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Abstract

We study spherical quadrilaterals whose angles are odd multiples
of /2, and the equivalent accessory parameter problem for the Heun
equation. We obtain a classification of these quadrilaterals up to isom-
etry. For given angles, there are finitely many one-dimensional con-
tinuous families which we enumerate. In each family the conformal
modulus is either bounded from above or bounded from below, but
not both, and the numbers of families of these two types are equal.
The results can be translated to classification of Heun’s equations with
real parameters, whose exponent differences are odd multiples of 1/2,
with unitary monodromy.
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1 Introduction

A (marked) circular polygon is a closed disk @) with marked boundary points
ag, - - -, a,_1, which are called corners, enumerated cyclically according to the
positive orientation of @, equipped with a Riemannian metric of constant
curvature 1 with conic singularities at the corners, and such that each side
(a;,a;41) has constant geodesic curvature. Two such polygons () and ()" are
congruent if there is an orientation-preserving isometry between them which
sends each corner a; of @ to the corner o of @'
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Polygons with n = 2, 3 and 4 are called digons, triangles and quadrilat-
erals, respectively.

If each side has zero geodesic curvature then (@) is called a spherical poly-
gon. At every corner a;, an interior angle o; > 0 is defined, and in what
follows we measure all angles in half-turns. So angle a means an angle of
ma radians, in particular, “integer angle” is an integer multiple of 7 radians.
A circular quadrilateral () whose angles are odd multiples of 1/2 is called a
circular rectangle. 1f such a quadrilateral is spherical, it is called a spheri-
cal rectangle. In this paper we describe the set of spherical rectangles with
prescribed angles.

As every surface of positive curvature 1 is locally isometric to a piece of the
unit sphere, every circular polygon can be described in terms of the developing
map f : Q — C which is an analytic function on @\ {ao, ..., a,_1} mapping
every side into a circle on the Riemann sphere. For spherical polygons these
circles are geodesic (great circles). This function f is a local homeomorphism
at each point except the corners, and at a corner a satisfies

f(z) = fla) ~ e(z = a)*,

where a > 0 is the angle at this corner. (If o = 0, the right-hand side has to
be replaced by ¢/log(z — a).)

Each such function defines a circular polygon by the pull-back of the
spherical metric from C to Q. If none of the a; equals 1, then the pair (f, ao)
defines the polygon uniquely. Two pairs (f1, ag) and (f2, aj) define congruent
polygons if fo = 1o f; o ¢, where 9 is a rotation of the Riemann sphere, and
¢ a conformal automorphism of the disk with the property ¢(a;) = a’; for all
J-

This paper is a part of the project whose goal is to understand metrics of
constant positive curvature with conic singularities on compact surfaces. [18,
14, 4,7, 8,9, 15, 13, 2]. An important class of such metrics can be obtained
by gluing a spherical polygon to its mirror image isometrically along the
boundary. Metrics of positive curvature on the sphere obtained in this way
are characterized by the symmetry property: all conic singularities belong
to a circle on the sphere, and the metric is symmetric with respect to this
circle.

In this paper, we classify spherical rectangles. The cases when at least
one of the angles of a spherical quadrilateral is integer were considered in
9, 8, 7] and [6].



If we use the upper half-plane as @), then the developing map of every
circular quadrilateral is a ratio of two linearly independent solutions of the
Heun equation

//+ il—&j /—l— oo’z — A\ —0 (1 1)
y =, )V TP ~y =0, :
where

o = 24a3—ar— a1 —ag)/2, (1.2)

= (2—043—062—051—040)/2,

with the standard normalization (ag, a1, a9, a3) = (0,1,a,00), a € (1,+00).
Here «; are the angles at the corners, and A is a real accessory parameter.
Each pair of linearly independent solutions of such an equation defines a
circular quadrilateral. Different pairs of linearly independent solutions of
the same equation define equivalent quadrilaterals: their developing maps
are related by post-composition with linear-fractional transformations. We
will later see that an equivalence class may contain at most one spherical
quadrilateral, up to congruence.

The condition that an equivalence class contains a spherical quadrilateral
translates to the following condition on the Heun equation: the projective
monodromy group must be conjugate to a subgroup of SU(2). So the prob-
lem of classification of spherical quadrilaterals with prescribed corners and
angles is equivalent to the problem of classification of Heun’s equation with
prescribed a; and «; whose monodromy is unitarizable, that is conjugate to
a subgroup of SU(2). The correspondence between the metrics on the sphere
and Heun’s equations with unitarizable monodromy is bijective. Each sym-
metric metric on the sphere corresponds to two spherical quadrilaterals which
are related by an anti-conformal involution, and to a unique normalized Heun
equation with real a, A and unitarizable monodromy.

In the case that all angles are odd multiples of 1/2, Heun’s equation can
be explicitly solved in terms of elliptic integrals. This fact was discovered by
Darboux [3] who generalized Hermite’s work [11] for the Lamé equation. For
the study of general circular rectangles in connection with Heun’s equation
with a; multiples of 1/2 we refer to the paper of Van Vleck [20].

We recall how this explicit solution is obtained.



Theorem A. Suppose that all o in (1.1)-(1.3) are odd multiples of 1/2.
Then there are two linearly independent solutions of (1.1) whose ratio is of
the form

f(2) = exp(I(z)), (1.4)

where

=TT a2
1) = [ TIC-o "5 (1.5

20 j—0

and P(z) = P(z;a,\) is a real polynomial in all three variables. This poly-
nomial satisfies the third order linear differential equation

w” + 3pw” + (p' + 2p* + 4q)w' + (4pg + 24 )w = 0, (1.6)

where p and q are the coefficients in front of y' and y in (1.1).

Equation (1.6) has one-dimensional space of polynomial solutions of de-
gree

3
deg P = Zaj —2. (1.7)
j=0
This permits to find P by rational operations. That P satisfies (1.6) guaran-
tees that all residues of the integrand in (1.5) are of the form +c¢ with some
real ¢. The condition ¢ = 1 defines P up to a sign.

Periods of the integral (1.5), other than those coming from the residues,
form a lattice generated by two canonical periods (integrals over adjacent
real segments). Of these two canonical periods one is real and another is
pure imaginary. The condition that the monodromy of (1.1) is unitarizable
means that both periods must be imaginary, therefore the real period must
vanish. For a fixed real a, and given angles, this imposes a transcendental
equation on A. It is not clear how to determine or estimate the number
of real solutions of this equation, but for small angles a4 it can be solved
numerically. The results of computation are described in Section 4.

Instead we use a geometric method which allows us to classify spherical
rectangles, and describe their geometry. The following elementary statement
was proved in [5].

Proposition 1.1 Let f be the developing map of a spherical rectangle Q).
Then there are two opposite sides of () whose f-images are contained in the
same circle, and the other pair of opposite sides is mapped to distinct circles.

