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ABSTRACT: Polymerization of ε-caprolactone (CL)
using an aluminum alkoxide catalyst (1) designed to
prevent unproductive trans binding was monitored at 110
°C in toluene-d8 by

1H NMR and the concentration versus
time data fit to a first-order rate expression. A comparison
of t1/2 for 1 to values for many other aluminum alkyl and
alkoxide complexes shows much lower activity of 1 toward
polymerization of CL. Density functional theory calcu-
lations were used to understand the basis for the slow
kinetics. The optimized geometry of the ligand framework
of 1 was found indeed to make CL trans binding difficult:
no trans-bound intermediate could be identified as a local
minimum. Nor were local minima for cis-bound
precomplexes found, suggesting a concerted coordina-
tion−insertion for polymer initiation and propagation. The
sluggish performance of 1 is attributed to a high-
framework distortion energy required to deform the
“resting” ligand geometry to that providing optimal
catalysis in the corresponding transition-state structure
geometry, thus suggesting a need to incorporate ligand
flexibility in the design of efficient polymerization catalysts.

Understanding the mechanism(s) of the ring-opening
transesterification polymerization (ROTEP) of lactones

by metal alkoxide complexes is a key prerequisite for the rational
design of catalysts for the synthesis of sustainable polymers.1 In
recent studies, we were able to dissect the paradigm
coordination−insertion mechanism into monomer binding
equilibrium (Keq) and insertion (k) steps through the
observation of saturation kinetics in the ROTEP of ε-
caprolactone (CL) by aluminum salen complexes (Figure 1).2,3

In one case, we hypothesized that the observed kinetics were
affected by unproductive, inhibitory binding ofmonomer trans to
the metal alkoxide moiety.2c Inhibition was supported by
theoretical calculations, which identified a trans-bound inter-
mediate as a low-energy stationary point. Reasoning that if such
trans binding could be prevented, inhibition would be obviated
and the ROTEP rate would be increased, we considered how
ligand modifications might be implemented that would hinder
unproductive monomer coordination. Simple strategies of
increasing the steric bulk of salens generally affect interactions
cis to the metal alkoxide bond and prevent catalyst dimerization
but do not necessarily preclude unproductive binding, thus
leading us to consider alternative ligand designs.4

As one strategy, we searched for a tetradentate supporting
ligand that would cause the trans position to themetal alkoxide to
be sterically inaccessible to the monomer yet would retain a five-
coordinate geometry and, we reasoned, potentially high reactivity
toward ROTEP. The nonplanar structure of tetramethyl-
5,7,12,14-dibenzo-1,4,8,11-tetraaza[14]annulene (TMTAA) in
aluminum complexes offered promise because of its demon-
strated tendency to induce protrusion of the metal center ∼0.54
Å above the ligand donor plane, thus disfavoring trans
coordination of a sixth ligand.5 Similar metal protrusions have
been seen with porphyrins in metal−μ-oxo−metal6 and metal
alkyl7 complexes. Additionally, controlled reactivity of aluminum
alkoxide porphyrin complexes toward the polymerization of CL
indicated the promise of high reactivity in the similar ligand
environment provided by TMTAA.8 While aluminum chloride
complexes of both TMTAA and porphyrins have been used to
control steric bulk around the catalytic center for epoxide ring-
opening polymerizations,9 we found no examples of the use of
TMTAA−aluminum complexes for the catalytic ROTEP of
cyclic esters. Herein, we report the synthesis and characterization
of (TMTAA)AlOEt and its exploration as a catalyst for ROTEP
of CL. Surprisingly, this five-coordinate aluminum alkoxide is a
very sluggish catalyst, a “negative” result, but one from which we
were able to learn valuable lessons through further analysis of the
reaction mechanism and associated potential energy surface
using density functional theory (DFT).
Experimental Results. Reaction of the known8 compound

