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Critical Point of Symmetric Binary Homopolymer Blends

Russell K. W. Spencer® and Mark W. Matsen*

Department of Chemical Engineering, Department of Physics & Astronomy, and Waterloo Institute for Nanotechnology, University

of Waterloo, Waterloo, Ontario Canada

ABSTRACT: Monte Carlo field-theoretic simulations (MC-FTS) are
performed on structurally symmetric binary homopolymer blends for
invariant polymerization indexes of N > 10° It is shown that the
ultraviolet (UV) divergence that plagues MC-FTS at small N can be
removed by an appropriate renormalization of the Flory—Huggins
interaction parameter, y, allowing one to extract meaningful results that
are independent of the wavevector cutoff. Once the divergence is taken
care of, the fluctuation corrections to mean-field theory are found to be
exceptionally small. In particular, the disordered-state structure function,
S(k), is virtually indistinguishable from the RPA prediction, and there is
a slight shift in the critical point, (yN),, that roughly scales as N2 An
implication of the small corrections is that previous experimental
determinations of y based on homopolymer blends should be relatively
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accurate.

B INTRODUCTION

The theory of binary homopolymer blends developed by Flory'
and Huggins” has long been a standard topic of polymer
textbooks. The focus is typically on structurally symmetric
blends involving polymers of the same molecular volume, v,, =
N/pq, and average end-to-end length, Ry = aN'2 where p, ! is
the segment volume, N is the number of segments in each
polymer and a4 is the statistical segment length. For blends of
50:50 composition, the onset of macrophase separation is
predicted to occur at a critical point of (yN), = 2, where y is the
usual Flory—Huggins interaction parameter.

The Flory—Huggins theory corresponds to the mean-field
approximation of the standard incompressible Gaussian chain
model, upon which most calculations in polymer theory are
based.”® The mean-field predictions become exact in the
infinite molecular-weight limit, and the deviations for large
finite polymers are believed to depend solely on the ratio R,/
v,, = N2, where N =a®’N is referred to as the invariant
polymerization index. A recent renormalized one-loop (ROL)
calculation by Qin and Morse® predicts

((N), =2 + 37872 (1)
Our aim is to test this prediction with simulation.

Not surprisingly, the critical point has been examined by a
number of previous simulations.”~"" For instance, Miiller”’
reported a critical point of (yN), = 2.27 for N = 240, which
agrees well with eq 1. Other studies® have shown that the
fluctuation correction scales as N~/ although ref 9 predicted a
much larger proportionality factor of about 10. The simulations,
however, were all performed using different models than the
standard one, and consequently a direct comparison to eq 1 is
contingent on an appropriate definition of y. The typical
definition introduced by Miiller and Binder'’ matches the
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internal energy of the simulation to that of the Flory—Huggins
theory in the athermal limit, which ensures that (yN), — 2 as N
— 00.%” This generally leads to an effective interaction
parameter, y, = z €/kgT, that is proportional to the unfavorable
interaction energy, €, between A and B monomers and the
average number of intermolecular contacts, z, a monomer
experiences in the athermal limit. Miiller and co-workers
evaluate z at the finite polymerization N of their simulation, but
this imparts y with an unnatural N dependence. To remedy
this, Qin and Morse” reevaluated previous results,””"" using z,
obtained by extrapolating z to infinite N. It turns out that the
difference between using z and z, is as big as the fluctuation
correction itself, and furthermore the correction fails to exhibit
a universal dependence on N. Since then, it has been shown'
that this linear definition of y, also fails to produce a universal
correction for the order—disorder transition of diblock
copolymer melts. Fortunately, the problem was resolved by
allowing a nonlinear dependence on €.'”"* As of yet, however,
eq 1 has not been tested with the nonlinear definition of y,.
Direct simulation of the standard model is impossible due to
the fact it treats the blend as an incompressible melt of one-
dimensional threads interacting via point-like contact forces,
but it can be done indirectly by transforming to an equivalent
field-based model."* This involves introducing auxiliary fields,
so as to replace particle—particle interactions with particle-field
interactions. For A + B homopolymer blends, there are two
fields: a composition field, W_(r), that couples to the difference
in A and B concentrations and a pressure field, W, (r), that
couples to the total concentration. In the absence of direct
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interactions, the polymer coordinates can be integrated out
resulting in a mathematically equivalent field-based Hamil-
tonian, H[W_, W,], that depends only on the fields. The one
complication, however, is that W,(r) is an imaginary-valued
field, which implies that the Boltzmann weight, exp(—Hf[W_,
W.,]/kgT), is no longer a positive real-valued function.
Consequently, standard simulation methods cannot be applied.
Fredrickson and co-workers'*™'® have dealt with this by
performing complex Langevin simulations (CL-FTS). Schmid
and co-workers'>'” have proposed a different strategy whereby
the integration over W, (r) is performed with a saddle-point
approximation, which amounts to enforcing incompressibility
within the mean-field approximation. Because the saddle-point,
w,(r), is a real-valued function, the statistical mechanics can
then be performed using standard Monte Carlo simulations
(MC-FTS). Although both types of FTS have been applied to
binary homopolymer blends, >~"” simulations have so far been
limited to two dimensions.