4



Thus the boundary of a spherical rectangle () is mapped by f to the union
of three great circles, one of them, say C', being orthogonal to the other two,
C" and C”. Let 6 € (0,1) be the angle between the circles C' and C”. There
are two choices for this angle (the other one being 1 — ). See Definition
3.4 below for the unique choice of the angle 6 associated with a spherical
rectangle Q.

The f-preimage in () of the three circles is called the net of (). The net
is a combinatorial invariant of (), defined up to an orientation-preserving
homeomorphism of () respecting its initial corner ay.

Proposition 1.2 A marked spherical rectangle Q) is defined uniquely up to
isometry by its net and the angle 6 € (0,1).

This will be proved in Section 3. In section 3, we will explicitly describe
all possible nets of spherical rectangles (Theorems 3.1 and 3.5). As a con-
sequence we will obtain the following necessary and sufficient conditions on
the angles of a spherical rectangle:

Theorem 1.3 Let Ay, ..., A3 be non-negative integers, and
0= (A1 + A3 — Ay — Ay)/2. (1.8)

Then for the existence of a spherical rectangle with angles o = Aj +1/2 it
15 necessary and sufficient that one of the following conditions be satisfied:
either

. Az > 1, (1.9)

or
§<—1, Ag>1, Ay>1. (1.10)

To state our next result we need some definitions. We recall that we
consider marked spherical rectangles. Two of them are congruent if there is
an orientation-preserving isometry of () respecting the initial corner ay.

Every quadrilateral can be mapped conformally onto a flat rectangle with
vertices (0,1,1 +iK,iK) and all angles 1/2, such that ag maps to 0. The
number K is called the modulus of the quadrilateral.

Each pair (I', ), where I' is a net and 6 € (0, 1), defines a marked spherical
rectangle Q(I', ) (see Theorem 3.5). Thus the set of all spherical rectangles
with given angles consists of curves 6 — Q(I',0) parameterized by 6 and
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labeled by the nets. The modulus K of Q(I',0) is a continuous function of
. There are two kinds of these curves:

On the curves of the first kind, K — 0 as § — 0, while K tends to a
non-zero limit K (I') as 6 — 1.

On the curves of the second kind, K — +o00 as § — 0, while K tends to
a non-zero limit K (I') as 6 — 1.

This is proved in Theorem 4.2, and we give few examples of computation
of the limits K in Section 4. In all our examples K is a monotone function
of 6. This is proved in [5] for the simplest family of spherical quadrilaterals
with angles (3/2,1/2,3/2,1/2) but it is unlikely that this property holds in
general. However, it is true for sufficiently small and large values of K.

Proposition 1.4 Each curve Q(T',0) has finitely many intervals on which
K is monotone. In particular, for sufficiently small (resp., large) K > 0,
there is a unique spherical rectangle with the modulus K in a curve Q(T',0)
of the first (resp., second) kind.

This follows from the general theory of o-minimal structures (see, e.g.,
[19]), since the integral in (1.5) is a Pfaffian function in the sense of Kho-
vanskii [1]. It was shown in [17] that the structure generated by Pfaffian
functions is o-minimal.

Our final results count the nets for spherical rectangles with given angles.

The quadruple (Ao, ..., As) is special if § in (1.8) is an odd integer and
one of the following holds: either A; >0 > 0and A3 > 4§ >0o0r Ag > —90 >0
and Ay, > —6 > 0.

Define A+l Az +1 1496
Mlz[min{ 12 : 32 " H (1.11)
M, — [min{AOJrl,AQH,l_aH, (1.12)

2 2 2
N:min{A0+1%5,,41+1T_5,A2+1%5,A3+1T_5}. (1.13)

Note that conditions (1.9) and (1.10) are satisfied when M; > 0 and M, > 0,
respectively.

Theorem 1.5 For a special quadruple (Ao, ..., As) satisfying either (1.9)
or (1.10) there exist 2N one-parametric families of congruence classes of

6



marked spherical rectangles with angles A; +1/2. If (Ao, ..., As) is not spe-
cial but satisfies (1.9) (resp., (1.10)) then there exist 2M, (resp., 2Ms) one-
parametric families of congruence classes of marked spherical rectangles with
angles A; +1/2.

Fach family is parameterized by 6 € (0,1) (see Definition 3.4). Fach fam-
ily contains either rectangles of arbitrarily small moduli or arbitrarily large
moduli but not both. The numbers of families of both types are equal, so for
each type this number is either N or My or Ms, depending on (Ao, ..., As).

Remark 1.6 Theorem 1.5 and Proposition 1.4 imply that the number of
spherical rectangles with given angles A; + 1/2 is exactly N or My or Mo,
depending on (Ao, ..., As), for sufficiently small and large values of K.

For fixed angles a; € Nt + 1/2, consider the two-parametric family of
Heun’s equations (1.1) with parameters (a, A\) € (1,+00) x R. Equivalence
classes of circular rectangles are in correspondence to such Heun’s equations.
One-parametric families of spherical rectangles of Theorem 1.5 correspond to
smooth disjoint curves in the half-plane (a, A), each having one end in this
half-plane. On the other end, either a — 1 or a — oo.

When 6 = p/q is rational, the monodromy group of the developing map
is finite, so f is an algebraic function. In this case, f = ¢g~' o h, where

and h is a rational Belyi function, which means that the only critical values
of h are 0,1,00, [16]. Function g is also a Belyi function, it is called the
fundamental rational function of the dihedral group [12]. The set g~ *(R)
consists of the unit circle and ¢ lines {z = texp(mik/q) : t € R, k =
0,...,9 — 1}. In the simplest case § = 1/2, the image f(0Q) is contained
in the union of the unit circle C, real line C’, and imaginary line C”. The
monodromy is the Klein Viergroup Z? x Z?, represented as {z, —z,1/z,—1/z}
and g has the property that g7 }(R) = CUC’UC”. Then it is easy to see that
our net, together with its reflection in the real line, coincides with h~'(R).
The set h}(R) for a Belyi function A is a triangulation of the sphere with
all vertices of even degree. Therefore our classification of the nets can be
restated as classification of triangulations T of the sphere with the following
properties:



a) T is symmetric with respect to R, and R is contained in the 1-skeleton
of T,

b) There are four vertices a; of T on the real line of prescribed orders
4A; + 2.

c) All other vertices of T have order 4.

For ¢ € {2,3} and (Ay,...,A3) = (1,0,1,0), algebraic developing maps
are explicitly written in [5].

2 Spherical polygons with the sides on three
circles and corners at their intersections

In this section we prove a preliminary result for classification of nets. Roughly
speaking it says that every spherical rectangle is a union of two spherical
triangles.

