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Abstract

We resolve a question of Bank and Laine on the zeros of solutions
of w′′ +Aw = 0 where A is an entire function of finite order.
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1 Introduction and result

The asymptotic distribution of zeros of solutions of linear differential equa-
tions with polynomial coefficients is described quite precisely by asymptotic
integration methods; cf. [10] and [11, Chapter 8]. While certain differential
equations with transcendental coefficients such as the Mathieu equation were
considered early on, the first general results concerning the frequency of the
zeros of the solutions of

w′′ + Aw = 0 (1.1)

with a transcendental entire function A appear to be due to Bank and
Laine [2, 3].

For an entire function f , denote by ρ(f) the order and by λ(f) the ex-
ponent of convergence of the zeros of f . If A is a polynomial of degree n,
then ρ(w) = 1 + n/2 for every solution w of (1.1), while ρ(w) = ∞ for every
solution w if A is transcendental.

Let w1 and w2 be linearly independent solutions of (1.1). Bank and Laine
proved that if A is transcendental and ρ(A) < 1

2
, then

max{λ(w1), λ(w2)} = ∞.
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It was shown independently by Rossi [19] and Shen [20] that this actually
holds for ρ(A) ≤ 1

2
. Bank and Laine also showed that in the case of non-

integer ρ(A) we always have

max{λ(w1), λ(w2)} ≥ ρ(A), (1.2)

and they gave examples of functions A of integer order for which there are
solutions w1 and w2 both without zeros.

A problem left open by their work – which later became known as the
Bank–Laine conjecture – is whether max{λ(w1), λ(w2)} = ∞ whenever ρ(A)
is not an integer. This question has attracted considerable interest; see [13]
for a survey, as well as, e.g., [8], [9] and [12, Chapter 5].

We answer this question by showing that the estimate (1.2) is best possible
for a dense set of orders in the interval (1,∞).

Theorem. Let p and q be odd integers. Then there exists an entire function

A of order

ρ(A) = 1 +
log2(p/q)

4π2

for which the equation (1.1) has two linearly independent solutions w1 and

w2 such that λ(w1) = ρ(A) while w2 has no zeros.

By an extension of the method it should be possible to achieve any pre-
scribed order ρ(A) > 1; see Remark 2 at the end.

If w1 and w2 are linearly independent solutions of (1.1), then the Wron-
skian W (w1, w2) = w1w

′
2 − w′

1w2 is a non-zero constant. The solutions are
called normalized if W (w1, w2) = 1.

It is well-known that the ratio F = w2/w1 satisfies the Schwarz differential
equation (see, for example [11]):

S[F ] :=
F ′′′

F ′
− 3

2

(

F ′′

F ′

)2

= 2A.

These meromorphic functions F are completely characterized by a topological
property: they are locally univalent. More precisely, consider the equivalence
relation on meromorphic functions F1 ∼ F2 if F1 = L ◦ F2, where L is a
fractional linear transformation. Then the map F 7→ S[F ] is a bijection
between the equivalence classes of locally univalent meromorphic functions
and all entire functions.
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Normalized solutions w1, w2 are recovered from F by the formulas

w2
1 =

1

F ′
, w2

2 =
F 2

F ′
.

So zeros of F are zeros of w2 and poles of F are zeros of w1.
A meromorphic function F is locally univalent if and only if E = F/F ′ is

an entire function with the property that E(z) = 0 implies E ′(z) ∈ {−1, 1}.
Such entire functions E are called Bank–Laine functions. If w1 and w2 is a
normalized system of solutions of (1.1) and F = w2/w1, then

E =
F

F ′
= w1w2.

The converse is also true: every Bank–Laine function is the product of two
linearly independent solutions of (1.1).

It turns out that the Schwarzian derivative has the following factorization:

2S[F ] = B[F/F ′],

where

B[E] := −2
E ′′

E
+

(

E ′

E

)2

− 1

E2
. (1.3)

Thus every Bank–Laine function E is a product of two linearly independent
solutions of (1.1) with 4A = B[E], a fact discovered by Bank and Laine [2, 3].

