COUNTING RELATIVE EQUILIBRIUM
CONFIGURATIONS OF THE FULL TWO-BODY PROBLEM

RICHARD MOECKEL

ABSTRACT. Consider a system of two rigid, massive bodies interacting
according to their mutual gravitational attraction. In a relative equilib-
riwm motion, the bodies rotate rigidly and uniformly about a fixed axis
in R3. This is possible only for special positions and orientations of the
bodies. After fixing the angular momentum, these relative equilibrium
configurations can be characterized as critical points of a smooth func-
tion on configuration space. The goal of this paper is to use Morse the-
ory and Lusternik-Schnirelmann category theory to give lower bounds
for the number of critical points when the angular momentum is suffi-
ciently large. In addition, the exact number of critical points and their
Morse indices are found in the limit as the angular momentum tends to
infinity.

1. INTRODUCTION

Consider the problem of n rigid, massive bodies in R® moving under
the influence of their mutual gravitational attraction. Simplifying to the
case of point masses provides a good model when the masses are far away
from one another or are spherically symmetric. But when asymmetrical
masses interact at comparatively close range, dissipative effects can lead
to changes in the orbits and the rotational motions. Such forces may lead
to a decrease in the total energy of the system, leaving the total angular
momentum unchanged (at least according to some simple models [16], page
163]). From this point of view it is interesting to look for local minima or
critical points of the energy for a given angular momentum.

In the point mass n-body problem, Smale showed that the critical points
of the energy on such a fixed angular momentum level are the relative equi-
librium states [21], 22] and the same holds true for the full n-body problem.
For such motions, the entire configuration rotates uniformly around some
axis in R? with the centers of mass moving on circles around the axis and
with the bodies rotating simultaneously to maintain phase locking. If such
a motion arises due to energy dissipation, it should be a local minimum of
the energy and not just a critical point. In [I4] it was shown that such
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energy minimizing relative equilibria are impossible for n > 3. The goal of
the present paper is to look in more detail at the case n = 2.

When n = 1, there is no gravitational interaction, and we are reduced to
the well-studied case of a free rigid body. In this case, the relative equilib-
rium motions are the steady rotations around the principal axes of inertia
and the minimum energy motions are rotations around the axis of maximum
moment of inertia.

For n = 2 the problem is much more complicated and there is a substantial
literature about it. Lagrange studied the librations of the moon in its motion
around the earth [§]. If we think of the earth as spherical and unaffected by
the moon, then we have the problem of a rigid body moving in a central force
field and a phase locked moon would be a relative equilibrium even though
the earth is not phase locked. Using some approximations to the potential,
Lagrange found 24 relative equilibria in the generic case of a body with three
distinct principle moments of inertia. These are such that the three principle
axes are along the radius, tangent and normal to the orbit. The 4 minimum
energy solutions have the principle axis of maximal moment of inertia along
the normal and the axis of minimal moment of inertia along the radius. The
central force problem is also of interest with regard to the motion of earth
satellites [3, 5]. More recent references which include further references to
the older papers are [2, [4, 15, 23]. Using various approximations to the
potential, they again find 24 relative equilibria in the generic case. The
approximate potentials used have more discrete symmetries than is present
in the real system. In [23], Morse theory is used to estimate the number of
relative equilibria for the full potential.

One of the few papers to treat the case of two arbitrary bodies is Ma-
ciejewski’s [9]. In the limit of large distances between generic bodies, the
principle axes of each body again align with the radius, tangent and normal
to the orbit. Maciejewski counts 36 solutions but this does not take account
of the choice of orientations along the principle axes. Using the same count-
ing method as above, the number should be 24 x 24 = 576. In Section
we rederive Maciejewski’s result from the point of view of critical points for
fixed angular momentum and compute the Morse indices of the 576 solu-
tions. It turns out that there are 16 minima corresponding to cases where
both principle axes of maximal moment of inertia point along the normal and
those of minimal moment of inertia point along the radius. In addition to
studying the limiting case, we use Morse theory and Lusternik-Schnirelman
theory to show that for moderately large angular momenta, there must be
at least 32 relative equilibria if all are nondegenerate and at least 12 with
no nondegeneracy assumptions. The number of minima is at least 2. Better
lower bounds are possible for bodies with discrete symmetries.
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2. RELATIVE EQUILIBRIA AS CRITICAL POINTS

In this section we introduce our notation and state some information
about relative equilibria of n-rigid-body problem referring to [14] for the
proofs. Consider a collection of n rigid, massive bodies in R3. Each body
has its own body coordinate system where it occupies a compact subset
B; C R? which is the support of a mass measure dm; on B;, i = 1,...,n.
Denote the i-th body coordinate system by Q; € R3. The total mass of the

i-th body is
m; = / dmi
B;

and we assume m; > 0. Assume that the center of mass is at the origin in
body coordinates, i.e.,

/ demz =0.

B;

The symmetric 3 x 3 inertia matriz of B; is given by
1) L= [ (QP1-QQT) am

where I is the 3 x 3 identity matrix. It will be assumed that the matrices
I; are all invertible which excludes point masses and one-dimensional mass
distributions.

