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Abstract

We study entire functions whose zeros and one-points lie on distinct
finite systems of rays. General restrictions on these rays are obtained.
Non-trivial examples of entire functions with zeros and one-points on
different rays are constructed, using the Stokes phenomenon for second
order linear differential equations.
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1 Introduction

The zeros of an entire function can be arbitrarily assigned, but in general one
cannot assign the preimages of two values [26]. Since this work of Nevanlinna,
various necessary conditions which the sets of zeros and 1-points of an entire
function must satisfy were found; see, e.g., [27, 30, 36]. Besides an intrinsic
interest, these conditions are relevant to control theory [6, 5, 17].

In this paper we study the simplest setting when the zeros and 1-points
lie on finitely many rays, or are close to finitely many rays. The word “ray”
in this paper will always mean a ray from the origin. For an entire function f,
we say that a value a is radially distributed if the set f~1(a) is contained in
the union of finitely many rays.

We begin by recalling some classical results.
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Theorem A. (A. Edrei [15]) Suppose that all zeros and 1-points of an entire
function f are distributed on a finite set of rays, and let w be the smallest
angle between these rays. Then the order of f is at most w/w.

The most difficult part of this theorem is the conclusion that the order is
finite. Some special cases of Theorem A under the a priori assumption that
the order is finite were proved by Bieberbach [7].

In the 1920s, Biernacki [8] and Milloux [25] studied the case that all zeros
of a transcendental entire function f lie on some line and all 1-points lie on
a different line. Under certain additional hypotheses, including in particular
the assumption that the order is not an integer, Biernacki showed that the
lines must be parallel. Milloux obtained this result under less restrictive
hypotheses, with additional conclusions on the order of the function. Both
Biernacki and Milloux considered only functions of finite order, but by Edrei’s
Theorem A we know now that this is a consequence of the other hypotheses.

The following corollary from our main results completely describes the
situation for the case that the lines intersect.

Theorem 1. Suppose that all zeros of an entire function f lie on a line L,
and all 1-points lie on a different line Lo intersecting L1. Then f is either
of the form f(z) = et or f(2) = 1 — ¥, or a polynomial of degree at
most 2.

This result is essentially contained in Milloux’s paper. He did not mention
the exceptional cases, perhaps assuming implicitly that there are indeed both
zeros and 1-points. In his proof, Milloux omitted a detailed treatment of the
case when Ls is orthogonal to L;. He also omitted the treatment of the case
when f is of the form f(z) = P(2)[[,—,(1 — z/a,) where P is a polynomial
and ) 1/|a,| < co. While these problems can be fixed by considering the
function f(z)f(—%) in a suitable way, we include a proof of Theorem 1 below,
based on different arguments and shorter than that of Milloux. In fact, we
obtain Theorem 1 as a corollary of more general results.

The case of parallel lines was studied by Baker [3] and Kobayashi [22]
who showed that if all zeros of a transcendental entire function f lie on a
line L; and all 1-points lie on a different line Ly parallel to Ly, then f has
the form f(z) = P(e*) with some a € C\{0} and a polynomial P.

Biernacki returned to the subject in 1929 and considered the more general
situation where the zeros and 1-points do not lie exactly on certain lines or
rays, but are only close to them. We say that points a, (e.g., the zeros of
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an entire function) accumulate in a direction ¢ if, for every € > 0, the sector
{z: |arg z — ¢| < e} contains infinitely many points a,,. If there is only one
such direction ¢ (modulo 27), we say that the points a,, accumulate in the
direction ¢ only.

Theorem B. (M. Biernacki [9, p. 533]) There does not exist a transcendental
entire function f of finite order such that the zeros of f accumulate in a
certain direction only and the 1-points of f accumulate in a different direction
only.

We complement the above theorems with several results. First we con-
sider the situation when the zeros lie on a ray and the 1-points lie on two
rays. Note that in view of Theorem A, these assumptions imply that the
function is of finite order.

Theorem 2. Let f be a transcendental entire function whose zeros lie on
a ray Lo and whose 1-points lie on two rays Ly and L_1, each of which is
distinct from Ly. Suppose that the numbers of zeros and 1-points are infinite.
Then A(Lo, Ll) = A(Lo, L_l) < 7'('/2

It is remarkable that there are non-trivial examples of entire functions
whose zeros lie on the positive ray while all 1-points lie on two rays that are
not contained in the real line. As far as we know the functions given in the
following theorem are the first non-trivial examples of entire functions with
zeros and 1-points on finitely many rays.

Theorem 3. For every integer m > 3, there exists an entire function f of
order 1/2 + 1/m whose zeros are positive and whose 1-points lie on the two
rays {z: argz = £2r/(m + 2)}.

Theorem 1 implies that such functions do not exist for m = 2, except for
the trivial case where f has no zeros at all and is of the form f(z) = e®*.

