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ABSTRACT: Epoxy resins are ubiquitous in high-performance composite applications because of their excellent mechanical
strength, thermal and chemical resistance, strong adhesion, and low shrinkage after curing. Bio-based epoxy resins derived from
natural products such as carbohydrates offer tremendous potential for creating new polymeric materials. Sugars and their
derivatives often offer great biodegradability and functionality such as the presence of multiple hydroxyl groups that impart highly
cross-linked polymer networks. Moreover, their ring structures can afford polymers with high glass transition temperatures. To
develop epoxy resins containing sustainably sourced feedstocks, we designed and synthesized trehalose- and f-cyclodextrin-based
carboxylic acid hardeners for epoxy resins and examined the thermal, mechanical, and adhesive properties of the resulting
materials. Trehalose and f-cyclodextrin were succinylated with excess succinic anhydride, and the resulting carboxylic acid
hardeners formed homogeneous mixtures with trimethylolpropane triglycidyl ether (TTE) in different carboxyl—epoxide ratios.
The cured resins were found to be thermally stable (Ty5 > 300 °C) and display high Young’s moduli of up to 1.4 and 1.8 GPa
with mechanical strengths of 47 and 64 MPa for the trehalose- and f-cyclodextrin-based epoxy resins, respectively. Preliminary
adhesion tests showed that the cured resins exhibit excellent lap-shear strengths of 3600 and 2100 psi, respectively. The resins
were also degradable into water-soluble components in both aqueous acidic and basic solutions but were relatively stable from
hydrolysis in neutral aqueous conditions. These results imply that this novel class of hardeners are promising feedstocks for

renewable high performance epoxy resins.

B INTRODUCTION

Epoxy resins are a unique class of high-performance thermoset
materials, which upon curing leads to irreversibly cross-linked
materials with outstanding attributes. In particular, these
materials are known for their high mechanical strength,
excellent adhesion to a variety of substrates, and high thermal
and chemical resistance.”” Unfortunately, the monomeric
precursors of current epoxy resins are obtained from non-
renewable petroleum-based raw materials. Additionally, with
regards to the human health and environmental safety,
sustainable polymeric materials from natural sugar feedstocks
have drawn significant attention among academic, industrial,
and governmental communities.”~’ For example, the most
popular epoxy monomer, bisphenol A diglycidyl ether, is
derived from glycidylation of bisphenol A (BPA) and is used in
~90% of all industrial epoxy resins.” However, the detrimental
public health and environmental effects of trace BPA have been
extensively reported, prompting research on alternative epoxy
resin substitutes.
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Among the various strategies toward this goal, natural
products such as carbohydrates offer opportunities to create
new epoxy resin materials due to their sustainability,
biodegradability, and natural abundance at low costs. The
convenient combination of numerous hydroxyl group moieties
and rigid ring backbone structures in carbohydrates can lead to
highly functionalized monomers and allow highly cross-linked
networks with high glass transition temperature (T,)
values.'"! For instance, isosorbide, which contains two cis-
fused tetrahydrofuran rings,12 has been transformed into
thermosetting epoxy resins via glycidylation with comparable
thermal and mechanical properties to BPA-based poly-
mers."*~'® Additionally, Liu et al. have synthesized an epoxy
resin from 2,5-furandicarboxylic acid and studied its curing
kinetics with methylhexahydrophthalic anhydride and poly-
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Scheme 1. Synthesis of Sugar-Derived Epoxy Resin Hardeners”
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“Tr: trehalose; CD: f-cyclodextrin; SA: succinic anhydride; Tr8SA: succinylated trehalose hardener with ~8 SA units; CD18SA: succinylated f-

cyclodextrin hardener with ~18 SA units.

(propylene glycol)bis(2-aminopropyl ether) (D230)."” The
cross-linked polymers displayed elevated T, values and similar
mechanical properties compared with those cured with
diglycidyl ester of terephthalic acid. These results indicate
that sustainably sourced epoxy resins can potentially compete
with petroleum-based syntheses of epoxy resins.

Trehalose and f-cyclodextrin are interesting carbohydrates
that can be either obtained from natural sources or prepared
from the inexpensive enzymatic fermentation of starch.'*™>°
They are nonreducing sugars; therefore, unlike other
saccharides, they will not readily hydrolyze or decompose
against acid, base, and heat, and exhibit high biocompatibility
when incorporated into polymers. 2 Individually, trehalose has
been converted to linear polymers through reversible addltlon—
fragmentation chain transfer (RAFT) polymerization,”” acetal-
ization reactions with dialdehyde compounds,”*** and “click”
reactions (including hydros.ilylation,25 Diels—Alder,*® and
azide—acetylene coupling reactions”’ —>"). Meanwhile, S-cyclo-
dextrin is a cyclic oligosaccharide consisting of (a-1,4)-linked-
a-D-glucopyranose units and contains a lipophilic cone-shaped
cavity surrounded by a hydrophilic shell.”* For drug and gene
delivery, linear polymers contalmng ﬂ cyclodextrin moieties
have been prepared using grafting-to™ and polycondensation
methods.*>**7>¢

