
Zero-Knowledge Contingent Payments Revisited:
Atacks and Payments for Services

Matteo Campanelli
mcampanelli@gc.cuny.edu
CUNY Graduate Center, USA

Rosario Gennaro
rosario@ccny.cuny.edu

The City College of New York, USA

Steven Goldfeder
stevenag@cs.princeton.edu
Princeton University, USA

Luca Nizzardo
luca.nizzardo@imdea.org

IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Spain

ABSTRACT

Zero Knowledge Contingent Payment (ZKCP) protocols allow fair

exchange of sold goods and payments over the Bitcoin network. In

this paper we point out twomain shortcomings of current proposals

for ZKCP, and propose ways to address them.

First we show an attack that allows a buyer to learn partial

information about the digital good being sold, without paying for

it. This break in the zero-knowledge condition of ZKCP is due to

the fact that in the protocols we attack, the buyer is allowed to

choose common parameters that normally should be selected by

a trusted third party. We implemented and tested this attack: we

present code that learns, without paying, the value of a Sudoku

cell in the łPay-to-Sudokuž ZKCP implementation [18]. We also

present ways to ix this attack that do not require a trusted third

party.

Second, we show that ZKCP are not suited for the purchase of

digital services rather than goods. Current constructions of ZKCP

do not allow a seller to receive payments after proving that a certain

service has been rendered, but only for the sale of a speciic digital

good. We deine the notion of Zero-Knowledge Contingent Service

Payment (ZKCSP) protocols and construct two new protocols, for

either public or private veriication. We implemented our ZKCSP

protocols for Proofs of Retrievability, where a client pays the server

for providing a proof that the client’s data is correctly stored by

the server.We also implement a secure ZKCP protocol for "Pay-to-

Sudoku" via our ZKCSP protocol, which does not require a trusted

third party.

A side product of our implementation efort is a new optimized

circuit for SHA256with less than a quarter than the number of AND

gates of the best previously publicly available one. Our new SHA256

circuit may be of independent use for circuit-based MPC and FHE

protocols that require SHA256 circuits.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134060

CCS CONCEPTS

· Security and privacy → Cryptography;

KEYWORDS

Contingent Payments, Bitcoin, Zero-Knowledge Protocols

1 INTRODUCTION

The problem of fair exchange in which two parties want to swap

digital goods such that neither can cheat the other has been studied

for decades, and indeed it has been shown that fairness is unachiev-

able without the aid of a trusted third party [23]. However, using

Bitcoin or other blockchain-based cryptocurrencies, it has been

demonstrated that fair-exchange can be achieved in a completely

trustless manner. The previous results were not incorrect; a third

party is deinitely necessary, but the key innovation that Bitcoin

brings to fair exchange is that the blockchain can ill the role of the

trusted party, and essentially eliminate trust.

Consider Alice, an avid fan of brainteasers that has a Sudoku

puzzle that she is stumped on. After trying for days to solve the

puzzle, Alice gives up and posts the puzzle on an online message

board proclaiming, łI will pay whoever provides me the solution to

this puzzle". Bob sees this message, solves the puzzle, and wants to

sell Alice the solution. But there’s a problem: Alice wants Bob to

irst provide the solution so that she can verify it’s correct before

she pays him, whereas Bob insists that he will not send Alice the

solution until he has been paid. This is the classical problem of fair

exchange: neither party wants to impart with its good before being

sure that it will receive the other good in exchange.

To solve this problem, Alice and Bob could use a blockchain.

Bitcoin and other blockchain-based cryptocurrencies allow one to

post transactions that pay others and specify the conditions that

need to be met in order for the money to be claimed. Alice can post

a payment transaction to the blockchain that encodes the sudoku

puzzle as well as the rules, and speciies that whoever provides the

correct solution can claim the funds. In essence, the blockchain

here is serving the traditional role of a trusted third party: Alice

łdeposits" funds in the blockchain, and the blockchain will only

release those funds to Bob once he provides the correct solution.

The extended version of this paper can be found at https://eprint.iacr.org/2017/566.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

229

While in theory this would work, there’s one problem: Bitcoin’s

scripting language is limited, and does not allow one to directly

specify arbitrary programs or conditions that are necessary to spend

money. Zero Knowledge Contingent Payment (ZKCP) protocols

[13, 18, 37] to allow fair exchange over the Bitcoin blockchain. The

protocol makes use of a feature of the Bitcoin scripting language

that allows one to create a payment transaction that speciies a

value y and allows anyone who can provide a preimage k such that

SHA256(k) = y to claim the bitcoins 1.