Taking f(z") with f as in Theorem 3 we obtain an entire function whose
zeros lie on n rays and whose 1-points lie on 2n rays distinct from those rays
where the zeros lie.

Now we relax the condition that the zeros and 1-points are radially dis-
tributed. Let

A=JA4;, Aj={te:t>0}, 0<a;<...<a,<2m,

J=1



be a finite union of rays. We say that the a-points of an entire function f are
close to the set A if they accumulate only in the directions given by A. Thus
for every ¢ > 0 all but finitely many a-points are in the union of sectors

U{z: |arg z — aj| < e}.

j=1

Our next result describes the possible configurations of finite unions of
rays A and B which, apart from the origin, are pairwise disjoint and have
the property that the zeros are close to A and the 1-points are close to B.
We will assume that the system of rays A U B is minimal is the sense that
for every ray {te’®:t > 0} in A (respectively in B) there is a sequence (zy,)
tending to oo such that f(zx) = 0 (respectively f(zx) = 1) for all k, and
arg 2, — «a as k — oo.

Theorem 4. Let f be a transcendental entire function of order p < oo whose
zeros are close to A and whose 1-points are close to B, with AN B = {0}.
Suppose that the system AU B is minimal.

Then
s 1

p=->3 (1)
where w is the largest angle between adjacent rays in AU B, and there exists
a system of rays C' = Uj;nl C; C AU B, with m > 1, partitioning the plane
into 2m sectors S; such that 0S; = C; U Cjqq for 1 < j < 2m — 1 and
059, = Csy, U C, with the following properties:

(i) The angle of S; at 0 is w/p when j is even, and at most w/p when j
15 odd.

(13) Both boundary rays of an odd sector belong to the same set, A or B.

(1ii) There are no rays of AU B inside the even sectors.

(1) If there are rays of A inside an odd sector, then the boundary rays of
this sector belong to B. If there are rays of B inside an odd sector, then the
boundary rays of this sector belong to A.

(v) If there are no rays of AU B in an odd sector, then its opening angle

is w/p.

Note that Theorem B is an immediate consequence of Theorem 4.
The next result — whose proof we will only sketch — shows that Theorem 4
is best possible.



Theorem 5. Let A and B be systems of rays, satisfying conditions (1)—(v)
of Theorem 4 for some p € (0,00). Then there exists an entire function of
order p whose zeros are close to A and whose 1-points are close to B.

Moreover, for all finite systems of rays A and B there exists an entire
function of infinite order whose zeros are close to A and whose 1-points are
close to B.

We note that Theorem 5 shows in particular that the hypothesis that f
be of finite order is essential in Biernacki’s Theorem B.

We illustrate our results by returning to the case of three distinct rays,
which was already discussed in Theorems 2 and 3. Now we consider three
rays

Lj = {te"*:t >0}, je{-1,0,1},

with a € (0, 7). Theorems A, 1, 3 and 4 imply the following.

Theorem 3 shows that for certain @ € (0, 7/2) there exists a transcenden-
tal entire function of order 7 /(2m —2a)) whose zeros lie on Ly while its 1-points
lie on Ly U L_;. This result has been extended in [18] to all a € (0,7/3]. Tt
remains open whether such functions exist for o € (w/3,7/2); see the dis-
cussion at the end of the paper on possible generalizations of this theorem.

If a = 7/2, then, according to Theorem 1, there is no transcendental
entire function with all zeros on Ly and all 1-points on L; U L_q, unless it
omits 0 or 1. However, the entire function f(z) = 1/I'(—z) has zeros on Ly
and 1-points close to the imaginary axis. This follows from Stirling’s formula.

Finally, Theorem 4 implies that if a € (7/2, 7), then there is no transcen-
dental entire function of finite order whose zeros are close to Ly and whose
1-points are close to L; U L_;.

This work was stimulated by questions asked by Gary Gundersen. We
thank him for drawing our attention to these problems and for interesting
discussions. We also thank the referee for very valuable comments.

The plan of the paper is the following. In section 2 we first prove The-
orem 4 and then deduce Theorem 1 and Theorem 2 from it. The proof of
Theorem 5 showing the sharpness of Theorem 4 is then sketched in section 3.
The proof of Theorem 3 is independent of the rest and will be given in sec-
tion 4.