Recent efforts have been made to cross-link trehalose and f-
cyclodextrin and exploit their unique properties. Photo-
polymerized films made from trehalose-incorporated networks
exhibited high transparency and good biocompatibility but low
tensile strengths and moduli.”””® Bio-based trehalose hydro-
gels, prepared through thiol—ene photopolymerization and
redox radical polymerization, can effectively encapsulate and
stabilize a wide variety of enzymes due to hydrogen bonding
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and exhibit controlled and prolonged protein release
behavior.””*"  B-Cyclodextrin-based cross-linked polymers
have been extensively studied for inclusion-recognition
applications, such as water pollutant adsorbent, due to the
presence of cone-shaped cavities that allows organic molecule
capture.*"*” For example, Alsbaiee et al. recently reported a
porous f-cyclodextrin-based cross-linked polymer that ex-
hibited exceptional removal efficiency of orgamc micro-
pollutants from water with regeneration ability.*’

To the extent of our knowledge, examples are lacking of
thermosetting epoxy resin polymers from trehalose and f-
cyclodextrin for applications such as plastics and adhesives. To
this end, we report the facile synthesis of carboxylic acid-
functionalized trehalose and f-cyclodextrin monomers as new
bio-based hardeners for epoxy resins. We hypothesized that the
multiple hydroxyl groups and rigid ring structure displayed by
trehalose and f-cyclodextrin will offer rigidity and strong
mechanical behavior to the resulting materials. Both trehalose
and f-cyclodextrin were modified with succinic anhydride (SA),
a sustainable derivative of starch and sugar, and the resulting
hardeners were formulated with trimethylolpropane triglycidyl
ether (TTE) at different ratios to study the impact of
composition on the thermal and mechanical properties of the
final thermally cured structures. The cross-linked polymers
displayed high mechanical strength and are degradable under
both acidic and basic conditions. The synthesized epoxy resins
exhibited high adhesion shear strength, indicating the potential
application of these carbohydrates in high-end adhesives.

B RESULTS AND DISCUSSION

Hardener Synthesis. The multiple hydroxyl groups of
anhydrous trehalose (Tr) and pS-cyclodextrin (CD) were
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Figure 1. (a) DSC curing thermograms of Tr8SA/TTE and CD18SA/TTE (50/50, 5 °C min~") under nitrogen. (b) FT-IR spectra of Tr8SA, TTE,
and Tr8SA/TTE (50/50) before and after thermal curing (arrows denote peaks of interest to support reaction conversion). (c) Linear plot of
—In(q/ TPZ) versus 1/T, based on Kissinger’s equation. (d) Linear plot of In g versus 1/T,, based on Ozawa’s equation.

esterified with excess succinic anhydride (SA) in dimethyl-
formamide (DMF) in the presence of pyridine. The two
carboxylic acid hardeners, Tr8SA and CD18SA (Scheme 1),
were obtained in about 77% yield. The substitution degree and
chemical structure of the two hardeners from Tr and CD were
characterized by '"H NMR and mass spectrometry. As shown in
Figure S1 (Supporting Information), hardener Tr8SA prepared
in DMF had an average substitution degree of 7.5, in good
agreement with the mixture of 6—8 SA units per trehalose by
mass spectrometry. With the exception of the anomeric proton,
all other protons from trehalose shift downfield within the
typical chemical shift range (4—5.8 ppm) of the ester in
agreement with previous reports."*"* Similarly, hardener
CD18SA prepared in DMF had an average substitution degree
of 18 (Figure S2) per CD unit. Elongating the reaction time did
not further increase the substitution degree of SA unit for both
Tr and CD. However, the synthesis of both Tr8SA and
CD18SA required the use of DMF and pyridine solvents, which
decreases the sustainability of the designed hardeners for
preparing sustainable epoxy resin polymers. Therefore, the
synthesis of the two hardeners was further optimized by using
an excess of SA as both a reagent and the reaction solvent by
heating to 140 °C; this reaction was thus performed without
any additional solvents or base in less than 8 h and thus
provided a greener chemical process to obtain the hardeners.
Because succinic acid is highly aqueous soluble, the excess of
SA was hydrolyzed to succinic acid by adding a mixture of
acetone and water with heating to promote a facile purification
of the synthesized hardeners. The "H NMR spectra (Figures S3
and S4) clearly show that both hardeners from the improved
synthesis have average SA substitution degrees of 7.7 and 20
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per trehalose and f-cyclodextrin, respectively, comparable to
those prepared from the less-green method using DMF/
pyridine. Thus, the synthesis of sugar-derived hardeners was
optimized via a simple and green process without the use of
toxic solvents to move forward to prepare the thermosetting
€poxy resins.

