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ABSTRACT: Monte Carlo field-theoretic simulations (MC-FTS) are
performed on structurally symmetric binary homopolymer blends for
invariant polymerization indexes of N ≥ 103. It is shown that the
ultraviolet (UV) divergence that plagues MC-FTS at small N can be
removed by an appropriate renormalization of the Flory−Huggins
interaction parameter, χ, allowing one to extract meaningful results that
are independent of the wavevector cutoff. Once the divergence is taken
care of, the fluctuation corrections to mean-field theory are found to be
exceptionally small. In particular, the disordered-state structure function,
S(k), is virtually indistinguishable from the RPA prediction, and there is
a slight shift in the critical point, (χN)c, that roughly scales as N

−1/2. An
implication of the small corrections is that previous experimental
determinations of χ based on homopolymer blends should be relatively
accurate.

■ INTRODUCTION
The theory of binary homopolymer blends developed by Flory1

and Huggins2 has long been a standard topic of polymer
textbooks. The focus is typically on structurally symmetric
blends involving polymers of the same molecular volume, vm =
N/ρ0, and average end-to-end length, R0 = aN1/2, where ρ0

−1 is
the segment volume, N is the number of segments in each
polymer and a is the statistical segment length. For blends of
50:50 composition, the onset of macrophase separation is
predicted to occur at a critical point of (χN)c = 2, where χ is the
usual Flory−Huggins interaction parameter.
The Flory−Huggins theory corresponds to the mean-field

approximation of the standard incompressible Gaussian chain
model, upon which most calculations in polymer theory are
based.3,4 The mean-field predictions become exact in the
infinite molecular-weight limit, and the deviations for large
finite polymers are believed to depend solely on the ratio R0

3/
vm = N1/2, where N ≡a6ρ02N is referred to as the invariant
polymerization index. A recent renormalized one-loop (ROL)
calculation by Qin and Morse5 predicts

χ = + ̅ −N N( ) 2 3.7c
1/2

(1)

Our aim is to test this prediction with simulation.
Not surprisingly, the critical point has been examined by a

number of previous simulations.6−11 For instance, Müller6,7

reported a critical point of (χN)c = 2.27 for N = 240, which
agrees well with eq 1. Other studies8,9 have shown that the
fluctuation correction scales as N−1/2, although ref 9 predicted a
much larger proportionality factor of about 10. The simulations,
however, were all performed using different models than the
standard one, and consequently a direct comparison to eq 1 is
contingent on an appropriate definition of χ. The typical
definition introduced by Müller and Binder10 matches the

internal energy of the simulation to that of the Flory−Huggins
theory in the athermal limit, which ensures that (χN)c → 2 as N
→ ∞.8,9 This generally leads to an effective interaction
parameter, χe = z ϵ/kBT, that is proportional to the unfavorable
interaction energy, ϵ, between A and B monomers and the
average number of intermolecular contacts, z, a monomer
experiences in the athermal limit. Müller and co-workers
evaluate z at the finite polymerization N of their simulation, but
this imparts χ with an unnatural N dependence. To remedy
this, Qin and Morse5 reevaluated previous results,6,7,11 using z∞
obtained by extrapolating z to infinite N. It turns out that the
difference between using z and z∞ is as big as the fluctuation
correction itself, and furthermore the correction fails to exhibit
a universal dependence on N. Since then, it has been shown12

that this linear definition of χe also fails to produce a universal
correction for the order−disorder transition of diblock
copolymer melts. Fortunately, the problem was resolved by
allowing a nonlinear dependence on ϵ.12,13 As of yet, however,
eq 1 has not been tested with the nonlinear definition of χe.
Direct simulation of the standard model is impossible due to

the fact it treats the blend as an incompressible melt of one-
dimensional threads interacting via point-like contact forces,
but it can be done indirectly by transforming to an equivalent
field-based model.14 This involves introducing auxiliary fields,
so as to replace particle−particle interactions with particle-field
interactions. For A + B homopolymer blends, there are two
fields: a composition field, W−(r), that couples to the difference
in A and B concentrations and a pressure field, W+(r), that
couples to the total concentration. In the absence of direct
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interactions, the polymer coordinates can be integrated out
resulting in a mathematically equivalent field-based Hamil-
tonian, Hf[W−, W+], that depends only on the fields. The one
complication, however, is that W+(r) is an imaginary-valued
field, which implies that the Boltzmann weight, exp(−Hf[W−,
W+]/kBT), is no longer a positive real-valued function.
Consequently, standard simulation methods cannot be applied.
Fredrickson and co-workers14−16 have dealt with this by
performing complex Langevin simulations (CL-FTS). Schmid
and co-workers15,17 have proposed a different strategy whereby
the integration over W+(r) is performed with a saddle-point
approximation, which amounts to enforcing incompressibility
within the mean-field approximation. Because the saddle-point,
w+(r), is a real-valued function, the statistical mechanics can
then be performed using standard Monte Carlo simulations
(MC-FTS). Although both types of FTS have been applied to
binary homopolymer blends,15−17 simulations have so far been
limited to two dimensions.
Here, we extend the MC-FTS to three dimensions, but