2 Proof of Theorems 4, 1 and 2

Proof of Theorem 4. If the a-points of f are close to a finite system of rays,
then evidently f(z+c¢) has the same property for every ¢ € C, with the same
rays. Therefore we may assume without loss of generality that

f(0) £{0,1}. (2)
We use the standard notation

M(r) = M(r, f) = max[f(2)]

|2|<r
Let (ry) be a sequence tending to oo with the property that
log M (try) = O(log M(rx)), Kk — oo, (3)

for every t > 1. Such sequences always exist for functions of finite order.
A sequence (ry) is called a sequence of Pdlya peaks of order A € [0,00)
for log M (r), if for every € > 0 we have

log M(try) < (1 +¢e)t*logM(ry), e<t<e?, (4)
when k is large enough. It is clear that every sequence of Pdlya peaks satis-
fies (3). According to a result of Drasin and Shea [14], Pélya peaks of order
A exist for all finite A € [p,, p*], where

log M (t
p*zsup{pER: limsupog—(r):oo} (5)

rt—oo tPlog M(r)

and log M(tr)
B g 108 M ()
0. = inf {p €R: liminf - log M(r) 0} '
We always have
0<p. <p<p <o,

so when p < oo, then there exist Pélya peaks of some (finite) order A.

We refer to [20, Ch. 111}, [21, Ch. III] and [29] for the basic results on sub-
harmonic functions used below. Fixing a sequence (ry) with the property (3),
we consider the two sequences (uy) and (vg) of subharmonic functions in C
given by

_ log|f(r2)|

w(2) _log | f(rez) — 1
M log M (1)

and  wvg(z) = log M (17)

(6)



In view of (3), these sequences are bounded from above on every compact
subset of C. It follows from (2) that the sequences u(0) and v, (0) tend
to 0. According to a well known compactness principle (see, for example,
20, Theorems 4.1.8, 4.1.9] or [21, Theorems 3.2.12, 3.2.13]), one can choose
a subsequence of (7)), which we do without changing notation, such that the
limit functions

_ o Jog | f(re2)| L log|f(rk2) — 1
U(Z)—]}gl;lo log M (ry) and ’U(z)—klggo log M (ry) (7)

exist and are subharmonic in C. Here the convergence is in the Schwartz
space 2. It implies the convergence in Lji,, and also the convergence of the
Riesz measures, as the Laplacian is continuous in 2'.

The functions u and v are non-zero subharmonic functions in C, and they
have the following properties (we write ut = max{u,0}):

(a) ut =ovt.
(b) {z: u(z) <0} N{z:v(z) < 0} = 0.
(¢) u is harmonic in C\ A and v is harmonic in C\ B.

If (ry) is a sequence of Pdélya peaks of order A > 0, then we have the
additional property

(d) u(0) = v(0) = 0, and max{u(z),v(z)} < |z]* for all z € C.

Properties (a) and (b) are evident. Property (c¢) holds because the Lapla-
cian is continuous in 2’. Property (d) is a consequence of (2) and (4).
Indeed, (2) and

u(0) > lim sup u(0),
k—ro0
(see [20, (4.1.8)]) imply that u(0) > 0, while (4) yields u(z) < |2|* and thus,
in particular, u(0) = 0. The same argument applies to v.

The components of the complement C\(A U B) will be called sectors of

the system AU B.

Lemma 1. Let u and v be two non-zero subharmonic functions in the plane
which satisfy (a), (b) and (c¢). Then either u(z) = v(z) = ¢ for some ¢ > 0,
or there exist an even number of rays Ci,...,Cy,, with m > 1, that belong
to AU B and partition the plane into sectors S;, so that 0S; = C; UC; 44 for
1<j<2m—1 and 9Ss,, = Cy, UCY, such that u(z) = v(z) > 0 for z in the
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even sectors while u(z) < 0 and v(z) < 0 for z in the odd sectors. Moreover,
in each odd sector one of the functions u,v is strictly negative and the other
is zero. If u(z) =0 in Sopr1 then 0Say1 C A, and if v(z) = 0 in Soxrq1 then
852k+1 C B.

Proof of Lemma 1. If D is a sector of the system AU B, and if at some point
2o in D, we have max{u(zy),v(z9)} > 0, then u(z) = v(z) > 0 for all points
z € D. Indeed, both uw and v are harmonic in D by (c), and (a) gives

u(z9) = v(zp) > 0. (8)

If min{wu(z1),v(21)} < 0 for some z; € D, then this also holds in a neighbor-
hood of z;, and one of the functions v and v must be zero in this neighborhood
by (b). Then it is identically equal to zero in D which contradicts (8). Thus
u and v are non-negative in D, and the minimum principle implies that they
are positive. Then they are equal in D by (a). Such sectors D will be called
positive sectors.

If one of the functions v and v is constant, then both functions are equal to
the same positive constant. This follows from (a) and (b) and the assumption
that neither u nor v is identically zero. For the rest of the proof we assume
that both u and v are non-constant.

Suppose that some ray L C AU B has the property that positive sectors
Dy and D, are adjacent to L on both sides, that is, L = dD; N dD,y. (We
will see in a moment that Dy # D). Then we have u(z) = v(z) for z € D =
Dy U Dy UL, in view of (a), and u and v must be positive and harmonic in
D in view of (c).