Thermal Curing Behavior and Bulk Polymerization of
Epoxy Resins. Carboxylic acid hardeners can polymerize with
epoxides via ring-opening to form polyesters upon heating.
Therefore, the two synthesized hardeners were formulated with
TTE, an ideal reactive and high functional epoxy resin diluent
for preparing adhesives and coating materials with improved
flexibility and toughness.*® The reactions were completed in
different molar ratios (35/65 to 60/40) of —COOH/epoxide
and formed homogeneous epoxy formulations (Scheme 1).
Figure la shows the differential scanning calorimetry (DSC)
thermograms of Tr8SA/TTE and CD18SA/TTE at 50/50
ratios with a heating rate of 5 °C min~". Both epoxy resin
systems display a single exothermic peak at around 170 and 150
°C for Tr8SA/TTE and CD18SA/TTE, respectively. These
exothermic peaks can be attributed to the ring-opening of the
epoxides in TTE by the COOH groups of the hardeners at
elevated temperatures. Under the same curing conditions, the
peak temperature detected by the nonisothermal DSC curve
can be used to evaluate the reactivity of the reagents in the
curing reaction. The peak temperature of Tr8SA/TTE is about
20 °C higher than that of CDI18SA/TTE (Figure la and
Figures S5 and S6), indicating the lower reactivity of Tr8SA."’
In practical applications, epoxy resins are cured at constant
temperatures, and a postcure may be applied at a higher
temperature for optimized polymer properties. As indicated by
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DSC isothermal scans (Figure S7), the exotherm of bulk
polymerizations disappeared after approximately 20 min,
indicating the fast curing rate for the two epoxy resin systems.
Thus, a temperature of ~170 and ~160 °C was selected for
bulk polymerization of the formulated epoxy resin Tr8SA/TTE
and CDI18SA/TTE, respectively. Fourier transform infrared
(FT-IR) spectra of the resin mixture (Tr8SA/TTE, 50/50)
before and after cure were recorded as shown in Figure 1b. As
shown in Figure 1b, the broad peak at 3460 cm™" after thermal
curing indicates the presence of hydroxyl groups from ring-
opening of epoxide groups after polymerization. The broad
peak in the range of 3300—2500 cm ™" and the adsorption band
at 1700 cm™" from the —COOH groups of hardeners and the
peaks from the epoxide rings at 910, 835, and 750 cm™!
completely disappeared after thermal curing. These results
indicate the successful ring-opening of the epoxides by
—COOH groups to form cross-linked polymers (Figures S8—
S10).

It should be noted that the curing reactivity of epoxy resins is
greatly affected by the heating rate of the DSC experiments and
the peak curing temperature shifts with different heating rates
(for non-isothermal curing). Therefore, the activation energy
(E,) of the thermal curing reactions was determined from the
peak temperatures at different heating rates of dynamic DSC
scans by both Kissinger’s" and Ozawa’s* methods. Based on
Kissinger’s theory, the activation energy can be calculated from
the peak temperatures at different heating rates using the
Kissinger equation:

—ln(q/sz) = E,/RT, — In(AR/E,) (1)
where g is the heating rate of DSC thermal curing scans, T}, is
the exothermic peak temperature, E, is the activation energy, R
is the gas constant (8.314 J mol™" K'), and A is the pre-
exponential factor. A plot of —In(q/ TPZ) versus 1/T, allows
determination of the apparent activation energy from the slope
of the linear fit.** Moreover, Ozawa’s method can also be used
to calculate the activation energy, which is expressed by eq 2:

In g = —1.052E,/RT, + In(AE,/R) — In F(x) — 5.331
2

where F(x) is a conversion-dependent term. Therefore, E,
could be calculated from the slope of a linear fitting plot of In g
versus 1/ Tp.49

The linear fits of Kissinger’s equation (eq 1) as well as
Ozawa’s equation (eq 2) are shown in Figures lc and 1d,
respectively, for Tr8SA/TTE 50/50 and CD18SA/TTE 50/50.
Accordingly, the E, values of the thermal curing reactions for a
sample of Tr8SA/TTE 50/50 were calculated as 67.2 k] mol™!
(Kissinger method) and 81.9 k] mol™" (Ozawa method). These
activation energy values were much higher than the calculated
E, values, 42.6 kJ mol™" (Kissinger method) and 59.3 kJ mol™"
(Ozawa method) for the sample of CD18SA/TTE 50/50.
These results suggest that CD18SA has a higher reactivity than
that of Tr8SA toward thermal curing with TTE,* which agreed
well with the results from the nonisothermal DSC curves as
discussed above (Figure la).

Thermal Properties of the Cured Epoxy Thermosets.
The formulation of the two hardeners with TTE afforded
homogeneous viscous liquid resins from the Tr8SA/TTE
hardener and solid resins from the CD18SA/TTE hardener.
The resulting epoxy resins were thermally cured, and their
thermal stability under nitrogen was investigated by thermog-
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ravimetric analysis (TGA) (Figure 2a and Figure S11). The
degradation temperatures at 5% weight loss (Tys) of the cured
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Figure 2. (a) TGA curves of cured Tr8SA/TTE at heating rate of 10
°C min™" under nitrogen and (b) DSC thermograms (second heating)
of cured Tr8SA/TTE at different ratios with a heating rate of 10 °C
min~" under nitrogen.

materials were around 300 °C, which was about 100 °C higher
than those of either hardeners or TTE alone (Figure S11). The
much higher thermal stability of the materials clearly suggests
the formation of the cross-linked networks. The Ty of the
polymers generally decreased with increasing hardener content.
This might be due to the lower cross-linking density of the
network formed at higher —COOH/epoxide ratios (unreacted
—COOH groups can remain in the polymer). However, the
excess of TTE at lower —COOH/epoxide ratios can potentially
still participate in the polymerization through primary or
secondary hydroxyl groups from ring-opening of TTE.'* The
T, of the resulting polymers from DSC measurements (Figure
2b and Figure S12) shifted to higher temperatures and then
decreased as the ratios of —COOH/epoxide increased from 35/
65 to 60/40. Tr8SA/TTE (45/55) and CD18SA/TTE (50/50)
exhibited T, values of 63 and 83 °C, respectively. This indicates
that tuning the mixing ratio of the hardeners and epoxy in the
resins can greatly affect the cross-linking reaction and the
resulting thermal and mechanical properties. We measured the
swelling ratio and gel fraction of the polymers obtained in
tetrahydrofuran (THF, a good solvent for TTE, hardeners, and
linear polyesters), which is shown in Table 1. These results
reveal that both monomers participated in polymerization, and
a higher cross-link density was achieved at equimolar
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Table 1. Characterization Data for Cross-Linked Thermosets