We describe the position and orientation of the body in the inertial coor-
dinates, € R? by a time-dependent Euclidean transformation F;(t) where

(2) z(t, Q) = Ei(t)(Qi) = Ai(H)Qi + ¢i(t) Qi € B,

The rotation matrix A;(t) € SO(3) gives the orientation of the body while
¢;(t) € R? is the inertial center of mass.

The positions and orientations of all n bodies is represented by Z =
(q, .- Gn, A1, ..., Ap) € R3 x SO(3)" and we define the configuration
space as the open subset of R?” x SO(3)" where the bodies are disjoint

={Z: Ei(B:) NE;(B;) =0,i # j}.
To describe the gravitational interaction introduce the Newtonian poten-
tial function. For each pair of indices (i, j), ¢ # j, there is a mutual potential

dm; dm;
Uij (g, 45, Ai, Aj) // —
J( ! B; |QZ_QJ+AiQi_Aij|

and then the Newtonian potential is given by

=> Uy

1<j

U(Z) is a well-defined, smooth, positive function U : t — R. We are calling
U(Z) the Newtonian potential, but the potential energy of the system is
actually —U(Q).
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The velocity of the point is given by
B(t, Qi) = 4i(t) + Ai(H)Qi = vi(t) + Ai(t)% (1) Qs

Here v; is the velocity of the center of mass and

Qi(t) = A7 (1) Ai(t)
is the antisymmetric angular velocity matrix with respect to body coordi-
nates. There is a corresponding angular velocity vector Q; € R3 such that
Qiu = Q; x u for all vectors u € R3. The angular velocity and orientation
matrices are related by

Ai(t) = Ai)Qi(t).
In addition to the position variables g;, A;, velocity variables v;, ; will be
used on the phase space TU. We will also use the notation P = (Z, Z) for
points of T U.

We will not need the equations of motion here but they can be found in

[9, 14]. We note, however, that these equations have the usual symmetries

and constants of motion. The translational symmetry ¢; — ¢; + ¢, ¢ € R3
leads to the constancy of the total momentum vector

Ptot = M1V + ... + MyUp.

Assume without loss of generality that ps: = 0. Then the center of mass
is constant and we may assume it lies at the origin of the inertial system.
This leads to a translation-reduced phase space TU where

U:{Zed:mlql—i—...—l—mnqn:O}.

We have dimif = 6n — 3 and dim TU = 12n — 6.

There is also a rotational symmetry. If R € SO(3) then the rotated
configuration RZ has centers of mass Rq; and orientation matrices RA;,
i=1,...,n. In other words SO(3) acts on R3" x SO(3)" diagonally from
the left. The velocities of the centers of mass are also rotated to Rv; but the
body angular velocities {2; are unchanged. The rotational symmetry implies
the constancy of the total angular momentum vector in the inertial frame

Finally, since no dissipative forces are being included, the total energy
H(Z,2)=T(Z,2) - U(Z)
is constant, where T'(Z, Z) is the kinetic energy

. 1 1
7 7

For a relative equilibrium motion, the configuration of n bodies rotates
uniformly around a fixed axis through the origin in space. We can write the
angular velocity vector of the rotation as we where e € R3 is a unit vector
specifying the direction of the rotation axis and w > 0 is the angular speed.
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The angular momentum vector is related to the angular velocity vector by
A =wl(Z)e where

(4) 1(Z) =Y mi(lgl"T— qiq] ) +>_ AL AT

is the 3 x 3 total inertia matriz of the whole configuration. For a rela-
tive equilibrium, it turns out that e must be an eigenvector of I(Z). The
eigenvalue is

(5) Ge(Z)=el'1(Z)e = Zmiq;f[(eqi + Z eT A ;AT e

where K. is projection onto the plane orthogonal to e. So we have
(6) Are = wl(Z)e = wGe(Z)e.

Similarly, we find that the total energy of a relative equilibrium motion is
1
(7) H,. = §Ge(Z)w2 ~U(2).

In what follows we will be interested in relative equilibria with a given,
nonzero angular momentum vector A € R3. Then the rotation axis and
angular speed are uniquely determined by

A A
a TR YTam

Of course not every configuration Z € U admits a relative equilibrium
motion. Indeed, Z must satisfy some complicated algebraic equations such
that, for given angular momentum vector A, we expect only finitely many
relative equilibrium configurations up to symmetry. These equations can be
derived directly from the equations of motion, but we do not need to do
that here. Instead, we will describe a variational approach to the relative
equilibrium equations which derives from their relationship to the problem
of critical energy.

Fixing an angular momentum vector, A, defines a subset of the translation-
reduced phase space: My C TU. It can be shown that for A # 0, M, is a
submanifold of codimension three. Then one can look for minima or, more
generally, for critical points of the restriction of the energy function H to
M. Then we have the following result:

Proposition 1. Let A € R? be any nonzero vector. A state P = (Z,7) is
a critical point of the restriction of the total energy function to My if and
only if it is a relative equilibrium state.

This can be seen as an application of the general results of Smale [21].
Smale goes on to characterize the corresponding relative configurations Z as
critical points of an amended potential function. He eliminates the velocities
by fixing Z and then minimizing the energy over the corresponding set
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of velocities Z which give angular momentum A. Substituting the unique
minimal velocities into the energy function gives the amended potential:

(9) Wi(Z) = %ATI(Z)*A - U(2).