If there are no non-positive sectors, then u and v are equal, positive
and harmonic in C\{0}, which is impossible under the current assumption
that they are non-constant. So there is at least one non-positive sector. In
particular, Dy # Dy in the previous paragraph.

Let D be a positive sector. Let zg be a point on 9D N OD’, where D’ is
a non-positive sector. This means that u(z) < 0 and v(z) < 0 in D’. Then
u(z9) = v(z0) = 0. Indeed, u(zy) > 0 and v(zy) > 0 by the upper semi-
continuity of subharmonic functions. As D’ is not thin at zy (in the sense of
potential theory, see [29]) we obtain that u(zy) = v(z9) = 0.

Let C be the union of those rays in AU B which separate a positive and
a non-positive sector. It follows from the above considerations that C' can be
written in the form C' = U?ml C;, with m > 1, with rays C; C AU B so that

j:
in the sector S; between C; and Cj,; the functions u and v are positive for
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even j and non-positive for odd j. Moreover, we have u(z) = v(z) = 0 for
z € C. Note that the sectors with respect to the system C' may be unions of
several sectors and rays of the system AU B.

Let Sy;—1 be an odd sector. Then u(z) < 0in Sy;—1. If u(z) = 01in Syj_q,
then w is not harmonic on either of the two rays in 9.S3;_1, so v is harmonic
on these two rays. As v(z) > 0 in the adjacent sectors to Syj_1, we obtain
that v(z) # 0 in Syj_1, so v(2) < 0 in Sy;_; by maximum principle. In this
case we evidently have 0Sy;_1 C A. Similarly, if v(z) = 0 in Sy;_; then
u(z) < 0in Sy;_y and 9S4 C B.

This proves Lemma 1.

We return to the proof of Theorem 4. Lemma 1 does not exclude the
possibility that the set of rays C} is empty, and thus the whole plane coincides
with one positive sector. In this case u and v are identically equal to the same
positive constant. The following argument shows that this is impossible.

Suppose first that

pr=0 9)
in (5). Then

log M (tr) < cot'*log M(r), t > to, r > 1y, (10)

with some ¢y > 0. This implies (3), thus from every sequence rp — o0
one can choose a subsequence such that the functions (6) have limits wu, v
satisfying Lemma 1.
We claim that these functions must be constant when (10) holds. Indeed,
(10) implies that
u(z) < colz|V4, 2| > to. (11)

If u is not constant, then there exists at least one positive sector D of the
system C, so that u(z) >0, z € D and u(z) =0, z € 9D, and u is harmonic
in D. But every positive harmonic function in a sector, zero on the boundary
must have the form

c|z™% cos (z(argz - 90)) , z€D, (12)
«

where o < 27 is the opening angle of the sector. This can be seen by
transforming the sector D conformally to a half-plane, for which the result is
standard, see, for example, [10, Theorem I]. So 7/a > 1/2 in contradiction
to (11). This proves the claim that u and v coincide with the same positive
constant function when (10) holds.



Let 2, = re”* — 0o be a sequence of zeros of f, such that 8, — 3 where
[ is an argument of some ray of the system A. Using the sequence r; we
define functions uy, vy by (6), and consider some limit functions u,v. These
functions are both equal to a positive constant ¢ under our assumption (9).

We have up — u in 2’. According to Azarin [1], this convergence also
holds in the following sense: for every € > 0 the set

{z: |2]| <2, |u(2) — ug(z)| > &}

can be covered by disks the sum of whose radii is at most €, when £k is
large enough. Let D be the closed disk with the center at e’ of radius
d < 1/2, where ¢ is also so small that D can meet only one ray in AU B.
Choosing ¢ < min{d/2,c/2}, we see that for large k, there is a disk B
around e such that uy(z) > u(2)/2 = ¢/2 > 0 for z € OB,. This means
that log |f(2)| > (¢/3)log M (ry) for z on the circles

{z: z/rr € OBy}.

Each of these circles encloses the zero z; of f. Thus by Rouché’s theorem,
each of them also contains a 1-point of f. As § can be arbitrarily small,
the argument of this 1-point is close to 8. This is a contradiction with our
assumption that the zeros and 1-points are close to disjoint systems of rays.
This contradiction shows that

p* > 0. (13)

So for some A > 0 there exists a sequence of Pélya peaks of order .
Using this sequence to define ug, vx as in (6), we obtain limit functions u, v
satisfying conditions (a), (b), (¢) of Lemma 1, and in addition, condition (d).
This condition (d) excludes the possibility that u and v are equal to the same
constant in Lemma 1. So there exist at least one positive and at least one
non-positive sector of the system C'. If D is a positive sector of opening «,
then (12) holds in D. Comparing this with the condition (d) before Lemma 1,
we conclude that m/a = A. As « is an angle between certain two rays of a
finite system A U B, there are only finitely many possibilities for \. On the
other hand, the possible orders A\ of Pélya peaks of a given function fill an
interval [p., p*|] which contains p. We conclude that

p=pe=p,
and in particular, p* is finite and p > 0.
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Using (5), we obtain
log M (tr) < t**tlog M (1), 1 > 19, t > to.