swelling Ty T,*
polymer ratio” gel fraction” (°C) (°&)
Tr8SA/TTE 35/65 1.38 + 0.03 0.896 + 0.021 310 48
Tr8SA/TTE 40/60 1.25 + 0.05 0.918 + 0.015 317 63
Tr8SA/TTE 45/55 1.29 + 0.08 0.926 + 0.014 300 63
Tr8SA/TTE 50/50 1.30 + 0.04 0.961 + 0.019 300 S1
Tr8SA/TTE 55/45 1.34 + 0.07 0.854 + 0.013 266 57
Tr8SA/TTE 60/40 1.46 + 0.06 0.959 + 0.025 238 45
CD18SA/TTE 35/65 1.15 + 0.04 0.973 + 0.013 317 49
CDI18SA/TTE 40/60 1.10 + 0.01 0.980 + 0.013 322 52
CD18SA/TTE 45/55 1.15 £ 0.01 0.975 + 0.016 300 64
CDI18SA/TTE 50/50 1.0S + 0.01 0.979 + 0.009 299 83
CDI18SA/TTE 55/45 1.16 + 0.02 0.931 + 0.016 302 56
CDI18SA/TTE 60/40 1.09 + 0.05 0971 + 0.012 296 51

“Determined by immersing the samples in THF for 48 h, the wet
weight was measured for the swelling ratio calculation. The dry weight
was measured for the gel fractlon calculation after drying the samples
at 50 °C under high vacuum. Temperatures at 5% weight loss were
determined using TGA. “Temperatures were determined by perform-
ing DSC at 10 °C min™" under nitrogen.

—COOH/epoxide ratios. It was found that the CD18SA/TTE
resin system formed a network with higher cross-linking
density, as indicated by the lower swelling ratios and higher gel
fractions. Also, the —COOH/epoxide ratio did not appear to
have much of an effect on the gel fraction of the CD18SA/TTE
polymers. While the rigidity and cross-linking density did not
affect the thermal stability and swelling ratios and gel fractions
of polymer networks, CD18SA/TTE resin systems displayed a
higher T, than the analogous Tr8SA/TTE polymers. This is
likely due to the greater structural rigidity and functionality of
P-cyclodextrin. Collectively, these results indicate the greater
rigidity of f-cyclodextrin compared to trehalose. Both Tys and
T, of the synthesized epoxy polymers are comparable to the
reported values (~250—300 °C for Tys and ~30—90 °C for T,)
of other sustainably sourced epoxy thermosets contalnmg
sugar-derived moieties, including isosorbide, furandicarboxyic
acid, itoconic acid, starch, and eugenol.""'”*°7>* When
compared to BPA-based epoxy resins, all of these sustainable
epoxy thermosets generally display slightly lower thermal
stability. This is likely due to the aliphatic network common in
many sugar-derived sustainable epoxy thermosets. Indeed, the
mechanical performance presented herein indicates the
potential of carbohydrates for preparing bio-based epoxy resins.

Mechanical Properties of the Cured Epoxy Thermo-
sets. The homogeneous viscous liquid resins from Tr8SA/TTE
were loaded onto rubber molds and completely dried under
high vacuum to remove residual acetone and avoid bubbling
during thermal curing. The liquid resins were transferred into a
convection oven and were cured via a pre-curing/post-curing
process to afford light yellow or slightly dark yellow tensile bars.
The solid CD18SA/TTE-based epoxy resins were directly
cured with a hot press to yield light yellow tensile bars for
mechanical measurements. In general, the chemical structure of
the hardeners and epoxy has a significant effect on the cross-
linking density of the polymer network and hence influences
the mechanical properties. As shown in Figure 3a and Table 2,
thermosetting polymers of Tr8SA/TTE exhibited a high tensile
strength of up to 47 MPa with a strain of 16%. Because of the
more rigid structure and higher cross-linking density of the f-
cyclodextrin hardeners, cured CD18SA/TTE epoxy resins
showed a much higher tensile strength of up to 64 MPa. The
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Figure 3. Representative stress—strain curves for cured (a) Tr8SA/
TTE and (b) CD18SA/TTE at different ratios by tensile testing from
at least five polymer tensile bars. Inset images are the representative
tensile bars before and after tensile testing.