Wi(Z) is a smooth function on the configuration space U whose critical
points are exactly the configurations which admit relative equilibrium mo-
tions with angular momentum A. Moreover, it follows from the definition
that local minimum energy states P € M, correspond to local minima,
Z eU, of Wy(Z).

Recall that for such a relative equilibrium, A is an eigenvector of the total
inertia tensor I(Z). It follows that at these points the amended potential
reduces to the simpler form

A2
10 H\(Z) = — .
( ) )\( ) 2G6(Z) ( )
This function, which will be called the critical energy function, was used by
Scheeres in his study of minimal energy configurations [I7]. While the two
functions agree at the critical points, they are not equal in general. In fact
we have

Proposition 2. For Z € U and X\ # 0 € R? we have
(11) H\(Z) < Wi(2)

with equality if and only if X\ is an eigenvector of I(Z). Both functions
provide lower bounds for the energy of any state P = (Z,Z) € M.

It turns out that H) provides an alternative variational characterization
of the relative equilibrium configurations.

Proposition 3. The amended potential Wy(Z) and the critical energy func-
tion Hx(Z) have the same critical points in U, namely the relative equilib-
rium configurations for angular momentum A.

In addition to being simpler, H)(Z) lends itself better to the application
of topological existence techniques in the next section.

Finally, regarding the question of local minima we have the following
result:

Proposition 4. Suppose Z is a relative equilibrium configuration and hence
a critical point for both Hx\(Z) and Wx(Z). If Z is a local minimum of
H)\(Z) then it is also a local minimum for Wy(Z). Conversely, if Z is
a local minimum of Wx(Z) and if 1(Z) has the property that its mazimal
eigenvalue is not repeated, then Z is also a local minimum for Hy(Z).

Note that, due to the main result of [14], such local minima are possible
only for n < 2. The second statement of the proposition was used in the
proof of this fact. It is not known whether the extra hypothesis about non-
repeated eigenvalues is really needed. The first statement in the proposition
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is the one which will be useful below. It follows easily from proposition
Indeed, if Z is a local minimum of H) then for all Z’ sufficiently close to Z
we have

WA(Z') > H\(Z') > H\(Z) = WA(Z)

so Z is a local minimum for W).

3. RELATIVE EQUILIBRIA AND MINIMAL ENERGY SOLUTIONS FOR n = 1,2

If there is only one rigid body then there is no gravitational interaction
and we have the familiar case of a free rigid body. Fixing the center of mass
at the origin leaves only the rotational degrees of freedom. If we choose
the body coordinates along principle axes, then the angular momentum and
energy are

1
A= 11101 + 1999 + 13303 H = 5(1119% + 12293 + IggQ%).

We will use some of the results of the previous section to derive the well
known result that the relative equilibria are rotations around the princi-
ple axes in the inertial frame and that rotation around a principle axis of
maximal moment of inertia gives a minimum energy motion.

The translation-reduced configuration spaceisid =SO(3). f Z =AeclU
is the orientation matrix of the body, then the total inertia tensor is I(Z) =
AL AT where I = diag(Iy1, I22, I33). This is just the inertia tensor of the
rigid body in inertial coordinates. The amended potential is

1 1
Wi(2) = §ATI(Z)—1A = §ATAI;1ATA
while the critical energy function is
AP
H\(Z) =
)\( ) QGe(Z)

We can find the relative equilibria as critical points of either function.
Let A(t) = AR(t) where R(t) € SO(3) is any curve of rotations with

R(0) =Tand p = R(0) € so(3). Then Z is a critical point of W), if and only
if

Ge(Z) =e'I(Z)e=eT AL ATe.

ANTAPITTAT =0
for all p € so(3) or equivalently
(ATX) - (px ITTATN) = p- (ITTATA x ATX) =0

for all p € R3. The means AT\ has to be an eigenvector of 1—1—1’ that is, a
principal axis in the body coordinates. Equivalently, A is a principle axis in
the inertial frame. A similar computation to find critical points of H) leads
to

p- (L1 ATe x ATe) =0
for all p € R? which means that e = A\/|)\| is a principle axis in the inertial
frame, as before. For a relative equilibrium motion the energy is given
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by H)(Z) and it is clear that choosing the principal axis with maximum
moment of inertia G.(Z) gives the minimum energy.

If the principal moment of inertia I;; are distinct then the only principle
axes in body coordinates are the coordinate axes. The matrices A such that
AT maps the unit vector e = A\/|\| onto a coordinate axis form six circles in
SO(3) according to whether ATe = +e;, i = 1,2,3. These are the relative
equilibrium configurations. In the quotient space SO(3)/S! ~ S?, where S?
represents the unit rotation axis in body coordinates, we have six relative
equilibrium points +e;, 1 =1, 2, 3.