(TMTAA)AlCl with NaOEt at 70 °C in tetrahydrofuran yielded
(TMTAA)AlOEt (1, 84%), which was characterized by 1H and
13C NMR spectroscopy and X-ray crystallography (Figure 2).
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Figure 1. Concerted coordination−insertion ROTEP showing both
productive (above) and unproductive (below) mechanistic pathways.
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The monomeric, five-coordinate complex adopts a square-
pyramidal geometry at the Al center (τ = 0.02, where τ = 0 is
square pyramidal and τ = 1 is trigonal bipyramidal)10 with the
metal center displaced 0.51 Å above a plane created by the N
atoms of the annulene ring. The displacement of the Al atom and
the geometry of the puckered annulene ring closely resembles
those of other aluminum complexes reported previously.5,8

Polymerizations of CL using complex 1 were performed in
duplicate with fixed concentrations of CL (0.8M < [CL]0 < 2M)
and catalyst (8 mM < [1]0 < 20 mM) in toluene-d8 at 110 °C.

1H
NMR features specific to the growth of polymer and decay of
monomer in the polymerizations were monitored to polymer-
ization completion (>95% conversion) using 4 mM 1,4-
bis(trimethylsilyl)benzene as an internal standard. The concen-
tration versus time data for the CL polymerization were fit with
COPASI11 to the first-order rate expression of rate = kobs[CL],
where kobs is the rate constant for polymer propagation
(illustrative plot shown in Figure 3). From this analysis, kobs =

3.6(5) × 10−4 min−1, which corresponds to t1/2 = 1920 min.
Poly(ε-caprolactone) was isolated from these kinetic experi-
ments via precipitation in cold methanol. The solids were dried
under reduced pressure, and size-exclusion chromatography
using a dynamic light scattering detector revealed the average
molecular weight (Mw = 15.06 kDa) and dispersity (Đ = 1.99) of
the resulting polymer. We surmise that the poor dispersity is a
consequence of transesterification reactions that occur over the
very long reaction time.

In order to provide context to the rate of ROTEP of CL with 1,
it is helpful to analyze ROTEP rates for other reported aluminum
alkoxide and alkyl complexes. The selected complexes shown in
Figure 4 showcase the range of rates observed, with a

comprehensive list of reported complexes, rates, and reaction
conditions given in Table S2. While a comparison of the rates
between complexes under different conditions can be problem-
atic, an approximate comparison can be made through calculated
t1/2 values from reported experimental rate constants. Of this
selection, 22c (t1/2 = 0.006min) and 3

12 (t1/2 = 10min) represent,
on average, some of the faster rates reported for aluminum
complexes, while 412 (t1/2 = 104 min) and 513 (t1/2 = 332 min)
are some of the slower catalysts. Note that the range of t1/2 values
is over ∼5 orders of magnitude just for this selection. Complex 1
polymerizes CL ∼ 6 times slower than 5 (for 1, t1/2 = 1920 min).
We are unaware of any reports of catalysts with rates as slow as 1.
With so many aluminum alkyl and alkoxide complexes
polymerizing CL within shorter time frames, we sought to
investigate through calculation what causes 1 to be particularly
inactive toward ROTEP of CL.
Theoretical Modeling. To gain insight into the inactivity of 1 in

catalyzing CL homopolymerization, DFT was employed, and the
energetics of key intermediates and transition-state (TS)
structures involved during CL-to-PCL conversion were
determined.14 For computational efficiency, the original
aluminum ethoxide complex (1, [Al]-OEt) was modeled as an
aluminum methoxide (1′ [Al]-OMe; Scheme 1). Owing to the

geometry of the TMTAA ligand and the displacement of the Al
atom above the donor ligand plane in 1 (Figure 2), we
hypothesized that CL would not bind the Al center in a trans
fashion. Indeed, we could not locate an energy minimum on the
potential energy surface involving CL bound trans to the [Al]−
OMe bond (other than trivial van derWaals complexes having no
atoms within the bonding distance of the “open” Al site). In this
respect, our initial design goal was successful, and we expected 1
to show improved catalytic activity compared to, say, aluminum
salen complexes like 6,2b,c where inhibitive trans binding reduces
the activity (Scheme 1).
Further analysis of the potential energy surface, however,

revealed that the 333 K free energy of activation (ΔG⧧)
associated with the TS structure for nucleophilic attack of
methoxide at the carbonyl C atom of CL [rate-determining step

