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Understanding Symmetric Smoothing Filters:
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Abstract—Many patch-based image denoising algorithms can
be formulated as applying a smoothing filter to the noisy
image. Expressed as matrices, the smoothing filters must be row
normalized so that each row sums to unity. Surprisingly, if we
apply a column normalization before the row normalization, the
performance of the smoothing filter can often be significantly
improved. Prior works showed that such performance gain is
related to the Sinkhorn-Knopp balancing algorithm, an iterative
procedure that symmetrizes a row-stochastic matrix to a doubly-
stochastic matrix. However, a complete understanding of the
performance gain phenomenon is still lacking.
In this paper, we study the performance gain phenomenon

from a statistical learning perspective. We show that Sinkhorn-
Knopp is equivalent to an Expectation-Maximization (EM) al-
gorithm of learning a Gaussian mixture model of the image
patches. By establishing the correspondence between the steps of
Sinkhorn-Knopp and the EM algorithm, we provide a geometri-
cal interpretation of the symmetrization process. This observation
allows us to develop a new denoising algorithm called Gaussian
mixture model symmetric smoothing filter (GSF). GSF is an
extension of the Sinkhorn-Knopp and is a generalization of the
original smoothing filters. Despite its simple formulation, GSF
outperforms many existing smoothing filters and has a similar
performance compared to several state-of-the-art denoising algo-
rithms.

Index Terms—Non-local means, patch-based filtering, patch
prior, Expectation-Maximization, doubly-stochastic matrix, sym-
metric smoothing filter

I. INTRODUCTION

Smoothing filters are a class of linear and nonlinear op-
erators that gains significant attentions in image denoising
recently. The formulations of these operators are simple:
Consider a noisy observation y ∈ R

n of a clean image z ∈ R
n

corrupted by additive i.i.d. Gaussian noise. A smoothing filter
is a matrix W ∈ R

n×n that generates a denoised estimate ẑ

as
ẑ = D−1Wy, (1)

where D
def
= diag {W1} is a diagonal matrix for normaliza-

tion so that each row of D−1W sums to unity. The formula-
tion in (1) is very general, and many denoising algorithms are
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smoothing filters, e.g., Gaussian filter [1], bilateral filter [2],
non-local means (NLM) [3], locally adaptive regression kernel
(LARK) [4], etc. Note that some of these filters are linear (e.g.,
Gaussian filter) whereas some are nonlinear (e.g. non-local
means). There are interesting graph-theoretic interpretations
of the smoothing filters [5]–[10], and there are also fast
algorithms to compute the smoothing filters [11]–[16].

A. Motivation: A Surprising Phenomenon
While smoothing filters work well for many denoising

problems, it was observed in [17]–[19] that their performance
can be further improved by modifying (1) as

ẑ = D−1
r WD−1

c y, (2)

where Dc
def
= diag

{
W T

1

}
is a diagonal matrix that normal-

izes the columns of W , and Dr
def
= diag

{
WD−1

c 1
}

is a
diagonal matrix that normalizes the rows of WD−1

c . In other
words, we modify (1) by introducing a column normalization
step before applying the row normalization.

Before discussing the technical properties of (1) and (2),
we first provide some numerical results to demonstrate an
interesting phenomenon. In Figure 1, we crop the center
100 × 100 region of 10 standard clean images. We generate
noisy observations by adding i.i.d. Gaussian noise of standard
deviation σ = 20/255 to each clean image. These noisy im-
ages are then denoised by (1) and (2), respectively. The weight
matrix W is chosen as the one defined in the non-local means
(NLM) [3]. To ensure fair comparison, we choose the best
parameter hr, the range parameter in NLM, for both methods.
The patch size is set as 5 × 5 and the neighborhood search
window is set as 21× 21. The experiment is repeated for 20
independent Monte-Carlo trials to average out the randomness
caused by different realizations of the i.i.d. Gaussian noise.

The results of this experiment are shown at the bottom of
Figure 1. It is perhaps a surprise to see that (2), which is
a simple modification of (1), improves the PSNR by more
than 0.23 dB on average. Another puzzling observation is
that if we repeatedly apply the column-row normalization,
the PSNR does not always increase as more iterations are
used. Figure 2 presents the result. In this experiment, we
fix the NLM parameter hr to its optimal value when using
the column-row normalization, i.e., (2). For 5 out of the 10
images we tested, the PSNR values actually drop after the first
column-row normalization.

The above experiment piqued our curiosity and led us to
a basic question: Why would the column-row normalization
improve the denoising performance? Insights gained from

http://arxiv.org/abs/1601.00088v2
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Image No.
Smoothing Filter 1 2 3 4 5 6 7 8 9 10

D−1W 30.54 31.42 27.41 26.81 27.89 27.01 30.54 29.16 28.41 29.02
hr 0.64σ 0.69σ 0.69σ 0.71σ 0.64σ 0.64σ 0.71σ 0.69σ 0.71σ 0.71σ

D−1
r WD−1

c 30.64 31.76 27.64 26.98 28.18 27.08 30.87 29.44 28.47 29.39
hr 0.71σ 0.77σ 0.77σ 0.77σ 0.71σ 0.71σ 0.79σ 0.77σ 0.77σ 0.79σ

PSNR Improvement +0.10 +0.34 +0.23 +0.17 +0.29 +0.07 +0.33 +0.28 +0.05 +0.37

Fig. 1: [Top] 100×100 testing images. Each image is corrupted by i.i.d Gaussian noise of σ = 20/255. [Bottom] PSNR values
of the denoised image using D−1W and D−1

r WD−1
c , and the respective optimal NLM parameter hr. All PSNR values in

this table are averaged over 20 independent Monte-Carlo trials.
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Fig. 2: Extension of the experiment shown in Figure 1. The
PSNR values do not always increase as more Sinkhorn-Knopp
iterations are used. The curves are averaged over 20 indepen-
dent Monte-Carlo trials with different noise realizations.

a better understanding of the underlying mechanism could
potentially lead to a more systematic procedure that can gen-
eralize the operations in (2) and further improve the denoising
performance. The goal of this paper is to address this issue
and propose a new algorithm.

B. Sinkhorn-Knopp Balancing Algorithm
To the best of our knowledge, the above performance

gain phenomenon was first discussed by Milanfar in [17],
where it was shown that if we repeatedly apply the column-
row normalization we would obtain an iterative procedure
called the Sinkhorn-Knopp balancing algorithm [20], [21] (or
Sinkhorn-Knopp, for short.) As illustrated in Algorithm 1,
Sinkhorn-Knopp is a simple algorithm that repeatedly applies
the column and row normalization until the smoothing filter
converges. For example, the smoothing filter defined by (2) is
the result of applying Sinkhorn-Knopp for one iteration.

Sinkhorn-Knopp has many interesting properties. First,

Algorithm 1 Sinkhorn-Knopp Balancing Algorithm

Input: W (0)

while ‖W (t+1) −W (t)‖F > tol do
Dc = diag

{
(W (t))T1

}
% Column Normalize

Dr = diag
{
W (t)D−1

c 1

}
% Row Normalize

W (t+1) = D−1
r W (t)D−1

c

end while

when Sinkhorn-Knopp converges, the converging limit is a
doubly-stochastic matrix — a symmetric non-negative matrix
with unit column and row (also called a symmetric smoothing
filter.) A doubly stochastic matrix has all of its eigenvalue’s
magnitudes bounded in [0, 1] so that repeated multiplications
always attenuate the eigenvalues [22]. Moreover, the estimate
ẑ formed by a doubly stochastic matrix is admissible in the
sense that no other estimates are uniformly better [23].

To explain the performance gain, Milanfar [17] considered
a notion called “effective degrees of freedom”, defined as

df =
n∑

j=1

∂ẑj
∂yj

,

where ẑj is the jth pixel of the estimate and yj is the jth
pixel of the input. df measures how an estimator trades bias
against variance. Larger values of df imply a lower bias but
higher variance. Milanfar argued that the overall mean squared
error, which is the sum of the bias and the variance, is reduced
because one can prove that symmetric smoothing filters have
high effective degrees of freedom. However, effective degrees
of freedom is not easy to interpret. It will be more useful if we
can geometrically describe the actions to which the column-
row normalization are applying.