A considerable part of the previous research related to the Bank–Laine
conjecture has concentrated on the study of Bank–Laine functions. There are
a number of papers where Bank–Laine functions of finite order with various
other properties are constructed [1, 4, 6, 14, 15, 16, 18]. In all examples
constructed so far, for which the order could be determined, it was an integer.
In our construction we have ρ(E) = ρ(A); see Remark 1. Thus our theorem
also yields the first examples of Bank–Laine functions of finite non-integral
order.

In the proof of our theorem we use the fact that the functions F have a
topological characterization. Starting with two elementary locally univalent
functions, we paste them together by a quasiconformal surgery. The result-
ing function is locally univalent, and the asymptotics of log |F/F ′| can be
explicitly computed. A different kind of quasiconformal surgery was used
in [4, 13].
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2 Proof of the theorem

For every integer m ≥ 0 we consider the polynomial

Pm(z) =
2m
∑

k=0

(−1)k
zk

k!
.

Then the entire function

gm(z) = Pm(e
z) exp ez

satisfies

g′m(z) = (P ′
m(e

z) + Pm(e
z)) ez exp ez =

1

(2m)!
exp (ez + (2m+ 1)z)

and thus it has the following properties:

a) g′m(z) 6= 0 for all z ∈ C,

b) gm is increasing on R, and satisfies gm(x) → 1 as x → −∞ as well as
gm(x) → +∞ as x→ +∞.

From now on, we fix two distinct non-negative integers m and n, and
will sometimes omit them from notation. Notice that gm and gn are locally
univalent entire functions. We are going to restrict gm to the upper half-
plane H+ and gn to the lower half-plane H−, and then paste them together,
using a quasiconformal surgery, producing an entire function F . Then our
Bank–Laine function will be E = F/F ′ and thus A = B[E]/4 as in (1.3).

It follows from b) that there exists an increasing diffeomorphism φ : R →
R such that gm(x) = (gn ◦ φ)(x) for x ∈ R. Let

k =
2m+ 1

2n+ 1
.
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We show that the asymptotic behavior of the diffeomorphism φ is the follow-
ing:

φ(x) = x+O(e−x/2), φ′(x) → 1, x→ +∞, (2.1)

and
φ(x) = kx+ c+O(e−δ|x|), φ′(x) → k, x→ −∞, (2.2)

with

c =
1

2n+ 1
log

(2n+ 1)!

(2m+ 1)!
and δ =

1

2
min{1, k}.

In order to prove (2.1), we note that

log gm(x) = ex +O(x) = ex
(

1 +O(xe−x)
)

, x→ +∞.

The equation gm(x) = gn(φ(x)) easily implies that 2
3
x ≤ φ(x) ≤ 2x for

large x. Thus we also have

log gn(φ(x)) = eφ(x)
(

1 +O
(

φ(x)e−φ(x)
))

= eφ(x)
(

1 +O
(

xe−2x/3
))

, x→ +∞.

Combining the last two equations we obtain

eφ(x)−x = 1 +O(xe−2x/3), x→ +∞,

from which the first statement in (2.1) easily follows. For the second state-
ment in (2.1) we use

φ′ =
g′m
gm

gn ◦ φ
g′n ◦ φ

, (2.3)

so that

φ′(x) =
(2n)!

(2m)!
e(2m+1)x−(2n+1)φ(x)Pn(e

φ(x))

Pm(ex)

∼ e(2m+1)x−(2n+1)φ(x)+2nφ(x)−2mx

= ex−φ(x) = 1 + o(1), x→ +∞.

In order to prove (2.2) we note that

Pm(w) = e−w +
w2m+1

(2m+ 1)!
+O(w2m+2), w → 0,
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and thus

Pm(w)e
w = 1 +

w2m+1

(2m+ 1)!
+O(w2m+2), w → 0.