before doing so we must deal with an ultraviolet (UV)
divergence. In FTS, the fields are represented on a spatial grid
with some specified spacing Δ, and the simulations should, in
principle, become increasingly accurate as Δ → 0. However,
previous MC-FTS for diblock copolymers18 found that melts
tend to disorder as Δ is decreased due to a UV divergence. It is
a weak logarithmic divergence in two dimensions, but in three
dimensions the effect is proportional to the maximum
wavevector allowed by the discrete grid. Fortunately, Olvera
de la Cruz et al.19 have shown that the divergence can be
compensated for by an appropriate increase in the bare χb used
in the simulations, or equivalently by expressing results in terms
of an effective

χ α
π

χ= − Λ⎜ ⎟⎛
⎝

⎞
⎠l1

6
e b1 2 (2)

where l ≡ 1/ρ0 a
2 = R0 N

−1/2 is called the packing length. For
cubic simulation boxes with a regular grid, Λ = π/Δ and α =
1.221.18 The renormalization works well for large N, but
eventually fails as the prefactor in front of χb approaches zero.
Vorselaars and Matsen20 proposed an alternative χe2 motived by
the approach of Müller and Binder,10 which appears to work to
much smaller values of N. Both definitions of χe will be tested in
this study.

■ THEORY

This section describes our Monte Carlo field-theoretic
simulation (MC-FTS) for a binary blend, where the first nA
homopolymer molecules are of type A and the remaining nB are
of type B. The total number of molecules, n ≡ nA + nB = N1/2

V/R0
3, is proportional to the volume, V, of the system. The

MC-FTS is based on the standard incompressible Gaussian-
chain model, in which the α’th coarse-grained molecule
experiences an entropic stretching penalty of

∫= − | ′ |α αS
k
R

sr
3
2

dB

0
2 0

1
2

(3)

where its configuration, rα(s), is specified in terms of a
parameter, s, that runs along its contour. The unlike molecules
interact by simple pairwise contact forces, for which the internal
energy is expressed as

∫ρ χ ϕ ϕ̂ = ̂ ̂U k T r r r( ) ( ) db A BB 0 (4)

where

∫∑ϕ
ρ

δ̂ = −
α

α
=

N
sr r r( ) ( ) dA

n

0 1 0

1A

(5)

is a dimensionless A concentration, and ϕ̂B(r) is a B
concentration given by an analogous expression with α = nA
+ 1 to n. As such, the particle-based Hamiltonian is Hp[{rα}] =
Û − T∑αSα, and the partition function for a canonical
ensemble is

∫ ∏δ ϕ ϕ∼ − ̂ + ̂ −α

α
α

=

⎛
⎝⎜⎜

⎞
⎠⎟⎟Z

H

k T

r
rexp

[{ }]
[ 1]p

A B

n

B 1 (6)

where the delta functional enforces incompressibility. For
simplicity, we ignore the factor of (nA! nB!)

−1, accounting for
the indistinguishability among molecules of the same type.4

To proceed, we switch to a mathematically equivalent field-
based model by performing standard transformations3,4,21 that
convert the partition function to

∫∼ − − +
− +

⎛
⎝⎜

⎞
⎠⎟Z

H W W

k T
W Wexp

[ , ]f

B (7)

where the integration is now over a composition field, W−(r),
that acts on ϕ̂−(r) ≡ ϕ̂A(r) − ϕ̂B(r) and a pressure field,W+(r),
that acts on ϕ̂+(r) ≡ ϕ̂A(r) + ϕ̂B(r). The resulting field-based
Hamiltonian takes the form