Here, we extend the MC-FTS to three dimensions, but
before doing so we must deal with an ultraviolet (UV)
divergence. In FTS, the fields are represented on a spatial grid
with some specified spacing A, and the simulations should, in
principle, become increasingly accurate as A — 0. However,
previous MC-FTS for diblock copolymers'® found that melts
tend to disorder as A is decreased due to a UV divergence. It is
a weak logarithmic divergence in two dimensions, but in three
dimensions the effect is proportional to the maximum
wavevector allowed by the discrete grid. Fortunately, Olvera
de la Cruz et al."” have shown that the divergence can be
compensated for by an appropriate increase in the bare y, used
in the simulations, or equivalently by expressing results in terms
of an effective
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where | = 1/p, a* = Ry N™/? is called the packing length. For
cubic simulation boxes with a regular grid, A = /A and a =
1.221."% The renormalization works well for large N, but
eventually fails as the grefactor in front of y, approaches zero.
Vorselaars and Matsen™ proposed an alternative y,, motived by
the approach of Miiller and Binder,'” which appears to work to
much smaller values of N. Both definitions of y, will be tested in
this study.

H THEORY

This section describes our Monte Carlo field-theoretic
simulation (MC-FTS) for a binary blend, where the first n,
homopolymer molecules are of type A and the remaining ny are
of type B. The total number of molecules, n = n, + ny = N/
V/Ry®, is proportional to the volume, V, of the system. The
MC-FTS is based on the standard incompressible Gaussian-
chain model, in which the o’th coarse-grained molecule
experiences an entropic stretching penalty of

3y !
—= [P s
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where its configuration, r,(s), is specified in terms of a
parameter, s, that runs along its contour. The unlike molecules
interact by simple pairwise contact forces, for which the internal
energy is expressed as

S, =
3)
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0 = kT, [0, dr

4)
where
. N & 1
¢, (xr) = — S(r —x,) ds
o zl /0 (s)

is a dimensionless A concentration, and (}B(r) is a B
concentration given by an analogous expression with a = ny,
+ 1 to n. As such, the particle-based Hamiltonian is H,[{r,}] =
U — TY,S, and the partition function for a canonical
ensemble is

2~/ eXp[_ ©

where the delta functional enforces incompressibility. For

simplicity, we ignore the factor of (1! ng!)™", accounting for

the indistinguishability among molecules of the same type.*
To proceed, we switch to a mathematically equivalent field-
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based model by performing standard transformations™**" that
convert the partition function to
HW_, W.]
Z ~ /exp[—g]ﬂw_ﬂw;
kyT )

where the integration is now over a composition field, W_(r),
that acts on ¢p_(r) = ¢, (r) — ¢p(r) and a pressure field, W, (r),
that acts on ¢,(r) = ¢,(r) + ¢5(r). The resulting field-based

Hamiltonian takes the form
Hf [W_; Wf—]
nkgT

2
e )
v N
where 51, = n,/n is the volume average of q;ﬁy and
Qw_, W= [4 1) dr o)

is the single-chain partition function for the y-type homopol-
ymer (y = A or B). The latter is calculated from a partial
partition function, g,(r, s), that satisfies

q_%anA—quan_B

(8)