Hence

gm(x) = 1 +
e(2m+1)x

(2m+ 1)!
+O(e(2m+2)x)

= 1 +
e(2m+1)x

(2m+ 1)!
(1 +O(ex)), x→ −∞.

The equation gm(x) = gn(φ(x)) now yields

(2m+ 1)!

(2n+ 1)!
e(2n+1)φ(x)−(2m+1)x = 1 +O(ex) +O(eφ(x)), x→ −∞

and hence

φ(x) =
2m+ 1

2n+ 1
x+

1

2n+ 1
log

(2n+ 1)!

(2m+ 1)!
+O(ex) +O(eφ(x)), x→ −∞,

which gives the first statement in (2.2). For the second statement in (2.2)
we use (2.3) and obtain

φ′(x) ∼ (2n)!

(2m)!
e(2m+1)x−(2n+1)φ(x) =

(2n)!

(2m)!
e(2m+1)x−(2n+1)(kx+c+o(1))

=
(2n)!

(2m)!
e−(2n+1)c+o(1) = k + o(1).

Let D = C\R≤0, and p : D → C, p(z) = zµ, the principal branch of the
power. Here µ is a complex number to be determined so that p maps D onto
the complement G of a logarithmic spiral Γ, with

p(x+ i0) = p(kx− i0), x < 0. (2.4)

It will be convenient to consider also the map z → µz obtained from p by
a logarithmic change of the variable: if w = p(z) then logw = µ log z, cf.
Figure 1.

This shows (taking x = 0 in Figure 1) that with a− = log k − iπ and
a+ = iπ we have Re(µa−) = Re(µa+); that is, Re(µ(log k − iπ)) = Re(µiπ).
Moreover, Im(iπ/µ) = π. A simple computation now yields that

µ =
2π

4π2 + log2 k
(2π − i log k).
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z 7→ µz

z 7→ zµ

exp exp

iπ

−iπ

iπ

−iπ

a+=x+iπ

a−=x+ log k−iπ
µa−

µa+

−ex
−kex s=r1/Reµ

=
√
kex

sµ = eµa±

r

Γ

Γ′

Figure 1: Sketch of the map p and the logarithmic change of variable,
for k = 1

5 and µ ≈ 0.9384+0.2403i. (The actual spirals Γ and Γ′ wind
much slower than drawn.)

The inverse map h = p−1 is a conformal homeomorphism h : G → D. Let
Γ′ = p(R≥0). The two logarithmic spirals Γ and Γ′ divide the plane into
two parts, G+ and G− which are images under p of the upper and lower
half-planes, respectively.

The function V defined by

V (z) =

{

(gm ◦ h)(z), z ∈ G+,
(gn ◦ h)(z), z ∈ G−,

is analytic in G+ ∪G− and has a jump discontinuity on Γ and Γ′. In view of
(2.1), (2.2) and (2.4), this discontinuity can be removed by a small change
in the independent variable. In order to do so, we consider the strip Π =
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{z : |Im z| < 1} and define a quasiconformal homeomorphism τ : C → C,
commuting with the complex conjugation, which is the identity outside of Π
and satisfies

τ(x) = φ(x), x > 0, and τ(kx) = φ(x), x < 0. (2.5)

Our homeomorphism can be given by an explicit formula: for y = Im z ∈
(−1, 1) we put

τ(x+ iy) =

{

φ(x) + |y|(x− φ(x)) + iy, x ≥ 0
φ(x/k) + |y|(x− φ(x/k)) + iy, x < 0.

The Jacobian matrix Dτ of τ is given for x > 0 and 0 < |y| < 1 by

Dτ (x+ iy) =

(

φ′(x) + |y|(1− φ′(x)) ±(x− φ(x))
0 1

)

,

and we see using (2.1) that

Dτ (x+ iy) →
(

1 0
0 1

)

, 0 < |y| < 1, x→ ∞,

Similarly, using (2.2) we find that

Dτ (x+ iy) →
(

1 ∓c
0 1

)

, 0 < |y| < 1, x→ −∞.

