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Abstract

Let Ly and L1 be two distinct rays emanating from the origin and
let F be the family of all functions holomorphic in the unit disk D for
which all zeros lie on Ly while all 1-points lie on Li. It is shown that
F is normal in D\{0}. The case where Ly is the positive real axis and
L1 is the negative real axis is studied in more detail.

1 Introduction and results

A major guideline in the theory of normal families is the heuristic Bloch
principle which says that the family of all holomorphic functions having a
certain property is likely to be normal if all entire functions with this property
are constant. The classical example is the property to omit the values 0 and 1,
in which case the statement about normal families is Montel’s theorem while
the statement about entire functions is Picard’s theorem. For a thorough
discussion of Bloch’s principle, including numerous further examples (and
counter-examples), we refer to [2] and [18].

There is a considerable literature on entire (and meromorphic) func-
tions with radially distributed zeros and 1-points. In contrast, the question
whether the radial distribution of zeros and 1-points relates to normality does
not seem to have been studied yet. In this paper we obtain results of this
type.

First we mention some results about entire functions with radially dis-
tributed values. A classical theorem of Edrei [10] says that if the zeros and
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1-points of an entire function f lie on finitely many rays, and if w is the small-
est angle between these rays, then the order of f is at most 7/w. Together
with results of Biernacki |6, p. 533] or Milloux [16] this yields the following.

Theorem A. There is no transcendental entire function for which all zeros
lie on one ray and all 1-points lie on a different ray.

It is a simple consequence of Rolle’s Theorem that a (non-constant) poly-
nomial for which all zeros lie on one ray and all 1-points lie on a different ray
has degree 1.

The following result is a normal family analogue of Theorem A. Here D
denotes the unit disk.

Theorem 1.1. Let Ly and Ly be two distinct rays and let F be the family of
all functions holomorphic in 1D for which all zeros lie on Ly and all 1-points
lie on Ly. Then F is normal in D\{0}.

We note that Theorem A follows from Theorem 1.1. Indeed, let f be a
transcendental entire function with all zeros on a ray Ly and all 1-points on
a different ray L;. Let (zx) be a sequence tending to oo such that |f(z)| <1
and consider the functions fy(z) = f(2|2x]|z). By Theorem 1.1, the f; form
a normal family in D\{0}. On the other hand, we have

min [fi(z)] <1 and rrlla)l(\fk(z)\ = max |f(2)] — oo,

|l2|=3 |z|=1 |2[=]2|

which implies that there exists a point of modulus % where the f; are not
normal. This contradiction completes the proof of Theorem A.

Functions of the fi(z) = cx(z — ax) where a;, — 0 and ¢, — oo show that
the family F in Theorem 1.1 is not normal at 0, regardless of the choice of
the rays. The following result says that in the case that all zeros are positive
and all 1-points are negative, all non-normal sequences are essentially of this
form.

Theorem 1.2. Let F be the family of all functions holomorphic in D for
which all zeros are positive and all 1-points are negative. Then F is normal
in D\{0} and every sequence (fy) in F which does not have a subsequence
convergent in D is of the form

fi(2) = (2 — ax)gr(2) (1.1)

where g, — 0o locally uniformly in D and ap — 0.
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An important ingredient in the proofs of Theorems 1.1 and 1.2 will be
the following result.

Theorem 1.3. Let D be a domain and let L be a straight line which divides D
into two subdomains DV and D~. Let F be a family of functions holomorphic
in D which do not have zeros in D and for which all 1-points lie on L.

Suppose that F is not normal at zo € DN L and let (fy) be a sequence in
F which does not have a subsequence converging in any neighborhood of 2.
Suppose that (fi|p+) converges. Then either (fi|p+) — 0 and (fr|p-) — oo
or (fx|p+) = oo and (fx|p-) — 0.

By Montel’s theorem, a family F as in Theorem 1.3 is normal in D and
D~. Thus a point 2y of non-normality automatically lies on L. Moreover,
given any sequence (fi) in F one may achieve that (fx|p+) converges by
passing to a subsequence.

A corresponding result holds for families of meromorphic functions which
omit two values and for which all preimages of a third value lie on a straight
line. This can be reduced to the situation of Theorem 1.3 by a fractional
linear transformation.