99, R,
v 0 2
—=—Vq - W
s 6 LT (10)
with the initial condition g,(r,0) = 1. The field acting on A
homopolymers is W,(r) = W,(r) + W_(r), while the one for B
homopolymers is Wy(r) = W,(r) — W_(r). Calculations for the
grand-canonical ensemble just involve switching the Hamil-

tonian to”>
Hw_, W,]
nkgT

WZ

1 Z
=_ZAQ—A_ZBQB+V/(%—N_M/+)dr

(11)
where z, = exp(u,/kyT) and p, is the chemical potential of the
7-type homopolymer.

Simulation Method. To evaluate thermodynamic quanti-
ties in the field-based representation, functional integrations
need to be performed over W_(r) and W,(r). They are often
estimated using the saddle-point approximation, which equates
to mean-field theory, but they can also be performed by
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simulation (i.e, FTS). As mentioned before, W,(r) takes on
imaginary values, which precludes standard simulation
techniques. However, the problem can be avoided by just
simulating the fluctuations in W_(r) and using the saddle-point
approximation for W, (r). This is done by setting W, (r) to the
saddle point of the Boltzmann weight, which is the pressure
field, w,(r), that enforces ¢,(r) = 1 where

Vg 1
¢ (r) = —L g (r,5)q (r, 1 —s)ds
27: Q, /0 T (12)

in canonical ensemble or

1
$(r) =), z q.(r,5)q (r, 1 —s)ds
Zr: y/‘) T (13)

in the grand-canonical ensemble. As it turns out, w,(r) is real
valued, and so we can then employ standard Monte Carlo
techniques.

Our MC simulations are performed for a cubic box of
volume V = L* with periodic boundary conditions, in which
W_(r) is defined on a regular grid of uniform spacing A. Each
Monte Carlo step (MCS) involves a small random change in
W_(r). We alternate between a real-space move, where the
change in W_(r) at each grid point is selected from a uniform
distribution, and a Fourier-move, where the change in W_(k) at
each wavevector is selected from a uniform distribution
weighted by the RPA structure function, Sgpa(k), evaluated at
XN = 1.8. For the grand-canonical ensemble, a third move is
included, where the whole W_(r) is shifted by a constant also
generated from a uniform distribution. The amplitude of each
move is tuned during the beginning of the equilibration period
so as to achieve an acceptance rate of ~40%.

The saddle point needs to be located after each change in
W_(r), which is done by adjusting w,(r) iteratively using
Anderson mixing,B’24 until

[& /(¢+ -1y dr]l/2 <e (14)

where & = 107* for the canonical ensemble and £ = 1077 for the
grand-canonical ensemble. In order to calculate g,(r, s), the
diffusion equatlon is solved using a fourth-order pseudospectral
method,” which involves fast Fourier transforms to a regular
grid in reciprocal space with a spacing of Ak = 27/L extending
over the range +A in each dimension, where the wavevector
cutoff is A = 77/ A. The step-size along the polymer chain, As, is
take to be 0.0S. Once w,(r) is known, the energy of the new
configuration is evaluated using H{[W_, w, ], and then the move
is accepted or rejected using the standard Metropolis
criterion.'®

As usual, a simulation starts with a large number of MCS
(e.g, 10°) to equilibrate the system, followed by an even larger
number (typically between 107 and 10%) over which statistics
are collected for various observables. The observables are
generally sampled once every 10* MCS. In many cases, ‘we are
interested in collecting the statistics for an observable, O, over
an interval of y,N spanning the critical point. In order to reduce
the computatlonal effort, we employ Monte Carlo reweight-

26,27
ing,””’ where m observations of O and

‘/‘W_2 dr (1)

i=

<[~

are stored over one long simulation at a ()(bN)* close to the
expected transition. The ensemble average of O at y,N is then
given by

N 1 ~
0= Z 4 exp[ [%N)* B %_N]Ii] (16)

The reweighing will fail when y,N differs too much from
(1N)*, if the configurations generated at (y,N)* are not
sufficiently representative of those at y,N. Fortunately,
reweighting works particularly well near critical points, due to
the broad distribution of configurations resulting from the
critical fluctuations.