As we prove this result by induction, it is convenient to consider a more
general class of spherical polygons, characterized by the property that the
developing map sends their sides to three transversally intersecting great
circles and corners to the intersection points of these circles. The net I’
defines a triangulation of such a polygon @), each face of it being mapped by
f one-to-one onto one of the triangles into which the three circles partition
the sphere. This triangulation satisfies the following properties:

(P1) Each vertex inside ) has degree 4;

(P2) All boundary vertices, other than corners of @), have degree 3.
Combining this triangulation with its mirror copy, we obtain a triangulation
T of the sphere satisfying the following properties:

(S1) T is symmetric with respect to a circle S contained in the 1-skeleton of
T

(S2) Each vertex of T has even degree, and all its vertices not contained in
S have degree 4.

It is easy to show that the nets of spherical polygons with all sides mapped to
three transversal circles and all corners to intersection points of those circles
are in one-to-one correspondence with triangulations of the sphere satisfying
(S1) and (S2).

Two nets are combinatorially equivalent if they can be obtained from
each other by an orientation-preserving homeomorphism (mapping corners
to corners and sides to sides) preserving the initial corner.



If C' is any of the three circles, its preimage in @) is called C-net, denoted
I'c. An arc of the net I'c (or an arc of I" if C' is not specified) is a connected
component of I'c \ dQ). Since f is a local homeomorphism on the interior of
(@, an arc may be homeomorphic to either an open interval with both ends
on the boundary of @) (possibly, at the same corner of @)) or a circle in the
interior of Q). We'll show below (see Corollary 2.2) that an arc of a spherical
rectangle () must have at least one end at a corner of (). In particular, an
arc of a spherical rectangle cannot be a circle. An arc is called short if it does
not intersect other arcs of I'. Any two arcs of the same net I'¢ are disjoint.

Theorem 2.1 Let () be a spherical n-gon such that all its sides are mapped
to three transversal great circles by the developing map, and all its corners
are mapped to intersection points of those circles. Then either n < 3 or
there is a triangulation of Q) by n — 3 disjoint arcs of its net, each of them
connecting two non-adjacent corners of Q).

Proof. Tt is enough to show that, unless () is a digon or a triangle, there
exists an arc of its net I' connecting two of its non-adjacent corners. We
prove this by induction on the number N of faces of I'. If I' has one face
then, since any face of I' is a triangle, () is a triangle.

If N > 1 then there exists an arc v of I' adjacent to a point p on the
boundary of (). Otherwise the face of I' adjacent to its boundary would not
be simply connected.

If v connects two distinct corners p and ¢ of ) then either p and ¢ are
non-adjacent and we are done, or p and ¢ are adjacent corners of (), and
~ partitions @ into a digon and a polygon Q' with the same number of
corners as () and a smaller than N number of faces of its net. By inductive
hypothesis, unless @' (and thus @) is a digon or a triangle, there is an arc
~" of Q' connecting two of its non-adjacent corners. In the latter case, 7' is
also an arc of I' connecting two non-adjacent corners of (), and we are done.

Suppose now that I' does not have any arcs connecting two corners of
Q. If v has both ends at the same point p then ) can be replaced by a
(n + 1)-gon @’ having all sides of @) plus v as its sides, with the number of
faces of the net I'” of )’ smaller than N. There is a mapping ¢ : Q' — @ such
that any two distinct points of " map to distinct points of ), except the two
ends of the side v of @’ that both map to p. By the inductive hypothesis,
there is an arc 4’ of IV connecting two non-adjacent corners p’ and ¢’ of @'.



Figure 1: Primitive spherical triangles 7}, and E,,.

Then ¢(7') is an arc of I" connecting two (possibly, adjacent) corners of @, a
contradiction.

Thus we may suppose that v has two distinct ends p and ¢ on the bound-
ary of @), at least one of them not a corner of ). Then ~ partitions () into
two polygons Q' and Q)”, with the number of corners n’ and n” respectively,
where n' +n” > n+3. If n > 3 then at least one of n’ and n” is greater than
3. Since both Q" and Q" have the number of faces of their nets smaller than
N, by the inductive hypothesis at least one of them has an arc 7’ of its net
connecting two non-adjacent corners. Then +' is also an arc of I connecting
two non-adjacent corners of (). This completes the proof.

Corollary 2.2 If Q) is a spherical polygon satisfying the condition of Theo-
rem 2.1 then an arc v of the net of Q) is an open interval with at least one
end at a corner of ).

Proof. Tt follows from classification of spherical triangles (see sections 10
and 12 of [8], section 6 of [9] and Figs. 1, 2 and 3a) that an arc of the net of
a spherical triangle with all sides mapped to three circles C, C’, C” and all
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Figure 2: Spherical digons.

Figure 3: (a) Spherical triangle Ty with three digons D; attached to its sides.
(b) Nets of spherical rectangles.
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Figure 4: Three circles (left) and a spherical rectangle (right).

corners to intersection points of those circles must have at least one end at
its corner. Indeed, such a triangle 7' contains a primitive triangle 7" (either
one of triangles 7}, or one of triangles E,, see Fig. 1) with its apex at the
intersection of two circles, say C' and C’, and its base on the third circle C”.
Any arc of the net of 7" connects its apex with its base. The triangle T is
obtained by attaching digons to the sides of 7" (see Fig. 3a). An arc of the
net of a digon D either has an end at one of its corners or the ends on both
its sides, but cannot have both ends on one side of D. Thus an arc of T
must have at least one end at its corner. Since the intersection of v with any
triangle T of a triangulation of () by disjoint arcs of its net connecting its
non-adjacent corners is either a side of 7" or an arc of the net of T', it must
have at least one end at a corner of T. But all corners of T" are also corners

of Q.

3 Nets of spherical rectangles

As was shown in [5] (see Proposition 1.1) any spherical rectangle @) has two
opposite sides mapped to the same circle by its developing map f, and two
other opposite sides mapped to distinct circles. Thus there are two types of
marked spherical rectangles: in the first type the images of L, and L4 belong
to the same circle, and in the second type the images of L; and L3z belong to
the same circle. It is enough to classify spherical rectangles of the first type,
as all rectangles of the second type can be obtained from those of the first
type by orientation-reversing isometry preserving the marked corner.
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Assumption 1. Unless stated otherwise, all spherical rectangles below are
assumed to be of the first type.

Let C' be the circle to which two sides Ly and L4 of a spherical rectangle
Q@ are mapped, and let ¢’ and C” be the circles to which the sides L; and
L3 of @ are mapped (see Fig. 4).

Theorem 2.1 implies that there is an arc of the net I' of ) connecting
two opposite corners of (). Such an arc must be mapped to the circle C,
since two opposite corners of () are mapped to intersection points of C' with
two distinct circles other than C'. This implies that () cannot have two arcs
of I connecting two pairs of its opposite corners: such arcs would have an
intersection point inside (), while any two arcs mapped to the same circle C
are disjoint.