The proof of Theorem 1.3 is based on an extension of Zalcman’s lemma
(see Lemmas 2.1 and 2.2 below) which may be of independent interest. Zalc-
man’s lemma says that there exist 2z, € D and pr > 0 with 2z, — 2, and
pr — 0 such that, after passing to a subsequence, fi(zx + prz) — g(2) for
some entire function g. Using that the f; have no zeros one can show that
g has the form g(z) = e®**%. Thus fi(z, + prz) is close to e**¢ in certain
disks. Our generalization of Zalcman’s lemma gives a lower bound for the
size of these disks. Moreover, we quantify how close fi(z), + prz) and e®*+4
are (Lemma 2.6). This yields that f; is large at some point in one of the
domains D' and D~ and small at some point in the other one. Landau’s
theorem (Lemma 2.4) will then be used to show that f; is large or small
within the whole domain DT or D, respectively.

The methods used in the proof of Theorem 1.2 apply to another problem,
namely what restrictions the zeros and 1-points of a holomorphic function
f: D — C must satisfy. This problem is important in control theory; see,
e.g., [7] or [8, Theorem 2|. Goldberg [12]| showed that there exists an absolute
constant Ay such that if the number of zeros and 1-points of f are distinct
and different from 0, then at least one zero or 1-point has modulus greater
than or equal to As. The value of the largest constant A, with this property



is not known, but the estimates 0.005874 < A, < 0.02529 were obtained
in [3, Theorems 1.3 and 1.4].

In the following result the numbers of zeros and 1-points are allowed to
be equal, but we put a restriction on their arguments.

Theorem 1.4. Let f: D — C be holomorphic and 0 < r < 1. Suppose that
all zeros of f are in [0,r] while all 1-points of f are in [—r,0]. Suppose also
that f assumes both values 0 and 1 at least once, and assumes one of these
values at least twice. Thenr > C' for some absolute constant C'. In fact, this

holds for C' = 0.000024.

The value of C given in this theorem is certainly not best possible. On the
other hand, the example in [3, §§6-7| showing that Ay < 0.02529 also yields
that the best possible constant C' in Theorem 1.4 satisfies C' < 0.02529.

In the above theorems we study the case that the zeros lie on one ray
and the 1-points lie on a different ray. Entire functions for which the zeros
lie on a finite system of rays and the 1-points lie on another finite system
of rays where studied in [4]. For example, it was shown in [4, Theorem 2|
that if f is a transcendental entire function with infinitely many zeros and
1-points such that the zeros lie on a ray Lo and while the 1-points of f
lie on the union of two rays L; and L_;, each of which is distinct from
Ly, then Z(Lo, L) = Z(Lo,L-1) < m/2. On the other hand, examples of
such functions f with £(Lg, L1) = Z(Lo, L_1) = « were constructed in [4,
Theorem 3| for « of the form o = 27/n with n € N and in [11]| for any
a € (0,7/3].

It is conceivable that our theorems have generalizations to the case that
the zeros and 1-points are distributed on several rays.

Acknowledgment. We thank Xiao Yao for drawing our attention to Lai’s pa-
per [15].

2 Lemmas

The following result due to Zalcman [17] has turned out to be very useful
tool in the theory of normal families — and in particular in the exploration
of Bloch’s principle.

Lemma 2.1. (Zalcman’s Lemma) Let D C C be a domain, F a family
of functions meromorphic in D and zy € D. Then F is not normal at zy if
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and only if there exist a sequence (fi) in F, a sequence (zx) in D, a sequence
(or) of positive real numbers and a non-constant function g meromorphic in
C such that z, — zg, or — 0 and

Je(zk + onz) — g(2) (2.1)

locally uniformly in C with respect to the spherical metric. Moreover, we
have g% (2) <1 = g#(0) for all z € C.

- ()
z
) = ;
L+ ]f(2)]
be the spherical derivative of a meromorphic function f. The proof of Zalc-
man’s lemma (besides [17] see also [1, Section 4] or [18, p. 217f]) proceeds by
showing that for suitably chosen fy, z; and g, there exists a sequence (Ry)

tending to oo such that

9r(2) = fr(zk + ox2) (2.2)
is defined in the disk D(0, R;) and satisfies gi*(0) = 1 as well as

g7 (2) <1+ 0(1) for |z| < Ry as k — oo. (2.3)

Marty’s theorem then implies that the g; form a normal family. Passing to
a subsequence one may now achieve (2.1).