Structure Function. The first observable we consider is the
disordered-state structure function

2

po n n
where 5, (k) is the Fourier transform of 8¢, (r) = x(x) — Pa.
It depends only on the magnitude of the wavevector, k = Ik,
and has a single peak at k = 0 that diverges as the critical point
is approached. To evaluate S(k) in FTS, the composition
fluctuations in eq 17 are reexpressed in terms of fluctuations in
the composition field

S() _ n(W_(QW_(-K) 1
PN (Vy,N)? 2N (18)

as derived in the Appendix.
The random-phase approximation (RPA)** of the structure
function is

-1
Sapa (k) 1
o (LR -

° APp8\6" o (19)

where g(x) = 2[exp(—x) + x — 1]/«” is the Debye function. Its
peak Sppa(0) = poN/(4 — 2yN) diverges at the mean-field
critical point, and thus Spp(k) is regarded as the mean-field
approximation of S(k).

Binder Cumulant. The critical point can, in principle, be
determined from the divergence in S(0). However, accurate
predictions would require extraordinarily large simulation
boxes, because of the large-wavelength fluctuations that emerge
as the critical point is approached. To obtain accurate estimates
of (¥N). with small simulation boxes, we employ the finite-
scaling method of Binder.”” This involves calculating the
fourth-order cumulant

—4
()
—2
}eY (20)
as a function of y,N for a series of system sizes, L, in the grand-

canonical ensemble. The moments of the volume-average
composition, ¢_, are given by the expressions

U =1-

-2 4<W_2> _ 2
D)= N T ) a
6wt 1w’ 12

() = N

n()(bN)s n’ (XbN)Z (22)

DOI: 10.1021/acs.macromol.6b01437
Macromolecules 2016, 49, 6116—6125


http://dx.doi.org/10.1021/acs.macromol.6b01437

Macromolecules

SK)/pN

XN =19 |

S(K)/pN

S(K/pgN

kR,

3 4 5 0 1 2 3
kR,

Figure 1. Structure function, S(k), calculated for different grid spacings, A, at y,N = 1.9 (left column), ;N = 1.9 (middle column), and y,,N = 1.9
(right column) for N = 10° (top row), N = 10* (middle row), and N = 10 (bottom row). The RPA prediction from eq 19 is denoted by solid black

curves.

derived in the Appendix. The critical point corresponds to the
fixed point of Uj, or in other words the value of y,N for which
U, is independent of L.

Effective Interaction Parameter. To obtain meaningful
results, the ultraviolet divergence needs to be removed. Its
effect can be understood by looking at the internal energy, U =
(U), which can be expressed as

U - 4 A
A U [ 60,@54,0)) ax
= %%y ﬁ f (56, (K)5h, (—K)) dk
_ 7 [5(k) dk
b¢A¢B - m

(23)
where we have substituted the incompressibility condition,
¢dp(r) = 1 — @,(r), into eq 4 and used the definition of the
structure function in eq 17. The problem is that the integral in
eq 23 diverges; extending the upper limit of the integral to
larger wavevectors causes a continuous decrease in U, which
reduces the segregation between the A and B homogolymers.

To remove the divergence, Vorselaars and Matsen 9 took an
analogous approach to the one Miiller and Binder'® used to
define y, for particle-based simulations. That is they matched
the internal energy of the MC-FTS to the Flory—Huggins
expression

6119

U _
kg Tp,V =295 (24)

in the athermal limit (i.e, y, = 0). In this limit, the structure
function in MC-FTS reduces to Sgps(k),”’ and so it follows that
the effective interaction parameter is

I s JSroao(k) di
€2 (2”)3PON¢3A§$B b

(25)

where Sppy o(k) = pONqZ(EBg(%kZROZ) is the RPA structure

function evaluated at yN = 0. Note that the alternative y,; in eq
2 is obtained using the large-k approximation g(x) & 2/x, which
implies that both definitions become identical as N — oo.