The two-body problem is more interesting. Using the center of mass
condition, we can replace the two position variables ¢, g2 by the relative
position ¢ = ¢2 — q1 = (2,y,2) € R3. The configuration is given by Z =
(g, A1, A3) € R3 x SO(3)? and the configuration space is the open set

U= {(q,Al,Ag) : E1<Bl) N E2(BQ> = @}

Assume, without loss of generality, that A = (0,0,|A|) and e = (0,0,1).
Then the moment of inertia around e is
(12) Ge(Z)=ps* + el A1 ATe + e Ay Ale = s

mi + ma

where s = y/22 + 2. The Newtonian potential is

(13) U(2) _/ / dmzdmj
By JBg

where 7(Z, Q1,Q2) = |q + A2Q2 — A1Q1].

Due to the complexity of the potential, it is difficult to find the relative
equilibria for general mass distributions. Several papers have treated special
cases of this problem by making simplifying assumptions about one or both
of the bodies or by treating limiting cases where the bodies are far apart.
See, for example, [9, 23] [17, 18] 19]. We will discuss two of these simplified
problems below and also show how to use Morse theory to estimate the
number of critical points of H) for general mass distributions assuming ||
is sufficiently large.

First consider the case of two spherical bodies with constant densities and
radii Ri, Re. This was discussed in detail by Scheeres [17] but it is worth
describing briefly here as motivation for our approach to the general case.
According to Newton, the gravitational attraction is the same as for point
masses located at the centers of mass, so

mima

v ==

which depends only on ¢ = (x,y, 2) and is independent of the orientation
matrices of the bodies. The body inertia matrices simplify to I; = ;1 where

2m; R? . .
aj = % and l) simplifies to

Ge=u82+011+042.
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This is also independent of the orientation matrices but differs from the
point mass case where a; = as = 0. A short calculation shows that critical
points of Hy have z = 0 and that s satisfies

(m1 + mz)Ge(8)2_

’)"2 = 53

1712

FiGURE 1. Critical points of H) for the two spheres problem.

Figure 1| shows a plot of this relation in the (s, |A|?) plane when m; =
meo=1and R = Ry = % Fixing |A| determines a horizontal line whose in-
tersection points with the graph represent the corresponding critical points.
The shaded region is forbidden by the requirement that the two spheres be
disjoint, that is, s > ( = R; + Ry = 1. For |\| small, there are no critical
points and the minimum of H), is achieved on the boundary with the spheres
in contact. For larger |A| two critical points appear and persist until one
of them collides with the boundary (dashed line in figure [1)). Scheeres calls
this the fission parameter and shows that an equilibrium with the spheres
in contact is no longer possible. For |\| larger than the fission parameter
there is a unique critical point in the physical region and it gives the mini-
mum of H)y. Actually, it is only the values of s and z that are unique. One
can still rotate around the z axis and allow arbitrary orientation matrices
A1, As € SO(3). Thus, from the point of view of the general problem, each
critical point represents a manifold of critical points of H)(Z) diffeomorphic
to St x SO(3) x SO(3).

Returning to the problem of two general masses, we begin by construcing
a compact subset which contains all of the critical points of H) for a given
A = (0,0, |A]) and even includes possible minima with the bodies in contact.
Let U denote the closure of U, consisting of configurations where the two
bodies are either disjoint or else just barely touch. Note that I{ is closed but
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not compact since |q| = |(z,y, 2)| = oo is possible. Our compact set will be
obtained by finding upper bounds for s = /22 + y% and |2|.

Lemma 1. For n =2 and A = (0,0, |\|) # 0, there are positive constants
¢ and o such that all of the relative equilibrium configurations for angular
momentum A are contained in the compact set

K)\ = {Z = (Q7A17A2) g = (xaya Z), ’Z‘ < ga V x? +y2 < U‘)\‘Z}
Moreover, the infimum of Hy over U is achieved in K.

Proof. Relative equilibrium configurations are critical points of
_ P
2G.(2)
Let R1, Ro be the radii of spheres containing B1, Bo and choose ( = Ry + Ro».
If |z] > ¢ then one of the bodies is strictly above the other in the sense of
z-coordinates. It is easy to see that with this assumption, the Newtonian
potential satisfies U, < 0 if z > 0 and U, > 0 if z < 0 independent of the
mass distributions within the bodies. Since the moment of inertia G¢(Z2)
in is independent of z, it follows that in the set |z| > ( there are no
critical points of Hy and that H) is increasing with respect to |z| there.
From we have the estimates

(14) ps? <Ge(Z) <ps® +y+7

where s = /22 +y? and where v; is the largest eigenvalue of I;. The
directional derivative in the direction of the unit vector (x,y,0)/s (keeping
A; fixed) is

H, —~U(2).

DG (Z) =2us.
To estimate the directional derivative of U, first differentiate to get

dm;dm; s
DSU(Z):_/B/BTBJ
1 2

where 7(Z,Q1,Q2) = |q + A2Q2 — A1Q1|. For |z| < (= Ry + Ry it is easy
to see that 72 < (s + ()2 + (2¢)? for all Q1,Q>. This gives

—D,U(Z) > mmes
((s +¢)* + (2¢)*)2
Combining this with the lower bound from , it follows that

2
D,H\(Z) = _2G‘:\(‘Z)2DSG6 - D,U(Z)
|2 mimsa s
st (s Q)%+ (20)2)7
Both of the terms tend to zero as s — oo but the negative first term is
O(s73) whereas the positive second term is O(s~2). It follows that we
can find o depending only on m1,ms,( such that D;H) > 0 in the region
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|z| < ¢, s> o|A?>. Hence there are no critical points in this region and H)
is increasing with respect to s there. O

Using the compactness of K and reasonable assumptions about the mass
distribution, we can show existence of a minimizer for H), possibly with the
bodies in contact. For large enough angular momenta, the minimum will
occur with no contact and provides a minimal energy relative equilibrium
solution.