C. Contributions
The present paper is motivated by our wish to further

understand the mechanism behind the performance gain
phenomenon. Our approach is to study an Expectation-
Maximization (EM) algorithm for learning a Gaussian mixture
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model (GMM.) By analyzing the E-step and the M-step of the
EM algorithm, we find that the actions of the symmetrization
is a type of data clustering. This observation echoes with
a number of recent work that shows ordering and grouping
of non-local patches are key to high-quality image denoising
[24]–[26]. There are two contributions of this paper, described
as follows.

First, we generalize the symmetrization process by refor-
mulating the denoising problem as a maximum-a-posteriori
(MAP) estimation under a Gaussian mixture model. We show
that the original smoothing filter in (1), the one-step Sinkhorn-
Knopp in (2), and the full Sinkhorn-Knopp (i.e., iterative
applications of Sinkhorn-Knopp until convergence) are all sub-
routines of the EM algorithm to learn the GMM. By show-
ing that each method supersedes its preceding counterpart,
we provide a possible explanation for the performance gain
phenomenon.

Second, based on the analysis of the GMM, we propose a
new denoising algorithm called the GMM symmetric smooth-
ing filter (GSF). We show that GSF does not only subsume
a number of smoothing filters, but also has a performance
similar to some state-of-the-art denoising algorithms. We will
discuss implementation and parameter selections for the GSF
algorithm.

This paper is an extension of a conference article presented
in [19]. In [19], the linkage between the GMM and the MAP
denoising step was not thoroughly discussed. Specifically, the
MAP was formulated as a weighted least squares step but the
weights were indirectly obtained through a by-product of the
EM algorithm. In this paper, we show that the quadratic cost
function in the weighted least squares is indeed a surrogate
function for solving the MAP problem. Therefore, minimizing
the cost function of the weighted least squares is equivalent to
minimizing an upper bound of the MAP objective function.

The rest of the paper is organized as follows. First, we
provide a brief introduction to GMM and the EM algorithm
in Section II. In Section III we discuss the generalization of
different symmetrizations using the EM algorithm. The new
GSF is discussed in Section IV and experimental results are
shown in Section V. We conclude in Section VI.

II. PRELIMINARIES

A. Notations
Throughout this paper, we use n to denote the number of

pixels in the noisy image, and k to denote the number of
mixture components in the GMM model. To avoid ambiguity,
we call a mixture component of a GMM as a cluster. Clusters
are tracked using the running index i ∈ {1, . . . , k}, whereas
patches (or pixels) are tracked using the running index j ∈
{1, . . . , n}. Without loss of generality, we assume that all pixel
intensity values have been normalized to the range [0, 1].

We use bold letters to denote vectors and the symbol 1 to
denote a constant vector of all ones. The vector xj ∈ R

2

represents the two-dimensional spatial coordinate of the jth
pixel, and the vector yj ∈ R

d represents a d-dimensional patch
centered at the jth pixel of the noisy image y. For a clean
image z, the jth patch is denoted by zj . A scalar yj ∈ R refers

TABLE I: Popular choices of the smoothing filter W .

Filter Wij

Gaussian Filter [1] exp
{
− ‖xj−xi‖

2

2h2
s

}

Bilateral Filter [2] exp
{
−
(

‖xj−xi‖
2

2h2
s

+
(yj−yi)

2

2h2
r

)}

NLM [3] exp
{
− ‖yj−yi‖

2

2h2
r

}

Spatially Regulated
NLM [17]

exp
{
−
(

‖xj−xi‖
2

2h2
s

+
‖yj−yi‖

2

2h2
r

)}

LARK [4] exp
{
− 1

2 (xj − xi)
T
Σ

−1
i (xj − xi)

}

to the intensity value of the center pixel of yj . Therefore, a
d-dimensional patch yj (assume d is an odd number) is a
vector yj = [yj−(d−1)/2, . . . , yj , . . . , yj+(d−1)/2]

T . To extract
yj from the noisy image y, we use a linear operator P j ∈
R

d×n such that yj = P jy. For some smoothing filters, the
spatial coordinate xj is used together with a patch zj (or
yj). Therefore, for generality we define a generalized patch
pj ∈ R

p, which could be xj , zj (or yj), or a concatenation
of both: pj = [xT

j , z
T
j ]

T (or pj = [xT
j , y

T
j ]

T .)

B. Smoothing Filters
The results presented in this paper are applicable to smooth-

ing filters W taking the following form:

Wij = κi N (pj |µi,Σi), (3)

where κi
def
=

√
(2π)p|Σi| is a normalization constant, and N (·)

denotes a p-dimensional Gaussian:

N (pj |µi,Σi)
def
=

1

κi
exp

{
−1

2
‖pj − µi‖2Σ−1

i

}
, (4)

with mean µi ∈ R
p and covariance matrix Σi ∈ R

p×p. We
note that (3) is general and covers a number of widely used
filters as shown in Table I.
Example 1 (Standard NLM): For the standard NLM [3], we

have pj = yj . The ith mean vector is µi = yi, i.e., the noisy
patch is the mean vector. The ith covariance matrix is

Σi = h2
rI, for all i, (5)

where hr is the NLM parameter.
In practice, to reduce computational complexity, a search

window Ω is often introduced so that neighboring patches
are searched within Ω. This is equivalent to multiplying an
indicator function to the weight as

Wij = I {(xi − xj) ∈ Ω} exp
{
−‖yj − yi‖2

2h2
r

}
, (6)

where I {x ∈ Ω} = 1 if x ∈ Ω, and is zero otherwise.
Example 2 (Spatially Regulated NLM): As an alternative

to the hard thresholding introduced by the indicator function
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in (6), one can also consider the spatially regulated NLM [17].
In this case, we can define pj =

[
xT
j , y

T
j

]T . The mean vector
µi and the covariance matrices will consist of two parts:

µi =

[
µ

(s)
i

µ
(r)
i

]
, Σi =

[
h2
sI 0
0 h2

rI

]
def
= ΣNLM, (7)

where hs and hr are the spatial and the range parameters,
respectively. This leads to the weight

Wij = exp

{
−‖xj − xi‖2

2h2
s

}
exp

{
−‖yj − yi‖2

2h2
r

}
. (8)

It is not difficult to see that the spatially regulated NLM
coincides with the standard NLM as hs → ∞ and |Ω| → ∞.
In fact, the former uses a soft search window and the latter
uses a hard search window. From our experience, we find that
the spatially regulated NLM typically has better performance
than the standard NLM when the best choices of hs and Ω
are used in either case. Therefore, in the rest of this paper we
will focus on the spatially regulated NLM.

C. Gaussian Mixture Model

The Gaussian mixture model (GMM) plays an important
role in this paper. Consider a set of n generalized patches
P def

= {p1, . . . ,pn} where pj ∈ R
p. We say that P is generated

from a Gaussian mixture model of k clusters if pj is sampled
from the distribution

f(pj |Θ) =

k∑

i=1

πi N (pj |µi,Σi), (9)

where πi ∈ R is the weight of the ith cluster, µi ∈ R
p is the

mean vector, and Σi ∈ R
p×p is the covariance matrix. For the

purpose of analyzing smoothing filters in this paper, we shall
assume that the covariance matrices Σi are fixed according
to the underlying smoothing filter. For example, in spatially
regulated NLM we fix the covariance matrices as Σi = ΣNLM.
When Σi’s are fixed, we denote Θ

def
= {πi,µi}ki=1 as the

GMM model parameters.
Learning the model parameters Θ from P is typically done

using the Expectation-Maximization (EM) algorithm [27]. The
EM algorithm consists of two major steps: the expectation
step (E-step) and the maximization step (M-step). The E-step
is used to compute the conditional expected log-likelihood,
often called the Q-function. The M-step is used to maximize
the Q-function by seeking the optimal parameters Θ. The
algorithm iterates until the log-likelihood converges. Since the
EM algorithm is widely used, we skip the introduction and
refer readers to [27] for a comprehensive tutorial. The EM
algorithm for learning a GMM is summarized in Algorithm 2.