This implies that (3) holds for every sequence rp — co.

Also this shows that the angle of every even sector at the origin is equal
to m/p, proving the first statement of (i) of Theorem 4.

For 7y > 0 such that M(rg) > 1 we consider the curve mapping [rg, 00)
to 9" x &' given by

log |£(r2)| log|f(rz) — 1]
H(long’ log M (1) )

Let F be the limit set of this curve when r — oo. It consists of pairs (u,v)
satisfying (a), (b) and (c¢) and thus satisfying the conclusions of Lemma 1.
As a limit set of a curve, F' is closed and connected. In each sector of the
system A U B either both of the functions u and v are positive, or one is
negative. We conclude that the sectors S; and their classification into three
classes (positive sectors, those where u(z) < 0 and those where v(z) < 0) is
independent on the choice of the sequence ri. In particular, u,v are never
constant even if the 7, are not Pélya peaks. Further, by Lemma 1 we deduce
that (i) of Theorem 4 holds.

One consequence of this is that f(z) — 0 in every closed subsector T
of an odd sector where u(z) < 0. Indeed, if T' contains points z; where
|f(zx)] > 0 > 0 with 2, — oo and argz, — [, we choose rp = |zx| and,
after choosing a subsequence, consider the limits (7). As u(e??) < 0, we have
u(z) < —¢ in a neighborhood of € for some € > 0. Convergence u;, — u in

2’ implies convergence in L}, and we obtain

1
ug(w) < — - up(z)dedy < —¢/2, z=ux+1y,
z—w|<r

where k is large enough, w is in a neighborhood of €*, and r > 0 is small
enough. This contradicts our assumption that |f(z;)| > § and proves that
f(2) = 0in T. So such a sector cannot contain rays of B.

Similarly, an odd sector in which v(z) < 0 cannot contain rays of A. This
proves statement (iv) of Theorem 4.

Next we prove statement (iii). Suppose that a ray L = {te??: t > 0} of
the set A lies inside an even sector Sy;. By assumption, there is an infinite
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sequence of zeros (z;) of the form z, = rye’® with r, — oo and B, — B.
Passing to a subsequence we may assume that the limits in (7) exist. We
obtain a positive harmonic function u in a neighborhood of €. Using the
same argument as before, with reference to Azarin’s and Rouché’s theorems
we conclude that there must be a sequence of 1-points whose arguments tend
to [, and this contradicts our assumption that zeros and 1-points are close
to disjoint systems of rays.

A similar argument shows that there are no rays from B inside any even
sector Sy;.

This proves (iii) and the fact that the even sectors of the system C
coincide with the positive sectors of the system A U B.

We next prove the second statement of (i). Let Sy;_; be an odd sector
with angle m/v at the origin. Consider again the limit functions u and v
obtained from the Pdlya peaks r;. Then we have (d) with A = p. One
of the two subharmonic functions, say u, is negative in Ss;_1, and zero on
the boundary of Sy;_1. Let h be the least harmonic majorant of u in G =
Saj—1 N {z: |z| < 1}. Then h is a negative harmonic function in G, equal to
zero on the straight segments of 0G. It follows that

/ h(re™)dt < —er?, r <1,
retteG

where ¢ > 0 and v = 7/a; here « is the angle of G at the origin. To prove
this, notice that the normal derivative of h cannot be zero on the rectilinear
part of the boundary of G by the reflection principle, thus A has a harmonic
majorant of the form —er” cos (y(t — to)), where ty is the argument of the
bisector of G. Then u satisfies the same inequality

u(re™) < —er? cos (y(t — ty))

in G. Combining this with property (d) and using, for 0 < r < 1, the fact
that

2w
0 =27u(0) < / u(re') dt < —c/
0 r

ette@

r7cos (y(t —to)) dt + / rfdt,
rett¢G

we obtain that v > p so that a < 7/p. This proves the second part of (7).
By this and (i7i), we also obtain p = w/w in (1). That p > 1/2, that is,
w < 2w, follows since there are at least two sectors.
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Finally, if there are no rays of A inside S;_1, then u is harmonic in Sy;_;.
Hence, if u < 0 in Sy;_1, then u is of the form (12), and it is a harmonic
continuation from an adjacent even sector, so we must have a = 7/p. A
similar argument applies if v is negative and there are no rays of B inside
Saj—1. This proves (v) and completes the proof of Theorem 4.

Proof of Theorem 1. According to Theorem A, the order p of f is finite.