Theorem 1. Suppose n = 2 and that the mass distributions are such that
the Newtonian potential extends continuously to OU. Then for every A # 0
there is a point Z € Ky C U where Hx(Z) achieves its infimum overU. If|\|
is sufficiently large, then this minimum is achieved at a relative equilibrium
configuration Z € U. In this case Z also gives the infimum of W(Z) over
U and so the corresponding relative equilibrium state is an energy minimizer

m M)\.

Proof. With these assumptions, H) is continuous on the compact set K of
lemma |l| and must achieve a minimum there. By the lemma, this is actually
the infimum over U.

If |A| is large, we need to see that the minimum of H) on U does not
occur on the boundary. But dU is compact, so there are constants g > 0
and u > 0 such that

Ge(Z)<yg UZ)<u H\(Z)>— —u Zedl.

So we will have Hy(Z) > 0 on OU if |A\|? > 2gu. It suffices to show that
there is some Z € U where H)(Z) < 0.

If we take |z| < (, use the lower bound from and estimate the de-
nominator in as above we find

< ’)\|2 mims9
T2 (s 02+ (207)7
which is negative for all sufficiently large s.

Since the minimal point Z is not on the boundary, it must be a critical
point of Hy, i.e., a relative equilibrium configuration for angular momentum
A. By proposition [3] this critical point is a local minimum of both H) and
W, so the corresponding relative equilibrium state is an energy minimizer

in M,. U

H\(Z)

For general bodies the boundary 0U will be very complicated and a study
of possible equilibria with the bodies in contact seems intractable. For the
two-spheres problem, Scheeres found that such configurations are impossible
for sufficiently large angular momenta. It seems that such a result is not
possible without restricting the shape of the bodies. For example, two bodies
shaped like the letter S would likely have stable equilibrium configurations
with the bodies hooked together for arbitrarily large angular momenta |A|.
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From now on we will ignore the boundary and focus on critical points of
H), in U. Lemma [l| shows that these critical points must lie in K, NU.
However, we also want to avoid considering possible critical points with
the bodies very close to one another where the details of the geometry of
the bodies might lead to unexpected results. For example, imagine nested
spheres or interlocking dumbbells. To avoid this sort of problem we will
impose a lower bound s > oy which forces the bodies to be separated in the
directions orthogonal to A.

Lemma 2. Let C) be the compact set
C)\ = {Z = (qu17A2) ‘q = (xvyvz)v ‘Z| < €70'0 <s< 0-|)\‘2}

where s = \/22 + y2, ( = R1+ Ry and o are the constants from lemma and
o s any constant with oy > (. For |\| sufficiently large, C) is a positively
invariant set for the negative gradient flow of Hy. Moreover, by taking |\|
larger we can guarantee that the critical points of Hy in C) actually satisfy a

stronger lower bound s > c¢|\|? where c is any constant with 0 < ¢ < %

Proof. Let K) be the compact set of lemma Clearly C) is the subset
defined by imposing the additional constraint s > og. The proof of lemmall]
shows that the vectorfield —VH,(Z) is pointing in along the boundaries
|z| = ¢ and s = o|\|]? of K. If |)\| is sufficiently large, we will show that it
also points in on the new boundary component where s = oy.

To see this, note that for fixed s > ¢, the denominator r(Z, Q1,Q2) ap-
pearing in the integrals for the potential and its derivative satisfies r > |s—(]
for all Q1, Q2. Combining this with the upper bound from gives

A

DSH)\(Z) == —WDSGS - DSU(Z)

I\ s mims s
(ns?+m+2)?  (s—¢)3
The first term is negative and dominates the second when

(m1 +ma)(us® + 1 + 72)?
(s —¢)?

Setting s = o¢ for some constant g9 > ( we see that the inequality will
hold for |A| sufficiently large. To prove the last statement we want the
inequality to hold for all s € [0g,¢|A|?]. Let f(s) denote the right-hand side
of (1). It is easy to check that f”(s) > 0 so the maximum of f(s) on
[00, ¢|A\|?] is attained at an endpoint. We have already chosen |\| such that
the inequality if valid for s = 0. Setting s = c|\|? and taking the limit as
|IA| = oo, the inequality simplifies to ¢ < "11™2  Fixing any such c,

A

(15) A2 >

(m1m2)

the inequality will hold if |A| is sufficiently large. (]

The critical energy function is invariant under rotation around the z-axis
so it determines a smooth function on the quotient space Xy = Cy/S'. We
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- s
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FIGURE 2. Ry = {09 < s < a|M?, |2| < ¢} If || is suffi-
ciently large, the product space X\ = Ry x SO(3)? is posi-
tively invariant for the negative gradient flow of Hy. We are
avoiding the region s < ¢ where the bodies may come into
contact.

can eliminate this symmetry by restricting to Z = (g, A1, A2) with ¢ =
(2,0,2), z = s > 0. Thus X, is diffeomorphic to Ry x SO(3)? where Ry
is the two-dimensional rectangle {(s,2) : o9 < x < o|A]% |2| < ¢} (see
figure . It is invariant under the negative gradient flow of Hy if |A| is
sufficiently large (where is sufficient). This gives another proof that H
must have at least a minimum away from ol but we can use Morse theory
to give a better estimate for the number of critical points. Note, however,
that by restricting to Xy, we may be missing some critical points with s < oy.
For example, comparison of figures [I] and [2| shows that in the two spheres
problem there is family of critical points converging to the contact set s = (
for a small interval of the parameter |\|.