We shall need the following result which relates R; and g, and quantifies
the o(1)-term in (2.3). Here and in the following D(a,r) and D(a,r) denote
the open and closed disk of radius r centered at a point a € C.

Lemma 2.2. Let ty > 0 and ¢: [ty,00) — (0,00) be a non-decreasing func-
tion such that o(t)/t — 0 ast — oo and

[mji<w. (2.4)

o te(t)
Then one may choose fi, z; and o in Zalcman’s Lemma 2.1 such that
1
Ry =— > 2.5
orp(1/or) (25)

as k — oo and the functions gy given by (2.2) are defined in the disks D(0, Ry)
and satisfy

gf(z) <1+ |Ri| for |z| < Ry. (2.6)
k



Since in Zalecman’s lemma the functions f; are considered only in small
neighborhoods of the points 2y, the sequences (py) and (Ry) occurring in (2.2)
and (2.3) must satisfy py Ry — 0. Equation (2.5) says that the sequence
(prRy) tends to 0 slowly in some sense.

To prove Lemma 2.2, we first prove the following lemma.

Lemma 2.3. Let ¢ be as in Lemma 2.2. Then for every ¢ > 0 there exists
K > 0 with the following property:

Ifa e C and f: D(a,e) — C is holomorphic with f#(a) > K, then there
exists ¢ € D(a,e) such that with

1 f*(c)

and s =

T (o) 30(f#(c))

the disk D(c, ps) is contained in D(a,e) and the function g: D(0,s) — C
defined by

2.7)

9(z) = f(c+ oz)

satisfies

(2.8)

Proof. Let K > tq and let f: D(a,e) — C be holomorphic with f#(a) > K.
For 0 <r < e we put
H(r) = max f#(z).

Then H(r) > f#(a) > K >ty for all r. We claim that if K is sufficiently
large, with a bound depending only on ¢, t; and ¢, then there exists r €
[0,e/2) with

rt——— <c (2.9)

and

1
H(r—i——) <eH(r). (2.10)
p(H(r))
Suppose that this is not the case. We put ro = 0 and, as long as r,_1 <

/2, define
1

T e S ()



for £ > 1. Choosing K large we can achieve that

P(H(r) > oK) > 277 (2.11)

for all € [0,¢) and thus r, < rp_1 +¢/2 < e. It follows that
H(ry) >eH(rp1) >...>e"H(0) > " K (2.12)

and thus

T =

k
—7j-1) Z
J
=1 H{(rj-1))

o du < dt
< R -
E: T <), T e
if K > ety. In fact, choosing K large we can achieve that r, < /2. This
shows that for such K the r, can indeed be defined for all k. Moreover, we
have H(ry) < H(g/2), contradicting (2.12) for large k.

Thus there exists r € [0,¢/2) such that (2.9) and (2.10) hold. For such r
we choose b € D(a,r) with f#(b) = H(r) and put

le

t= — . (2.13)

By (2.11) we have t < &/2. Thus D(b,t) C D(a,e).
Next we choose ¢ € D(b,t) such that

Then
fH(e) < H(r+t) < eH(r) = ef*(b)

by (2.10) and (2.13).
On the other hand, the choice of ¢ implies that

e (1= = oo (2.14)



Thus

_ #
b ) 1
t = f7(c) " e
and hence . )
b <1 —-—=)t< =t 2.1
e-o<(1-2)es? 215

This implies that D(c,t/3) C D(b,t) C D(a,c). Moreover, (2.14) yields that
f#(c) > f#(b). With g and s defined by (2.7) we now find, for |z| < s and
thus

! < ! _ L (2.16)
3p(f#(c)) ~ 3p(f#(b)) 37 '

olz| < os =
that
g% (2) = of *(c + 02)
f#(c+ 02) (1——|0+Qz_b|) 1_M

_ t t
— b lc + 0z — b
# 1_|C 1—
o (1-177) :
lc — b lc — b
ST S 1
L leter=b = e—b oz | ol
t t t t—lc—b|

Combining this with (2.15) we deduce that

g7 (2) < for |z] < s.