First we deal with the case when f is a polynomial, following Baker [2].
Without loss of generality, we may assume that L; is the real line. Then
f = cg, where g is a real polynomial with all zeros real. Thus all zeros of f’
are real. Similarly we conclude that all zeros of f’ lie on L, and hence the
point zy of intersection of L; and L, is the only possible zero of f’. Thus
f(z) = c1(z — 20)™ + ¢ for some n > 1 and some c¢1,cs € C with ¢; # 0.
Such a function f can satisfy the assumptions of Theorem 1 only if f is a
polynomial of degree at most 2. Notice that this argument can be extended
to functions of order less than 2, but we do not use this.

Suppose now that f is transcendental. Then we use Theorem 4. This
theorem implies that there exists at least one even sector. If there is only
one even sector, and its angle is greater than 7, then the odd sector does not
contain rays of AU B, so by (v) its opening must be the same as the opening
of the even sector, which is a contradiction.

If there are two even sectors, then the odd sectors contain no rays of AUB.
It follows from (i) and (v) that all sectors must have opening 7 /2. Then by
(7) the zeros are close to the boundary of a quadrant, and the 1-points are
close to the the boundary of the opposite quadrant. But by hypothesis the
zeros lie on a line and the 1-points lie on a line. We conclude that the
zeros are actually close to one ray and the 1-points are close to another ray.
But then there is only one even sector, contradicting our assumption at the
beginning of this paragraph.

The only remaining possibility is that there is one even sector with open-
ing m. Then p = 1, and we assume without loss of generality that this sector
is the upper half plane and the 1-points are real. This means that B consists
of two rays whose union is the real line. Using the notation of the proof of
Theorem 4, and choosing a sequence (ry) of Pélya peaks of order 1, we obtain
u(z) = Imz and v(z) = Im™ 2. This implies that

1
N(rg, 1, f) ~ ;log]\/[('rk), k — oo. (14)

Now let g(z) = f(2)f(Z). As all 1-points of f are real, f(z) = 1 implies that
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g(z) =1, so if g # 1, we will have from (14) that
1
N(rg,1,9) > (1 —o(1))=log M(ry), k — oo. (15)
m

Now define the subharmonic function w in the plane by

. loglg(rsz)|
— lim —S19\TkZ)]
w(z) k—oo log M (ry,)

Above, M (ry) always refers to M(ry, f). It is evident that w(z) = u(z) +
u(zZ) = 0. Together with (15) this implies that g(z) = 1. We conclude that
with this normalization, f has the form f(z) = exp(icz + id), where ¢ and d
are real. This completes the proof of Theorem 1.

Proof of Theorem 2. We assume without loss of generality that Ly is the
positive ray. The order of f must be finite by Theorem A, so Theorem 4
is applicable. As there are only three rays, the number m in Theorem 4
must be 1. So we have one even sector of opening 7/p and one odd sector of
opening at most 7/p. Thus p < 1. In view of (ii), the common boundary of
the odd and even sector is Ly U L_;. So Lg lies inside the odd sector. The
possibility that p = 1 is excluded by (1) and Theorem 1. Hence p < 1, and
the function f is of genus zero and thus of the form

F&) = eole), o) = ﬁ (1-2).

where ¢ € C\ {0} and n is a non-negative integer, and (zj) is a sequence of
positive numbers tending to oco. If ¢ is real, we conclude that the rays L; and
L_, are symmetric with respect to Ly which proves Theorem 2 in this case.

Suppose now that L; and L_; are not symmetric with respect to Lg so
that c¢is not real. Let usset a = 1/c. Then f(z) = 1 is equivalent to g(z) = a.
We consider the function h(z) = (g(z) —a)/(@—a). In view of the symmetry
of g, the zeros of h lie on the rays L; and L_;, while the 1-points lie on the
reflected rays L; and L_;. Since L, lies in the odd sector, which has angle
< 7 at the origin, it follows that the two rays L, L_; are interlaced with the
two rays L;, L_;. This contradicts (ii) and (i4i) of Theorem 4 applied to h,
and completes the proof of Theorem 2.
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3 Sketch of the proof of Theorem 5

We only indicate the construction of examples showing that Theorem 4 is
best possible, as this construction is well-known, see for example [13], where
a similar construction was used for the first time.

We fix p € (1/2,00) and construct a p-trigonometrically convex function
h such that the union of the even sectors coincides with the set

{re:r >0, h(t) > 0},

and such that h is trigonometric except at the arguments of some rays inside
the odd sectors. If there are no rays of AU B in the odd sectors at all, then p
must be an integer, and we just take h to be of the form h(t) = cos(p(t —to)),
where ?( is the argument of the bisector of one of the sectors.