B RESULTS

Our study concentrates on symmetric blend compositions with
¢4 =g ="'/, in the canonical ensemble and z, = z5 = 1 in the
grand-canonical ensemble. We begin by investigating the effect
of the UV divergence on the structure function, S(k), and
testing the ability of the effective interaction parameters, y,; and
X to remove it. Once the divergence is dealt with, the critical
point point is located using the fourth-order cumulant, Uj.
Simulations are performed for invariant polymerizations
extending from N = 10°, where the UV divergence is weak
and fluctuation effects are negligible, down to an experimentally
realistic value of N = 10°.
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Figure 2. Inverse of the peak in the structure function, S™'(0), calculated using different grid spacings, A, and plotted as a function of y,N (left
column), y,,N (middle column), and y,,N (right column) for N = 10° (top row), N = 10* (middle row), and N = 10 (bottom row). The points
about which the MC reweighting was performed are marked by solid dots, and the RPA prediction is denoted by solid black lines.

Structure Function. Figure 1 shows S(k) calculated for
different grid resolutions, A, using the canonical ensemble with
a simulation box of size L = 6R,. The first column of plots are
from simulations conducted at a fixed y,N = 1.9, for different
values of N. They all show a reduction in S(k) as A decreases,
which becomes more pronounced for the smaller values of N.
This can be attributed to the UV divergence, whereby the
inclusion of shorter wavelength fluctuations permitted by the
finer grids reduces the segregation of the melt. The middle
column corresponds to simulations performed at a fixed value
of y,,N = 1.9. In this case, the divergence is nicely removed as
evident by the collapse of the data, even for the lowest value of
N = 10° where the UV divergence is strongest. The final
column of plots are for y,N = 1.9. Although y,, collapses the
data at N = 103, it does not perform nearly as well as y,; does at
the smaller values of N.

We now turn our attention to the peak of the structure
function at k = 0, which requires us to switch to the grand-
canonical ensemble. In the thermodynamic limit (ie., L — o),
the peak diverges as yN — (yN), from below, and so Figure 2
plots S7'(0) as a function of yN, for which the RPA predicts a
linear relationship. To save computational effort, the yN
dependence is determined by the reweighting scheme in eq 16.
The first column displays the results for different N plotted in
terms of the bare y,. The UV divergence is even more
pronounced than before. However, the curves again collapse
when expressed in terms of y,, as demonstrated in the middle
column. The same is not true when S™*(0) is plotted in terms

6120

of y,, as illustrated by the last column. In fact, the failure of y,,
is quite dramatic by the time N = 10°.

Interestingly, the simple RPA prediction in eq 19 appears to
be remarkably accurate. The simulation results for k # 0 in the
middle column of Figure 1 are indistinguishable from the RPA
prediction. There are differences between the simulations and
RPA for k = 0 in the middle column of Figure 2, but most of
that is due to the finite-size effects that tend to suppress S(0)
near the critical point. This will become evident once we locate
the critical point, which should in principle coincide with
§7'(0) — 0. In any case, the peak height agrees well with RPA
away from the critical point for N = 10° and 10*. For N = 10°,
however, the fluctuations cause a noticeable increase in S(0)
relative to RPA at y,;N <1.9. The same qualitative behavior is
also predicted by ROL,” and so this is undoubtedly a real effect
that would remain as L — oo.

Critical Point. We now locate the critical point using the
fourth-order cumulant, U;, in eq 20. This is done by
performing grand-canonical simulations for a series of different
system sizes, L, at a fixed interaction strength, (y,N)*, close to
the critical point.’” For each system size, U; is calculated as a
function of y,N using the reweighting scheme in eq 16. Figure 3
shows results for three values of N. The curves exhibit the usual
behavior,”” where U, transitions from 0 in the mixed region
toward 2/3 in the two-phase region. Furthermore, the curves
cross at common fixed point, providing a precise value for the
critical point, (¥,N),, in terms of the bare interaction parameter.
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Figure 3. Fourth-order cumulant, U;, calculated using different system
sizes, L, for (a) N = 10°, (b) N = 10* and (c) N = 10° Simulations
were conducted with a grid spacing of A = 0.5R,, and MC reweighting
was performed about the points indicated by solid dots.