Table 2. Tensile and Thermal Mechanical Characterization
for Cross-Linked Thermosets

Young’s tensile strain at storage
modulus”  strength”  break”  modulus
polymer (GPa) (MPa) (%) (GPa)
Tr8SA/TTE 35/65 121 36 89 -
Tr8SA/TTE 40/60 1.19 47 12 1.03
Tr8SA/TTE 45/55 1.35 47 16 0.936
Tr8SA/TTE 50/50 1.37 39 9.7 0.710
Tr8SA/TTE 55/45 1.33 36 6.7 -
Tr8SA/TTE 60/40 0.986 36 9.7 -
CD18SA/TTE 35/65 1.34 38 7.9 -
CD18SA/TTE 40/60 1.39 S0 74 =
CDI18SA/TTE 45/55 1.57 5§ 7.7 1.48
CD18SA/TTE 50/50 1.81 64 6.3 1.21
CD18SA/TTE 55/45 1.64 63 8.6 1.20
CD18SA/TTE 60/40 1.48 54 6.8 -

aDetermmed from stress—strain tests and averaged from at least five
tensile bars. “Determined from dynamic mechanical analysis (DMA)
at 20 °C with torsion geometry. “Not tested by DMA.

cured CD18SA/TTE epoxy resins were slightly more brittle as
evidenced by the immediate fracture without typical plastic
deformation in stress—strain curves (Figure 3b) as compared to
the Tr8SA/TTE samples.””>* Both epoxy resin systems have
relatively high Young’s moduli of up to ~1.4 and 1.8 GPa at
—COOH/epoxide ratios at 45/55 and 50/50, respectively,
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indicating the glassy nature of the epoxy polymers at room
temperature. The high mechanical strength of these systems
could be attributed to the presence of the rigid sugar rings and
highly cross-linked network. Both tensile strength and Young’s
moduli of the resulting polymers increased and then decreased
as the ratios of —COOH/epoxide increased from 35/65 to 60/
40. The highest tensile strength and Young’s moduli values
were obtained at ~50/50 ratio of —COOH/epoxide, indicating
formation of the strongest cross-linked network (Table 2).
Although the mechanical performance of both Tr8SA/TTE and
CD18SA/TTE polymers are a slightly lower when compared to
petroleum-derived feedstocks, this result is likely due to the
presence of the aliphatic epoxy structure. However, it should be
noted that the mechanical performance is comparable to other
epoxy thermosets consisting of sugar derivatives isosorbide and
furan moieties that offer values of ~30—80 MPa for tensile
strength and ~1.4—3.0 GPa for Young’s modulus.'*"”
Dynamic Mechanical Properties of Cured Epoxy
Thermosets. To study the variation of mechanical properties
at elevated temperatures and the transition between glassy and
rubbery states of the epoxy resins, dynamic mechanical analysis
(DMA) experiments were conducted from —50 to 160 °C. As
shown in Figure 4, as the temperature increased, all epoxy
thermosets demonstrated three regions of viscoelasticity: (i)
the glassy state, (ii) the leathery state, and (iii) the rubbery
state. In the glassy state, the storage moduli of all examined
Tr8SA/TTE epoxy resins exhibited little change at ~1 GPa,
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= Glassy state | —— Tr8SAITTE 50/50
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1
P 4%
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(b) ]
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Figure 4. Storage modulus—temperature curves for the cured (a)
Tr8SA/TTE and (b) CD18SA/TTE thermosets by DMA.

8402

while the CD18SA/TTE-based epoxy resins exhibited moder-
ately higher storage moduli around 1.2—14 GPa. As the
temperature increased, the storage moduli decreased gradually
followed by a large storage modulus drop of 1—2 orders of
magnitude due to the polymer chain relaxation at the glass
transition. We observe that the CD18SA/TTE epoxy resins
exhibited a much slower storage moduli drop over a range of
~70 °C than that of the Tr8SA/TTE resins over a range of
only ~30 °C. These results further confirm the higher cross-
linking density and rigidity of the -cycodextrin structure in the
CD18SA/TTE epoxy resin polymers. The higher cross-linking
density can retard and restrict the polymer chain mobility and
subsequently lead to a much slower change of storage moduli
with heating.*>*° The damping property (tan &) of epoxy resins
are shown in Figures S13 and S14. The CD18SA/TTE epoxy
resins exhibited much broader tan & peaks, indicating the
presence of a highly cross-linked polymer network. However,
the Tr8SA/TTE polymers have much h'_gher tan O intensity
due to their lower cross-linking density.”” This demonstrates
the greater toughness and ability to effectively avoid material
failure of the Tr8SA/TTE systems as they can more effectively
absorb and dissipate energy through chain segmental motions
with applied force, such as tension, shock, or vibration.>®>’
Preliminary Adhesion Strength of the Cured Epoxy
Thermosets. Epoxy resins in high-performance structural and
specialty composite applications hinge on the ease of
processability, high tensile strength, low shrinkage, and
excellent adhesion to various substrates."” Hence, the adhesion
lap shear strengths of the prepared epoxy resins were measured
to evaluate their potential application as adhesives. Two epoxy
resins with the highest tensile strength, Tr8SA/TTE 45/5S and
CD18SA/TTE 50/50, were selected for lap shear adhesion
testing. The single-lap-joint specimens were prepared by
loading the appropriate amount of completely dried liquid or
solid epoxy resin onto stainless steel strips followed by thermal
curing. The force—extension curves (Figures S15 and S16)
showed that the Tr8SA/TTE 45/55 resisted a much higher
force loading than CD18SA/TTE 50/50. For more accurate
comparison, their adhesion strength was calculated from force—
extension curves and plotted in Figure S. Tr8SA/TTE 45/55
and CD18SA/TTE 50/50 have high lap shear adhesion
strength values of ~3600 and 2100 psi, respectively. For
example, the lap shear strength of Tr8SA/TTE 45/55 polymer
is similar to the manufacturer-claimed adhesion strength of