Assumption 2. Unless stated otherwise, we choose the initial corner ag of
a marked spherical rectangle () so that there is an arc v of I' connecting the
corners a; and az of Q.

Such an arc v partitions () into two spherical triangles 7" and T, where
T’ has an integer corner at a3 and the base L; mapped to C’, while T” has
an integer corner at a; and the base L3z mapped to C” (see Fig. 4). We'll
show below (see Remark 3.2) that the angles of such rectangle @ satisfy the
inequality Ag + Ay +2 < Ay + As.

Any rectangle of the first (resp., second) type with an arc of its net
connecting its corners ag and as can be obtained from a rectangle of the
second (resp, first) type with an arc of its net connecting its corners a; and
az by choosing a; instead of ag as an initial corner, and relabeling the corners
accordingly. The angles of such rectangle satisfy the inequality A; + Az +
2 < Ag + As. Thus it is enough to classify spherical rectangles satisfying
Assumptions 1 and 2.

Theorem 3.1 Let (Q be a marked spherical rectangle satisfying Assumptions
1 and 2. Then @ is a union of two primitive triangles T, and T, having
integer angles p+1 and v+ 1, respectively, digon Do, with the sides mapped
to C' having common sides with both T, and T,, digon D; with the sides
mapped to C' attached to the base of T, digon D; with the sides mapped to
C" attached to the base of T,, digon D,, attached to the remaining side of
T, and digon Dy, attached to the remaining side of T,,. The sides of Dy, and
D,,, are mapped to C'.
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Here p,v,k,i,k,l,m are non-negative integers satisfying ip = lv = 0,
that is, 1 > 0 only if u =0, 1 > 0 only if v = 0. The value 0 for i, k,l,m, K
means there is no digon attached.

Proof. Assumptions 1 and 2 imply that an arc v of the net I" of @
connecting its corners a; and a3 partitions () into two spherical triangles T”
and 7", where T" has an integer corner with an angle u+ 1 at a3, and 7" has
an integer corner with an angle v + 1 at a;, for some non-negative integers p
and v.

Classification of spherical triangles with one integer corner (see sections
10 and 12 of [8]) implies that the triangle 7" (resp., T") is combinatorially
equivalent to a primitive triangle 7}, (resp., 7,) having an angle ;2 +1 (resp.,
v+ 1) at its integer corner, with digons attached to its sides (see Figs. 1, 2
and 3a). No digons may be attached to the base L; of T" (resp., the base L
of T") if 1 > 0 (resp., v > 0). Each digon D,, has equal integer angles n at
its two corners.

The sides of T,, and T, are mapped to C' and cannot contain preimages
of intersection points of C' with either C’ or C”, other than the corners of Q.
This implies that the union of digons attached to the sides of 7, and 7}, and
having v as their common side is a digon D, with even integer angles 2k at
its two corners.

Thus a net of a spherical rectangle satisfying Assumptions 1 and 2 must
have the structure shown schematically in Fig. 3b. This proves Theorem 3.1.

Remark 3.2 The angles at the corners ag,aq,as,as of a marked spherical
rectangle Q) in Theorem 3.1 have the integer parts

Ao =1i+m, A1 = Z+l€+l/+1+2li, AQ = k+l, A3 = l+m+u+1+2/<a, (31)

respectively. In particular, Ay + As + 2 < Ay + As. For a marked spherical
rectangle (of either first or second type) with an arc of its net connecting its
corners ag and as, the integer parts of its angles satisfy A1+ As+2 < Ag+ As.

Remark 3.3 Theorem 3.1 implies that a spherical rectangle Q) satisfying
Assumptions 1 and 2 has at least one short arc v connecting its corners a;
and as, and that all such short arcs are mapped to the same arc  of the
circle C with the ends at the intersection points of C' with C" and C".

14



Definition 3.4 The angle 6 € (0,1) between the circles C' and C" is defined
as 1 — a where « is the length of any short arc v of the net of a spherical
rectangle ) connecting its opposite corners, divided by 7. Alternatively, o is
the length of the arc 5 of C to which v is mapped, divided by .

Proof of Proposition 1.2. We want to show that two marked spherical
rectangles (Q and Q" with equivalent nets I' and I, and the same angle 6, are
congruent, i.e., there is an orientation-preserving isometry Q — Q' mapping
the initial corner ag of @) to the initial corner a of @’. According to Definition
3.4, the developing map f : Q — C maps the sides of Q to three great circles
C, ', ", such that both €' and C” are orthogonal to C, so that the sides
Ly and Ly of () are mapped to C, the sides L; and L3 of ) are mapped to C’
and C” respectively, and any short arc of I' connecting the corners a; and
agz of () is mapped to an arc f of C of length ma where & = 1 —6, the ends P
and R of g being the images of a; and as, respectively. In particular, P and
R are intersection points of C' with €’ and C”, respectively. Similarly, the
developing map ¢ : Q' — C maps the sides of Q' to three great circles S, ',
S”. such that both S and S” are orthogonal to S, and any short arc v of I
connecting the corners a} and aj of ()" is mapped to an arc ' of S of length
ma, the ends P’ and R’ of ' being the images of a}] and af, respectively.
Applying if necessary rotation of C, we may assume that S = C, S' = (',
S"=0C" p'=p, P =P, and R = R. Then the equivalence of the nets
I’ and IV implies that the developing maps f and ¢ send the corresponding
faces, edges and vertices of partitions of () and ) to the same triangles,
segments and intersection points of the partition of C by the three circles
C, C" and C”. In particular, ap and a;, are mapped by f and g to the same
point of C.

Theorem 3.5 For any non-negative integers i, v, k, i, k,l, m satisfying iy =
lv =0 there is a unique, up to combinatorial equivalence, net I' of the type
described in Theorem 3.1. For any such net I' and any 6 € (0, 1) there exists
a unique spherical rectangle Q = Q(T',0) having ' as its net, sides mapped
to three circles C', C', C", and a short arc of length w(1 — ) connecting its
corners a; and as.

Proof. To define the net I', we start with a digon D, obtained by com-
bining k copies of digon Dy shown in the middle of the first row of Fig. 2.
If kK = 0 then there is no such digon, and we proceed with gluing together
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triangles 7), and T, (see Fig. 1) so that the side of each of these triangles that
follows its base in the counterclockwise cyclic order becomes their common
side. If k > 0 then triangles 7, and T, are attached to opposite sides of Dy,
so that the side of each of these triangles that follows its base in the counter-
clockwise cyclic order becomes its common side with Ds,.. The integer corner
of T), (resp., T,,) coincides with a non-integer corner of T, (resp., T},).

Next, we attach digons Dy and D,,, obtained by combining k£ and m
copies, respectively, of the digon D; shown in the left side of the first row
of Fig. 2, so that any two adjacent digons have either a common short side
or a common long side, and so that each of the two resulting digons has at
least one short side, as is shown in examples of Dy and Ds in the first row of
Fig. 2. Then digons Dy and D,, are attached to the free sides of T, and T},
respectively. The free sides of these triangles are preceding their respective
bases in the counterclockwise cyclic order. If k = 0 (resp., m = 0) then no
digon Dy, (resp., D,,) is attached.