Then we discretize the Riesz mass of the subharmonic function

w(re) = rPh(t),

as it is done in [1], and obtain an entire function g with zeros on some rays
AU B which lie in the odd sectors, and such that

lim r~"log|g(rz)| = w(z).
r—00

If there are odd sectors with opening 7/p, then h must be trigonometric on
the intervals corresponding to these sectors, so we multiply g by a canonical
product of order smaller than p to achieve that g has infinitely many zeros
on all those rays of the system A U B which lie inside the odd sectors. Then
we label the odd sectors with labels 0 and 1: if the boundary of an odd sector
belongs to A, we label it with 1, and if the boundary belongs to B we label
it with 0.

Let S; be an odd sector labeled with 1. Consider the component D; of
the set {z: |g(z)| < 2} which is asymptotic to S;. Let p be a quasiconformal
map of the disk {z: |z| < 2} onto itself, equal to the identity mapping on the
boundary, and such that p(0) = 1, whose complex dilatation is supported on
the set {z: 3/2 < |z| < 2}. We define

G(z) = { plg(2)), =€, D,

g(2), otherwise.
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Here the union is over all odd sectors labeled with 1. This G is a quasiregular
map of the plane, whose complex dilatation is supported on a small set F in

the sense that
dxdy
< 0
B .’13'2 + y2

Then the theorem of Teichmiiller—Wittich—Belinski [23, §V.6] guarantees the
existence of a quasiconformal map ¢ such that f = Go¢ is an entire function,
and ¢(z)/z — 1 as z — oo. It is easy to verify that f has all the required
properties.

For the construction of infinite order functions, let A = |JI_ {te’: ¢ > 0}
and B = |J_,{te?*: t > 0} be two finite systems of rays with AN B = {0}.
Again we only sketch the argument.

First we note that by [28, Part III, Problems 158-160] there exists an
entire function E such that 2%(F(z) + 1/z) is bounded outside the half-strip
S ={z: Rez > 0,|Imz| < 7}. In particular, E is bounded outside S.
Considering F(z) = §(E(z) —c¢)/((z —a)(z— b)), where 6 > 0 is small, ¢ € C,

and a and b are c-points of E, we obtain an entire function F' such that

< < !
T2+ 1 7 dist(z,9)%

|F(2)] z¢5,

where dist(z, S) denotes the distance from z to S. For some large R > 0 we
now consider the functions

aj(z) =1+ zexp F(e™™z — R) and by(2) = zexp F(e Ptz — R).

With S; = {e" (2 + R): 2 € S} we find, noting that [e¥ — 1| < 2|w]| for
|lw| < 1, that

laj(z) — 2z — 1| < |z (exp F(e7™z — R) — 1)| < 2|2F(e”"z — R)|
2|2| 2|2|
< , = S;.
~ dist(e7iwz — R, S5)?  dist(z, 5;)? 2E5;

Similarly, with T}, = {¢?*(z + R): z € S} we have

2|z|

I Sl lod B
1be(2) = 2] = dist(z, Ty, )?’
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We choose € > 0 so small that the sectors U; = {z: |arg(z — " R/2) — a;| <
e} and V), = {2: |arg(z — €*R/2) — Bi| < e} are disjoint and put

_ aj(z)? S Uja
Glz) = {bk(z), z € V.

Then . .
G(z)=z+0(1), zelJou;ul oV
j=1 k=1

This allows us to extend G to a quasiregular map of the plane which satisfies

G(z)=z+0(1), zeC\ (O@UO%)

j=1 k=1

and whose dilatation K¢ satisfies Kg(z) = 1+ O(1/]z]) as z — co. Again
the theorem of Teichmiiller-Wittich-Belinski yields the existence of a quasi-
conformal map ¢ such that f = G o ¢ is entire and ¢(z)/z — 1 as z — ©.
It is not difficult to show that the zeros of f are close to A and the 1-points
of f are close to B.

We note that the method does not actually require that the rays that
form A are distinct from those that form B. Indeed, if we want that both
zeros and 1-points accumulate at {te’: ¢ > 0}, we only have to choose
aj(z) = c+ zexp F(e™™ 2z — R) with a constant ¢ different from 0 and 1.

4 Proof of Theorem 3

We consider differential equations
—y"+ ((-1)2"+E)y=0, (€{0,1}, m>3, FEe€C. (16)

Here m is an integer, so all solutions are entire functions. The equation has
the following symmetry property. Set

eﬂ'z/(m—i—?)’ W = 62.

E =
If yo(z, E) is a solution of (16) then

ye(2, B) = yo(w ™"z, 0 E) (17)
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satisfies the same equation, while
yo(e %2, E)

with an odd k satisfies (16) with (—1)*2™ replaced by (—1)“*z™.

The Stokes sectors are defined as follows. When ¢ = 0, they are Sy =
{2:]argz| < 7/(m+2)}, and S}, = W*S; for k € Z. When ¢ = 1, the Stokes
sectors are Sy = {2: 0 < argz < 27/(m + 2)} and Sj, = W*S, for k € Z.