∫

ϕ ϕ

χ

= − ̅ − ̅

+ −

− +

−
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

H W W

nk T
Q Q

V
W
N

W r

[ , ]
ln ln

1
d

f
A A B B

b

B

2

(8)

where ϕγ = nγ/n is the volume average of ϕ̂γ and

∫=γ γ− +Q W W q r r[ , ] ( , 1) d
(9)

is the single-chain partition function for the γ-type homopol-
ymer (γ = A or B). The latter is calculated from a partial
partition function, qγ(r, s), that satisfies

∂

∂
= ∇ −γ

γ γ γ

q

s
R

q W q
6
0
2

2
(10)

with the initial condition qγ(r,0) = 1. The field acting on A
homopolymers is WA(r) = W+(r) + W−(r), while the one for B
homopolymers is WB(r) =W+(r) −W−(r). Calculations for the
grand-canonical ensemble just involve switching the Hamil-
tonian to22

∫ χ
= − − + −− + −

+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

H W W

nk T
z Q z Q

V
W
N

W r
[ , ] 1

df
A A B B

bB

2

(11)

where zγ ≡ exp(μγ/kBT) and μγ is the chemical potential of the
γ-type homopolymer.

Simulation Method. To evaluate thermodynamic quanti-
ties in the field-based representation, functional integrations
need to be performed over W−(r) and W+(r). They are often
estimated using the saddle-point approximation, which equates
to mean-field theory, but they can also be performed by
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simulation (i.e., FTS). As mentioned before, W+(r) takes on
imaginary values, which precludes standard simulation
techniques. However, the problem can be avoided by just
simulating the fluctuations in W−(r) and using the saddle-point
approximation for W+(r). This is done by setting W+(r) to the
saddle point of the Boltzmann weight, which is the pressure
field, w+(r), that enforces ϕ+(r) = 1 where

∫∑ϕ
ϕ

=
̅

−
γ

γ

γ
γ γ+

V

Q
q s q s sr r r( ) ( , ) ( , 1 ) d

0

1

(12)

in canonical ensemble or

∫∑ϕ = −
γ

γ γ γ+ z q s q s sr r r( ) ( , ) ( , 1 ) d
0

1

(13)

in the grand-canonical ensemble. As it turns out, w+(r) is real
valued, and so we can then employ standard Monte Carlo
techniques.
Our MC simulations are performed for a cubic box of

volume V = L3 with periodic boundary conditions, in which
W−(r) is defined on a regular grid of uniform spacing Δ. Each
Monte Carlo step (MCS) involves a small random change in
W−(r). We alternate between a real-space move, where the
change in W−(r) at each grid point is selected from a uniform
distribution, and a Fourier-move, where the change inW−(k) at
each wavevector is selected from a uniform distribution
weighted by the RPA structure function, SRPA(k), evaluated at
χN = 1.8. For the grand-canonical ensemble, a third move is
included, where the whole W−(r) is shifted by a constant also
generated from a uniform distribution. The amplitude of each
move is tuned during the beginning of the equilibration period
so as to achieve an acceptance rate of ∼40%.
The saddle point needs to be located after each change in

W−(r), which is done by adjusting w+(r) iteratively using
Anderson mixing,23,24 until

∫ ϕ ε− <+
⎡
⎣⎢

⎤
⎦⎥V
r

1
( 1) d2

1/2

(14)

where ε = 10−4 for the canonical ensemble and ε = 10−7 for the
grand-canonical ensemble. In order to calculate qγ(r, s), the
diffusion equation is solved using a fourth-order pseudospectral
method,23 which involves fast Fourier transforms to a regular
grid in reciprocal space with a spacing of Δk = 2π/L extending
over the range ±Λ in each dimension, where the wavevector
cutoff is Λ = π/Δ. The step-size along the polymer chain, Δs, is
take to be 0.05. Once w+(r) is known, the energy of the new
configuration is evaluated using Hf[W−, w+], and then the move
is accepted or rejected using the standard Metropolis
criterion.18

As usual, a simulation starts with a large number of MCS
(e.g., 105) to equilibrate the system, followed by an even larger
number (typically between 107 and 108) over which statistics
are collected for various observables. The observables are
generally sampled once every 102 MCS. In many cases, we are
interested in collecting the statistics for an observable, Ô, over
an interval of χbN spanning the critical point. In order to reduce
the computational effort, we employ Monte Carlo reweight-
ing,26,27 where m observations of Ô and

∫̂ ≡ −I
V

W r
1

d2
(15)

are stored over one long simulation at a (χbN)* close to the
expected transition. The ensemble average of Ô at χbN is then
given by

∑
χ χ

⟨ ̂⟩ = ̂
*

− ̂
=

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟O

m
O n

N N
I

1
exp

1
( )

1

i

m

i
b b

i
1 (16)

The reweighing will fail when χbN differs too much from
(χbN)*, if the configurations generated at (χbN)* are not
sufficiently representative of those at χbN. Fortunately,
reweighting works particularly well near critical points, due to
the broad distribution of configurations resulting from the
critical fluctuations.