III. GENERALIZATIONS OF SYMMETRIC FILTERS

In this section, we discuss how various symmetric smooth-
ing filters are generalized by the EM algorithm. We begin by
discussing how the GMM can be used for denoising.

Algorithm 2 EM Algorithm for Learning a GMM with a
known covariance matrix Σ [27].

Input: Patches P def
= {pj}nj=1, and the number of clusters k.

Output: Parameters Θ = {(πi,µi)}ki=1.

Initialize π
(0)
i , µ(0)

i for i = 1, . . . , k, and set t = 0.
while not converge do
E-step: Compute, for i = 1, . . . , k and j = 1, . . . , n

γ
(t)
ij =

π
(t)
i N (pj |µ(t)

i ,Σ)
∑k

l=1 π
(t)
l N (pj |µ(t)

l ,Σ)
(10)

M-step: Compute, for i = 1, . . . , k

π
(t+1)
i =

1

n

n∑

j=1

γ
(t)
ij (11)

µ
(t+1)
i =

∑n
j=1 γ

(t)
ij pj

∑n
j=1 γ

(t)
ij

(12)

Update Counter: t ← t+ 1.
end while

A. MAP Denoising Using GMM

We first specify the denoising algorithm. Given the noisy
image y, we formulate the denoising problem by using the
maximum-a-posterior (MAP) approach:

ẑ = argmin
z

λ

2
‖z − y‖2 −

n∑

j=1

log f(pj |Θ) (13)

where the first term specifies the data fidelity with λ as a
parameter. The second term, which is a sum of overlapping
patches (thus are dependent), is called the expected patch log-
likelihood (EPLL) [25]. Note that EPLL is a general prior
that uses the expectation of the log-likelihood of overlapping
patches. It is not limited to a particular distribution for
f(pj |Θ), although in [25] the GMM was used. Note also
that the patch pj in (13) is extracted from the optimization
variable z. Thus, by minimizing over z we also minimize
over pj .

Substituting (9) into (13), we obtain a GMM-based MAP
denoising formulation

ẑ = argmin
z

λ

2
‖z − y‖2 −

n∑

j=1

log

(
k∑

i=1

πiN (pj |µi,Σ)

)
.

(14)

The computational challenge of (14) is the sum of exponentials
inside the logarithm, which hinders closed-form solutions. In
[25], Zoran and Weiss proposed to use a half quadratic splitting
method to alternatingly minimize a sequence of subproblems,
and select the mode of the GMM in each subproblem.

Our solution to handle the optimization problem in (14) is to
use a surrogate function under the Majorization-Maximization
framework [28]. The idea is to find a surrogate function
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h(pj , p
′
j |Θ) such that

h(pj , p
′
j |Θ) ≥ − log f(pj |Θ), ∀(pj ,p

′
j), (15)

h(pj , pj |Θ) = − log f(pj |Θ). (16)

If we can find such function h(pj , p
′
j |Θ), then the minimiza-

tion in (13) can be relaxed to minimizing an upper bound

ẑ = argmin
z

λ

2
‖z − y‖2 +

n∑

j=1

h(pj , p
′
j |Θ). (17)

For the GMM in (9), Zhang et al. [29] proposed one con-
venient surrogate function h(pj , p

′
j |Θ) whose expression is

given in Lemma 1.
Lemma 1 (Surrogate function for GMM): The function

h(pj , p
′
j |Θ)

def
= − log f(p′

j |Θ) (18)

+

k∑

i=1

γij

(
−1

2
‖pj − µi‖2Σ−1 +

1

2
‖p′

j − µi‖2Σ−1

)
,

where
γij =

πiN (p′
j |µi,Σ)

∑k
l=1 πlN (p′

j |µl,Σ)
, (19)

is a surrogate function that satisfies (15) and (16).
Proof: See Appendix A of [29].

Remark 1: The surrogate function h(pj , p
′
j |Θ) requires

an intermediate variable p′
j . This variable can be chosen as

p′
j = [xT

j ,y
T
j ]

T , i.e., the generalized patch using the noisy
image y. Thus, γij is independent of pj .

Substituting the result of Lemma 1 into (17), we observe
that (17) can be rewritten as

ẑ = argmin
z

λ‖z − y‖2 +
n∑

j=1

k∑

i=1

γij‖pj − µi‖2Σ−1 , (20)

where we dropped terms involving p′
j as they are independent

to the optimization variable z. Note that (20) is a quadratic
minimization, which is significantly easier than (14).

For the case of spatially regulated NLM, it is possible to
further simplify (20) by recognizing that pj involves both
spatial coordinate xj and patch zj . Therefore, by expressing
pj = [xT

j , z
T
j ]

T and by defining µi using (7), (20) becomes

ẑ = argmin
z

λ‖z − y‖2 +
n∑

j=1

k∑

i=1

γij

∥∥∥∥∥

[
xj

zj

]
−
[
µ
(s)
i

µ
(r)
i

]∥∥∥∥∥

2

Σ−1

.

In this minimization, we observe that since xj is not an
optimization variable, it can be eliminated without changing
the objective function. By using a patch extract operator P j ,
i.e., zj = P jz, we obtain the minimization

ẑ = argmin
z

λ‖z − y‖2 +
n∑

j=1

k∑

i=1

γij

∥∥∥P jz − µ
(r)
i

∥∥∥
2

, (P1)

where we have absorbed the NLM parameter 2h2
r (the diagonal

term of Σ) into λ. Problem (P1) is the main optimization
of interest in this paper. We call (P1) the GMM Symmetric
Smoothing Filter (GSF). In the literature, there are other GMM
based denoising algorithms. Their connections to GSF will be

discussed in Section IV .

B. Original Smoothing Filter

We now discuss the role of symmetrization by studying (P1)
and the EM algorithm for learning the GMM. To keep track of
the iterations of the EM algorithm, we use the running index
t denotes the iteration number. For consistency, we will focus
on the spatially regulated NLM.

In spatially regulated NLM, the ith pixel of the denoised
image is

ẑi =

∑n
j=1 Wijyj∑n
j=1 Wij

, (21)

with Wij defined in (8). To obtain (21) from (P1), we consider
the following choices of parameters

P jz = zj, µ
(r)
i = yi, πi = 1/k, λ = 0, k = n,

γij = N (pj |pi,ΣNLM). (22)

In this case, since the quadratic objective in (P1) is separable,
the ith term becomes

ẑi = argmin
zi

n∑

j=1

γij(zi − yj)
2 =

∑n
j=1 γijyj∑n
j=1 γij

, (23)

which coincides with (21) as Wij = N (pj |pi,ΣNLM)
because of (8).

It is important to study the conditions in (22). First, the patch
extractor P j extracts a pixel zj from z. This step is necessary
because NLM is a weighted average of individual pixels, even
though the weights are calculated using patches. Accordingly,
the mean vector µi is also a pixel yi so that it matches with
the optimization variable zi. From a clustering perspective,
we can interpret µi = yi as having one cluster center for
one pixel, i.e., every pixel has its own cluster. Clearly, this is
a suboptimal configuration, and we will address it when we
present the proposed method. We also note that in (22), the
parameter λ is 0. What it means is that the data fidelity term
is not used and only the EPLL prior is required to obtain the
NLM result.

The most interesting observation in (22) is the choice of
γij . In fact, the γij in (22) is only the numerator of (19) by
assuming πi = 1/k. If we let Θi = (πi,µi) be the ith model
parameter of a GMM, then the physical meaning of (22) is
a conditional probability of observing pj given that we pick
the ith cluster, i.e., P(pj |Θi). In contrast, (19) is a posterior
probability of picking the ith cluster given that we observe pj ,
i.e., P(Θi |pj). We will discuss this subtle difference more
carefully in the next subsection when we discuss the one-step
Sinkhorn-Knopp.