Finally, if 4 = 0 and ¢ > 0 (resp., v = 0 and [ > 0) then a digon D;
(resp., D;), obtained by combining i and [ copies, respectively, of the digon
D; shown in the second row of Fig. 2, is attached to the base of T), (resp.,
T,). Examples of such digons are shown in the second row of Fig. 2.

If we label the sides of T}, and T, by C, the base of T, by C" and the base of
T, by C” then all edges of I' can be uniquely labeled so that the sides of each
of its triangles are labeled by three distinct labels. Consider the standard
sphere C with three great circles C, C’ and C” such that C' is orthogonal to
both €’ and C”, and one of the two complementary angles between C” and
C" is 0, the other one being a = 1 — #. Then there is a mapping of Q to C,
locally one-to-one everywhere except at the corners, which is unique up to a
homeomorphism of ) preserving all vertices and edges of I' and a rotation
of the sphere preserving the three circles, such that any arc of the boundary
of Dy, (or a common side of 7, and T, if x = 0) maps to an arc of C' of
length wa, and each edge of I' maps to an arc of the circle corresponding to
its label. This defines on @) a metric of the spherical rectangle Q(I', ).
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Figure 9: Three combinatorially distinct nets of spherical rectangles with the

angles g, %, g, %, and their deformations
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4 Limits at § =0 and 6 = 1 of spherical rect-
angles with the given net

Each admissible set of integers u, v, k, 1, k, [, m in Theorem 3.1 defines a net I'
and the corresponding one-parametric family of marked spherical rectangles
Q(T, 0) satisfying Assumptions 1 and 2, parameterized by the angle 6 between
the circles C" and C” (see Definition 3.4). These two circles intersect the circle
C' at the right angle. In Figs. ba and 5b, two projections of the three circles
are shown, and two of the triangles of the partition of the sphere defined by
these circles are shaded.

Let P and R be the images of the corners a; and as, respectively, of a
marked spherical rectangle @), so that the arc 8 = PR of C' is the image of a
short arc v of the net I' of () connecting a; and az. Then the shaded areas in
Figs. 5a and 5b contract to arcs when # — 0 and expand to half-disks when
0 — 1. If all circles remain geodesic, then C” and C” converge to the same
circle when § — 0 and when 8 — 1. However, applying a linear-fractional
transformation depending on 6, so that the arc M N of C' in Figs. 5a and
5b contracts to a point while the arc PR does not, we can obtain in the
limit # — 1 a non-geodesic configuration shown in two different projections
in Figs. 5¢ and 5d, where the shaded areas are the limits of the shaded areas
in Figs. Ha and 5b.

Example 4.1 A net of a spherical rectangle () with the angles
(1/2,3/2,1/2,3/2) considered in [5] is shown in Fig. 6 (left). The shaded
area corresponds to preimage of the shaded areas in Figs. 5a and 5b. The
arc connecting a; and a3 is mapped to the arc PR of C, the corners ag and
ao are mapped to M and N, respectively. When 6§ — 0, the sides Ly and Ly
of () are contracted to points, while the distance between them has a positive
limit. Thus the modulus of @ has limit 0 as § — 0 (see [8], Section 15, and
[5]). When 6 — 1, applying a linear-fractional deformation depending on
f to the three-circle configuration, and the corresponding transformation to
@ (this does not change the modulus of ¢ which is a conformal invariant)
we can get in the limit a non-geodesic circular rectangle shown in Fig. 6
(right). Thus the modulus of @) tends to a finite positive value when 6 — 1.
Computation in [5] shows that this value is K ~ 0.630963.

Theorem 4.2 Let I' be one of the nets described in Theorem 3.1, and 6 €
(0,1). Then the modulus of Q(T',0) tends to 0 when 8 — 0, and to a finite
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positive value when 6 — 1.

Proof. When 6 — 0, none of the arcs connecting a; and a3 contract, while
the triangle 7}, (resp., T},) contains either a short arc of I' or a side Ly (resp.,
L) of @ that maps to either the arc M R or the arc NP of C, connecting its
apex ag (resp., a;) with a point p # a; (resp., p # a3) on its base. These two
arcs contract to points when # — 0. Hence the distance between the sides
Ly and L3 of @ tends to 0 when 6 — 0. At the same time, there are no short
arcs of I' having one end on Ly and another end on L,, other than those
connecting a; and ag which do not contract as # — 0. Thus the distance
between the sides L, and L4 does not tend to 0 as # — 0. This implies that
the modulus of @ tends to 0 as  — 0 (see [8], Section 15).

When 6 — 1, the short arcs connecting a; and asz contract, thus both
the distance between L; and L3 and the distance between L, and L, tend
to 0. To understand the limit of the modulus of @), we apply a linear-
fractional transformation depending on 6 as in Example 4.1 to the three-circle
configuration, so that the short arc M N of C contracts, while the short arc
PR does not. In the non-geodesic limit (see Fig. 5¢) the circles C' and C”
become tangent (when their tangency point is mapped to oo as in Fig. 5d,
they become parallel lines). All short arcs of I' connecting a; and az map to
PR, and all arcs of C' connecting the apex of a triangle 7, (resp., 7)) with
a point on its base, map to either M R or NP. Since neither M R nor NP
contracts when 8 — 1, and PR does not contract after the linear-fractional
transformation, the distances between opposite sides of () do not tend to 0 in
the limit. Thus ) converges to a non-geodesic circular rectangle (see Figs. 6,
7, 8, and 9) and the modulus of @ tends to a finite positive value.

Remarks on computation of limit moduli K. The boundary of the
limit rectangle described in the proof of Theorem 4.2 is mapped by devel-
oping map into three straight lines (see Fig. 5d). This allows to represent
the developing map by the Schwarz—Christoffel formula. Condition that the
points P and ) are on the same vertical line imposes one real equation
which permits to determine the modulus of the rectangle K. See [5] where
the simplest example is described in all detail. The number of solutions to
this equation is the number of nets with given angles. To determine which
solution corresponds to which net, we use the evident inequalities between
the moduli of degenerate rectangles (shown in the right of Figs. 7, 8, and in
the bottom of Fig. 9).
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Example 4.3 Two combinatorially distinct nets of spherical rectangles with
the angles (3/2,5/2,3/2,5/2), and the nets of their non-geodesic limits when
6 — 1, are shown in Figs. 7a and 7b. The moduli K, and K} of the limiting
rectangles are K, ~ 0.5433144 and K, ~ 1.193606, respectively. Fig. 10
shows schematically the areas of existence of these spherical rectangles (Nets
a and b) and their involution-symmetric rectangles (Nets a’ and b') for dif-
ferent values of the modulus K.