Structure Function. The first observable we consider is the
disordered-state structure function

ρ
δϕ δϕ= ⟨ ̂ ̂ − ⟩S k

V
k k( ) ( ) ( )A A

0
2

(17)

where δϕ̂A(k) is the Fourier transform of δϕ̂A(r) ≡ ϕ̂A(r) − ϕA.
It depends only on the magnitude of the wavevector, k ≡ |k|,
and has a single peak at k = 0 that diverges as the critical point
is approached. To evaluate S(k) in FTS, the composition
fluctuations in eq 17 are reexpressed in terms of fluctuations in
the composition field

ρ χ χ
= ⟨ − ⟩ −− −S k

N
n W W

V N N
k k( ) ( ) ( )

( )
1

2b b0
2

(18)

as derived in the Appendix.
The random-phase approximation (RPA)28 of the structure

function is

ρ ϕ ϕ
χ=

̅ ̅
−

−⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( )

S k
N g k R

N
( ) 1

2
A B

RPA

0
1
6

2
0
2

1

(19)

where g(x) ≡ 2[exp(−x) + x − 1]/x2 is the Debye function. Its
peak SRPA(0) = ρ0N/(4 − 2χN) diverges at the mean-field
critical point, and thus SRPA(k) is regarded as the mean-field
approximation of S(k).

Binder Cumulant. The critical point can, in principle, be
determined from the divergence in S(0). However, accurate
predictions would require extraordinarily large simulation
boxes, because of the large-wavelength fluctuations that emerge
as the critical point is approached. To obtain accurate estimates
of (χN)c with small simulation boxes, we employ the finite-
scaling method of Binder.29 This involves calculating the
fourth-order cumulant

ϕ
ϕ

= − ⟨ ̅ ⟩
⟨ ̅ ⟩

−

−

U 1
3

L

4

2 2
(20)

as a function of χbN for a series of system sizes, L, in the grand-
canonical ensemble. The moments of the volume-average
composition, ϕ−, are given by the expressions

ϕ
χ χ

⟨ ̅ ⟩ = ⟨ ̅ ⟩ −−
−W

N n N
4
( )

2
( )b b

2
2

2
(21)

ϕ
χ χ χ

⟨ ̅ ⟩ = ⟨ ̅ ⟩ − ⟨ ̅ ⟩ +−
− −W

N
W

n N n N
16
( )

12
( )

12
( )b b b

4
4

4

2

3 2 2
(22)

Macromolecules Article

DOI: 10.1021/acs.macromol.6b01437
Macromolecules 2016, 49, 6116−6125

6118

http://dx.doi.org/10.1021/acs.macromol.6b01437


derived in the Appendix. The critical point corresponds to the
fixed point of UL, or in other words the value of χbN for which
UL is independent of L.
Effective Interaction Parameter. To obtain meaningful

results, the ultraviolet divergence needs to be removed. Its
effect can be understood by looking at the internal energy, U =
⟨Û⟩, which can be expressed as

∫

∫

∫

ρ
χ ϕ ϕ

χ
δϕ δϕ

χ ϕ ϕ
χ
π

δϕ δϕ

χ ϕ ϕ
π ρ ϕ ϕ

= ̅ ̅ − ⟨ ̂ ̂ ⟩

= ̅ ̅ − ⟨ ̂ ̂ − ⟩

= ̅ ̅ −
̅ ̅

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

U
k T V V

V

S k

r r r

k k k

k

( ) ( ) d

(2 )
( ) ( ) d

1
( ) d

(2 )

b A B
b

A A

b A B
b

A A

b A B
A B

B 0

3

3
0
2

(23)

where we have substituted the incompressibility condition,
ϕ̂B(r) = 1 − ϕ̂A(r), into eq 4 and used the definition of the
structure function in eq 17. The problem is that the integral in
eq 23 diverges; extending the upper limit of the integral to
larger wavevectors causes a continuous decrease in U, which
reduces the segregation between the A and B homopolymers.
To remove the divergence, Vorselaars and Matsen20 took an

analogous approach to the one Müller and Binder10 used to
define χe for particle-based simulations. That is they matched
the internal energy of the MC-FTS to the Flory−Huggins
expression