To check the consistency of the critical behavior with the
expected 3D-Ising universality class, Figure 4 scales the
horizontal axes of the U; plots with respect to L'/, where v
= 0.62997 is the 3D-Ising exponent for the correlation length.
The curves collapse reasonably well, particularly for the larger
two system sizes. Some of the difference will be due the MC
reweighing scheme, which becomes increasingly inaccurate the
further y,N is from (y,N)* denoted by the solid dots. At N =
10% the fixed point of U also agrees well with the expected
value, 0.47, for the 3D-Ising universality class.”® For the higher
values of N, however, the fixed point drops below 0.47, which
was also the case for the particle-based simulations of Miiller
and Binder.'” They attributed this to the narrowing of the
critical region with increasing N."' The implication is that the
system sizes need to be larger in order to observe accurate
critical behavior, but unfortunately it is impractical for us to
perform statistically accurate simulations for significantly larger
L. Nevertheless, we are primarily interested in the position of
the critical point, and our current simulations should be
reasonably accurate in that regard, given the steepness of the U
curves.

The simulations of Figure 3 were all performed for a
common grid resolution of A = 0.5R. In order to examine the
effect of the UV divergence, the simulations are repeated for a
series of different grid resolutions. The resulting positions of
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Figure 4. Analogous to Figure 3 but with the horizontal axes scaled
using the 3D-Ising critical exponent, v = 0.62997.

the critical point are tabulated in Table 1. As expected, the
critical point shifts to higher y,N for finer grid resolutions,

Table 1. Critical Points, (3, N),, in Terms of the Bare y,,
Calculated Using Different Grid Spacings, A, and Invariant
Polymerization Indexes, N

(N).
A/R, N = 10° N = 10* N =10
0.75 2.023 2,077 2.246
0.5 2.034 2.110 2377
0.375 2.046 2.146 2.525
0.25 2.068 2223 2.876
0.1875 2.089 2.301 3.352

because the introduction of shorter wavelengths reduces the
segregation between the A and B components. To remove the
divergence, Figure S plots the critical point in terms of the
effective interaction parameters, y,; and y,,, as a function of the
wavevector cutoff, A = 7/A. In terms of y,;, the critical point
approaches a constant value at large A, indicating that the UV
divergence is removed by this renormalization of the
interaction parameter. The alternative y,,, once again, reduces
the effect of the divergence but does not completely remove it.
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Figure S. Critical point, (y,N), in terms of the effective y, in eq 2
(diamonds) and eq 25 (squares) as a function of the wavevector cutoff,
A = 7/A, calculated for (a) N = 10°, (b) N = 10% and (c) N = 10°.
The mean-field prediction of 2 and the ROL prediction in eq 1 are
denoted by the dotted and dashed lines, respectively.

For all three values of N, the asymptotic value of (y,,N). at
large A lies between the mean-field value of 2 and the ROL
prediction in eq 1, denoted in Figure S by the dotted and
dashed horizontal lines, respectively. This implies that the
critical point approaches the mean-field value in the limit of N
— 0. Figure 6 compares the fluctuation correction, (y,,N). —
2, from our simulations (symbols) with the ROL prediction
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Figure 6. Logarithmic plot showing the fluctuation correction to the
mean-field critical point for the three values of N simulated in this
study. The dashed line denotes the ROL prediction from eq 1.°
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(dashed line) on a logarithmic scale. The correction is
reasonably consistent with the N/ scaling predicted by
ROL, particularly for our two largest values of N. However, the
proportionality factor is roughly half the predicted size, further
emphasizing that fluctuation effects are extremely small in

binary homopolymer blends.
B DISCUSSION

Field-theoretic simulations (FTS) provide a complementary
approach to the usual particle-based simulations. To increase N
for a particle-based model requires more monomers per
polymer as well as more polymers per volume R, and the
extra degrees of freedom increase the computational cost of the
simulation. However, this is not the case for FTS, since the
polymer degrees of freedom are integrated out of the system.
Instead, FTS are only slowed down by the level of fluctuations
in the fields, and consequently they are fast at large N becoming
increasingly computational for small N. As we have seen, the
reduction in N is also accompanied by a strong UV divergence.
Fortunately, the divergence can be compensated for by the
simple renormalization y,, defined in eq 2, allowing for
meaningful quantitative predictions of the structure function,
S(k), and the critical point, (yN)..