1
3
| _ 3ol
t

By (2.16) we have 3p/t < 1/s and thus the last inequality yields (2.8). [

Proof of Lemma 2.2. Let D, F and 2y € D be as in Zalcman’s lemma. So
F is not normal at zy and thus, by Marty’s theorem, there exists a sequence
(&) in D and a sequence (f;) in F such that & — z and f7 (&) — co. For
large k we may apply Lemma 2.3 with a = & and € = ¢, for some sequence
(ex) tending to 0. We choose ¢, o and s according to Lemma 2.3 and put
2z = ¢, op = 0 and s = s. It follows that the function g, defined by (2.2)



satisfies g7 (0) = 1 and

1
g’ (z) < P for |z| < sg.
s
Noting that 1/(1 —x) <14 2z for 0 < z < 1/2 we thus have
2 1
gf(x) <1+ 2z for |z| < =sy.
Sk 2

Putting Ry = s;/2 we obtain (2.6). As in the proof of Zalcman’s lemma we
can now achieve (2.1) by passing to a subsequence. Moreover, (2.7) yields

that
11 F#(c) 1 1
Rk _= _Sk = —8§ = = = .
27 2 6p(f*(c))  6op(l/e)  6oxp(1/ok)
This is (2.5) with ¢ replaced by 6p. Noting that (2.4) remains valid if ¢ is
replaced by ¢/6, this yields the conclusion. O]

The first statement in the following lemma is known as Landau’s theo-
rem |13, Section 6.6]. The second statement can be deduced from the first
one, but it also follows directly from Montel’s theorem and Marty’s theorem.

Lemma 2.4. There exists absolute constants A and B with the following
property: If f: D(a,r) — C is holomorphic and f(z) # 0 and f(z) # 1 for
all z € D(a,r), then

/()|
f(a)] (|log | f(a)|| + A)

<

% (2.17)

and B
f#(a) < =

Hempel [14, Theorem 2| and Lai [15] showed that the sharp constant A
in (2.17) is given by
_TEs
 4n?
The limit function g occurring in Zalcman’s lemma satisfies g#(0) = 1

and g#(z) < 1 for all z € C. If the functions in the family under considera-
tion are holomorphic, then the limit function is entire. A result of Clunie and

= 4.3768796.. . .. (2.18)
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Hayman |9, Theorem 3| implies that an entire function with bounded spher-
ical derivative has order at most 1. (This result can also be deduced from
Lemma 2.6 below.) Thus in the case of a family of holomorphic functions
the limit function ¢ in Zalcman’s lemma is of order at most 1.

If, in addition, the functions in our family have no zeros, then this also
holds for the limit function g. It follows that g then must be of the form
g(z) = e®**® with constants ¢ and d. In fact, a simple computation using
g7 (z) < g#(0) = 1 shows that then |c| = 2 and Red = 0.

The following result is a quantitative form of the above observation.

Lemma 2.5. Let R > 28B, where B is the constant from Lemma 2.4, and let
g: D(0,R) — C be holomorphic with g(z) # 0 for all z € D(0, R). Suppose
further that g#(0) = 1 and

g (2) <1+ % for |z| < R. (2.19)

Then there exists b € D(0, B) such that g has the form

g(z) = exp(c(z — b) 4+ 0(2)) (2.20)
where ¢ € C with
1<2—28§<|c|<2+2§<3 (2.21)
- R~ ~ R '
and P2 |
0(2)] < 27% for |z =0 < R. (2.22)

Corresponding to Red = 0 in the equation g(z) = e®**¢ noted above one

can also prove that Recb < C/R for some constant C', but we will not need
this result.
To prove Lemma 2.5 we will use the following result [5, Lemma 3.1]|.

Lemma 2.6. Let f: D(a,r) — C be holomorphic and K,L > 0. Suppose
that |f(a)| < K and that |f'(2)| < L whenever |f(z)| = K. Then

|f(2)] < Kexp(%|z—a|> for z € D(a,%) )
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Proof of Lemma 2.5. By Lemma 2.4 and since g(z) # 0 for all z € D(0, R)
there exists b € D(0, B) with g(b) = 1. Since R > 2B and thus D(b, R/2) C
D(0, R) we have

1
g7 (2) <2 for |z —b| < §R

by (2.19). It follows that if z € D(b, R/2) satisfies | f(2)| = 1, then |f'(2)| < 2.
Lemma 2.6 now yields that

1
lg(2)| < exp(4|z—0b]) for |z —10b] < ZR‘ (2.23)
Since ¢ has no zeros it is of the form g(z) = €™* for some holomorphic

function h: D(0,R) — C. Since g(b) = 1 we may choose h with h(b) = 0.
The equation (2.23) now takes the form