Example 4.4 Three combinatorially distinct nets of spherical rectangles
with the angles (5/2,7/2,5/2,7/2), and the nets of their non-geodesic lim-
its when 6 — 1, are shown in Figs. 9p, 9q, 9r. The moduli K,,, K,, K, of
the limiting rectangles are K, ~ 0.476966, K, ~ 0.887943, K, ~ 1.458956,
respectively. Fig. 11 shows schematically the areas of existence of these spher-
ical rectangles (Nets p, g, r) and their involution-symmetric rectangles (Nets
p’, ¢, ') for different values of the modulus K.

Example 4.5 A net of a spherical rectangle with the angles
(3/2,7/2,3/2,7/2), and the net of its non-geodesic limit when 6 — 1, is
shown in Fig. 8. The modulus K of the limiting rectangle is K ~ 0.4173.

Remarks and conjectures. Each of the three nets p, q, r in Fig. 11 pro-
duces a continuous family where the modulus K can be arbitrarily small.
So for sufficiently small K there are at least three different marked spher-
ical quadrilaterals with the angles (5/2,7/2,5/2,7/2). Similarly, one can

22



Net p’

Net g’
Net r’
Net r
Net q
Netp ———
o K, UK, K, 1 UK, K, UK,
Figure 11: Existence of spherical rectangles with the angles %, %, %, %

conclude from Fig. 11 that there are at least two quadrilaterals with mod-
ulus K € (K,,1/K, at least three for K € (1/K,, K,), at least two for
K € (K4, 1/K,), at least three for K € (1/K,, K,), at least two for K €
(K)r,1/K,), and at least three for K > 1/K,.

Similar conclusions apply to Fig. 10. Our computations show that in fact
these lower estimates are equalities, in all cases which we computed. Actually
K is a monotone function of 6 in all these cases, but we do not expect this
monotonicity to hold for all angles.

So Theorem 1.5 gives only lower estimates for the number of quadrilaterals
with given angles and modulus, when this modulus is small or large. This
lower estimate is N or M; (see (1.11), (1.12), (1.13). We conjecture that
these lower estimates are exact, and that we have equality for large and
small moduli. All computed examples confirm this.

5 Counting nets of spherical rectangles with
given angles

We want to answer the following question: Given four non-negative integers
Ag, ..., Az, how many nets of marked spherical rectangles with the integer
parts Ay, ..., As of the angles at their corners aq, ..., a3 do exist?

It is enough to answer this question for the spherical rectangles of the
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first type (satisfying Assumption 1), since all rectangles of the second type
can be obtained then by an involution preserving the marked corner. Also,
we may assume that Ay + As + 2 < A; + As, which is true for the marked
spherical rectangles satisfying Assumption 2 (see Remark 3.2). The answer
for the rectangles with A; + A3 +2 < Ay + As, having an arc connecting
corners ag and ag, can be obtained then by a different choice of the initial
corner.

We start with listing operations on the nets which do not change the
angles of a spherical rectangle ). Assuming notation of Theorem 3.1 and
Remark 3.2, we have expressions (3.1) for the angles of Q.

Operation I. If K >0, 1 > 2, [ =0, u =0 then
k—k—1L vev+4 i—i—2, m—=m+ 2.

The inverse operation is possible when [ =0, m > 2, =0, v > 4.
Operation II. If K >0, i =0, [ > 2, v =0 then

k—=k—1, pu—p+4, k—k+2 [—1-2.

The inverse operation is possible when ¢t =0, k> 2, u >4, v =0.
Operation IIl. If k >0, : =1, [ =0, =0 then

k—rk—1L pu—=1v—=v+3 1—=0 m—m+ 1.

The inverse operation is possible whent=1=0, m>1, p=1, v > 3.
Operation IV. If Kk >0, =0, l =1, v =0 then

k—k—1, pu—»p+3, v—=1, k—k+1, [—0.

The inverse operation is possible whent=1=0, k> 1, p >3, v =1.
Operation V. If Kk >0, : =1 =0 then

k= Kk—1, pu—=pu+2, ve=v+2.

The inverse operation is possible when 1 =1=0, u > 2, v > 2.
Operation VI.If i >0, [ >0, p =v =0 then

t—=i1—1, k—k+1,l—1—1 m—m+1.

The inverse operation is possible when £ >0, m >0, p=v = 0.
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Lemma 5.1 Let ) be a marked spherical rectangle satisfying Assumptions
1 and 2.

a) If K > 0 and min(i,l) = 0 then there is a unique operation among
Operations I-V that is applicable to Q) and results in a rectangle with the
same angles as @, with k reduced by 1.

b) If min(i,1) = 0 then at most one operation among inverses to Opera-
tions I-V is applicable to Q. If min(i,l) > 0 then neither Operations I-V nor
their inverses are applicable to Q).

¢) If min(i, 1) > 0, then iteration of Operation VI applied to @) results in
a rectangle with the same angles as @Q, same K, j, v, and min(i,l) = 0.

Proof. We start with a proof of (a), assuming x > 0. If ¢ = [ = 0 then
Operation V is applicable. If ¢+ = 1, [ = 0 then u = 0 and Operation III
is applicable. If © > 2, [ = 0 then © = 0 and Operation I is applicable. If
1 =0, l =1 then v = 0 and Operation IV is applicable. If : =0, [ > 2 then
v = 0 and Operation II is applicable. It is easy to check that only one of the
operations I-V is applicable in each of these cases.

To prove (b) note first that inverses to Operations I-V are only possible
when min(i,l) = 0. Next, for given p and v, conditions on g and v for
applicability of the operations inverse to Operations I-V may hold for at
most one of these operations.

If min(é,7) > 0 then Operation VI reduces i, [ and min(é,1) by 1, and
does not change k, u, v, which proves (c).

Corollary 5.2 For given Ay, ..., As, the set of values of k that may appear
in the nets of marked spherical rectangles of the first type with 0 > 1 is either
empty (in which case spherical rectangles with such angles do not ezist) or an
interval [0, Kmax|, for some integer Kmax > 0 depending on Ag, ..., As. In the

latter case, there are exactly Kyax +1 combinatorially distinct nets of marked
spherical rectangles of the first type with given Ay, ..., As and min(i,1) = 0.

For a marked spherical rectangle () satisfying Assumption 2, define
d=(A1+A3—Ag— A)/2=26+1+ (n+v)/2. (5.1)
Then 6§ > 1 is either integer or half-integer.

