
)

rho=0.01

rho=0.03

rho=0.08

rho=0.22

rho=0.60

rho=1.67

rho=4.64

rho=12.92

rho=35.94

rho=100.00

PAMP

0 5 10 15 20 25 30 35 40 45 50
21

22

23

24

25

26

27

28

iteration

P
S

N
R

 (
d

B
)

rho=0.01

rho=0.03

rho=0.08

rho=0.22

rho=0.60

rho=1.67

rho=4.64

rho=12.92

rho=35.94

rho=100.00

PAMP

(a) Total Variation Denoiser (b) BM3D Denoiser

Fig. 2: PSNR of PAMP compared to Plug-and-Play ADMM using a fixed ρ. (a) using total variation denoising as the denoiser; (b) using

BM3D as the denoiser. In this figure, all PSNR values are averaged over 10 testing images.

Algorithm 1 Proposed Algorithm: PAMP

1: Initialize u(0) = x(0) = 0, ρ
(0)
v = 1.

2: for k = 0, 1, . . . , kmax do

3: % (v-subproblem)

4: ṽ = x(k) + (1/ρ
(k)
v)ut

5: v(k+1) = Dσ(ṽ), where σ =

√
λ/ρ

(k)
v

6: ρ
(k+1)
x = ρ

(k)
v /divDσ(ṽ)

7:

8: % (x-subproblem)

9: x̃ = v(k+1) − (1/ρ
(k+1)
x)u(k)

10: x(k+1) = (ATA+ ρ
(k+1)
x I)−1(ATy + ρ

(k+1)
x x̃)

11: ρ
(k+1)
v = ρ

(k+1)
x /(ρ

(k+1)
x + 1)

12:

13: % (Multiplier update)

14: u(k+1) = u(k) + ρ
(k+1)
x (x(k+1) − v(k+1))

15: end for

use the MATLAB implementation in [4], whereas for BM3D, we

use the code available on author’s website. When total variation is

used, we set the regularization parameter λ = 10−2. When BM3D

is used, we set λ = 10−3. These values are selected as they produce

the best overall result for the entire dataset.

Since the objective of PAMP is to automatically select ρ, we

compare PAMP with Plug-and-Play ADMM which uses a fixed ρ.

We select 10 values of ρ from 10−2 to 102 in the logarithmic scale.

For each ρ, we run Plug-and-Play ADMM for 50 iterations and

record the PSNR values. For PAMP, we initialize the algorithm with

ρ
(0)
v = 1 and let the algorithm to update ρx and ρv internally.

The results are shown in Figure 2. In this figure, the PSNR val-

ues are averaged over the 10 testing images. As can be observed, the

parameter ρ has important influence to the Plug-and-Play ADMM

algorithm where large ρ tends to converge slower and approaches

a solution with low PSNR. If ρ is too small, e.g., ρ = 0.01 in the

BM3D case, the PSNR actually drops rapid after the first iteration.

As for PAMP, we observe that in both denoisers the solution picks a

rapid convergence path with almost the highest PSNR.

Additional results, including other types of blur and other noise

levels, can be found at https://engineering.purdue.edu/ChanGroup/

5. DISCUSSION AND CONCLUSION

Why it works? Line 6 and Line 11 of Algorithm 1 reveals that there

are two opposite forces in updating ρv and ρx:

ρx ← ρv/divDσ(ṽ), (25)

ρv ← ρx/(ρx + 1) = ρx div
{
prox(1/ρx)f (x̃)

}
. (26)

Divergence of a function is an indicator of the sensitivity with respect

to the input. When divDσ is large, the denoiser Dσ behaves sensi-

tively at ṽ and so the denoised output is less reliable. Thus, PAMP

makes ρx small to attenuate the influence of the denoiser when solv-

ing the inversion. Now, since ρx becomes small, the inversion is

weak and so in the next iteration a strong denoiser is needed. This is

achieved by decreasing ρv in (26). These two opposite forces form

a trajectory of the pair (ρx, ρv). As k → ∞, one can show that

(ρx, ρv) approaches a steady state where the two divergence terms

coincides: divDσ(ṽ) = div
{
prox(1/ρx)f (x̃)

}
.

Convergence? Convergence of GAMP is an open problem. The

best result we know so far is that with appropriately designed damp-

ing strategies, GAMP converges for strictly convex functions f and

g [23]. However, when damping is not used, there are examples

where GAMP diverges [24]. Moving from an explicit g to an im-

plicit denoiser Dσ will cause additional challenges yet to be studied.

Conclusion. Plug-and-Play generalized approximate message pass-

ing (PAMP) is a new algorithm that automatically updates the inter-

nal parameters of a conventional Plug-and-Play ADMM. The update

rules are based on the measure of the divergence of the subproblems,

and are derived from the generalized approximate message passing

(GAMP). At the current stage, numerical results show that PAMP

is a promising algorithm as it generates solutions through a rapid

convergence path. Intuitive arguments of the algorithm are made.

Future work should focus on the convergence analysis.

6. REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-

tributed optimization and statistical learning via the alternating

direction method of multipliers,” Found. Trends Mach. Learn.,

vol. 3, no. 1, pp. 1–122, Jan. 2011.

[2] J. Yang, Y. Zhang, and W. Yin, “An efficient TVL1 algo-

rithm for deblurring multichannel images corrupted by impul-

sive noise,” SIAM J. on Sci. Comput., vol. 31, no. 4, pp. 2842–

2865, Jul. 2009.

[3] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “Fast im-

age recovery using variable splitting and constrained optimiza-

tion,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2345–

2356, Apr. 2010.

[4] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and T. Q.

Nguyen, “An augmented Lagrangian method for total variation

video restoration,” IEEE Trans. Image Process., vol. 20, no. 11,

pp. 3097–3111, May 2011.

[5] C. A. Bouman, “Model-based image processing,” Avail-

able online at https://engineering.purdue.edu/

˜bouman/publications/pdf/MBIP-book.pdf,

2015.

[6] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-

Play ADMM for image restoration: Fixed point convergence

and applications,” IEEE Trans. Computational Imaging,

In Press. Available online at http://arxiv.org/abs/

1605.01710.

[7] S. Venkatakrishnan, C. Bouman, and B. Wohlberg, “Plug-

and-play priors for model based reconstruction,” in Proc.

IEEE Global Conference on Signal and Information Process-

ing, 2013, pp. 945–948.

[8] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buz-

zard, L. F. Drummy, J. P. Simmons, and C. A. Bouman, “Plug-

and-play priors for bright field electron tomography and sparse

interpolation,” IEEE Trans. Computational Imaging, vol. 2,

no. 4, pp. 408 – 423, Dec. 2016.

[9] S. H. Chan, “Algorithm-induced prior for image restora-

tion,” Available online at http://arxiv.org/abs/

1602.00715, Feb. 2016.

[10] A. Brifman, Y. Romano, and M. Elad, “Turning a denoiser into

a super-resolver using plug and play priors,” in Proc. IEEE Int.

Conf. Image Process. (ICIP), Sep. 2016, pp. 1404–1408.

[11] A. Rond, R. Giryes, and M. Elad, “Poisson inverse problems

by the plug-and-play scheme,” Journal of Visual Communi-

cation and Image Representation, vol. 41, pp. 96–108, Nov.

2015.

[12] F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Pajak,

D. Reddy, O. Gallo, J. Liu abd W. Heidrich, K. Egiazarian,

J. Kautz, and K. Pulli, “FlexISP: A flexible camera image

processing framework,” ACM Transactions on Graphics (Pro-

ceedings SIGGRAPH Asia 2014), vol. 33, no. 6, Dec. 2014.

[13] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image

denoising by sparse 3D transform-domain collaborative filter-

ing,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–

2095, Aug. 2007.

[14] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A

black-box optimization of regularization parameters for gen-

eral denoising algorithms,” IEEE Trans. Image Process., vol.

17, no. 9, pp. 1540–1554, 2008.

[15] N. Nguyen, P. Milanfar, and G. Golub, “Efficient generalized

cross-validation with applications to parametric image restora-

tion and resolution enhancement,” IEEE Trans. Image Pro-

cess., vol. 10, no. 9, pp. 1299–1308, Sep. 2001.

[16] M. Borgerding and P. Schniter, “Generalized approximate mes-

sage passing for the cosparse analysis model,” in Proc. IEEE

Int. Conf. Acoustics, Speech, Signal Process. (ICASSP), 2015,

pp. 3756–3760.

[17] S. Rangan, P. Schniter, E. Riegler, A. Fletcher, and V. Cevher,

“Fixed points of generalized approximate message passing

with arbitrary matrices,” in Proc. IEEE Int. Symp. Information

Theory, 2013, pp. 664–668.

[18] S. Rangan, “Generalized approximate message passing for es-

timation with random linear mixing,” in Proc. IEEE Int. Symp.

Information Theory, 2011, pp. 2168–2172.

[19] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing

algorithms for compressed sensing,” Proc. Nat. Acad. Sci., vol.

106, no. 45, pp. 18914–18919, 2009.

[20] D. L. Donoho, A. Maleki, and A. Montanari, “How to de-

sign message passing algorithms for compressed sensing,”

Tech. Rep., Rice University, 2011, Available online at

http://www.ece.rice.edu/ mam15/bpist.pdf.

[21] C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denois-

ing to compressed sensing,” IEEE Trans. Information Theory,

vol. 62, no. 9, pp. 5117–5144, Sep. 2016.

[22] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation

based noise removal algorithms,” Physica D, vol. 60, pp. 259–

268, 1992.

[23] J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborova,

“Adaptive damping and mean removal for the generalized ap-

proximate message passing algorithm,” in Proc. IEEE Int.

Conf. Acoustics, Speech, Signal Process. (ICASSP), 2015, pp.

2021–2025.

[24] S. Rangan, P. Schniter, and A. K. Fletcher, “On the conver-

gence of approximate message passing with arbitrary matri-

ces,” in Proc. IEEE Int. Symp. Information Theory, 2014, pp.

236–240.