1
Reh(z) =loglg(z)| < 4|z —b| for |z —b| < ZR. (2.24)

The Schwarz integral formula says that

1 C+z ac . 1
h(z) = — Reh(()—= +iImh(b) for |z —b| < —R.
=50 [,y o RO () for|=— 1] <
Differentiating this we obtain
1 1
n(z) = — Rte h<O2dC for |z — bl < =R
i Jic-pj=1r (¢ = 2) 4
and thus R
B ()] < 5 max Reh(()
2(3R — |z —b])" lc-bl=3R
2 —b 1
< Rz — b 5 for|z—b <—-R
(iR~ 1= 1) i

by (2.24). Hence
1
W' (2)] <16 for |z —b] < gR.
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This implies that

1) = W(b)] =

1 Q) h’<<>>
2mi /|<b|=§R (C— z (¢—b d(‘

WO —b)
/Kb:;R C-ae-n"

16|z — b
(iR—1|z—b]) R
16|z — b
Ly

1
2
1
< -R-
-8

1
f —bl< =R
or |z | 3

and hence that

— 1
|M@—n%ngmﬂ%¥lﬁmp—ngR. (2.25)

Integrating this we obtain, using h(b) = 0, that

[h(z) = M (b)(z = b)| =

/b () — K b))
2 |

16> [l=-t |z —D
< tdt=2""""" for |2 — b < —R.
=R J, TR T

With ¢ = h/(b) and
6(z) = h(z) = h'(b)(z — b) = h(z) — c(z — 1)

we thus have (2.20) with §(z) satisfying (2.22).
It remains to prove (2.21). In order to do so we note that 1+ 2% > 2z for
x € Rand W(2) = ¢'(2)/g(z) so that

N )| I 1) | PR oy
L=g*0) = e = T g @) < g O

Thus |A/(0)] > 2 and hence (2.25) yields that

_ ! / ! ! 8‘b| SB
el = [W(B)] = [K(0)] = |W(0) = W(b)| > 2-2"5 =2 = 2=, (226)
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On the other hand, since g(b) = 1, we have

— |} _ M !

(2.27)
bl B
_ogt) <2 (1418) <2408
g7 (b) < ( + R) <2+24
by (2.19). Combining (2.26) and (2.27) we obtain (2.21). O

3 Proof of Theorem 1.3

We may assume without loss of generality that L = R,
Dt={2€D:Imz2>0} and D ={z€D: Imz <0}

We apply Lemma 2.2 with ¢(t) = (logt)?. Let fx, zx, or, Ri and gi be as
there. Thus (2.1), (2.2), (2.5) and (2.6) hold. Moreover,

g1 (0) = orfif (z4) = 1.

We now apply Lemma 2.5 with ¢ = g5 and R = Ry. With b, ¢ and 0(2)
as there we put b, = b, ¢, = ¢ and §g(z) = 0(2).

Lemmas 2.2 and 2.5 describe the behavior of fi, in the disk D(zg, prRy).
We will see that |Im zx| = o(prRy) so that for large k this disk intersects
both DT and D~. Moreover, we will see that

arg ¢y, = g +o(l) or arge, = —g +o(1). (3.1)
Assuming that the second alternative in (3.1) holds we can deduce from
Lemma 2.5 that | fi| is large at certain points of D(z, prRx) N D" and small
at certain points of D(zg, pxRx) N D~. Landau’s theorem (Lemma 2.4) will
then imply that | f;| is large in the whole domain D™ while |fy| is small in D~.
To carry out this argument, we need explicit estimates. The relation
between p, and Ry that is required is already given by Lemma 2.2. We will
now use Lemma 2.5 to obtain a quantitative version of (3.1).
In order to do so, we note that fi.(zr + orbr) = gx(br) = 1 and thus

ar ‘= 2 + kak € L=R. (32)
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Hence | Im z;| = O(pr) = o(prRy) as mentioned above. Let

2171 215
o=b+ 2 and e, =

m_— 3.3
o R (3:3)

For |z — b},| = ¢, and large k£ we then have

|9r(2) — 1 — (exp(cx(z — b)) — 1)
= |exp(ck(z — by) + 6k(2)) — exp(cr(z — b))
= lexp(cr(z — b)) - lexp(di(2)) — 1.
Noting that e* —1 < 2z for small positive  we deduce from (2.21) and (2.22)
that if |z — b,| = €; and k is large, then

|91(2) = 1 = (exp(cr(z — b)) — 1))