C. One-step Sinkhorn-Knopp

In one-step Sinkhorn-Knopp, we recognize that the ith pixel
of the denoised image is

ẑi =

∑n
j=1 W̃ijyj

∑n
j=1 W̃ij

and W̃ij =
Wij∑n
l=1 Wlj

. (24)
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This result can be obtained from (P1) by letting

P jz = zj , µ
(r)
i = yi, πi = 1/k, λ = 0, k = n,

γij =
N (pj |pi,ΣNLM)

∑k
l=1 N (pj |pl,ΣNLM)

. (25)

Unlike the conditions posted by the original smoothing filter in
(22), one-step Sinkhorn-Knopp defines γij according to (19),
or with some substitutions that yields (25).

As mentioned in the previous subsection, the γij defined
in (22) is a conditional probability whereas that in (25) is
a posterior probability. The posterior probability, if we refer
to the EM algorithm (see Algorithm 2), is in fact the E-step
with initializations π(0)

i = 1/k and µ
(0)
i = pi. For the original

filter, the E-step is not executed because γij is defined through
(22). Therefore, from a clustering perspective, it is reasonable
to expect a better denoising result from one-step Sinkhorn-
Knopp than the original smoothing filter because the clustering
is better performed.

To further investigate the difference between the conditional
probability P(pj |Θi) and the posterior probability P(Θi |pj),
we adopt a graph perspective by treating each patch pj as
a node, and γij as the weight on the edge linking node i
and node j [5]. In the original smoothing filter, the condi-
tional probability P(pj |Θi) causes a “majority vote” effect,
meaning that the parameter Θi has a direct influence to every
patch {pj} in the image. Therefore, if Θi has many “weak
friends”, the sum of these “weak friends” can possibly alter
the denoising result which would have been better obtained
from a few “good friends”.

In contrast, the one-step Sinkhorn-Knopp uses the posterior
probability P(Θi |pj). From Bayes rule, the posterior proba-
bility is related to the conditional probability by

P(Θi |pj) =
P(pj |Θi)P(Θi)

P(pj)
.

Since P(Θi) = πi and πi = 1/k, we see that P(Θi |pj) is the
ratio of P(pj |Θi) and P(pj). P(pj) measures the popularity
of pj . Thus, if pj is a popular patch (i.e., it is a “friend” of
many), then the normalization P(pj |Θi)/P(pj) is a way to
balance out the influence of pj . Interpreted in another way,
it is equivalent to say that if Θi has many “weak friends”,
the influence of these “weak friends” should be reduced. Such
intuition is coherent to many NLM methods that attempt to
limit the number of nearby patches, e.g., [30], [31].

The definite answer to whether there is performance gain
due to one-step Sinkhorn-Knopp is determined by the likeli-
hood of obtaining “weak friends”. This, in turn, is determined
by the image content and the NLM parameter hr which
controls the easiness of claiming “friends”. For example, if
an image contains many textures of a variety of content and if
hr is large, then it is quite likely to obtain “weak friends”. In
this case, one-step Sinkhorn-Knopp will improve the denoising
performance. On the other hand, if an image contains only
a constant foreground and a constant background, then most
patches are “good friends” already. Applying the one-step
Sinkhorn-Knopp could possibly hurt the denoising perfor-
mance. Figure 3 shows an example.

Image No. 11 12 13 14 15
Original 33.48 35.15 36.39 38.85 36.81
One-Step 32.98 34.67 35.59 38.36 36.43

PSNR Gain -0.50 -0.47 -0.80 -0.48 -0.38

Fig. 3: Repeat of the experiment in Figure 1 using images with
a constant foreground and a constant background. Optimal
hr is tuned for the original standard NLM and the one-step
Sinkhorn-Knopp, respectively. Note that the PSNR gain are
all negative.
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Fig. 4: Repeat the experiment in Figure 1 by plotting PSNR
gain as a function of hr. Note the consistent change of PSNR
gain from negative to positive as hr increases.

To further justify the above claim that the performance gain
is caused by the likelihood of obtaining “weak friends”, we
consider the 10 images in Figure 1 by plotting the PSNR gain
as a function of hr. Our hypothesis is that for small hr, the
performance gain should be small or even negative because it
is difficult for a patch to find its “friends”. When hr is large,
the performance gain should become significant because many
“weak friends” will be balanced out by the one-step Sinkhorn-
Knopp. As shown in Figure 4, this is in fact the case: For hr

lies between 0 and certain threshold (around 0.65σ where σ
is the noise standard deviation), PSNR gain is always zero or
negative. When hr increases, PSNR gain becomes positive.
The result is consistent for all 10 images we tested.

D. Full Sinkhorn-Knopp
The full Sinkhorn-Knopp (Algorithm 1) is an iterative

algorithm that repeatedly applies the one-step Sinkhorn-Knopp
until convergence. To analyze the full Sinkhorn-Knopp algo-
rithm, we first recognize that the algorithm can be effectively
described by two steps:

Wij ←
W̃ij∑n
l=1 W̃il

and W̃ij ←
Wij∑n
l=1 Wlj

, (26)
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where the first equation is a row normalization and the second
equation is a column normalization. This pair of normalization
can be linked to the EM algorithm in the following sense.

First, in the EM algorithm we fix the mixture weight π(t)
i

as π
(t)
i = 1/k for all clusters i = 1, . . . , k and all iteration

numbers t = 1, . . . , tmax. This step is necessary because
the full Sinkhorn-Knopp does not involve mixture weights.
Intuitively, setting π

(t)
i = 1/k ensures that all clusters have

equal probability to be selected.
When π

(t)
i is fixed, the EM algorithm in Algorithm 2 has

only two steps: Update of γ
(t)
ij in (10) and update of µ

(t)
i in

(12). Inspecting this pair of equations, we observe that (10)
appears a column normalization whereas (12) appears a row
normalization. However, since full Sinkhorn-Knopp does not
have a mean vector µ(t)

i , we have to modify the EM algorithm
in order to link the two. To this end, we modify (12) by
defining a sequence β

(t)
ij such that

M-step : β
(t)
ij =

γ
(t)
ij∑n

l=1 γ
(t)
il

, (27)

and modify (10) by updating of γ(t)
ij via

E-step : γ
(t)
ij =

β
(t)
ij∑k

l=1 β
(t)
lj

. (28)

Under this setting, (27)-(28) becomes exactly (26).
It is important to understand the difference between the

original EM algorithm using (10)-(12) and the modified EM
algorithm using (27)-(28). In the M-step of the modified EM
algorithm, the mean vector µ

(t)
i is absent. However, µ(t)

i is
still updated, though implicitly, because

µ
(t)
i =

∑n
j=1 γ

(t)
ij pj

∑n
l=1 γ

(t)
il

(a)
=

n∑

j=1

β
(t)
ij pj , (29)

where (a) follows from (27). Therefore, β(t)
ij are the coeffi-

cients that form µ
(t)
i through a linear combination of pj’s.

In the E-step of the modified EM algorithm, since µ
(t)
i

is absent, one cannot compute the conditional probability
N (pj |µ(t)

i ,Σ) and hence the posterior probability in (10).
To resolve this issue, we recognize that since

∑n
j=1 β

(t)
ij = 1

and β
(t)
ij ≥ 0 by definition, one possibility is to replace

N (pj |µ(t)
i ,Σ) by β

(t)
ij . Such approximation is physically

interpretable because β(t)
ij is the coefficient for the mean vector

as shown in (29). Thus, β(t)
ij having larger values will have a

larger contribution to forming µ
(t)
i . In this perspective, β(t)

ij is
performing a similar role as N (pj |µ(t)

i ,Σ). Practically, we
observe that β(t)

ij is a good approximation when there are only
a few distinctive clusters. This can be understood as that while
individual β(t)

ij may not be accurate, averaging within a few
large clusters can reduce the discrepancy between β

(t)
ij and

N (pj |µ(t)
i ,Σ).