=3
3000 -

2500 -

1000 -

Lap shear strength

500

Tr8SATTE
45/55

CD18SA/TTE
50/50

Figure 5. Adhesion lap shear strength of cured Tr8SA/TTE (45/5S)
and CD18SA/TTE (50/50) at different ratios. Error bars represent the
standard deviation of the mean from at least three specimens.
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Loctite two-part epoxy adhesives D609 (2900 psi) and 615
(3800 psi) used for multiple surface bonding, which indicates
its potential applications as a strong adhesive. The observed
high lap-shear adhesion strength could be partially attributed to
the high content of hydroxyl groups after thermal curing, which
appear to have a strong adhesive attraction to the polar metallic
surface of the stainless steel.””"*” Although the Tr8SA/TTE
45/SS sample exhibited lower tensile strength than the
CD18SA/TTE 50/50 sample, the Tr8SA/TTE 45/55 demon-
strated much higher adhesion strength, which could be
attributed to its higher damping property for energy adsorption
and dissipation and its less brittle nature.”> The bonding area
after pulling the specimen apart was examined as shown in
Figure S17; the residual adhesive remained on one adherend
surface indicating adhesive failure, and the adhesive strength at
the bonding interface is weaker than the tensile strength of
adhesive.

Hydrolytic Degradation of the Prepared Thermosets.
The hydrolytic stability of the cured epoxy resins in basic,
neutral, and acidic aqueous environments was evaluated by
monitoring the insoluble mass of polymers over time. As shown
in Figure 6a and Figure S18, both the trehalose- and f-
cyclodextrin-based epoxy resin samples quickly degraded in 1
M NaOH, resulting in completely water-soluble degradation
products over a varying time period of several hours to 1.5 days.
To further investigate the degradation products, two polymer
samples were completely degraded in 1 M NaOD/D,0O and
analyzed by 'H NMR spectroscopy. As shown in Figure S21,
the degraded products consisted of trehalose, f-cyclodextrin,
the ring-opened product of TTE, and disodium succinate,
indicating complete degradation of the cross-linked polymer
network to environmentally benign products. In acidic
conditions, the final networked materials exhibit slightly
different behavior; in 1 M HCI, the cured polymers first
rapidly swell about 5—10% of the original volume, after which
gradual degradation occurs from day 15 and 24. All samples
were found to completely degrade to water-soluble components
after 50—90 days (Figure 6b and Figure S19). It is well-known
that the acid-catalyzed hydrolysis of esters is an equilibrium
process and is much slower than that under basic conditions.**
In neutral aqueous conditions, the epoxy polymers were found
to swell, where they reached a maximum mass in a time frame
of about 1—10 days for the Tr8SA/TTE and CD18SA/TTE
polymers, respectively (Figure 6¢c and Figure S19). No weight
loss or further swelling occurred over the test period of 70—90
days. These results indicate that the synthesized epoxy
thermosets can be quickly hydrolyzed via a triggered
mechanism under either basic or acidic conditions to their
starting materials or derivatives. Indeed, the degraded products
from these structures are more environmentally benign
compared to those from traditional epoxy resin thermosets,
such as BPA and bisphenol S.

B CONCLUSION

We have reported the preparation of two new sustainably
sourced hardeners based on trehalose and f-cyclodextrin, which
can be used to formulate strong bio-based epoxy resin
polymers. The preparation of the epoxy hardeners was
optimized with high yields via a green methodology by
eliminating the need for organic solvents and bases. The
prepared hardeners can be formulated with TTE to afford
homogeneous epoxy resins. DSC experiments revealed that the
resulting epoxy resins can be thermally cured at ~160—170 °C,
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Figure 6. Hydrolytic degradation/stability profile of cured CD18SA/
TTE at different ratios in (a) 1 M NaOH, (b) 1 M HCI, and (c) water.

and the resulting cured epoxy thermosetting polymers have
high thermal stability up to about 300 °C. Both tensile testing
and thermal mechanical analysis suggest that CD18SA/TTE-
based epoxy resins display higher mechanical performance (64
MPa for tensile strength and 1.8 GPa for Young’s modulus)
than Tr8SA/TTE-based epoxy polymers (47 MPa for tensile
strength and 1.4 GPa for Young’s modulus). However, Tr8SA/
TTE-based epoxy polymer had much higher adhesion lap-shear
strength of 3600 psi than CD18SA/TTE-based epoxy resins
with adhesion lap-shear strength of 2100 psi. The sugar-based
epoxy polymers are degradable to water-soluble components in
basic solution within 1.5 days and also completely hydrolyze in
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acidic aqueous conditions in a slow manner. Yet, the epoxy
resins are resistant to degradation in neutral aqueous conditions
over a testing period of 90 days. These results imply that this
class of novel bio-based hardeners holds great promise for
preparing sustainable high performance epoxy resins with high
mechanical and adhesion strength that can be hydrolyzed to
environmentally benign products in a controllable manner.

B EXPERIMENTAL SECTION

Materials. All chemicals and solvents were purchased from Aldrich
and used without further purification unless otherwise noted.
Anhydrous trehalose (Tr) was purchased from Acros Organics.
Food grade trehalose (Tr) was purchased from Swanson Health
Products. Food grade f-cyclodextrin (CD) was supplied by Wacker
Chemie AG. Succinic anhydride (SA) was purchased from Alfa Aesar
and used without further purification. Dialysis membranes were
obtained from Spectrum Laboratories, Inc. Dry dimethylformamide
(DMF) was obtained using an MBRAUN MB solvent purification
system manufactured by M. Braun Inert gas-System GmbH (Garching,
Germany) using HPLC grade solvent.