2
< 2exp(|erler) - [0x(2)] < 98 exp(3eg) E - A
k
b — by + )’ 2m "1 1
<29(’ k <P 41) — <2 — g,
= R == e Ry =" Ry "

On the other hand, for |z — b,| = &, and large k we also have
/ 3 / /
lexp(ex(z = b)) =1 = 7 lew(z = Bp)[ > [2 = bi| = en.
It now follows from Rouché’s theorem that there exists b; € D(b),¢ey) such
that g,(by) = 1. With
ay, = 2, + oy,
we thus have fi(aj) = 1 and hence a} € R. Together with (3.2) we find that
Cl;; —a = Qk(bz — bk) € R.
It follows that

[T (b, — bi)| = [Tm(b}, — by)| < [b, — bi| < &

while

2w
b, — bl = — > —.
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Hence

org(t — ) = arg (27 ) = O(e)

Ck

which implies that

arg cp = g +O(g) or arge = —g + O(er) (3.4)

as k — 0o. We assume first that the second alternative in (3.4) holds for all
k so that
Cr = —2¢ + O({Ek)

by (2.21). (We will see later that this corresponds to the case fi|p+ — 00.)
In view of (3.3) we thus have

C
e + 2i] < e (3.5)

for some constant C'.
We now fix a small positive constant 7 and put

By Lemma 2.5 we then have

gr(ug) = exp(c(ug — br) + 0n(ug)) = exp(crinRy + 0p(ug))

and thus (2.22) and (3.5) yield that

log | gr(ur)| = Re(erinRy, + 0x(uy))
= Re(2an + (Ck + 22)27}Rk + 5k(uk))
Z 277Rk — 170 — 27772Rk 2 ﬂRk
for large k, provided n has been chosen small enough. With
Q= 2k + Ok UL (37)

we thus have
log | fi(ax)| > nh (3.8)
for large k. Next we note that (3.2), (3.6) and (3.7) imply that

ap = 2, + oxup = 2 + 0k (b, + NRy) = ap + inop Ry,
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and hence
Im ay, = nox Ry (3.9)

Since zx — 29, pr — 0 and |bx| < B we deduce from (2.5) that
o, = 2z + 0k + ok R — 2o (3.10)

as k — oo.
Let now d > 0 be such that the straight line segment connecting 2z, and
z1 = 2o + id is contained in D. We put 3, = a4, + id and note that

ﬁk—>20+id221 e D
as k — oo by (3.10). We may thus assume that the line segment connecting

oy, and [, is contained in D for all k € N.
Let A be the constant from Lemma 2.4. By (3.8) we may assume that

log | fe(ow)[ > A

for all £ € N. Let now

t, = min{t € [0,d]: log | fx(cu + it)| < A},

with ¢, = d if log | frx(cy +it)| > A for all t € [0,d]. Put v, = ay + itx. Since
fr(z) #0,1 for Imz > 0, Lemma 2.4 and (3.9) yield that if 0 < ¢ < t, then

| fi (o +it)| < 2| fi (o + it)|
|fi(c +it)[log | fi(ow +it)| — | filon + it)|(log | fi(cux +it)| + A)
4 4

< = .
- Im(ak + ’Lt) anRk +t

For suitable branches of the logarithm we thus obtain

| loglog fi (o) — loglog fi(v)| =

/t’“ f,;(ozk + it) dt‘
o Jfrlox +it)log fr(ow +it)

t’“ | fi(ox +it)]|
3/0 [Fe(on + it) log [ (an + )]

b dt t
34/ —:4log(1+ k )
o Noelk+t nox Ry

< 4log<1 +

dt

UQkRk> '
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On the other hand,

| log log fi.(ax) — loglog fi(7x)| > log|log fi.(ax)| — log |log fi(7)]
> loglog | fi(cu)| — log(log | fx (k)| + 7)

if the branch of the logarithm is suitably chosen. Combining the last two
inequalities we deduce that

ogllog fi)| + ) = oglog e — alog(1+ —L) . 310

nox Ry

By (2.5) and our choice of ¢ we have

1 1 1\?
ok, <p<9k> ( ng) (3.12)

Combining this with (3.8) and (3.11) we obtain

d 1\?
log(log | fx(7&)| + m) > log(nRy) — 4log (1 + E (log g> ) ,

It follows from (3.12) that
1
log — ~ log Ry,
Ok

as k — oo. Inserting this in the previous equation we can now deduce that
log(log | fu(v&)| +m) = (1 = o(1))log Ry,

as k — oo. First this yields that v, = Gy for large k since otherwise we have
log | fx(7x)| = A. Hence

loglog | fx(Br)| = (1 — o(1)) log Ry

and thus |fx(6k)| = o0 as k — oo. Since f; — z; € DT we deduce that
frlp+ — oo. Essentially the same argument yields that fy|p- — 0.