Before introducing the Morse estimates, it is advantageous to take note of
a further, discrete symmetry of the problem. Consider a relative equilibrium
state (Z,Z) with angular momentum X\ = (0,0,|)\|]). Let R denote the
rotation by by 7 around the z-axis:

1 0 0
R=|0 -1 O
0 0 -1

Then (RZ,RZ) is a relative equilibrium motion with angular momentum
RX = — ). If we combine this with a reversal of all of the velocities, we find
a relative equilibrium state (RZ, —RZ) with angular momentum A again
but with configuration RZ. Using coordinates (z, z, A1, A2) on the quotient
space X, we have a further action of the group Zo:

R(z,z, A1, Ag) = (z,—2z, RA1, RA3).
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Let X = X /Z2 be the quotient space under this action. Then H) determines
a smooth function on X'. The critical points of this function correspond two-
to-one to critical points in X and to circles of critical points in . To apply
Morse theory we need to find the Betti numbers §; of X, that is, the ranks
of the homology groups with coefficients in some field. Then the Poincaré
polynomial is P(t) = >, Bitk. In case of degenerate critical points we
will use Lusternik-Schnirelman theory which requires knowledge of the cup
product structure in the cohomology rings. Specifically, we need to know the
cup length, that is, the maximal number of nontrivial factors in a nonzero
cup product.

Lemma 3. Using Zs coefficients for homology and cohomology groups, the
Poincaré polynomial of X is P(t) = (14+t+12+13)2 = (1 +)2(1 +t%)? and
its cup length is 5.

Proof. X is a trivial disk bundle over SO(3)? and it follows that X is a disk
bundle over SO(3)?/Zy. Such a bundle is homotopy equivalent to its base
space. In this case we have a homotopy equivalence X ~ SO(3)2/Z,. Chang-
ing coordinates on SO(3)? from (A, Ag) to (Ay, B) where B = A['A,
the action becomes trivial on the second factor and we are reduced to
X ~ L x SO(3) where L = SO(3)/Z2. Now SO(3) ~ RP(3) ~ S3/Z;
and it follows that the factor L is a lens space L ~ S3/Z,. Indeed if we
view S? as the unit quaternions then SO(3) is the quotient by the sub-
group {1, —1}. The matrix R is the rotation matrix corresponding to the
quaternions =+7 and so L can be viewed as the quotient space of the unit
quaternions by {1, —1,4, —i}.

The homology groups and cohomology rings of these spaces are known [6].
For the projective space RP(3) we have homology groups with Zy coefficients
Hi(RP(3),Z2) ~ Z3, 0 < k < 3. The corresponding Betti numbers are all
1 and the Poincaré polynomial is 1+ ¢ + 2 + 3.

The cohomology rings Hy(RP(3),Zsy) are also isomorphic to Zg and the
cup product structure makes H*(RP(3),Z2) into a truncated polynomial
ring Zs[a]/a* where « is the generator of the first cohomology. The cup
length is 3 since @ U o U a # 0 is the generator of H3.

The lens space L ~ S3/Z4 has Z4 homology and cohomology isomorphic
to Z4, 0 < k < 3 [0, page 251]. A calculation using the universal coefficient
theorem shows that the Zs homology and cohomology are isomorphic to
Zs. So the Poincaré polynomial with Zo coefficients is again 1 + ¢ + 2 + ¢3.
However, the cup product structure is different. Using Z4 coefficients the
generators of H*(L,Z4), k = 0,...,3 are 1,a, 3, U 3 respectively and
aUa =283 € H?(L,Z,). Using Zs coefficients, we have the same generators,
but now SU S = 0. So the cup length is only 2.

For product spaces, it follows from the Kiinneth formulas that the Poincaré
polynomials multiply and the cup lengths add (at least when using coeffi-
cients in a field), so the lemma follows. ]
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Combining this with theorem [1| gives an estimate for the minimal number
of relative equilibria for sufficiently large A.

Theorem 2. Supposen = 2 and let A # 0 be large enough that the vectorfield
induced by —V Hy on X points in on the boundary. If the critical point in
X are all nondegenerate then there are at least 32 relative equilibria up to
rotation around A. Without assuming nondegeneracy, there must be at least
12 relative equilibria up to rotation around .