Characterization. 'H NMR spectroscopy experiments were
performed on a Bruker Avance III HD 500 spectrometer at 500
MHz. FT-IR spectra were obtained using a Bruker Alpha Platinum
ATR spectrometer. High resolution mass spec was performed using a
Bruker Bio-TOF II in positive mode ESI. TGA was performed on a
TA Instruments Q500 at a heating rate of 10 °C min™' under a
nitrogen flow of 60 mL min~' in a temperature range from 25 to 520
°C. Differential scanning calorimetry (DSC) measurements were
carried out using a TA Instruments Discovery DSC under a nitrogen
atmosphere. T, values were determined on the second heating at a
heating rate of 10 °C min~". The curing behavior was measured by
DSC at heating rates of 2, 5, 10, 20, and 30 °C min™". Tensile testing
was performed using a Minimat Tensile Tester on samples with a dog-
bone geometry (typical gauge dimensions 14 X 1.30 X 1.20 mm or 14
X 3.0 X 0.50 mm) at a free crosshead rate of 5 mm min . The thermal
dynamic mechanical analysis of the cure samples was conducted on a
TA Instruments ARES-G2 rheometer with a rectangular torsion
geometry. Adhesive lap shear testing was conducted according to
ASTM D1002 in tension mode on an Instron 5966 universal testing
system with a 10 kN load cell at a free crosshead rate of S mm min™".

Synthesis of Hardeners. Synthesis of Trehalose-Based Hard-
ener (Tr8SA) in DMF with Pyridine. In a 250 mL round-bottom flask,
anhydrous Tr (5.14 g, 15.0 mmol) was added and stirred in 100 mL of
anhydrous DMF at 90 °C until completely dissolved to give a clear
solution. SA (15.0 g, 150 mmol), pyridine (20.0 mL), and DMAP
(0.916 g, 0.625 equiv to hydroxyl groups) were added into the mixture,
and the resulting solution was stirred for 48 h at 90 °C. The flask was
taken out of the oil bath and rotovaped to remove half of the DMF
solvent, and 500 mL of ethyl acetate was added to dissolve the
product. The resulting mixture was transferred to a 1 L separatory
funnel and extracted with 2 M HCI with brine (1 X 300 mL, 2 X 100
mL) and deionized water until all of the succinic acid was removed
from the mixture. The organic layer was decolorized by activated
charcoal, dried with anhydrous sodium sulfate, and concentrated under
vacuum to give a light yellow foamy solid; 13.2 g, 77.0%. '"H NMR
(acetone-dg, 500 MHz) 8, 5.80—5.56 (m, 2H), 5.53—5.26 (m, 2H),
525-4.97 (m, 4H), 4.45—-3.93 (m, 6H), 2.90—2.38 (m, 30.7H). ESI-
MS (m/z) Caled for C;3H,xNaO,, (M + Na*; Tr6SA): 965.20, found:
965.09. C4HyoNaO;, (M + Na®; Tr7SA): 1065.22, found: 1065.08.
CyHgyNaO;5 (M + Na*; Tr8SA): 1165.23, found: 1165.08.

Synthesis of p-Cyclodextrin-Based Hardener (CD18SA) in DMF
with Pyridine. Anhydrous CD (10.1 g, 8.90 mmol) was weighted and
stirred in 150 mL of anhydrous DMF in a 250 mL round-bottom flask
at 90 °C until completely dissolved to give a clear solution. SA (37.4 g,
374 mmol), pyridine (50.0 mL), and DMAP (1.40 g, 0.625 equiv to
hydroxyl groups) were added, and the resulted mixture was stirred for
another 48 h at 90 °C. After removal of DMF, the mixture was
dissolved in acetone and purified by dialysis (tubing MWCO: 1000
Da) against diluted HCI solution (~0.3 M) and DI water for 4 days.
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The dialysis solution was periodically replaced with fresh DI water.
The retained product inside the dialysis tubing was collected and
dissolved in acetone. After decolorization by activated charcoal, the
acetone solution was filtered, and the product was isolated after drying
under vacuum. A light yellow foamy solid was afforded, 22.0 g, 76.4%.
'H NMR (acetone-ds, 500 MHz) 6, 5.82—3.50 (m, 49H), 3.31—
220 (m, 72.3H).

Improved Synthesis of Hardeners. Bulk Synthesis of
Trehalose-Based Hardener (Tr8SA) without Using DMF Solvent.
Oven-dried (120 °C, 2 h) food grade trehalose (Tr, 5.14 g, 15.0
mmol), SA (15.0 g, 150 mmol), and DMAP (0.250 g, 0.125 equiv to
hydroxyl groups) were deposited into an oven-dried 100 mL round-
bottom flask. The resulting mixture was stirred for 8 h at 140 °C, and
the flask was taken out of the oil bath followed by the careful addition
of a mixture of acetone—water (~2:1) until the mixture was dissolved
under heating. The solution was mixed with 800 mL of ethyl acetate,
and the resulted mixture was transferred to a 1 L separatory funnel and
extracted with 2 M HCI with brine (2 X 100 mL) and DI water until
there was no succinic acid left in the mixture. The organic layer was
dried with anhydrous sodium sulfate and concentrated under vacuum
to give a light yellow foamy solid; 13.4 g, 78.8%. "H NMR (acetone-d,,
500 MHz) ,pm: 5.79—5.56 (m, 2H), 5.55—5.27 (m, 2H), 5.26—4.88
(m, 4H), 4.50—3.89 (m, 6H), 2.93—2.31 (m, 31.3H). ESI-MS (m/z)
Calcd for C,oHgoNaOs, (M + Na¥; Tr7SA): 1065.22, found: 1065.00.
CyyHyNaO,; (M + Na'; Tr8SA): 116523, found: 1165.00.