ρ
χ ϕ ϕ= ̅ ̅U

k T V e A B
B 0 (24)

in the athermal limit (i.e., χe → 0). In this limit, the structure
function in MC-FTS reduces to SRPA(k),

20 and so it follows that
the effective interaction parameter is

∫
χ

π ρ ϕ ϕ
χ= −

̅ ̅

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟l

R S k

N

k
1

( ) d

(2 )e
A B

b2
0
2

RPA,0
3

0 (25)

where ρ ϕ ϕ= ̅ ̅ ( )S k N g k R( ) A BRPA,0 0
1
6

2
0
2 is the RPA structure

function evaluated at χN = 0. Note that the alternative χe1 in eq
2 is obtained using the large-k approximation g(x) ≈ 2/x, which
implies that both definitions become identical as N → ∞.

■ RESULTS
Our study concentrates on symmetric blend compositions with
ϕA = ϕB =

1/2 in the canonical ensemble and zA = zB = 1 in the
grand-canonical ensemble. We begin by investigating the effect
of the UV divergence on the structure function, S(k), and
testing the ability of the effective interaction parameters, χe1 and
χe2, to remove it. Once the divergence is dealt with, the critical
point point is located using the fourth-order cumulant, UL.
Simulations are performed for invariant polymerizations
extending from N = 105, where the UV divergence is weak
and fluctuation effects are negligible, down to an experimentally
realistic value of N = 103.

Figure 1. Structure function, S(k), calculated for different grid spacings, Δ, at χbN = 1.9 (left column), χe1N = 1.9 (middle column), and χe2N = 1.9
(right column) for N = 105 (top row), N = 104 (middle row), and N = 103 (bottom row). The RPA prediction from eq 19 is denoted by solid black
curves.
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Structure Function. Figure 1 shows S(k) calculated for
different grid resolutions, Δ, using the canonical ensemble with
a simulation box of size L = 6R0. The first column of plots are
from simulations conducted at a fixed χbN = 1.9, for different
values of N. They all show a reduction in S(k) as Δ decreases,
which becomes more pronounced for the smaller values of N.
This can be attributed to the UV divergence, whereby the
inclusion of shorter wavelength fluctuations permitted by the
finer grids reduces the segregation of the melt. The middle
column corresponds to simulations performed at a fixed value
of χe1N = 1.9. In this case, the divergence is nicely removed as
evident by the collapse of the data, even for the lowest value of
N = 103 where the UV divergence is strongest. The final
column of plots are for χe2N = 1.9. Although χe2 collapses the
data at N = 105, it does not perform nearly as well as χe1 does at
the smaller values of N.
We now turn our attention to the peak of the structure

function at k = 0, which requires us to switch to the grand-
canonical ensemble. In the thermodynamic limit (i.e., L → ∞),
the peak diverges as χN → (χN)c from below, and so Figure 2
plots S−1(0) as a function of χN, for which the RPA predicts a
linear relationship. To save computational effort, the χN
dependence is determined by the reweighting scheme in eq 16.
The first column displays the results for different N plotted in
terms of the bare χb. The UV divergence is even more
pronounced than before. However, the curves again collapse
when expressed in terms of χe1 as demonstrated in the middle
column. The same is not true when S−1(0) is plotted in terms

of χe2 as illustrated by the last column. In fact, the failure of χe2
is quite dramatic by the time N = 103.
Interestingly, the simple RPA prediction in eq 19 appears to

be remarkably accurate. The simulation results for k ≠ 0 in the
middle column of Figure 1 are indistinguishable from the RPA
prediction. There are differences between the simulations and
RPA for k = 0 in the middle column of Figure 2, but most of
that is due to the finite-size effects that tend to suppress S(0)
near the critical point. This will become evident once we locate
the critical point, which should in principle coincide with
S−1(0) → 0. In any case, the peak height agrees well with RPA
away from the critical point for N = 105 and 104. For N = 103,
however, the fluctuations cause a noticeable increase in S(0)
relative to RPA at χe1N ≲1.9. The same qualitative behavior is
also predicted by ROL,5 and so this is undoubtedly a real effect
that would remain as L → ∞.