In the ZKCP protocol, Bob knows a solution s and encrypts the

solution to the puzzle using a key k such that Enck (s) = c . Bob also

computes y such that SHA256(k) = y. He then sends Alice c and y

together with a zero-knowledge proof that c is an encryption of s

under the key k and that SHA256(k) = y. Once Alice has veriied

the proof, she creates a transaction to the blockchain that pays Bob

n bitcoins, and speciies that Bob can only claim the funds if he

provides a value k ′ such that SHA256(k ′) = y. Bob then published

k and claims the funds. Alice, having learned k can now decrypt c ,

and hence she learns s .

When ZKCP was irst introduced in 2011 it was only theoretical

as there was no known eicient general purpose zero-knowledge

protocol that could be used for the necessary proofs. Since then,

however, advances have been made in this area, and there are now

general-purpose Succinct Non-Interactive Arguments of Knowledge

(ZK-SNARK) protocols that allow for the practical implementation

of the necessary proofs. The protocol was reined to use SNARKs,

and a sample-implementation for the Sudoku problem was also

made available [18].

1.1 Breaking ZKCP

All NIZK proofs require a trusted party to generate the common

reference string (CRS) for the production and the veriication of the

proof. The introduction of a third party, however, even to generate

the parameters, is undesirable ś recall that the entire point of ZKCP

is to solve the fair exchange protocol in a completely trustless

manner!

To eliminate the need for a trusted third party, proofs in ZKCP are

made to convince one person ś the buyer. It was natural therefore,

for the buyer to serve as the trusted third party. Since the buyer

trusts herself, she will be convinced of the correctness of the proofs.

Using this observation, the ZKCP protocol speciies that the buyer

should generate the CRS, and indeed the Sudoku implementation

follows these guidelines.

But in ZKCP, there are two potential adversaries: the seller and

the buyer. A malicious seller would try to cheat by producing a false

proof that convinces the buyer to send her money even though she

will not receive the solution. Indeed, the current protocol protects

against this attack. Since the buyer generates the CRS, the seller

(prover) is unable to produce an incorrect proof that will be accepted

by the buyer (veriier).

But the buyer can also be malicious. Indeed, if the buyer is able

to break the zero-knowledge property of the proof, she may learn

part of the solution from the seller even without paying! Intuitively,

the buyer can modify the CRS such that the proof that the seller

provides actually leaks some bits of the solution.

1We are simplifying the protocol here. See Section 2.5 for full details.

In the original SNARKs paper, it was assumed that the CRS was

generated honestly, and indeed the proof of the zero-knowledge

property made use of this fact [29]. When this assumption is vio-

lated, a malicious party can craft a CRS that allows it to break the

zero-knowledge property and learn information about the witness.

We note that if the Prover checks that the CRS is "well formed", the

SNARK in [29] remainsWitness Indistinguishable (WI) ś however

this is not suicient since in this case the witness is the Sudoku

solution which is unique (and therefore even if the protocol is WI,

information can be learned about the witness). We also note that

with some additional more expensive checks, the SNARK in [29]

remains ZK [1, 7, 28]. In ZKCP however neither of these checks

are performed, and therefore, a malicious buyer can generate a

malicious CRS that allows it to learn information from the seller’s

proof without paying. We show an attack on the "pay to Sudoku"

protocol that proceeds along these lines, and we also provide code

[21, 22] that implements the attack and shows how one can break

the zero-knowledge property and learn information in the sample

sudoku code [18].

1.2 Fixing ZKCP

While issues arise when the veriier generates the CRS, the ZKCP

high-level idea remains elegant and appealing. Therefore in Sec-

tion 3.3 we discuss several ways to construct ZKCPs which do not

require the help of a trusted party.

One way is to require that the CRS is constructed via a two-

party secure computation protocol jointly by buyer and seller, a

solution which allows them to łrecyclež the CRS over several ZKCP

executions. A similar approach was adopted by the designers of

Zcash [42].

Another way is to use the notion of Subversion-NIZK [7], where

ZK is preserved even when the veriier chooses the CRS. As we

pointed out above, this requires the Prover to perform some "well

formedness" checks on the CRS, which however can be somewhat

expensive (as opposed to the minimal checks described in [29] to

guarantee witness-indistinguishability).