The fact that the full Sinkhorn-Knopp does not resemble a
complete EM algorithm offers some insights into the perfor-

mance gain phenomenon. Recall from the results in Figure 2,
we observe that the first Sinkhorn-Knopp iteration always
increases the PSNR except the artificial images we discussed
in Section III.C. This can be interpreted as that the clustering
is properly performed by the EM algorithm. However, as more
Sinkhorn-Knopp iterations are performed, some images show
reduction in PSNR, e.g., images 3, 4, 8, 10. A close look
at these images suggests that they contain complex texture
regions that are difficult to form few but distinctive clusters.
In this case, the approximation of N (pj |µ(t)

i ,Σ) by β
(t)
ij is

weak and hence the denoising performance drops.

E. Summary
To summarize our findings, we observe that the performance

of the normalization is related to how the EM algorithm is
being implemented. A summary of these findings is shown
in Table II. For all the three algorithms we considered: the
original filter, the one-step Sinkhorn-Knopp, and the full
Sinkhorn-Knopp algorithm, the EM algorithm is not com-
pletely performed or in-properly configured. For example,
setting k = n causes excessive number of clusters and should
be modified to k < n; the MAP parameter λ is always 0 and
should be changed to a positive value to utilize the data fidelity
term in (P1); the E-step and the M-step are not performed
as it should be. Therefore, in the following section we will
propose a new algorithm that completely utilizes the EM steps
for problem (P1).

IV. GMM SYMMETRIC SMOOTHING FILTER

The proposed denoising algorithm is called the Gaussian
Mixture Model Symmetric Smoothing Filter (GSF). The over-
all algorithm of GSF consists of two steps:

• Step 1: Estimate the GMM parameter µ(r)
i and γij from

the noisy image the by EM algorithm.
• Step 2: Solve Problem (P1), which has a closed form

solution.
In the followings we discuss how GSF is implemented.

A. Closed Form Solution of GSF
First of all, we recall that since (P1) is a quadratic min-

imization, it is possible to derive a closed form solution by
considering the first order optimality condition, which yields
a normal equation




n∑

j=1

P T
j P j + λI


 ẑ =

n∑

j=1

P T
j wj + λy, (30)

where the vector wj is defined as

wj
def
=

n∑

i=1

γijµ
(r)
i . (31)

Equations (30)-(31) has a simple interpretation: The interme-
diate vector wj is a weighted average of the mean vectors
{µ(r)

i }ki=1. These {wj}nj=1 represent a collection of (denoised)
overlapping patches. The operation P T

j on the right hand side
of (30) aggregates these overlapping patches, similar to the
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TABLE II: Generalization and comparisons using EM algorithm for learning GMM with a known Σ.

Original One-step Full GSF
Filter [3] Sinkhorn-Knopp [18] Sinkhorn-Knopp [21] (Proposed)

No. Clusters k = n k = n k = n k < n
(cross-validation)

Initialization γ
(0)
ij N (pj |µ(0)

i ,ΣNLM) N/A N/A N/A
π
(0)
i 1/k 1/k 1/k 1/k

µ
(0)
i pi pi pi randomly picked pi

E-step Update γ
(t)
ij × X X X

M-step Update π
(t)
i × × × X

Update µ
(t)
i × × X (implicitly) X

No. Iterations 0 1 Many Many
Denoising λ 0 0 0 by SURE
Parameters P jz zj zj zj pj

aggregation step in BM3D [32]. The addition of λy regulates
the final estimate by adding a small amount of fine features,
depending on the magnitude of λ.

In order to use (30)-(31), we must resolve two technical
issues related to the EM algorithm and Problem (P1): (i) How
to determine λ; (ii) How to determine k.

B. Parameter λ

Ideally, λ should be chosen as the one that minimizes the
mean squared error (MSE) of the denoised image. However,
in the absence of the ground truth, MSE cannot be calculated
directly. To alleviate this difficulty, we consider the Stein’s
Unbiased Risk Estimator (SURE) [33], [34]. SURE is a
consistent and unbiased estimator of the MSE. That is, SURE
converges to the true MSE as the number of observations
grows. Therefore, when there are sufficient number of ob-
served pixels (which is typically true for images), minimizing
the SURE is equivalent to minimizing the true MSE.

In order to derive SURE for our problem, we make an
assumption about the boundary effect of P j .
Assumption 1: We assume that the patch-extract operator

{P j}nj=1 satisfies the following approximation:
n∑

j=1

P T
j P j = dI. (32)

We note that Assumption 1 only affects the boundary pixels
and not the interior pixels. Intuitively, what Assumption 1
does is to require that the boundary pixels of the image
are periodically padded instead of zero-padded. In the image
restoration literature, periodic boundary padding is common
when analyzing deblurring methods, e.g., [35].

Under Assumption 1, we can substitute (32) into (30) and
take the matrix inverse. This would yield

ẑ(λ) =
d

d+ λ
u+

λ

d+ λ
y, (33)

where

u
def
=

1

d

n∑

j=1

P T
j wj . (34)
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Fig. 5: Comparison between SURE and the ground truth MSE
of a denoising problem.

Then, we can derive the SURE of ẑ as follows.
Proposition 1: Under Assumption 1, the SURE of ẑ(λ) is

SURE(λ) = −σ2 + σ̂2

(
d

d+ λ

)2

+
2σ2

n

(
div(u)d+ nλ

d+ λ

)
,

(35)
where σ̂2 def

= 1
n‖u− y‖2, and

div(u)
def
= 1

T
n×1


1

d

n∑

j=1

P T
j

(
k∑

i=1

γij

(∑n
j=1 γijej∑n
j=1 γij

))
 ,

(36)

where ej ∈ R
d is the jth standard basis.

Proof: See Appendix B.
The SURE given in (35) is a one-dimensional function in

λ. The minimizer can be determined in closed-form.
Corollary 1: The optimal λ that minimizes SURE(λ) is

λ∗ = max

(
d

((
σ̂2

σ2

)(
n

n− div(u)

)
− 1

)
, 0

)
. (37)
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Proof: (35) is a differentiable function in λ. Therefore,
the minimizer can be determined by considering the first order
optimality and set the derivative of SURE(λ) to zero. The
projection operator max(·, 0) is placed to ensure that λ∗ ≥ 0.

Example 3: To demonstrate the effectiveness of SURE, we
show a typical MSE and a typical SURE curve of a denoising
problem. In this example, we consider a 128 × 128 image
“Baboon”, with noise standard deviation of σ = 30/255. The
non-local means parameters are hr = σ and hs = 10. The
number of clusters is k = 50, and the patch size is 5 × 5.
The results are shown in Figure 5, where we observe that the
SURE curve and the true MSE curve are very similar. In fact,
the minimizer of the true MSE is λ = 8.0080 with a PSNR
of 24.5143dB whereas the minimizer of SURE is λ = 7.9145
with a PSNR of 24.5141dB.
Remark 2: Careful readers may notice that in (36), we

implicitly assume that γij is independent of yj . This implicit
assumption is generally not valid if γij is learned from y.
However, in practice, we find that if we feed the EM algorithm
with some initial estimate (e.g., by running the algorithm
with λ = 0), then the dependence of γij from yj becomes
negligible.