Critical Point. We now locate the critical point using the
fourth-order cumulant, UL, in eq 20. This is done by
performing grand-canonical simulations for a series of different
system sizes, L, at a fixed interaction strength, (χbN)*, close to
the critical point.30 For each system size, UL is calculated as a
function of χbN using the reweighting scheme in eq 16. Figure 3
shows results for three values of N. The curves exhibit the usual
behavior,29 where UL transitions from 0 in the mixed region
toward 2/3 in the two-phase region. Furthermore, the curves
cross at common fixed point, providing a precise value for the
critical point, (χbN)c, in terms of the bare interaction parameter.

Figure 2. Inverse of the peak in the structure function, S−1(0), calculated using different grid spacings, Δ, and plotted as a function of χbN (left
column), χe1N (middle column), and χe2N (right column) for N = 105 (top row), N = 104 (middle row), and N = 103 (bottom row). The points
about which the MC reweighting was performed are marked by solid dots, and the RPA prediction is denoted by solid black lines.
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To check the consistency of the critical behavior with the
expected 3D-Ising universality class, Figure 4 scales the
horizontal axes of the UL plots with respect to L1/ν, where ν
= 0.62997 is the 3D-Ising exponent for the correlation length.
The curves collapse reasonably well, particularly for the larger
two system sizes. Some of the difference will be due the MC
reweighing scheme, which becomes increasingly inaccurate the
further χbN is from (χbN)* denoted by the solid dots. At N =
103, the fixed point of UL also agrees well with the expected
value, 0.47, for the 3D-Ising universality class.25 For the higher
values of N, however, the fixed point drops below 0.47, which
was also the case for the particle-based simulations of Müller
and Binder.10 They attributed this to the narrowing of the
critical region with increasing N.11 The implication is that the
system sizes need to be larger in order to observe accurate
critical behavior, but unfortunately it is impractical for us to
perform statistically accurate simulations for significantly larger
L. Nevertheless, we are primarily interested in the position of
the critical point, and our current simulations should be
reasonably accurate in that regard, given the steepness of the UL
curves.
The simulations of Figure 3 were all performed for a

common grid resolution of Δ = 0.5R0. In order to examine the
effect of the UV divergence, the simulations are repeated for a
series of different grid resolutions. The resulting positions of

the critical point are tabulated in Table 1. As expected, the
critical point shifts to higher χbN for finer grid resolutions,

because the introduction of shorter wavelengths reduces the
segregation between the A and B components. To remove the
divergence, Figure 5 plots the critical point in terms of the
effective interaction parameters, χe1 and χe2, as a function of the
wavevector cutoff, Λ = π/Δ. In terms of χe1, the critical point
approaches a constant value at large Λ, indicating that the UV
divergence is removed by this renormalization of the
interaction parameter. The alternative χe2, once again, reduces
the effect of the divergence but does not completely remove it.

Figure 3. Fourth-order cumulant, UL, calculated using different system
sizes, L, for (a) N = 105, (b) N = 104, and (c) N = 103. Simulations
were conducted with a grid spacing of Δ = 0.5R0, and MC reweighting
was performed about the points indicated by solid dots.

Figure 4. Analogous to Figure 3 but with the horizontal axes scaled
using the 3D-Ising critical exponent, ν = 0.62997.

Table 1. Critical Points, (χbN)c, in Terms of the Bare χb,
Calculated Using Different Grid Spacings, Δ, and Invariant
Polymerization Indexes, N

(χbN)c

Δ/R0 N = 105 N = 104 N = 103

0.75 2.023 2.077 2.246
0.5 2.034 2.110 2.377
0.375 2.046 2.146 2.525
0.25 2.068 2.223 2.876
0.1875 2.089 2.301 3.352
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For all three values of N, the asymptotic value of (χe1N)c at
large Λ lies between the mean-field value of 2 and the ROL
prediction in eq 1, denoted in Figure 5 by the dotted and
dashed horizontal lines, respectively. This implies that the
critical point approaches the mean-field value in the limit of N
→ ∞. Figure 6 compares the fluctuation correction, (χe1N)c −
2, from our simulations (symbols) with the ROL prediction

(dashed line) on a logarithmic scale. The correction is
reasonably consistent with the N−1/2 scaling predicted by
ROL, particularly for our two largest values of N. However, the
proportionality factor is roughly half the predicted size, further
emphasizing that fluctuation effects are extremely small in
binary homopolymer blends.