We conclude that τ is quasiconformal in the plane.
Now we modify V to obtain a continuous function and define U : C → C,

U(z) =

{

(gm ◦ h)(z), z ∈ G+ ∪ Γ ∪ Γ′ ∪ {0},
(gn ◦ τ ◦ h)(z), z ∈ G−.

(2.6)

It follows from (2.4) and (2.5) that U is continuous and quasiregular in the
plane. The existence theorem for solutions of the Beltrami equation [17,
§V.1] yields that there exists a a quasiconformal homeomorphism ψ : C → C

with the same Beltrami coefficient as U . The function F = U ◦ ψ−1 is then
entire.

We note that U is regular in C\X, where X = p(Π−), and Π− is the
lower half of Π. Let ∆ = {z : |z| > 1}. It is easy to see that X ∩∆ has finite
logarithmic area; that is,

∫

X∩∆

dx dy

x2 + y2
=

∫

Π−∩∆

|p′(z)|2
|p(z)|2 dx dy = |µ|2

∫

Π−∩∆

dx dy

x2 + y2
<∞.
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Thus the Beltrami coefficient of U (and hence of ψ) satisfies the hypotheses of
the Teichmüller–Wittich–Belinskii theorem [17, §V.6]. This theorem shows
that ψ is conformal at ∞ and may thus be normalized to satisfy

ψ(z) ∼ z, z → ∞. (2.7)

Now we want to differentiate the asymptotic relation (2.7). We write
ψ(z) = z + ψ0(z) so that ψ′(z) = 1 + ψ′

0(z). Then |ψ0(z)| ≤ α(z) for some
function α satisfying α(z) = o(z) as z → ∞. We may assume that α(z) → ∞
as z → ∞. We use the Cauchy formula

ψ′
0(z) =

1

2πi

∫

Cz

ψ0(ζ)

(ζ − z)2
dζ

with a circle Cz centered at z. Choosing the radius β(z) of this circle to
satisfy

α(z) = o(β(z)), β(z) = o(z), z → ∞
and putting Y = {z : dist(z,X) ≤ β(z)} we obtain

ψ′
0(z) → 0, z → ∞, z ∈ C\Y. (2.8)

We also have

meas{θ ∈ [0, 2π] : reiθ ∈ Y } → 0, r → ∞.

Let Y ′ = ψ(Y ). Using (2.7) we see that also

meas{θ ∈ [0, 2π] : reiθ ∈ Y ′} → 0, r → ∞. (2.9)

We put E = F/F ′. As F ′(z) 6= 0 for all z ∈ C by construction, E is
entire. As all zeros of F are simple, all residues of F ′/F are equal to 1, so
E ′(z) = 1 at every zero z of E, which implies the Bank–Laine property.

First we prove that E is of finite order. In order to do this, we use the
standard terminology of Nevanlinna theory; see [7] or [12]. The counting
function of the sequence of zeros of gm and gn is of order 1, so the counting
function of the zeros of U in (2.6) is of finite order. Then (2.7) shows that
the counting function of zeros of F , and hence the counting function of the
zeros of E, is also of finite order; that is, logN(r, 1/E) = O(log r). Similarly,
log logm(r, F ) = O(log r), so by the Lemma on the logarithmic derivative [7,
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Chapter 3, Theorem 1.3] we have logm(r, 1/E) = logm(r, F ′/F ) = O(log r).
Thus log T (r, E) = O(log r) so that E is of finite order.