At the end the simplest solution was to rely on a diferent type

of protcol for Zero-Knowledge Contingent Service Payments (ZKCSP)

which we describe below.

1.3 Zero-Knowledge Contingent Service
Payments (ZKCSP): paying for digital
services

We extend the idea of ZKCP to a new class of problems: paying for

digital services.

Consider Alice, a user of a subscription online ile storage service,

FileBox. FileBox ofers a service that for a small fee, it will provide a

succinct proof-of-retrievability (PoR) [43] to its users demonstrating

that all of that user’s iles are being stored. Alice would like to pay

for this service, and thus we have a far exchange problem: Alice

wants to pay once she receives proof that the iles are being stored,

whereas FileBox will only send the proof once it has been paid.

Notice that unlike the Sudoku example, Alice does not want any

digital good (i.e. she doesn’t want them to send her all the iles).

Instead, she just wants Filebox to demonstrate that they are indeed

still storing the iles.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

230

The ZKCP protocol will fail in this case. If we try to apply this

protocol and view the PoR as a žgood" that Alice wants to receive,

then the irst step of a ZKCP protocol is to have FileBox create a

proof that it has a PoR and send the encrypted PoR to Alice.

But a proof of a PoR is itself a PoR, and thus once Alice receives

this zero-knowledge proof, she can abort the protocol as she already

received the proof that she desired without paying.

As a second motivation, consider an online Bitcoin exchange

that will provide proofs of solvency as a service for a fee. Often

exchanges do not want to leak their inner details, and thus they may

use Provisions [24], a privacy-preserving proof of solvency that

shows that they are solvent without leaking their private accounting

details. Bob stores his coins with this exchange and wishes to pay

for the proof, and thus a fair exchange situation arrives.

Again, if we try to apply a ZKCP protocol, it will fail. If the

exchange gives a zero knowledge proof of a proof of solvency, that

itself is a proof of solvency, and Bob has received what he wants

and does not need to pay.

To address this issue, we introduce Zero-Knowledge Contin-

gent Service Payments (ZKCSP). To illustrate, let’s focus on the

PoR example. Let v be the veriication algorithm for the PoR. What

Alice wants then is for FileBox to demonstrate that it knowsm such

that v (m) = 1.

Intuitively, our ZKCSP protocol works as follows: The prover

outputs a string y and gives a zero-knowledge proof that attests to

the following:

If v (m) = 1, then I know the preimage of y under

SHA256. But, if v (m) = 0, then the probability that I

know a SHA256 preimage of y is negligible.

We only provide the intuition here, but in Section 4 we show how

we can eiciently construct proofs of this form. There we also

prove that it is suicient for the underlying SNARK to be Witness-

Indistinguishable, and therefore the security of the protocol can be

achieved even if the Veriier chooses the CRS, provided that the

Prover performs the minimal checks required to guarantee witness

indistinguishability.

Other Applications of ZKCSP. Bug Bounty is another interesting

application for ZKCSP. A software company GoodCode Inc. releases

a beta version of its new product and ofers a reward for people

who ind bugs in the code. Normally a ZKCP would suice: the

seller proves in ZK that she found a bug, and the payment trigger

the release of the code of the bug. But there may be situation where

just the knowledge of the existence of a bug can be valuable to

GoodCode (for example, knowing that there is a bug, they will

delay release of the code, and avoid potential costly damages). In

this case a ZKCSP must be used to make sure that GoodCode pays

for such knowledge, and not just for the code of the bug.

In general any auditing or compliance application where the

buyer is paying for this type of services will require a ZKCSP rather

than a ZKCP.

ZKCP via ZKCSP. Since ZKCP is a special case of ZKCSP we

can use our ZKCSP protocol to obtain a secure ZKCP scheme that

does not require the prover to perform the expensive checks for

"subversion-ZK" but only the minimal checks to guarantee WI.

1.4 Our Contributions

We make the following contributions:

Attacks and fixes on ZKCP: We show that the ZKCP protocol

when instantiated as it is now, is insecure, and develop several

concrete attacks that allow a malicious buyer to learn information

about the witness without paying the seller. We implement our

attack by writing code for a malicious buyer that interacts with

the unmodiied implementation of the seller [18], and learns infor-

mation about the Sudoku solution. We discuss how to avoid these

attacks and various possible solutions.