Bulk Synthesis of p-Cyclodextrin-Based Hardener (CD18SA)
without Using Solvent DMF. Oven-dried (120 °C, 2 h) food grade
p-cyclodextrin (CD, 7.41 g, 6.53 mmol), SA (27.4 g, 274 mmol), and
DMAP (0.209 g, 0.125 equiv to hydroxyl groups) were weighted and
deposited into an oven-dried 100 mL round-bottom flask equipped
with a stir bar. The flask was put into a 140 °C oil bath and stirred for
8 h. The resulting dark mixture was dissolved in a mixture of acetone—
water (~2:1) under heating and purified via dialysis (tubing MWCO:
1000 Da) against diluted HCl solution (~0.3 M) and DI water for 96
h. The dialysate was collected and dissolved in acetone. After
decolorization by activated charcoal and concentration under vacuum,
a light yellow foamy solid was obtained; 14.0 g, 66.3%. 'H NMR
(acetone-dg, 500 MHz) 8, 5.73—3.60 (m, 49H), 3.20-2.40 (m,
81H).

Formulation of Epoxy Resins and Tensile Bar Preparation.
The synthesized hardeners were formulated with trimethylolpropane
triglycidyl ether (TTE) in different molar ratios of —COOH/epoxide
(35/65, 40/60, 45/55, 50/50, 55/4S, and 60/40) by a solvent
blending method. Briefly, accurately weighted hardeners and TTE
were put into a 20 mL scintillation glass vial followed by the addition
of acetone to dissolve and mix the monomers. Acetone was then
removed via rotavap at 30 °C, and the resulting epoxy resins were
dried under high vacuum as either viscous liquids or solids and stored
in a freezer for later use. The thermal curing of the resins was
conducted in the following two methods based on the physical form of
the formulated resins. (1) The viscous liquid epoxy resins from
trehalose-based hardener was transferred into rubber silicone mold
that contained a dog-bone shape and then dried under vacuum for 12
h at room temperature. Then, the epoxy resins were precured at 120
°C for 2 h and postcured at 165 °C for 2 h for further mechanical
testing. (2) The solid epoxy resins from the p-cyclodextrin-based
hardeners were loaded into a stainless steel mold with a dog-bone
shape and cured at ~160 °C for 2 h in a hot press under a pressure of
3000 psi.

Hydrolytic Degradation. The degradation properties of the
epoxy resins were examined in deionized (DI) H,0, 1 M NaOH, and
1 M HCI and were evaluated as follows: Three parallel samples of
polymer (~50 mg, dog-bone shape) were immersed in the appropriate
aqueous solution (S mL) and allowed to sit undisturbed at room
temperature. The samples were periodically removed, blotted dry,
weighed, and reimmersed in the same solution. Degraded samples for
NMR analysis were prepared by immersing the polymers in a solution
of 1 M NaOD in D,O until the mixture became homogeneous.

Swelling Ratio and Gel Fraction Measurement. Three parallel
samples of cured polymers (~50 mg, dog-bone shape) were weighed
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(m;) and immersed into 4 mL of THF for 48 h to remove the
solubilized fraction. Then the wet weight (m,) of the polymer samples
was recorded for the swelling ratio calculation. After the wet samples
were completely dried at 50 °C under high vacuum for 24 h, the dry
weight (m;) of polymer samples was recorded for the gel fraction
calculation. The swelling ratio and gel fraction were calculated
according eqs 3 and 4.

swelling ratio = m, /m,;

©)
4)

Lap Shear Adhesion Test. Lap shear strip specimens were
machined from a stainless steel panel (type 316) with dimensions of
104 X 254 X 1.50 mm. All specimens were pretreated by soaking in
concentrated sulfuric acid for 1 h followed by washing with deionized
water, acetone, and dichloromethane. The completely dried epoxy
resins samples (~80 mg) were weighed and uniformly applied over a
bonding area of ~12.7 mm X 25.4 mm on steel specimens. Two 0.5
mm long stainless steel wires (diameter: 0.125 mm) were placed in the
resin bonding area to ensure a uniform bonding thickness. Test
specimens were compressed with Hoffman clamps and put into a
preheated convection oven to cure the resins for 2 h at 120 °C; the
samples were then subjected to a postcuring step for 2 h at 165 °C.
The final specimen geometry is shown in Figure S17. The lap shear
strength was calculated by eq 5. At least three parallel specimens were
tested for each epoxy resin, and the average results were reported
(Figures S15 and S16).

gel fraction = my/m,

lap shear strength (psi)
= 145.038 X maximum loading force (N)/bonding area (m?)

©)
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