Lemma 5.3 Let QQ be a marked spherical rectangle with min(i,l) = 0 satis-
fying Assumptions 1 and 2. The net of () cannot be obtained from a net of
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some other spherical rectangle by one of the operations inverse to Operations
I-V if and only if one of the following twelve conditions is satisfied:

(a)N:V:O;
(b)lu:()ay_l;
(C)M:LV:;

(d) p=v=1

(e) p=0, v=2;

(f) p=2, v=0,

(g) p=0, v=3;
(h)M:3aV:;
)p=1v>3 m=0;
()p=>3v=1 k=0,
(k) pu=0,v>4, m<1;

Hp>4, v=0, k<1

For given Aq, ..., Az with Ay + As > Ao+ A+ 2, a net of a marked spherical
rectangle with min(i,l) = 0 satisfying Assumptions 1 and 2 may satisfy at
most one of these conditions.

At most one (up to combinatorial equivalence) net of a marked spherical rect-
angle Q satisfying Assumptions 1 and 2, with given Ay, ..., Az and min(i,1) =
0, may satisfy any of these conditions. The value of k for such rectangle @)

is
(A —1 A3—1 60—1
[mln( D) )} (5.2)

Proof. One can easily check case by case that none of the operations
inverse to Operations I-V can be applied if and only if one of the conditions
(a)-(1) is satisfied. Note that it is enough to assume p < v, and to check that
with this assumption none of the operations inverse to Operations LI,V
can be applied if and only if one of the conditions (a),(b),(d),(e),(g),(i),(k) is
satisfied. The case p > v follows by rotation of the net exchanging ay with
as, a; with ag, p with v, ¢ with [, and k with m.

Let now ) be a marked spherical rectangle satisfying Assumptions 1 and
2, with given Ao, ..., A3, A1+ A3 > Ag + As + 2, min(i,[) =0, and p < v.

If @ satisfies (a) then § = 2k + 1 is an odd integer, A; > 6, A3 > . If, in
addition, [ = 0 then Ay = k and A3 = 0+m, thusi = Ayg—m = Ag— A3+ =
(Ag + Ay — Ay — A3)/2, and the net of @ is completely determined by its
angles. Such a net exists when ¢ > 0 thus Ay + A; > Ay + As. The case
when ¢ = 0 is treated similarly, and a net with i = 0 satisfying (a) exists
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when Ay + A; < Ay + A;. The net with ¢ = [ = 0 satisfying (a) exists when
Ag+ Ap = As + As.

If @ satisfies (b) then § = 2k + % thus 20 = 3mod 4, A; > § + %,
A3 Z 5—%, I = 0, AQ = k}, A3 :m—|—5—%thusm = A3—5+%,
A net satisfying (b) is completely determined by its angles. It exists when
i >0, thus Ag+A; > A+ Az+1. Similarly, if @ satisfies (¢) then § = 2;@4—%,
and its net is completely determined by its angles. It exists when A; > 6 — %,
A3 >0+ 3, Ao+ A3 > Ag+ A + 1.

If @ satisfies (d) then § = A3 — Ay = A} — Ay = 2k + 2 is a positive
even integer, © = [ = 0. Then Ay = m, Ay = k, and the net is completely
determined by its angles. It exists when Ag + A; = Ay + As.

If @ satisfies (e) then § = 2k + 2 is a positive even integer, A; > 0 + 1,
A3 > 6—-1,1=0,Ay=14+m, Ay, =k, Ay =i+ k+d+1 thus i =
Al—AQ—5—1 = (A0+A1—A2—A3—2)/2, m = A3—5—|—1, and
the net is completely determined by its angles. It exists when ¢ > 0 thus
Ag + Ay > Ay + Az + 2. Similarly, if @ satisfies (f) then § = 2k + 2, and
its net is completely determined by its angles. It exists when A; > § — 1,
A3 >0+ 1, Ao+ A3 > Ag+ Ay + 2.

If @ satisfies (g) then 0 = 2k + g thus 20 = 1 mod 4, A; > 6 + %,
Az > 5—%, Il =0, Ay = k, A3 :m—l—é—%thusm:Ag—(SjL%,
Ap =i+m = i+A3—6+3 thusi = Ag—As+0—32 = (Ag+ A1 — A —A3—3) /2.
A net satisfying (g) is completely determined by its angles. It exists when
i >0, thus Ag+A; > Ay+ A3+3. Similarly, if @ satisfies (h) then § = 2/@—1—%,
and its net is completely determined by its angles. It exists when A; > §+ %,
A3 >6—3, Ay + A3 > Ag+ A1 + 3.

If @ satisfies either (i), (j), (k) or (1) then 6 = 2k + 3 is an odd integer,
d > 3. If @ satisfies (i) then A3 =0 —1,i=1=0, Ag =0, Ay = k. If Q
satisfies (j) then Ay =6 —1,i=1=10, Ay = m, Ay = 0. If Q satisfies (k)
then A3 =0 —2+m,l =0, Ay =i+ m, Ay = k. A net satisfying (k) exists
Wheni:Ao—m:Ao—A3+5—2: (A0+A1—A2—A3—4)/220, thus
Ag+ Ay > Ag+ Az +4. If Q satisfies (1) then A; =5 —2+k,i=0, Ay =m,
Ay =k +1. A net satisfying (1) exists when | = Ay —k = Ay — A1 +0 — 2 =
(Ag+ A3 — Ag— A1 —4)/2 > 0, thus Ay + A3 > Ag+ A1 +4. A net satisfying
either (i), (j), (k) or (1) is completely determined by its angles.

Lemma 5.4 A marked spherical rectangle ) satisfying Assumptions 1 and
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2, with given Ao, ..., As and min(i,l) = 0 exists if and only if

min (Al,A3,5> 2 1, (53)

{min(A1+1’A3+175+1)} (5.4)
2 2 2

combinatorially distinct nets of such spherical rectangles.

and there are exactly

Proof. 1t follows from Corollary 5.2 and Lemma 5.3 that existence of a
rectangle () satisfying conditions of Lemma 5.4 implies that the number in
(5.2) is non-negative, which is equivalent to (5.3), and that the number of
combinatorially distinct nets of such rectangles in that case is the number
in (5.2) plus 1, which is the number in (5.4). Thus we have only to prove
that for any Ay, ..., As satisfying (5.3) there exists a rectangle @) satisfying
conditions of Lemma 5.4.

It follows from Corollary 5.2 that, if a rectangle with given Ay, ..., A3
satisfying conditions of Lemma 5.4 exists, there exists also a rectangle with
r = 0 with the same angles satisfying the same conditions. We are going to
construct a net of such a rectangle for any Ay, ..., As satisfying (5.3).

There are three possible cases: (i) A; > Ay and A3z > Ao; (i) A; > Ay
and Ag < Ao, (111) A < Ay and Ag > Ao. Note that A; < Ay and A3 < AQ
is not possible because 6 = (A; + A3 — Ag — A3)/2 > 1.

Incase (i)leti=1=0,m=Ap, k=Ay, p=A3—m—1= A3 — Ay — 1,
v=A—-k—1=A4,— Ay, — 1.