Zero-Knowledge Contingent Service Payments: We introduce

this new notion, and provide protocols for ZKCSP in both the public

and private veriier setting. Again using our PoR example, the public

veriier setting is when one wants to perform the service for the

general public. The private veriier setting is when one wants to

provide the service only for a speciic individual.

Implementation: We implemented and tested the ZKCP attack.

We also implemented and tested our two new ZKCSP protocol,

for the case of PoR, showing that they are feasible. Moreover we

implemented a secure Pay-to-Sudoku ZKCP via our ZKCSP protocol.

Our code is available here [21, 22].

Improved SHA256 circuit: In the process of our implementation of

the ZKCSP protocols, we built a library for semi-automated boolean

circuit generation. The SHA256 circuit that we produce has 22,272

AND gates, whereas the best publicly available circuit had 90,825

AND gates [45]. We released our SHA256 circuit together with our

code as it may be of independent use for circuit-based MPC and

FHE protocols that require SHA256 circuits.

1.5 Other related work

In [6], Banasik et al. provide a ZKCP solution which avoids the use

of NIZK by replacing the zero knowledge proof with an interactive

protocol performed online. Moreover they avoid using hash-locked

transactions since they claim that they are not standard and widely

accepted in the Bitcoin network2.

The protocol presented in [6] is vulnerable to the so-calledmaul-

ing problem, where an adversary which knows the hash identiier

T of a transaction is able to come up with a hash identiierT ′ that is

semantically equivalent to T (i.e. spends the same transaction, has

the same value, and the same inputs and outputs). As the authors of

[6] point out, there are many Bitcoin software clients that cannot

handle transactions appearing in the ledger with an hash identiier

which is diferent from the original one (namely, the one with which

they were posted) [4]. This efectively makes the transaction unre-

deemable, causing problems when creating Bitcoin contracts [3, 4].

While the authors acknowledge the mauling problem, their scheme

only addresses mauling due to malleability in ECDSA signatures,

but does not address mauling due to changing the script.

An Ethereum-based contingent payment protocol is described

by Tramer et al. in [46].

2 To the best of our knowledge, this is not really a serious issue.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

231

2 PRELIMINARIES

2.1 Bitcoin and Ethereum

Bitcoin is a decentralized digital currency proposed in 2008 [38].

We present only the necessary background for this paper here, but

refer the reader to [17] and [39] for a detailed treatment.

Bitcoins are typically associated with addresses, and an address

is just a hash of a public key. To transfer bitcoins from one address

to another, one crafts a transaction which lists one or more input

addresses from which the funds will be taken and one or more

output addresses to which the funds will be sent.

In order for a transaction to be valid, the transaction must be

signed with the private keys corresponding to the input addresses,

the sum of the outputs must be less than or equal to the sum of the

inputs, and the inputs must not have previously been spent [12, 38].

Signed transactions are broadcast to the Bitcoin peer-to-peer

network. Miners check the validity of transactions and group them

into blocks. Miners participate in a distributed consensus protocol

that chains these blocks into an append-only global ledger called

the block chain.

What we’ve described so far is a typical Bitcoin transaction,

known as a Pay-to-PubkeyHash transaction. However, for each

output, the transaction includes a script written in a stack-based

programming language that speciies the conditions which must be

met in order to spend this output in the future. For each input ad-

dress, the transaction contains a reference to a previous transaction

which listed this address as an output and speciied the conditions

required for it to be spent.

For a Pay-to-PubkeyHash transaction, the output script simply

speciies an address and that in order to spend this output, one must

sign with the associated private key. But Bitcoin scripts can be more

complex as well. The Bitcoin scripting language has a limited set

of op_codes or built-in functions that can be used to create scripts.

Using the The OP_ SHA256 op_code, the Bitcoin scripting lan-

guage supports hash-locked transactions that specify a value y and

require that in order to spend this output, one must provide an x

such that SHA256(x) = y.

A feature that was not initially included in the scripting language

but introduced in 2012 is Pay-to-ScriptHash (P2SH) addresses. To

redeem an output sent to a P2SH address, one must specify a script

that hashes to this address, and then meet the conditions speciied

in the script[14].

Bitcoin scripts now also support OP_CHECKLOCKTIMEVERIFY and

OP_CHECKSEQUENCEVERIFY op_codes. The op_codes allow one to

specify execution paths in the spending scripts that can only be

validated after some relative or absolute time. For example, one can

send money to Alice’s address and specify that after 24 hours if

Alice has not redeemed the output, then Bob can claim it by signing

with his private key[14].