■ DISCUSSION
Field-theoretic simulations (FTS) provide a complementary
approach to the usual particle-based simulations. To increase N
for a particle-based model requires more monomers per
polymer as well as more polymers per volume R0

3, and the
extra degrees of freedom increase the computational cost of the
simulation. However, this is not the case for FTS, since the
polymer degrees of freedom are integrated out of the system.
Instead, FTS are only slowed down by the level of fluctuations
in the fields, and consequently they are fast at large N becoming
increasingly computational for small N. As we have seen, the
reduction in N is also accompanied by a strong UV divergence.
Fortunately, the divergence can be compensated for by the
simple renormalization χe1 defined in eq 2, allowing for
meaningful quantitative predictions of the structure function,
S(k), and the critical point, (χN)c.
Despite the slight deviations from the expected 3D-Ising

critical behavior, our MC-FTS estimate of (χN)c should be
more accurate than the ROL prediction in eq 1. The ROL is a
perturbative expansion truncated at first order, but more
importantly it does not properly treat critical fluctuations.
Although it is somewhat uncertain how well χe1 removes the
UV divergence from the MC-FTS, it is the same renormaliza-
tion used in the ROL calculation.5 Of course, there will be
some inaccuracy in our results due to the saddle-point (i.e.,
mean-field) approximation for the pressure field. Nevertheless,
the fluctuations of W−(r) are undoubtedly far more important
than those of W+(r), and thus the MC-FTS should capture
most of the deviation from mean-field theory.
The obvious way to correct for the saddle-point approx-

imation is to use the full CL-FTS. This has already been done
in two dimensions, where the CL-FTS and MC-FTS produced
consistent results.15 It would be interesting to repeat the
comparison in three dimensions, but there would be a couple
obstacles to deal with first. The trajectories of CL-FTS are
prone to instabilities particularly when N is reduced to realistic
values.31 In fact, there is no proof that the trajectories produce
stable distributions as there is for conventional Langevin
simulations.14 Furthermore, the nature of the UV divergence
will change. At the very least, a as well as χ will have to be
renormalized,5 and it may be that there is no simple
renormalization capable of removing the divergence for CL-
FTS.
For MC-FTS, the χe1 renormalization performed much better

than it did for the diblock copolymer melts, where it started to
fail when N ≲ 104.20 Here, χe1 works perfectly fine for values of
N down to at least 103, perhaps because the transition occurs at
a smaller value of χe1N and because homopolymer blends do
not need as fine of a spatial grid as diblock copolymer melts
where the domain size is comparable to R0. In any case, χe1 will
eventually fail for small N, and it will become necessary to use
an improved definition. Although χe2 appeared to provide an
improvement for diblock copolymer melts,20 this was not the
case for homopolymer blends. Clearly, the strategy used to
derive χe2 is not robust. The rigorous way to improve upon χe1
is to examine higher-order terms in a loop-expansion,32 but this

Figure 5. Critical point, (χeN)c, in terms of the effective χe in eq 2
(diamonds) and eq 25 (squares) as a function of the wavevector cutoff,
Λ = π/Δ, calculated for (a) N = 105, (b) N = 104, and (c) N = 103.
The mean-field prediction of 2 and the ROL prediction in eq 1 are
denoted by the dotted and dashed lines, respectively.

Figure 6. Logarithmic plot showing the fluctuation correction to the
mean-field critical point for the three values of N simulated in this
study. The dashed line denotes the ROL prediction from eq 1.5
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requires a complicated calculation. An easier alternative might
be to apply the same procedure in ref 12 used to calibrate the
interaction parameters for particle-based simulations.
One benefit of FTS, as implemented here, is that they are

based on the same standard Gaussian-chain model that
underlies most theoretical calculations, which is why we can
directly compare to the ROL prediction in eq 1. The standard
model is generally the preferred choice because it represents
the minimal model with the least number of parameters needed
to represent high molecular-weight polymers. The behavior of
more detailed models or in fact real experimental systems,
involving for example polymers with finite persistence lengths
and finite-range interactions, reduces to the mean-field behavior
of the standard model in the limit of infinitely long molecules.
Furthermore, it is hypothesized that the fluctuation corrections
of the more complicated models will also match those of the
standard model for large finite values of N. To realize this
universality, however, the parameters of a given model have to
be properly mapped onto those of the standard model (e.g., χ
and a).
In light of recent evidence5,12 that the linear definition of χe