Proof. The Poincaré polymomial of X is P(t) = (1 +t + t* + ¢3)2. With
the assumption of nondegenerate critical points, Morse theory shows that
the number of critical point of H) in X is at least the sum of the Betti
numbers, that is, P(1) = 16 [12]. Since X is a quotient under the action of
Zs and of rotations around A, there must be at least 32 circles of relative
equilibria in &/. Without assuming nondegeneracy we have to use Lusternik-
Schnirelmann category as a lower bound for the number of critical points in
X [7]. The category of X is at least one more than the cup length, that is,
at least 6, so we have at least 12 circles of relative equilibria in U. U

The actual number of relative equilibria can be much larger. For example,
when the two bodies are far apart, the mutual potential is well approximated
by the first few terms of the Legendre expansion. In [9], Maciejewski uses a
continuation argument to construct relative equilibria where the two bodies
are far apart. He uses a different reduction, does not fix the angular mo-
mentum and does not consider the connection with Morse theory. So we
will give a brief derivation of the results for the limiting system here. In the
end we will see that there are 576 relative equilibria.

When the separation of the bodies, as measured by the vector ¢ = g2 —q1,
is much larger than the sizes of the bodies we can do a series expansion of
the potential:

1
U(q, Aq, Ag) = e + 7(TTL2 trace I1 + my trace IQ)
(16) T 2T3
3 _
- ﬁ(mQQTAlllA{q +mig" Asb AT q) + O(r™)
where r = |¢|. Using the rotational symmetry as above, we may assume

q = (5,0,2) and r? = 52 + 22, Assume also that e = e3 = (0,0,1) and
A = |Ae with |A] sufficiently large. We will look for the critical points of

)\ 2
Hy(q,A1,A2) = 2G((]|J41AQ)

—U(q, A1, A2)
on Ry x SO(3)2, where
Ge(q, Al, Ag) =M 82 + 6%1141[114?63 + 6?A2[2Ag€3.

To study the limiting problem as |A| — oco. Let € = |A\|~2 and introduce
rescaled variables

S=e€s Z=¢€ez (=¢€q T =c¢€r
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and a rescaled critical energy function
F(8,2,A1,As,€) = € "H)\(3/e, 2/€, A1, As).
Using we find
(17)  F(8,2 A1, Az €) = Fy(8, 2,€) + €2 F5(8, 2, Ay, Ag) + O(€")

where ,
I :2:§2 — w — %(mg trace I; + my trace I3)
Fy=— Iu21§4(eépA1[1Ar{eg + el Ay Iy Al es)
+ ;5 (m2q" A1l AT G+ ma1G" A2 12 AT §)

Taking the partial derivatives of F' with respect to §, 2 and then taking
the limit as e — 0 gives:

1 m1m2§ 0 m1m22

T 9 ~ ~ =0
ng 73 73

which gives a unique solution for the relative position vector:

A . M1+ ma . A
18 S=7r=——5 z2=0 q = sej.
(18) (mima)?

For the limiting problem as ¢ — 0, the orientation matrices Ay, Ay will
be critical points of the function F (3,0, Ay, As) with § given by (18). The
dependence of this function on these matrices is decoupled. Each matrix A;
is critical point of a function f: SO(3) — R of the form:

(19) f(A) = cle{AIiATel - 03egAIiAT63
where ¢; > 0,c2 > 0 are given by

3mj 1 .o
= 953 c3 = W {7’7.7} = {172}

We may assume without loss of generality that the inertia matrices I; are
diagonal: I; = diag(coy, Bi,7i). For simplicity, we will consider the generic
case where the principle moments of inertia oy, 5;,; are distinct.

Lemma 4. Let f : SO(3) — R be any function of the form (19) where
A €80(3), ¢; >0, and e; are the standard basis vectors in R3. Furthermore,
assume that I; = diag(ay, Bi,vi) with 0 < a; < B; < ;. Then f has exactly
24 critical points, all nondegenerate. The critical matrices A are those which
leave the coordinate azxes invariant.

The Morse indices of the critical points can be described as follows. Sup-
pose Ale; = +e;, ATey = +ep, and ATe3 = +e; where {4, k, 1} = {1,2,3}.
If j < k <l the index is 0, if k < j <l orj <l < k the index is 1, if
k<l<jorl<j<ktheindexis 2, and if | < k < j the index is 3. There
are four critical points of each of these siz types.

C1
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Proof. Let u; = ATe; and us = ATes. Then uq, us € R? are orthogonal unit
vectors and they uniquely determine A € SO(3). We have

f(ul, u?,) = clu{fiul — Cgu?;[iu?,.
Viewing this as a function on R? x R3, we will find critical points subject to
the constraints

g1=uy-u =1 gg=ur-u3 =0 gg=uz-uz =1

Set

Vf=MVg +XVgs + A3Vyg3
where \; are Lagrange multipliers. The critical points satisfy

ciliur = Aug + Aaug — c3ljug = Aguz + Aauq.

Since u; are orthogonal, we have Ao = 0 and these equations reduce to the
condition that both u; and w3 be eigenvectors of the diagonal matrix I;. In
other words, u; = +e; and uz = £¢; for some j,1 € {1,2,3}. There are four
choices of sign and six choices for j, 1. Then it follows that AT ey = +ej, with
{j,k,1} = {1,2,3} with this last sign uniquely determined.
The Hessian quadratic form of the constrained system can be found by
restricting the 6 x 6 matrix
DVf — )\1Dvgl — )\QDVQQ — )\3DV93
to the tangent space to the constraint manifold. We have
A= cle?fiej A =0 A3 = c;:,elTIiel.