Although miners will accept the validity of all transactions that

Bitcoin supports when included in blocks that others mine, most

miners will only include a smaller subset of those transactions in

the blocks that they construct. These are referred to łstandardž

transactions, and historically, this mean that it was quite diicult to

get nonstandard transactions onto the blockchain. In Bitcoin today,

however, this is no longer an issue since almost all scripts are now

considered standard when they are part of a P2SH transaction [2].

While Bitcoin’s scripting language contains another useful op_code,

it is not a Turing-complete language and is limited in practice.

Ethereum is another cryptocurrency with a much more expressive

scripting language that allows one to express arbitrary programs

as conditions for spending money. As transactions can specify

arbitrary scripts, there is no guarantee that they will ever halt. Each

Ethereum transaction therefore contains gas, or money that is sent

to the miner to run the transaction. Every computational step has

a ixed gas cost, and the miner will only run the computation until

it runs out of gas.

There is a global gas limit that speciies a maximum amount

of gas that can be spent in a single block, and consequently in a

single transaction. Although in theory Ethereum scripts can support

arbitrary programs, the current gas limits are quite restrictive and

do not allow for complex computations.

2.2 Cryptographic Deinitions

In the rest of the paper we will use the term eicient algorithm to

denote probabilistic algorithms with a polynomial running time.

Also we denote with neg(n) a negligible function deined over the

integers, meaning that for every polynomial P (·) we have that there

exists an integer nP such that for all n > nP , neg(n) ≤
1

P (n)
.

Claw free function pairs We start by recalling the deinition

of claw free function pairs. Informally these are pairs of eiciently

computable functions H1,H2 such that it is hard to ind x1,x2 with

H1 (x1) = H2 (x2).

Deinition 2.1. LetCFG (·) be an eicient algorithm that on input

of a security parameter 1n outputs two functions H1,n and H2,n

with domain and image {0, 1}n . We say that CFG (·) is a claw free

function generator, and H1,n ,H2,n are a claw-free pair if

• H1,n and H2,n can be eiciently computed

• for any eicient algorithm A we have that for

(H1,n ,H2,n) ← CFG (1n)

Pr[A (H1,n ,H2,n) = (x1,x2) s.t.

H1,n (x1) = H2,n (x2)] ≤ neg(n)

Computational Indistinguishability Recall that two distribu-

tions are said to be computationally indistinguishable if no eicient

algorithm can distinguish if elements are sampled according to one

or the other distribution.

Deinition 2.2. Let D1,n ,D2,n be two (family of) distributions

deined over {0, 1}n . We say that D1,n ,D2,n are computationally

indistinguishable if for any eicient algorithm A we have that

| Pr[x ← D1,n ; A (x) = 1] − Pr[x ← D2,n ; A (x) = 1]|

≤ neg(n)

2.3 Fair Exchange

In this section we recall the deinition of fair exchange following

previous work in [5, 35]. We have two parties Alice and Bob who

want to exchange generic digital items. We know, due to a classic

result of Cleve [23], that in the presence of malicious parties a fair

exchange is impossible: one party will always have an advantage

over the other. The traditional way to solve this problem is to rely

on an Arbiter, a trusted third party (TTP), which is assumed to

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

232

be honest and will help Alice and Bob exchange the items fairly.

An optimistic fair exchange protocol involves the Arbiter only if

one of the two parties does not behave honestly and complications

arise. Two honest parties can exchange goods without involving

the Arbiter.

The full deinition in [5, 35] involves also two other parties

(assumed to also be honest): a Tracker and a Bank. The former is

used to make sure that the goods exchanged by the parties are the

correct ones, while the latter takes care of eventual payments and

money exchanges. The veriication of the digital goods is executed

by the Tracker in a trusted of-line phase where parties are provided

with łveriication keysž for the digital goods. For brevity’s sake we

are not going to describe this part and refer the reader to [5, 35].

Instead we just assume that Alice’s and Bob’s inputs include these

veriication keys, together with some public parameters.

Deinition 2.3. A fair exchange protocol is a three-party com-

munication protocol: Alice running algorithm A, Bob running an

algorithm B, and the Arbiter running a trusted algorithm T. All

parties run on input some public parameters PP, Alice runs on input

fA,VA, Bob runs on input fB ,VB , and the Arbiter runs on a input

skT .