C. Number of Clusters k
The number of clusters k is another important parameter.

We estimate k based on the concept of cross validation [36].
Our proposed cross-validation method is based on compar-

ing the estimated covariance with ΣNLM. More specifically,
we compute the estimated covariance

Σ̂i =

∑n
j=1 γij

(
pj − µi

) (
pj − µi

)T
∑n

j=1 γij
, (38)

where µi = [µ
(s)
i , µ

(r)
i ]T is the mean returned by the EM

algorithm, and γij = π
(∞)
ij is the converged weight. Then, we

compute the ratio of the deviation

δi(k) =
1

d
Tr

{
Σ

−1
NLMΣ̂i

}
. (39)

Ideally, if Σ̂i = ΣNLM, then by (39) we have δi(k) = 1.
However, if the ith estimated Gaussian component has a
radius significantly larger than hr (or, hs for the spatial
components), then the covariance Σ̂i would deviate from
ΣNLM and hence δi(k) > 1. Conversely, if the ith estimated
Gaussian component has a radius significantly smaller than
hr, then we will have δi(k) < 1. Therefore, the goal of the
cross validation is to find a k such that δi(k) is close to 1.

To complete the cross-validation setup, we average δi(k)
over all k clusters to obtain an averaged ratio

δ(k) =
1

k

k∑

i=1

δi(k). (40)

The parenthesis (k) in (40) emphasizes that both δ(k) and
δi(k) are functions of k. With (40), we seek the root k of the
equation δ(k) = 1.

The root finding process for δ(k) = 1 can be performed
using the secant method. Secant method is an extension of

k(a) k(b)

δ(a)

δ(b)

k(c)

δ(c)

Fig. 6: Illustration of the secant method. Given k(a) and k(b),
we compute k(c) according to the slope defined by the line
linking δ(a) and δ(b).

Algorithm 3 Cross Validation to Determine k

Input: k(a) and k(b) such that δ(a) > 1 and δ(b) < 1.
Output: k(c).

while |k(a) − k(c)| > tol and |k(b) − k(c)| > tol do
Compute k(c) according to (41).
Compute δ(c)

def
= δ(k(c)) according to (40).

if δ(k(c)) > 1 then
k(a) ← k(c); δ(a) ← δ(c).

else
k(b) ← k(c); δ(b) ← δ(c).

end if
end while

the bisection method in which the bisection step size (i.e.,
1/2) is now replaced by an adaptive step size determined by
the local derivative of the function. Let k(a) and k(b) be two
number of clusters, and δ(a) and δ(b) be the corresponding
cross-validation scores, i.e., δ(a) = δ(k(a)). If δ(a) > 1 and
δ(b) < 1, the secant method computes the new k as

k(c) =
k(a)(δ(b) − 1)− k(b)(δ(a) − 1)

δ(b) − δ(a)
. (41)

If δ(k(c)) > 1, then we replace k(a) by k(c); Otherwise, we
replace k(b) by k(c). The process repeats until the |k(a) −
k(c)| < tol and |k(b) − k(c)| < tol. A pictorial illustration
of the secant method is shown in Figure 6. A pseudo code is
given in Algorithm 3.
Example 4: To verify the effectiveness of the proposed

cross validation scheme, we consider a 128 × 128 “House”
image with noise σ = 60/255. The patch size is 5×5, hr = σ,
and hs = 10. Figure 7 shows the PSNR value of the denoised
image and the corresponding cross validation score δ(k) as
a function of k. For this experiment, the maximum PSNR is
achieved at k = 144, where PSNR = 26.0257dB. Using the
cross-validation score δ(k), we find that δ(k) is closest to 1
when k = 130. The corresponding PSNR value is 25.9896dB,
which is very similar to the true maximum PSNR.

V. EXPERIMENTS

In this section, we present additional simulation results to
evaluate the proposed GSF.
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Fig. 7: Comparison between the cross validation score δ(k)
and the true PSNR value as a function of k. The horizontal
dashed line indicates the intersection at δ(k) = 1.

A. Experiment Settings

We consider 10 testing images, each of which is re-
sized to 128 × 128 (so n = 16384) for computational
efficiency. The noise standard deviations are set as σ ∈
{20/255, 40/255, 60/255, 80/255, 100/255}. Several exist-
ing denoising algorithms are studied, namely the NLM [3],
One-step Sinkhorn-Knopp [18], BM3D [32], EPLL [25],
Global image denoising (GLIDE) [12], NL-Bayes [37], and
PLE [38]. The parameters of the methods are configured as
shown in Table III.

For NLM and One-step Sinkhorn-Knopp (One-step, in
short), we use the spatially regulated version due to its
better performance over the standard NLM. We implement the
algorithms by setting the patch size as 5×5 (i.e., d = 25). The
parameters are hs = 10 and hr = σ

√
d. The full Sinkhorn-

Knopp algorithm is implemented using GLIDE [12], where
the source code is downloaded from the author’s website 1.
Default settings of GLIDE are used in our experiment.

For the proposed GSF, we keep the same settings as NLM
except for the intensity parameter hr where we set hr = σ.
The omission of the factor

√
d is due to the fact that each

Gaussian component is already a d-dimensional multivariate
distribution. It is therefore not necessary to normalize the
distance ‖yi − yj‖2 by the factor d.

For BM3D, EPLL, NL-Bayes, we downloaded the original
source code from the author’s website 2,3,4. For PLE, we
modified an inpainting version of the source code provided
by the authors. Default settings of these algorithms are used.

Among these methods, we note that EPLL is an external
denoising algorithm where a Gaussian mixture is learned from
a collection of 2 million clean patches. All other methods
(including GSF) are single image denoising algorithms.

1GLIDE: https://users.soe.ucsc.edu/∼htalebi/GLIDE.php
2BM3D: http://www.cs.tut.fi/∼foi/GCF-BM3D/
3EPLL: http://people.csail.mit.edu/danielzoran/
4NL-Bayes: http://www.ipol.im/pub/art/2013/16/

TABLE III: Configurations of Methods

Method Configuration
NLM [3] Patch size 5× 5, hs = 10, hr = σ

√
d

One-step [18] Patch size 5× 5, hs = 10, hr = σ
√
d

GSF (Ours) Patch size 5× 5, hs = 10, hr = σ
GLIDE [12] Default settings. Pilot estimate uses NLM.
NL-Bayes [37] Base mode. Default settings.
PLE [38] Default settings. Default initializations.
BM3D [32] Default settings.
EPLL [25] Default settings. External Database.

B. Comparison with NLM, One-step and Full Sinkhorn-Knopp
The overall results of the experiment are shown in Table VI.

We first compare the PSNR values of GSF with NLM, One-
step and full Sinkhorn-Knopp.

In Table IV we show the average PSNR over the 10 testing
images. In this table, we observe that on average One-step has
a higher PSNR than NLM by 0.12dB to 1.12dB, with more
significant improvements at low noise levels. This implies that
the “grouping” action by the column normalization becomes
less influential when noise increases. Moreover, if we compare
GSF with NLM and One-step, we observe that the PSNR gain
is even larger. Even at a high noise level (e.g., σ = 80/255 or
σ = 100/255), the average gain from NLM is 2.5dB or more.

TABLE IV: PSNR comparison with different noise level σ.
Results are averaged over 10 testing images.

NLM One-Step Ours PSNR2 PSNR3

σ (PSNR1) (PSNR2) (PSNR3) −PSNR1 −PSNR1

20 25.59 26.71 28.89 +1.12 +3.30
40 21.97 22.53 25.38 +0.56 +3.41
60 20.33 20.63 23.60 +0.30 +3.27
80 19.46 19.64 22.39 +0.18 +2.92
100 18.97 19.09 21.47 +0.12 +2.50

Besides studying the trend of PSNR as a function of σ, it
is also interesting to compare the PSNR when we increase
the spatial parameter hs. In Table V, we show the PSNR
improvement when we use different hs ∈ {5, 10, 20, 50, 100}
for a 128 × 128 image. The results show that when hs

increases, the PSNR improvement also increases. One reason
is that in (7), the spatial parameter hs controls the diagonal
bandwidth of the smoothing filter W . That is, a small hs

leads to a banded diagonal W with small bandwidth. In the
limit when hs → 0, W will become a diagonal matrix, and
hence is immune to any column normalization. Therefore,
the effectiveness of the column normalization in the One-step
depends on how large hs is.