Had we assumed that the first alternative holds in (3.4), we would have
obtained fx|p- — oo and fx|p+ — 0. Our hypothesis that fi|p+ converges
thus implies that the same alternative in (3.4) holds for all large k. This
completes the proof.
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4 Proof of Theorem 1.1

The rays Lg and L, divide D into two subdomains D" and D~. By Montel’s
theorem, F is normal in D™ U D~. Suppose that F is not normal at some
point z; € D\{0}. Then 2, € (Lo U L;)\{0}. Without loss of generality we
may assume that z; € Li\{0}, since otherwise we may consider the family
{1 —f: f € F} instead of F, which corresponds to interchanging the roles
of Ly and L.

Theorem 1.3 yields that there exists a sequence (fy) in F which tends
to oo in one of the domains D* and which tends to 0 in the other one. It
follows that (fy) is not normal at any point of LoU L. Applying Theorem 1.3
to the family {1 — f: f € F} with some point zg € Lo\{0} we see that a
subsequence of (f;,) tends to oo in one of the domains D* and to 1 in the
other one. This is a contradiction.

5 Proof of Theorem 1.2

The proof of Theorem 1.2 will combine Theorem 1.1 with the following
lemma.

Lemma 5.1. Let f: D — C be holomorphic, with all zeros positive and all
1-points negative. Suppose that there exists v € (0,1) such that

‘rr|1111 1f(z)] > 1.
Then f has either has no zeros and no 1-points in D(0,7), or ezactly one
zero and one 1-point in D(0,1), both of which are simple.

Proof. Rouché’s theorem implies that, counting multiplicities, f has the same
number of zeros and 1-points in D(0,7). Denote this number by n. We
assume that n # 0 and thus have to show that n = 1. We consider the
function g: D — C,

Then ¢g(z) € R for z € R. Counting multiplicities, g has 2n zeros, all of
which are non-negative and of even multiplicity, and the number of 1-points
of g in the interval (—r,0) is at least n. Moreover,

0 :=min |g(2)] > 1.

|z|=r
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Let U be the component of ¢g~'(D(0, g)) which contains the leftmost 1-point
of g in (—r,0). Then U is simply-connected, U C D(0,7), and the map
g: U — D(0, p) is proper. In particular, counting multiplicities, U contains
the same number of zeros and 1-points of g. Denote this number by m.
Since U is simply-connected and symmetric with respect to the real axis and
since U contains the leftmost 1-point of g in (—r,0) and at least one zero,
U actually contains all 1-points in (—r,0). The Riemann-Hurwitz formula
yields that, counting multiplicities, g has m — 1 critical points in U.

Let x1,...,z; be the zeros of f and hence of g that are contained in U,
ordered such that 0 < z; < @9 < --- < 2. Denote by p; the multiplicity of
x; with respect to g. Thus the p; are even and

k
Z Hj =M.
j=1

The x; are also critical points of g of multiplicity p; — 1. Moreover, Rolle’s
theorem yields that each interval (z;,x;41) also contains a critical point, for
1 <j <k —1. Altogether the number of critical points of ¢g in the interval
(0,7) is thus at least

k
(k=1)+> (nj—1)=m—1

j=1
We conclude that all critical points of ¢ in U are contained in the interval
(0,7). However, if n > 2, then the interval (—r,0) contains at least two
1-points of f and hence at least two 1-points of g. Using Rolle’s theorem
again we see ¢ has a critical point between two 1-points and thus a critical
point in (—r,0) N U. This is a contradiction. Thus n = 1 as claimed. O

Completion of the proof of Theorem 1.2. Theorem 1.1 yields that F is nor-
mal in D\{0}. Suppose that some subsequence of (fi) tends to a finite limit
function, say fy, — g locally uniformly in D\{0}. Then g is holomorphic
in D\{0}. For r € (0,1) let M(r,g) = max,, |g(2)| denote the maximum
modulus of g. Then

M(r, fr,) < M(r,g) +1

for large j. This implies that the f;, form a normal family in D(0,7), con-
tradicting our hypothesis that no subsequence of (fi) is normal in . Hence

fr — oo in D\{0}.