proposed by ref 10 does not reveal the universal behavior, we
cannot yet compare the previous particle-based simula-
tions6,7,9,10 to our MC-FTS or the ROL predictions. However,
the nonlinear definition of χe proposed in ref 12 could permit a
meaningful comparison, given its impressive performance for
diblock copolymer melts.12,13 It would just be a matter of
recalibrating χe for the particle-based models using the new
strategy in ref 12. Alternatively, one could simulate
homopolymer blends with the same models calibrated in ref
12. Either way, it will be very interesting to check if different
particle-based simulations produce consistent universal results,
and furthermore if they match our MC-FTS predictions.
Determining the effective χe for experiments has also been an

ongoing challenge. It is generally obtained by fitting the
measured structure function or phase transition of either
symmetric diblock copolymer melts or symmetric homopol-
ymer blends to theoretical predictions. The problem, however,
is a lack of consistency among the different choices.33 It is not
surprising that the fits involving diblock copolymers do not
produce consistent predictions for χe, since the mean-field34

and fluctuation35 theories do not provide accurate predictions
for the relevant quantities. However, given recent develop-
ments, diblocks could now provide a viable system for
extracting accurate values of χe.

36 Nevertheless, considering
how small the fluctuation corrections for homopolymer blends
appear to be, previous estimations of χe based on homopolymer
blends are probably already reasonably accurate, at least for
high- N systems.

■ SUMMARY
We have performed the first field-theoretic simulations (FTS)
for binary homopolymer blends in three dimensions. The focus
was on symmetric blends with equal amounts of A and B
homopolymer, where both molecules contain the same number
of segments, N, and both segments have the same statistical
length, a (segments are defined based on a common volume of
ρ0

−1). The FTS employed the standard incompressible
Gaussian-chain model, where polymers are treated as thin
elastic threads and unlike segments interact by a simple contact
force controlled by the usual Flory−Huggins interaction
parameter, χ. The only approximation in the simulations was
a mean-field treatment of the incompressibility condition, but

this is believed to be relatively accurate. Although the FTS were
strongly affected by an ultraviolet divergence, its effect was well
controlled by the effective interaction parameter χe1 in eq 2
originally derived by ref 19, but not by the alternative χe2 in eq
25 proposed by ref 20.
The fluctuation effects were found to be exceptionally small

for the range of invariant polymerization indexes examined in
our study, N = 103 to 105. In the disordered phase at χe1N = 1.9,
the structure function, S(k), was virtually indistinguishable from
the mean-field prediction for k > 0. However, at our smallest N,
there was a noticeable enhancement of the peak, S(0), which is
qualitatively consistent with renormalized one-loop (ROL)
predictions.5 Although we observed a significant depression in
the peak height at higher segregations, most of that can be
attributed to finite-size effects, which become particularly
pronounced near the critical point. To deal with the finite-
size effects, we switched to a four-order cumulant method to
locate the critical point, (χN)c. As expected, fluctuations push
the mean-field prediction, (χN)c = 2, to higher values of χN.
The shift is consistent with the N−1/2 scaling predicted by
ROL5 in eq 1 and earlier particle-based simulations.8,9

However, the amplitude of the fluctuation correction is
considerably smaller than previously reported. In light of how
small the fluctuation effects are, the experimental practice33 of
estimating χ based on the mean-field predictions of binary
homopolymer blends appears to be well justified.

■ APPENDIX
Here we calculate moments of the composition, ϕ̂−(r),
following the approach used in ref 21. This involves adding
an external potential, U(r), to the Hamiltonian

∫ρ
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= + ̂α α

−
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k T
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k T N
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r r
r

[{ }] [{ }]
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B B

0
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and evaluating the corresponding partition function, Z̃. With
that, it immediately follows that the k’th moment is given by

∏ ϕ
ρ

⟨ ̂ ⟩ = − ̃
̃

∏=
−

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟N
Z

Z
U

r
r

( )
1

( )i

k

i

k k

i
k

i U1 0 1 0 (27)

Performing the transformation from the particle- to field-based
Hamiltonian, we obtain
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A single differentiation of Z̃ gives the first moment
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Similarly, the second moment is given by
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Fourier transforming this expression and using the fact that
δϕ ϕ̂ = −̂A

1
2

gives the field-based expression for S(k) in eq 18.

Integrating the expression over r1 and r2 leads directly to eq 21
for ⟨ϕ−

2 ⟩. Lastly, the fourth moment is
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Integrating eq 31 over the four coordinates, r1 to r4, gives eq 22
for ⟨ϕ−

4⟩.
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