The full Sinkhorn-Knopp algorithm is implemented using
GLIDE [12]. GLIDE consists of multiple steps: It first de-
termines the weight matrix, followed by a full Sinkhorn-
Knopp algorithm that symmetrizes the weight matrix. Then, it
incorporates an estimator to optimally determine the number
of non-zero eigenvalues and the power of eigenvalues of the
smoothing filter. GLIDE can use any denoising result as its
pilot estimate. For the fairness of the experiment we follow
the default setting of GLIDE and use the standard NLM as the

https://users.soe.ucsc.edu/~htalebi/GLIDE.php
http://www.cs.tut.fi/~foi/GCF-BM3D/
http://people.csail.mit.edu/danielzoran/
http://www.ipol.im/pub/art/2013/16/
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TABLE VI: Denoising results of Standard NLM [3], One-step Sinkhorn-Knopp [18], BM3D [32], EPLL [25], Global image
denoising [12], and the proposed GSF.

NLM OneStep GSF GLIDE Bayes PLE BM3D EPLL NLM OneStep GSF GLIDE Bayes PLE BM3D EPLL
[3] [18] (ours) [12] [37] [38] [32] [25] [3] [18] (ours) [12] [37] [38] [32] [25]

σ Baboon Barbara
20 24.53 25.01 26.84 26.51 27.22 26.14 26.96 27.19 26.05 27.02 29.43 28.64 29.52 28.82 29.42 29.40
40 22.32 22.55 24.49 24.04 24.55 23.75 24.57 24.56 21.48 21.91 25.41 24.83 25.60 24.74 25.35 25.79
60 21.31 21.46 23.32 22.87 23.03 22.67 23.53 23.44 19.31 19.55 23.28 22.33 23.61 22.54 23.55 23.64
80 20.76 20.87 22.51 22.22 22.21 21.72 22.77 22.66 18.25 18.38 21.83 20.92 22.11 21.05 22.30 22.11

100 20.43 20.52 21.98 20.68 21.80 20.49 22.14 22.09 17.68 17.76 20.77 19.82 20.84 19.83 21.30 21.00
σ Boat Bridge
20 24.88 26.05 28.43 27.55 28.59 27.53 28.58 28.76 23.99 24.95 26.90 26.34 27.26 26.83 27.09 27.25
40 21.97 22.39 24.96 24.35 25.04 24.26 25.12 25.32 20.87 21.35 23.85 23.18 24.02 23.29 23.88 24.19
60 20.46 20.70 23.19 22.59 23.60 22.21 23.47 23.56 19.58 19.85 22.24 21.47 22.45 21.37 22.44 22.48
80 19.60 19.74 22.14 21.42 22.21 21.19 22.43 22.41 18.83 19.01 21.20 20.44 21.25 20.35 21.45 21.42

100 19.09 19.18 21.34 20.50 21.43 19.81 21.74 21.53 18.35 18.48 20.46 19.75 20.16 19.79 20.67 20.66
σ Couple Hill
20 24.54 25.62 28.20 27.25 28.33 27.43 28.42 28.60 25.51 26.38 28.68 27.98 28.99 28.12 28.82 28.97
40 21.67 22.10 24.64 23.95 24.96 23.86 25.00 25.11 22.58 23.11 25.55 24.79 25.61 24.92 25.70 25.85
60 20.35 20.60 23.07 22.32 23.11 22.40 23.36 23.37 21.33 21.69 23.95 23.26 23.91 23.25 24.21 24.16
80 19.64 19.81 22.02 21.40 21.76 20.76 22.32 22.30 20.68 20.93 22.90 22.42 22.60 21.78 23.19 23.12

100 19.24 19.35 21.23 19.80 20.97 18.15 21.56 21.52 20.29 20.49 22.07 21.85 21.75 20.83 22.37 22.39
σ House Lena
20 28.20 30.02 32.92 31.82 32.54 31.57 32.73 32.47 26.90 28.03 29.83 29.19 30.13 28.91 29.93 30.06
40 23.26 24.27 28.31 27.31 28.49 26.75 28.91 28.77 22.40 23.11 26.40 25.96 26.40 25.46 26.23 26.70
60 21.40 21.79 26.05 24.72 26.10 24.11 26.68 26.58 20.22 20.60 24.49 23.51 24.57 22.73 24.49 24.80
80 20.52 20.70 24.46 22.96 23.88 22.41 25.20 25.04 19.09 19.32 23.10 22.00 22.61 21.54 23.22 23.45

100 20.04 20.13 23.21 20.80 22.84 21.07 23.96 23.83 18.47 18.62 22.03 20.98 21.05 20.56 22.25 22.41
σ Man Pepper
20 25.14 26.09 28.12 27.37 28.37 27.56 28.13 28.43 26.17 27.89 29.58 28.86 29.61 28.80 29.61 29.76
40 21.93 22.26 24.78 24.29 25.05 24.53 24.91 25.19 21.19 22.23 25.43 24.61 25.68 24.25 25.44 26.02
60 20.26 20.45 23.12 22.24 23.20 22.75 23.26 23.48 19.05 19.61 23.28 22.24 23.43 21.24 23.35 23.77
80 19.33 19.46 22.01 20.72 22.09 21.30 22.26 22.27 17.92 18.22 21.71 20.58 21.52 20.79 21.93 22.16

100 18.78 18.87 21.07 20.42 20.94 20.70 21.48 21.38 17.27 17.45 20.51 19.54 20.60 19.05 20.86 20.93

TABLE V: PSNR comparison with different parameter hs. The
testing image is “Man”. σ = 40/255.

NLM One-Step Ours PSNR2 PSNR3

hs (PSNR1) (PSNR2) (PSNR3) −PSNR1 −PSNR2

5 22.82 23.08 24.76 +0.26 +1.68
10 21.83 22.24 24.83 +0.41 +2.60
20 21.25 21.66 24.79 +0.41 +3.13
50 20.92 21.59 24.74 +0.68 +3.15
100 20.53 21.38 24.73 +0.85 +3.36

TABLE VII: PSNR comparison between GLIDE and GSF.
Results are averaged over 10 testing images.

GLIDE Ours
σ (PSNR1) (PSNR2) PSNR2 − PSNR1

20 28.15 28.89 +0.74
40 24.73 25.38 +0.65
60 22.75 23.60 +0.85
80 21.51 22.39 +0.88
100 20.42 21.47 +1.05

pilot estimate. The result in Table VII shows that in general
GSF has at least 0.65dB improvement over GLIDE. This result
is consistent with our observation that full Sinkhorn-Knopp is
an incomplete EM algorithm.

C. Comparison with NL-Bayes, PLE and EPLL
Since the proposed GSF uses a Gaussian mixture model, we

compare it with three other algorithms that also use Gaussian
mixture models. These algorithms are the NL-Bayes [37], the
piecewise linear estimator (PLE) [38] and the EPLL [25].

Methodologically, there are some important differences
between GSF, NL-Bayes, PLE and EPLL. NL-Bayes has a
grouping procedure that groups similar patches, a process
similar to BM3D. The grouped patches are used to estimate the
empirical mean and covariance of a single Gaussian. In GSF,
there is no grouping. The other difference is that the denoising
of NL-Bayes is performed by a conditional expectation over
the single Gaussian. In GSF, the denoising is performed over
all clusters of the GMM. Experimentally, we observe that
GSF and NL-Bayes have similar performance, with NL-Bayes
better in the low noise conditions and GSF better in the high
noise conditions. One possible reason is that the grouping of
NL-Bayes uses the standard Euclidean distance as a metric,
which is not robust to noise.

PLE first estimates the model parameters using the noisy
image. Then, for every patch, the algorithm selects a single
Gaussian. The denoising is performed by solving a quadratic
minimization and is performed for each patch individually.
The algorithm iterates by improving the model parameters
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and the denoised estimate until convergence. GSF does not
have this iterative procedure. Once the GMM is learned, the
denoising is performed in closed-form. The other difference is
that PLE requires a good initialization and is very sensitive to
the initialization. Experimentally, we find that GSF performs
better than PLE using a MATLAB code provided the authors
of PLE. In this MATLAB code, the initialization was originally
designed for image inpainting at a particular image resolution.
Because of the sensitivity of PLE to the initializations, its
performance on denoising is not particularly good. With a
better initialization, we believe that PLE would improve.
However, even so the gap between GSF and PLE will unlikely
be significant because PLE performs worse that BM3D and
EPLL.