19



Next we claim that for large k& the function fi has a zero in D(0,7).
Indeed, otherwise we would have

min |, ()] = min |f, (2)| — o0
as j — oo for some subsequence (f,;), implying that this subsequence is
normal at 0, contradicting our hypothesis.

For large k we thus find that min.|—, | fx(2)| > 1 and that f; has a zero in
D(0,7). Lemma 5.1 yields that f; has exactly one zero ay in D(0,r). Hence
for large k the function f; has the form (1.1) with some function g which is
holomorphic in D and has no zeros in D(0,r). Since fr, — oo in D\{0} we
find that g, — oo in . Moreover, since 0 is the only point where the f; are
not normal we conclude that a; — 0. ]

6 Proof of Theorem 1.4

In the proof of the following lemma, Landau’s theorem (Lemma 2.4) is applied
in a similar way as in the proof of Theorem 1.3. However, this time we will
use it with the sharp constant A given by (2.18).

Lemma 6.1. Let f: D — C be holomorphic and C = 0.000024. Suppose
that all zeros and 1-points are contained in D(0,C) and that f has at least
one 1-point and at least two zeros. Then

|Zl|mnf|f( 2)[>1 (6.1)

Proof. Let b be a 1-point of f and let aq,--- ,a,, be the zeros of f so that
m > 2. The Poisson-Jensen formula yields that if C' < r < 1, then

0 =log|f(b)]
— —/zﬂlog\f (re’ )]Re(rew +b) do — Zlog b—CZJb)
<log M(r, f) —2log ! 2;7?2.
It follows that
log M(VC, f) > 2log 003/6;2 = QIOg% > 0. (6.2)
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Let zg = %logC’ and

S ={z: 22y < Rez < 0}.

Then g: S — C, g(z) = f(e?), satisfies g(z) # 0 and g(z) # 1 for all z € S.
For yo € R and 2y = x + iyo the map

T
exp <2_x0<z - zo)) -1

exp (”—i(z - zo)> +1

21‘0

61 S =D, ¢z)=

is biholomorphic and satisfies

. T
4ol

|6'(20))]
Applying Landau’s theorem to h = g o ¢! we find that
[7(0)] < 2[h(0)] (| log|A(0)]] + A)
and hence, since h(0) = g(z),
|9 (z0)| = [K'(0)] - |¢'(20)]

< 20h(0) (| log [A(O)]| + 4) g7 (63
= ﬁmw (|og |g(z0)]| + A) -

Suppose now that (6.1) does not hold. Then there exists z1,20 € S
with Rez; = Rezy = zg and |Imz; — Im 25| < 7 such that |g(z)] = 1,
19(22)| = M(V/C, f) and |g(z)| > 1 for z on the line segment connecting 2
and zs.

With suitable branches of the logarithm we deduce from (6.3) that

|log(log g(22) + A) — log(log g(z1) + A)]

SR (R S C) ]
/Zl s logg() + A" S/zl 9 loglg(a)] + A)

2 71_2

< | <
—— |29 — 2 _—
2 1_2|31:0| log%

~ 2|
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On the other hand, noting that |g(z1)| = 1, for a suitable branch of the
logarithm we have

| log(log g(22) + A) — log(log g(21) + A)|
> log |log g(22) + A| — log |log g(21) + A
> log(log [g(z2)| + A) — log [t arg g(z1) + A

>log(log M(VC, f) + A) — log VA2 4 72.
Combining the last two estimates we obtain

71'2

log(log M(VC, f) + A) < log VA2 + n2 +

log %

Together with (6.2) this yields that

1-C w2
log| 21o +A) <logVA%2+ 72+ )
g( ®2/C )— ° log &

This condition contradicts the choice of C. O]

Proof of Theorem 1.4. Let f and r be as in the theorem. We may assume
that f has at least two zeros, since otherwise we can consider 1 — f(—2)
instead of f(z). Lemma 5.1 implies that if r < s < 1, then

min | f(z)] < 1.

|2|=s N

In particular,
min |f(z)] < 1.
\2|=\/?| )l

Lemma 6.1 now yields that » > 0.000024. O]
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