Figure 2. Top-down (left) and side-on (right) views of the X-ray
structure of 1, with H atoms hidden for clarity and other atoms shown as
50% thermal ellipsoids. Selected interatomic distances (Å) and angles
(deg): Al1−N1, 1.9556(10); Al1−N2, 1.9446(10); Al1−N3,
1.9463(10); Al1−N4, 1.9374(10), Al1−O1, 1.7325(9); N1−Al1−N2,
89.96(4); N2−Al1−N3, 81.68(4); N3−Al1−N4, 90.60(4); N4−Al1−
N1, 81.78(4); O1−Al1−N1, 105.80(4); O1−Al1−N2, 108.00(4); O1−
Al1−N3, 105.37(5); O1−Al1−N4, 101.96(4).

Figure 3. Concentration versus time profile for the 1H NMR resonance
decay of CL (▲) and the growth of PCL (▼) along with the fits (blue
and red lines) determined by COPASI for [CL]0 = 1 M.

Figure 4. Selected aluminum alkyl and alkoxide complexes from Table
S2 representing the range of rates reported for ROTEP of CL.

Scheme 1. (TMTAA)AlOMe (1′) and Aluminum Salen
Complex 6
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(RDS) TS1 in Scheme 2] was quite high (30.5 kcal/mol; Figure
5; cf. 14.9 kcal/mol for 6) consistent with the sluggish activity of
1.

In addition to there being no stationary point(s) correspond-
ing to binding of CL trans to the initiating alkoxide, neither could
we find any initial six-coordinate precomplexes with CL bound to
aluminum cis to the alkoxide, as has been seen in some other
aluminum alkoxide complexes2 (there is a simple van der Waals
complex having a 333 K free energy 2.5 kcal/mol above the
separated reactants, but because such a species is kinetically
irrelevant, we do not consider it further). This suggests a
concerted encounter/insertion mechanism followed by ring
opening for polymer initiation and propagation, as detailed in
Scheme 2 and Figure 5.
To explain the high activation free energy associated with the

RDS, we assessed the “framework distortion energy”2c associated
with 1′, which measures the energy required to distort a “resting”
precatalyst structure to its corresponding TS structure in the
absence of reacting ligands. Thus, the framework distortion
energy is computed as the difference in the electronic energies of
the frozen cationic aluminum-ligand complexes derived from the
removal of methoxy from optimized 1′ and methoxy and CL
from optimized TS1. The value computed for 1′ is 22.6 kcal/mol,
which may be compared to 18.3 kcal/mol for 6.2c

While the difference in these two framework distortion
energies is considerably smaller than the difference in the
activation free energies, we assign the remainder of the very high
free energy of activation for 1′ to the failure of the TMTAA
ligand distortion that does occur to adequately open a reactive site
at the Al atom. Thus, in our prior analysis of the framework
distortion energies,2c we found that, for a series of eight
aluminum salen complexes, all of the equivalent valence bond
angles subtended at aluminum in the rate-determining TS
structures were identical to within about 2°. Moreover, the X−
Al−Y angles for all pairs of cis atoms X and Y derived from the

salen ligands were between 85 and 95°; i.e., the geometries in the
TS structures were rendered very nearly octahedral when
considering the addition of reacting methoxide and CL carbonyl
O atoms. By contrast, in TS1 for 1′, the ligand is unable to distort
sufficiently to support such an octahedral geometry (one relevant
N−Al−N angle is 125.7°; Figure S4), thereby exposing relatively
little of the Al atom to the approaching CL and forcing the
nucleophilic attack to proceed with limited activation of the
carbonyl. Evidently, though, the energy penalty to further distort
the TMTAA ligand exceeds the additional catalytic energy
lowering that would be associated with a better exposed Al
atom.20

In conclusion, we learned a key lesson through the study of the
slow catalyst 1. Our work suggests that for future catalyst design,
attention must be paid not only to eliminating inhibitory trans
binding opportunities but also to constructing ligand frameworks
with sufficient flexibility that approximately octahedral TS
structures can be accessed at low energetic cost.
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