Despite the slight deviations from the expected 3D-Ising
critical behavior, our MC-FTS estimate of (yN), should be
more accurate than the ROL prediction in eq 1. The ROL is a
perturbative expansion truncated at first order, but more
importantly it does not properly treat critical fluctuations.
Although it is somewhat uncertain how well y,; removes the
UV divergence from the MC-FTS, it is the same renormaliza-
tion used in the ROL calculation.” Of course, there will be
some inaccuracy in our results due to the saddle-point (i.e.
mean-field) approximation for the pressure field. Nevertheless,
the fluctuations of W_(r) are undoubtedly far more important
than those of W,(r), and thus the MC-FTS should capture
most of the deviation from mean-field theory.

The obvious way to correct for the saddle-point approx-
imation is to use the full CL-FTS. This has already been done
in two dimensions, where the CL-FTS and MC-FTS produced
consistent results.” It would be interesting to repeat the
comparison in three dimensions, but there would be a couple
obstacles to deal with first. The trajectories of CL-FTS are
prone to instabilities particularly when N is reduced to realistic
values.”" In fact, there is no proof that the trajectories produce
stable distributions as there is for conventional Langevin
simulations.'* Furthermore, the nature of the UV divergence
will change. At the very least, a as well as y will have to be
renormalized,” and it may be that there is no simple
renormalization capable of removing the divergence for CL-
FTS.

For MC-FTS, the y,, renormalization performed much better
than it did for the diblock copolymer melts, where it started to
fail when N < 10*”° Here, y,; works perfectly fine for values of
N down to at least 10°, perhaps because the transition occurs at
a smaller value of y,;N and because homopolymer blends do
not need as fine of a spatial grid as diblock copolymer melts
where the domain size is comparable to R;. In any case, y,; will
eventually fail for small N, and it will become necessary to use
an improved definition. Although y,, appeared to provide an
improvement for diblock copolymer melts,”” this was not the
case for homopolymer blends. Clearly, the strategy used to
derive y,, is not robust. The rigorous way to improve upon y,,
is to examine higher-order terms in a loop-expansion,” but this
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requires a complicated calculation. An easier alternative might
be to apply the same procedure in ref 12 used to calibrate the
interaction parameters for particle-based simulations.

One benefit of FTS, as implemented here, is that they are
based on the same standard Gaussian-chain model that
underlies most theoretical calculations, which is why we can
directly compare to the ROL prediction in eq 1. The standard
model is generally the preferred choice because it represents
the minimal model with the least number of parameters needed
to represent high molecular-weight polymers. The behavior of
more detailed models or in fact real experimental systems,
involving for example polymers with finite persistence lengths
and finite-range interactions, reduces to the mean-field behavior
of the standard model in the limit of infinitely long molecules.
Furthermore, it is hypothesized that the fluctuation corrections
of the more complicated models will also match those of the
standard model for large finite values of N. To realize this
universality, however, the parameters of a given model have to
be properly mapped onto those of the standard model (e.g., ¥
and a).

In light of recent evidence”'” that the linear definition of y,
proposed by ref 10 does not reveal the universal behavior, we
cannot yet compare the previous particle-based simula-
tions®”'" to our MC-FTS or the ROL predictions. However,
the nonlinear definition of y, proposed in ref 12 could permit a
meaningful comparison, given its impressive performance for
diblock copolymer melts.">'* Tt would just be a matter of
recalibrating y, for the particle-based models using the new
strategy in ref 12. Alternatively, one could simulate
homopolymer blends with the same models calibrated in ref
12. Either way, it will be very interesting to check if different
particle-based simulations produce consistent universal results,
and furthermore if they match our MC-FTS predictions.

Determining the effective y, for experiments has also been an
ongoing challenge. It is generally obtained by fitting the
measured structure function or phase transition of either
symmetric diblock copolymer melts or symmetric homopol-
ymer blends to theoretical predictions. The problem, however,
is a lack of consistency among the different choices.* It is not
surprising that the fits involving diblock copolymers do not
produce consistent predictions for y,, since the mean-field**
and fluctuation™ theories do not provide accurate predictions
for the relevant quantities. However, given recent develop-
ments, diblocks could now provide a viable system for
extracting accurate values of y,.’° Nevertheless, considering
how small the fluctuation corrections for homopolymer blends
appear to be, previous estimations of y, based on homopolymer
blends are probably already reasonably accurate, at least for
high- N systems.