The closest comparison to GSF is EPLL as both algorithms
solve a whole-image MAP minimization with a Gaussian
mixture model. To evaluate the difference between the two
algorithms, we consider an experiment by feeding the noisy
patches the EM algorithm to learn a GMM. The patch size is
fixed at 5× 5, and the number of clusters is fixed as k = 100.
We repeat the experiment by inputting the denoised result of
BM3D and the oracle clean image into the EM algorithm.

From Table VIII, we observe that EPLL with a noisy input
performs poorly. The reason is that the original EPLL trains
the GMM from 2 million clean patches. When feeded with
noisy images, the GMM trained becomes a non-informative
prior distribution. Moreover, in EPLL the GMM involves
(πi,µi,Σi) whereas in GSF the GMM only involves (πi,µi).
This is a significant reduction in the number of model pa-
rameters. When feeded with only a single image, there is
insufficient training sample for EPLL.

Another observation from Table VIII is that the performance
of EPLL depends heavily on the quality of the GMM. For
example, if we use the result of BM3D as a pilot estimate for
learning the GMM, the performance of EPLL is similar to the
oracle case where we use the clean image. However, using
BM3D as a pilot estimate is not a plausible approach because
by running BM3D alone we can get an even higher PSNR
(See Table VI). This result further shows the effectiveness of
the proposed GSF for single image denoising.

TABLE VIII: Comparison with EPLL using different pilot esti-
mates: “Noisy” uses the noisy image; “BM3D” uses the BM3D
estimate; “Clean” uses the oracle clean image; “External” uses
an external database. Testing image is “House”.

EPLL EPLL EPLL EPLL Ours
σ (Noisy) (BM3D) (Clean) (External)
20 25.40 32.41 32.46 32.47 32.92
40 19.75 28.32 28.31 28.77 28.31
60 16.42 25.73 25.80 26.58 26.05
80 14.29 24.05 24.07 25.04 24.46

100 12.71 22.59 22.73 23.83 23.21

D. Complexity and Limitations
Finally, we discuss the complexity and limitations of the

proposed GSF.

TABLE IX: Number of clusters returned by cross-validation as
noise level increases. Test image is “Man”. Size is 128× 128.

σ 20 30 40 50 60 70 80 90 100
k 1445 667 372 243 162 125 104 83 72

TABLE X: Number of clusters returned by cross-validation as
image size increases. σ = 40/255. Test image is “Man”.

Ours BM3D
Size k PSNR PSNR

50× 50 120 22.76 22.36
100× 100 290 24.42 24.21
150× 150 501 25.21 25.32
200× 200 778 25.82 25.99
250× 250 996 26.14 26.35
300× 300 1322 26.58 26.83
350× 350 1646 26.97 27.20
400× 400 1966 27.26 27.49

GSF is a one-step denoising algorithm when γij and
µ

(r)
i are known. However, learning the GMM using the EM

algorithm is time-consuming, and the complexity depends
on the number of clusters k. In addition, since k needs to
be estimated through a cross-validation scheme, the actual
complexity also depends on the number of cross-validation
steps. To provide readers an idea of how k changes with other
system parameters, we conduct two experiments.

In Table IX we show the number of clusters returned by
the cross-validation scheme as we increase the noise level.
As shown, the number of clusters increases when noise level
reduces. This result is consistent with our intuition: As noise
reduces, the grouping of patches becomes less important. In
the limit when the image is noise-free, every patch will become
its own cluster center. Therefore, one limitation of GSF is that
for low-noise images the computing time could be very long.
However, GSF is still a useful tool as its simple structure offers
new insights to denoising.

Now, if we fix the noise level but change the image size,
the complexity of GSF also varies. In Table X, we show the
number of clusters as a function of image size. As a reference
we also show the PSNR values of GSF and that of BM3D.
The result in Table X indicates that the number of clusters
increases with the image size. In the table, we also observe
that BM3D performs worse than GSF for small images, but
becomes better as image size increases.
Remark 3 (Subtraction of mean): It is perhaps interesting

to ask whether it is possible to subtract the mean before
learning the GMM, as it could reduce the number of clusters.
However, from our experience, we find that this actually
degrades the denoising performance. If the GMM is learned
from a collection of zero-mean patches, the denoising step
in (P1) can only be used to denoise zero-mean patches. The
mean values, which are also noisy, are never denoised. This
phenomenon does not appear in EPLL (in which the GMM has
a zero-mean) because the means are iteratively updated. We
followed the same approach to iteratively update the means.
However, we find that in general the denoising performance
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is still worse than the original GMM with means included.
Further exploration on this would likely provide more insights
into the complexity reduction issue.

VI. CONCLUSION

Motivated by the performance gain due to a column nor-
malization step in defining the smoothing filters, we study
the origin of the symmetrization process. Previous studies
have shown that the symmetrization process is related to
the Sinkhorn-Knopp balancing algorithm. In this paper, we
further showed that the symmetrization is equivalent to an
EM algorithm of learning a Gaussian mixture model (GMM).
This observation allows us to generalize various symmetric
smoothing filters including the Non-Local Means (NLM), the
one-step Sinkhorn-Knopp and the full Sinkhorn-Knopp, and
allows us to geometrically interpret the performance gain
phenomenon.

Based on our findings, we proposed a new denoising algo-
rithm called the Gaussian mixture model symmetric smoothing
filters (GSF). GSF is a simple modification of the denoising
framework by using the GMM prior for the maximum-a-
posteriori estimation. Equipped with a cross-validation scheme
which can automatically determine the number of clusters,
GSF shows consistently better denoising results than NLM,
One-step Sinkhorn-Knopp and full Sinkhorn-Knopp. While
GSF has slightly worse performance than state-of-the-art
methods such as BM3D, its simple structure highlights the
importance of clustering in image denoising, which seems to
be a plausible direction for future research.
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APPENDIX

A. Proof of Proposition 1

Given an estimator ẑ of some observation y, the SURE is
defined as

SURE
def
= −σ2 +

1

n
‖ẑ − y‖2 + 2σ2

n
div(ẑ). (42)

Substituting (33) into (42) yields

1

n
‖ẑ − y‖2 =

1

n

∥∥∥∥
d

d+ λ
u+

λ

d+ λ
y − y

∥∥∥∥
2

=
1

n

∥∥∥∥
d

d+ λ
(u − y)

∥∥∥∥
2

= σ̂2

(
d

d+ λ

)2

, (43)

where σ̂2 def
= 1

n‖u− y‖2. So it remains to determine div(ẑ).

From (33), the divergence div(ẑ) is

div(ẑ) =
d

d+ λ
div(u) +

λ

d+ λ
div(y)

def
=

d

d+ λ

n∑

j=1

∂uj

∂yj
+

λ

d+ λ

n∑

j=1

∂yj
∂yj

.

To determine ∂uj

∂yj
, we note from (34), (31) and (12) that

u =
1

d

n∑

j=1

P T
j

(
k∑

i=1

γij

(∑n
j=1 γijyj∑n
j=1 γij

))
. (44)

Since

∂

∂yj
yj =

∂

∂yj




...
yj−1

yj

yj+1

...




=




...
0

1

0
...




= ej ,

it holds that

div(u) = 1
T
n×1


1

d

n∑

j=1

P T
j

(
k∑

i=1

γij

(∑n
j=1 γijej∑n
j=1 γij

))
 .

and hence

div(ẑ) =

n∑

j=1

(
d

d+ λ
div(u) +

λn

d+ λ

)
. (45)

Substituting (45) and (43) into (42) completes the proof.
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