Note that e?[z-ej = a4, B; or 7; according to whether j = 1,2 or 3 and

similarly for elTIiel. Now a simple computation shows that the 6 x 6 Hessian
matrix is block diagonal with 3 x 3 blocks

201 (Iz — G?Iiej]l) — 263([1' — elTIiel]I).

The tangent space to the constraint manifold at the critical point is spanned
by the following vectors in RS:

v = (er,0)  v2=(0,ex)  v3= (e, *tey)

where the sign in the last vector depends on the sign choices for ui, us. The
matrix of the restricted Hessian in this basis is

cl(efliek — 6?13‘6]') 0 0
2 0 c;;(elTIiel — e%fiek) 0
0 0 (01 + 03)(€ZTIZ'61 — e]TIiej)
The lemma follows from the observation that the signs of the three diagonal
entries are the same as those of k — j,1 — k,l — j respectively. O

Given a function with nondegenerate critical points on a manifold, the
Morse polynomial is

M(t) => v(k)th

k



18 R. MOECKEL

where v(k) is the number of critical points of Morse index k. Then the
results of Lemma[d] can be summarized by saying that the Morse polynomial
of f:SO(3) > Ris

M(t) =4+ 8t + 82 + 41> = 4(1 + t)(1 + t + t2).

Finally, we can describe the critical point structure of the critical energy
function for the limiting problem as |A\| — oo and, by perturbation, for ||
sufficiently large.

Theorem 3. Choose o9 > (. If || sufficiently large, then up to rotation
around A, the critical energy function has exactly 576 critical points with
s > 09, all nondegenerate. The corresponding Morse polynomial is

M (t) = 16464t +128t% +160t> +128t* +64t° +-16t° = 16(141)*(1 4+t +1%)*.

Proof. We look for critical points of the rescaled critical energy function
F(s,2,A1,A9) of for € > 0 sufficiently small. The a priori estimates
c|A? < s < a|M? |2 < ¢ from lemmagive estimates ¢ < § < o, |Z| < (e.
The restriction of F(8,Z, A1, Ag,€) to this set is a smooth function of all
variables. It follows that as e — 0, the critical points converge to the critical
points of the limiting problem at ¢ = 0.

For the limiting problem, §, 2 are uniquely determined by and each
of the matrices A; is one of the 24 critical point of a function as in Lemma [4]
Altogether we have 242 = 576 critical points for the limiting problem. We
will use the implicit function theorem to see that each of these can be con-
tinued uniquely to € > 0 sufficiently small and that the Morse indices of the
corresponding critical points are given by the sum of the Morse indices for
the matrices A;, Ay as in Lemma [4

We will use constrained variables u}, ué instead of the matrices A; as in
the proof of the lemma. Then we have a function F(3,2,ul,ul, uf, u3, €)
with constraints. The gradient has the form

VF = (ViFy + O(€%), Vo Fy + O(e?))

where V7 is the two-dimensional partial gradient with respect to (8, 2) and

V3 is the twelve-dimensional gradient with respect to the variables uj.
The Hessian has a corresponding block structure

D1V1F0 + 0(62) 0(62)
0(62) 62D2V2F2 + 0(64) '

The matrix D1V 1Fp is diagonal and positive definite and the computations
in the proof of lemma[4 show that after applying the constraints, the matrix
DoV o Fs restricts to a nondegenerate 6 x 6 matrix. Therefore we can apply
the implicit function theorem to get unique continuation.

It remains to check the Morse indices of the corresponding critical points.
If P is a block diagonal matrix with a 2 x 2 block I and a 12 x 12 block eI
then

DVF =

D1V1Fy +O(62) O(e)

T _
PEDVEP = O(e) DoVaFy + O(2) |
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Now we can take the limit as ¢ — 0 to see that the Morse index will be the
sum of the contributions from (8, 2), A; and As. Since D1V Fy is positive
definite, we just get the sum of the indices from Lemma [4 Equivalently,
the Morse polynomials for Aj, As can just be multiplied to get M (t) as
claimed. O

It is interesting to compare the Morse theoretical estimates to the actual
number of critical points in the limiting case, or equivalently, to compare the
Morse polynomial M (t) of Theorem [3| to the Poincaré polynomial P(t) of
Lemmal3] The Morse inequalities imply that M (t) = P(t)+(1+t)R(t) where
R(t) is a polynomial with nonnegative coefficients. Taking into account the
extra Zg action used in Lemma (3| we need to divide the M (t) in Theorem
by 2. So we have

M@#) =81+ )’ (A +t+t)2  P(t)=(1+1)%1+t3)2
The Morse inequalities hold with
R(t) = 7+ 23t + 38t% 4 383 + 23t° 4 71°.

There is a large gap between the exact count of 576 critical points for
the limiting case and the Morse estimate of 32. It would be interesting
to explore numerically the bifurcations of the relative equilibria of some
irregularly shaped bodies as the angular momentum is decreased from near
infinity to more moderate values.
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