B SUMMARY

We have performed the first field-theoretic simulations (FTS)
for binary homopolymer blends in three dimensions. The focus
was on symmetric blends with equal amounts of A and B
homopolymer, where both molecules contain the same number
of segments, N, and both segments have the same statistical
length, a (segments are defined based on a common volume of
po ). The FTS employed the standard incompressible
Gaussian-chain model, where polymers are treated as thin
elastic threads and unlike segments interact by a simple contact
force controlled by the usual Flory—Huggins interaction
parameter, y. The only approximation in the simulations was
a mean-field treatment of the incompressibility condition, but
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this is believed to be relatively accurate. Although the FTS were
strongly affected by an ultraviolet divergence, its effect was well
controlled by the effective interaction parameter y,; in eq 2
originally derived by ref 19, but not by the alternative y,, in eq
25 proposed by ref 20.

The fluctuation effects were found to be exceptionally small
for the range of invariant polymerization indexes examined in
our study, N = 10° to 10°. In the disordered phase at y,,N = 1.9,
the structure function, S(k), was virtually indistinguishable from
the mean-field prediction for k > 0. However, at our smallest N,
there was a noticeable enhancement of the peak, S(0), which is
qualitatively consistent with renormalized one-loop (ROL)
predictions.” Although we observed a significant depression in
the peak height at higher segregations, most of that can be
attributed to finite-size effects, which become particularly
pronounced near the critical point. To deal with the finite-
size effects, we switched to a four-order cumulant method to
locate the critical point, (yN).. As expected, fluctuations push
the mean-field prediction, (¥N), = 2, to higher values of yN.
The shift is consistent with the N~/ scaling predicted by
ROL’ in eq 1 and earlier particle-based simulations.””
However, the amplitude of the fluctuation correction is
considerably smaller than previously reported. In light of how
small the fluctuation effects are, the experimental practice® of
estimating y based on the mean-field predictions of binary
homopolymer blends appears to be well justified.

B APPENDIX

Here we calculate moments of the composition, g?)_(r),
following the approach used in ref 21. This involves adding
an external potential, U(r), to the Hamiltonian

ALY HIGY g fo
KT kT +N/ Ug. dr (26)

and evaluating the corresponding partition function, Z. With
that, it immediately follows that the k’th moment is given by
D7

LI N] 1
( ¢_(rz)> il B
H ( 7o) Z I, DU(x) =0 27)

Performing the transformation from the particle- to field-based
Hamiltonian, we obtain

AW, W]  HIW, w_]
nkgT nkgT
P /(ZUW_ + U?) dr
4NV (28)
A single differentiation of Z gives the first moment
A 2(W_(r) + U(r)
b ) = -2 )
%N U=0
_ 2Aw_()
5N (29)
Similarly, the second moment is given by
A AW _(r)W_(1)) N)26(y — 1)
(D()h (1) = ———F" - | = |———=
(4, N) p) AN
(30)
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Fourier transforming this expression and using the fact that
5¢A7A = %qg_ gives the field-based expression for S(k) in eq 18.

Integrating the expression over r; and r, leads directly to eq 21
for (p2). Lastly, the fourth moment is

Ty AL W®)  (N) sA
<, 1 ¢ (r)) = N)' (%J%N)S

1

L[ ]2 48
) GN)? (31)
where
A= (W_(t)W_(1,))(x; — 1)
+ (W_()W _(r,))o(r; — 13)
+ (W _ ()W _(13))5(x; — 1)
+ (W _(r)W _(1,))6(r, — 13)
+ (W _(5)W _(1y))(x, — 1)
+ (W_(n)W _(r,))8(x; — 1) (32)
and
B = 8(r, - 1,)5(x, — 1,
+ 8(r; — 1)8(r, — r)
+ 6(r; — 1)6(x, — 13) (33)

Integrating eq 31 over the four coordinates, r; to r,, gives eq 22

for (p_*).
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