Now we estimate more precisely the growth of the Nevanlinna proximity
function m(r, 1/E) = m(r, F ′/F ). The “small arcs lemma” of Edrei and
Fuchs [7, Chapter 1, Theorem 7.3] permits us to discard the exceptional set
Y ′ = ψ(Y ). Outside of this set we have ψ′(z) → 1 in view of (2.8), therefore

∫

{θ∈[0,2π] : reiθ∈C\Y ′}

∣

∣log |ψ′(reiθ)|
∣

∣ dθ = o(1), r → ∞. (2.10)

Furthermore, as h(z) = z1/µ, we have

∫ 2π

0

∣

∣log |h′(reiθ)|
∣

∣ dθ = O(log r), r → ∞. (2.11)

Now we have in ψ−1(D+\Y )

F ′

F
=

(

g′m
gm

◦ h ◦ ψ−1

)

(h′ ◦ ψ−1)(ψ−1)′. (2.12)

According to (2.10) and (2.11), the contribution of h′ and (ψ−1)′ tom(r, F ′/F )
is O(log r). Using the explicit form of g′m/gm we obtain, outside small neigh-
borhoods of the zeros of gm whose contribution can be neglected again by
the small arcs lemma of Edrei and Fuchs,

log+
∣

∣

∣

∣

g′m(z)

gm(z)

∣

∣

∣

∣

∼ Re+ z, z → ∞. (2.13)

Now the image of the circle {z : |z| = r} under h(z) = z1/µ is the part of the
logarithmic spiral which connects two points on the negative real axis and
intersects the positive real axis at r1/Reµ; cf. Figure 1. By (2.7), the image
of this circle under h ◦ ψ−1 is an arc close to this part of the logarithmic
spiral. It now follows from (2.10), (2.11), (2.12) and (2.13) that the part of
m(r, F ′/F ) which comes from ψ−1(G+\Y ) has order

ρ =
1

Reµ
= 1 +

log2 k

4π2
.

The other part which comes from ψ−1(G−\Y ) is similar, and the contribution
of Y ′ is negligible in view of (2.9). So m(r, 1/E) = m(r, F ′/F ) has order ρ.
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Now (1.3) says that

4A = −2
E ′′

E
+

(

E ′

E

)2

− 1

E2
.

It follows from the lemma on the logarithmic derivative that

m(r, A) = 2m

(

r,
1

E

)

+O(log r).

Thus A also has order ρ.

3 Remarks

Remark 1. To prove that ρ(A) = ρ it was sufficient to determine the growth
of m(r, 1/E). To show that ρ(E) = ρ we also have to estimate the counting
function of the zeros of E. In order to do so we note that N(r, 1/gm) = O(r)
and N(r, 1/gn) = O(r). Hence N(r, 1/U) = O(rρ) and thus (2.7) implies
that

N

(

r,
1

E

)

= N(r, F ) = O(rρ).

Altogether we see that ρ(E) = ρ = ρ(A), as stated in the introduction.
We note that ρ(A) < 1 implies that ρ(E) > 1, as follows from any of the

following inequalities [13, Theorem 12.3.1]:

ρ(A) + ρ(E) ≥ 2,
1

ρ(A)
+

1

ρ(E)
≤ 2 and ρ(A)ρ(E) ≥ 1.

Moreover, it can be deduced from (1.3) that if ρ(A) < 1, then λ(E) = ρ(E);
see [13, p. 442].

As our method yields examples with ρ(E) = ρ(A), it does not seem
suitable to give examples with ρ(A) < 1. The question whether ρ(A) ∈ (1

2
, 1)

implies that max{λ(w1), λ(w2)} = ∞ for linearly independent solutions w1

and w2 of (1.1) remains open.

Remark 2. We started our construction with two periodic locally univalent
functions gm and gn and obtained a set of orders ρ which is dense in [1,+∞).
By using almost periodic building blocks instead of gm and gn, one can proba-
bly achieve any prescribed order greater than 1; cf. [7, Chapter 7, Section 6].
In this case gm and gn will not be explicitly known, but their asymptotic
behavior can be obtained.
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Remark 3. The Bank–Laine functions we have constructed actually satisfy
E(z) = 1 whenever E ′(z) = 0. Equivalently, one of the two solutions of (1.1)
whose product is E has no zeros while the other one has a finite exponent of
convergence.
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