Incase (ii) let u=1=0,m=A3 —1, k= Ay, i = Ag—m = Ay — A3 + 1,
V:Al—’i—k—1:A1+A3—A0—A2—2:2((5—1).

Incase (ili) let v =i =0,k =A; — 1, m= Ay, | = Ay — k= Ay — A + 1,
[,L:Ag—l—m—1:A1+A3—A0—A2—2:2(5—1)

This completes the proof of Lemma 5.4.

Definition 5.5 A marked spherical rectangle is special if 0 is an odd integer
and either Ay > 6 >0and A3 > >0o0r Ay > —6 >0 and Ay > —6 > 0.

Lemma 5.6 A marked spherical rectangle Q) satisfying Assumptions 1 and
2 with given Ay, ..., As is special if an only if there exists a rectangle with
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the same angles whose net has p = v = 0. For given Ay, ..., As satisfying
conditions of Definition 5.5 with § > 0, there are

I'IliIl(A(), Al - 5, AQ, Ag - 5) (55)

special rectangles satisfying Assumptions 1 and 2, with p = v = 0 and
min(z,[) > 0.

Proof. If min(7,1) > 0 for the net of ) then y = v = 0. From Lemma 5.1
(c), iteration of Operation VI applied to @ results in a unique rectangle Qo
with the same angles as @), p = v = 0 and min(é,l) = 0. Thus @ satisfies
Lemma 5.3 (a). If min(é,l) = 0 for the net of @ then, from Corollary 5.2,
there is a unique rectangle with the same angles as () satisfying one of the
conditions (a)-(1) of Lemma 5.3. One can easily check that § is an odd integer,
Ay > 6 and Az > 0 only in case (a) of Lemma 5.3. Conversely, a rectangle
satisfying condition (a) of Lemma 5.3 is clearly special, thus any rectangle @
with the same angles is also special. Finally, the number in (5.5) is obtained
by counting distinct rectangles that can be obtained from a rectangle with
@ = v = 0 by iterating Operation VI and its inverse (compare with Lemma
11.2 in [8)).

Theorem 5.7 Let () be a marked spherical rectangle satisfying Assumptions
1 and 2, with given Ao, ..., As. If Q is not special then there are (5.4) combi-
natorially distinct nets of marked spherical rectangles satisfying Assumptions
1 and 2 with the same angles as Q. If Q is special then the number in (5.4) is
(14-6)/2, and there are additionally (5.5) nets of marked spherical rectangles
satisfying Assumptions 1 and 2 with the same angles as @), thus the total
number of combinatorially distinct nets is

1496 1—-9¢ 1+96 1—-9¢

min(A0+T,A1+T,A2+ 5 ,As + 5

). (5.6)

Proof. This follows from Lemmas 5.4 and 5.6.

Proof of Theorems 1.3 and 1.5. Lemmas 5.4 and 5.6 imply that a marked
spherical rectangle satisfying Assumptions 1 and 2 exists if and only if (5.3)
holds. Since this condition is symmetric with respect to A; and As, it remains
true for spherical rectangles of the second type satisfying Ao+ Ay < A; + Az,
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as any such rectangle can be obtained from a rectangle satisfying Assump-
tions 1 and 2 by a reflection preserving ay and as, exchanging a; and as.

If  is a marked spherical rectangle of either first of second type satisfying
Ao + Ay > A + Az, replacing ag by a; as an initial corner, and relabeling
the corners accordingly, results in a marked spherical rectangle @' of either
second or first type, with the integer parts of the angles (Ajp, A}, A, A}) =
(A1, Ag, A3, Ag) and &' = (A} + Ay — A — Al)/2 = —0. Applying the above
arguments to (' we see that a marked spherical rectangle Q with Ag+ Ay >
Ay + Ajz exists if and only if

min (AO,A27_5) Z ]_, (57)

Combining (5.3) and (5.7) we get the statement of Theorem 1.3. The state-
ment of Theorem 1.5 follows from (5.4) and (5.6) applied to either @ or @
in a similar way.

Lemma 5.8 Let () be a marked spherical rectangle with the angles satisfying
Ag = Ay, Ay = Asz. Then there is an orientation-preserving isometry p :
Q — Q such that p(ag) = ay and p(a;) = as.

Proof. Due to Proposition 1.2, it is enough to prove that the net I' of @)
is symmetric with respect to a transformation exchanging ag with as and a;
with a3, and that this symmetry of I' maps any short arc of I' connecting a,
with a3 is mapped to a (possibly, different) short arc connecting a; with as.
To show this, we have only to check (assuming that ) satisfies Assumptions
1 and 2) that p = v, i = [, and k = m in the notations of Theorem 3.1.

Suppose first that y = v = 0. Then Ay = Ay implies i + m = k + [, and
Ay = Az implies i + k = m + [ (see (3.1) in Remark 3.2). Adding up these
two equalities yields ¢ = [, and subtracting them yields k£ = m.

If 4 >0and v > 0theni =1=0, thus Ag = m, Ay = k, A] =
k+1+2k+v,and A3 = m+ 14 2k + p. Since Ay = As, we have k = m,
then A; = Aj yields p = v.

If u>0but v =0theni=0,thus Ag=m, Ay =k+1+2k, Ay =k+1,
and A3 =1l +m+ 1+ 2k + p. Since Ag = Ay, we have m = k + [, thus
A3 =k+2l+ 142k + pu > Ay, a contradiction. Similarly, u =0 and v > 0
is not possible. This completes the proof.
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Theorem 5.9 A spherical rectangle Q) with the angles at two of its opposite
corners equal o, and the angles at two other opposite corners equal (3, exists
if and only if |6 —«| > 1. If B — « is even then there are | — «| non-
isometric spherical rectangles with these angles, | — «|/2 of them satisfying
Assumption 1. If B — « 1s odd then there are o + B non-isometric spherical
rectangles with these angles, (a4 5)/2 of them satisfying Assumption 1.

This follows from Lemma 5.8 and Theorems 1.3 and 1.5.

Example 5.10 The net in Fig. 6 is special, with Ay = A, =0, A; = A3 =1,
d = 1. According to (5.6) and Theorem 5.9, there is a unique net of a marked
spherical rectangle of the first type with these angles.

The two nets in Fig. 7 are special with Ag = A; =1, Ay = A3 =2,0 = 1.
According to (5.6) and Theorem 5.9, there are two nets of marked spherical
rectangles of the first type with these angles.

The net in Fig. 8 is not special, with Ag = Ay = 1, A} = A3 = 3,
0 = 2. According to (5.4) and Theorem 5.9, there is a unique net of a
marked spherical rectangle of the first type with these angles.

The three nets in Fig. 9 are special with Ay = Ay = 2, A = A3 = 3,
d = 1. According to (5.6) and Theorem 5.9, there are three nets of marked
spherical rectangles of the first type with these angles.
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