To obtain a discrete sequence of eigenvalues, one imposes boundary con-
ditions of the form

y(z) -0, z—o00, z€S,US, (18)

for some n and k. The exact meaning of (18) is that y(z) — 0 when z — oo
along any interior ray from the origin contained in the union of the two
sectors.

We will denote such a boundary condition by (n, k). It is known [32] that
when n # k+1 (modulo m +2), then the boundary value problem (n, k) has
a discrete spectrum with a sequence of eigenvalues tending to infinity. (For
completeness, we include the argument below.) Moreover, K. Shin [31] proved
that these eigenvalues always lie on a ray from the origin. In particular, when
S, and S, are symmetric with respect to the positive ray, these eigenvalues
are positive. All other cases can be reduced to this case using the symmetry
of the differential equation stated above: if w; and w, are bisectors of S,, and
Sk, then the eigenvalues lie on the ray {t/(wjws2): t > 0}.

From now on we assume that ¢ = 0 in (16). For each E the equation (16)
has a solution tending to zero as z — oo in Sy. More precisely, there is a
unique solution yo(z, F) satisfying

2
_ —m/4 = _(m+2)/2
Yo(z, E) = (14 0(1))z exp ( ek > (19)

as z — 00 in any closed subsector of Sy U .S} US_; see [32, Thm 6.1]. Notice

the simple but important fact that this principal part of the asymptotics

does not depend on E. The function yo(z, F) is actually an entire function

of the two variables z and E, and its asymptotics when E — oo while z is

fixed are also known [32, Thm 19.1]; this implies that the entire function

E — yo(20, E) has order '
1
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Now we define y; by (17). Then y, — 0 as z — oo in Sg. The boundary
problem (n, k) thus has a solution when y, and y, are linearly dependent as
functions of z. This means that their Wronskian vanishes. But the Wron-
skian, evaluated at z = 0, is an entire function of E, and its order is less
than 1. Thus its zeros, which are the eigenvalues of the problem, form a
sequence tending to infinity, as mentioned above.

As yo, y1,y_1 satisfy the same differential equation, we have

y_1 = C(E)yo + O(E)%-

The asymptotics of y; and y_; in Sy (which follow from (19)) show that
C=—-w, so

y_1 = C(E)yo — wyi. (20)
By differentiating this with respect to z we obtain
yoy = C(E)yp — wyi- (21)

Solving (20) and (21) by Cramer’s rule, we obtain
C(E) = W_11/Wo,

where W, ; is the Wronskian of y; and y;. This shows that C' is an entire
function (because Wy is never 0). It has the same order p that y, has as a
function of E.

In view of (20), the zeros of C are exactly the eigenvalues \; of the
problem (18) with (n,k) = (—1,1). So all zeros of C' are positive by Shin’s
result. Substituting (z, F) — (w™'z,w?E) to (20), we obtain

Yo = C(W2E>?/l — Wya.
Using this to eliminate y, from (20) we obtain
y-1 = (C(E)C(WE) —w) y1 — C(E)wys.
We conclude that the zeros of the entire function
g(E) := C(E)C(W*E) —w (22)

are the eigenvalues of the problem (—1,2). Therefore, these zeros lie on
the ray {z = tw™': ¢t > 0}. So if we define f(F) = —w 'g(w™'E) and
h(E) = C(E)//w, then

F(E) =1 — h(w ' E)h(wE),
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the zeros of f are on the positive ray and the 1-points on two other rays.
This completes the proof of Theorem 3.

Remarks. Once it is known that two entire functions C' and g satisfy (22) and
the zeros of each function lie on a ray, the order of both functions and the
angles between the rays can be determined from Theorem 4 and Theorem 2.

Equations of the type (22) occur for the first time in the work of Sibuya
and his students [32, 34, 33] for the simplest case when m = 3.

It was later discovered that these equations also arise in the context of
exactly solvable models of statistical mechanics on two-dimensional lattices
and in quantum field theory [11, 12].

The interesting question is to which angles Theorem 3 generalizes. Con-
cerning the approach that makes use of differential equations, the following
comments are in order. If m > 2 is not an integer, equation (16) and its
solutions are defined on the Riemann surface of the logarithm, but Sibuya’s
solution y is still entire as a function of E. We found no source where this
fact is proved, but it is stated and used in [11, p. 576], [12, p. R231] and
[35]. Shin’s result, which we used above seems to generalize to non-integer
m > 4, see [31, Theorem 11] which we use with £ = 1 and ¢ = 2. On the
other hand, numerical evidence in [4] (see Figs. 14, 15, 20) shows that for
m < 4 our function g(F) in (22) does not have radially distributed zeros on
one ray, even if finitely many of the zeros are discarded.

By extending our method Theorem 3 is generalized in [18] to all angles
in (0,7/3]. The question remains open for angles in (7/3,7/2) other than
27 /5.
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