We denotewith [a,b]← [A(fA,VA),B (fB ,VB),T (skT)] the event

that at the end of the execution of the protocol Alice outputs a and

Bob outputs b, where a,b can be ⊥ meaning that the parties re-

ject the execution (e.g. their output is not valid according to their

veriication key ś we assume that the iles fA, fB , ⊥).

Completeness: A fair exchange protocol is complete if the execu-

tion of the protocol by honest parties results in Alice getting Bob’s

iles and viceversa:

Pr[[fB , fA]← [A(fA,VA),B (fB ,VB),T (skT)]] = 1

We say that a fair exchange is optimistic if the algorithm T is not

invoked by the correct algorithms A and B.

Fairness: Intuitively, fairness states that, at the end of the proto-

col, either Alice and Bob get valid content (that is, content which

passes the veriication algorithm they were given by the Tracker),

or neither Alice nor Bob get anything which passes the veriication

procedure. The above informal notion of fairness however does

not capture the notion of partial information. It could be that a

possibly malicious B̂ learns something about a valid fA while A

outputs ⊥. We strengthen the deinition of fairness to capture the

fact that if an honest party outputs ⊥ then the other party learns no

information. This is captured by a standard simulation deinition.

We say that a protocol is fair if for all eicient algorithms B̂ there

exists an eicient simulator Sim
B̂
with oracle access to T such that

the two distributions

[⊥, SimT

B̂
(fB ,VB ,VA)]

and

[⊥,b]← [A(fA,VA), B̂ (fB ,VB),T (skT)]

are computationally indistinguishable. A dual condition must hold

for any possibly malicious eicient Â.

2.4 Smart Contracts: Fair Exchange over
Blockchains

Assume that the exchange is a typical marketplace transaction,

where A is a seller, fA is a digital good, B is a buyer, and fB is

money. If the money is implemented via a blockchain-based digital

currency such as Bitcoin, then one can leverage the assumption

that the blockchain is a trusted łentityž and use it as the arbiter in

a fair exchange protocol. Since the blockchain is involved in the

transaction anyway, to transfer the money from the buyer to the

seller, we can dispense with the optimistic feature, and just use a

protocol which always uses the arbiter.

These types of fair exchange over a blockchain have been called

smart contracts and can be abstracted to work in the following way.

The buyer B posts a transaction on the blockchain that basically

says

Transfer fB coins to the party who presents a string

f that satisies the veriication algorithm VB

Then A can post a transaction that says

Here is fA that satisies VB . Transfer those fB coins

to my address.

This type of transactions can be implemented over blockchains

with suiciently rich scripting languages: recall that a script is the

program that needs to be executed in order to spend an output

on the blockchain. The scripting language in Ethereum [20, 50] is

suiciently rich, and one can in theory run any program as part

of a transaction, which allows the execution of arbitrary contracts.

In practice, the gas cost and global gas limit the complexity of

Ethereum scripts.

In the simpliied transactions above, everybody will learn the

object f being purchased by B. But this problem can be avoided by

changing the veriication procedure accordingly. B could request

that the object f being purchased be encrypted under his public

key, and published together with a non-interactive zero-knowledge

proof that f satisies the veriication algorithm VB . Note that the

latter is an NP statement so (at least in theory) it can be proven

in zero-knowledge. One interesting issue (which we discuss in

Section 3) is how to actually implement this NIZK proof, and in

particular the selection of the common reference string that is

needed by such proofs.

This type of smart contracts that allow parties to buy and sell

knowledge in a trustless manner have been named Zero-Knowledge

Contingent Payments (ZKCP), and as we will show below ZKCP

protocols have been proposed over blockchain systems with more

limited scripting language like Bitcoin [13].

2.5 Zero-Knowledge Contingent Payments:
Fair Exchange over Bitcoin

The problem with the smart contract described above is that it

is not possible to implement it directly in a Bitcoin transaction

since the scripting language does not allow arbitrary veriication

procedures. Recall from Section 2.1 that a hash-locked transaction

allows a party to redeem a transaction output if he/she produces

the preimage (under SHA256) of a speciic hashed value included in

the original transaction.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

233

Using hash-locked transactions the following construction was

originally presented by Maxwell in 2011, and is now well known

in the Bitcoin community [13, 37]: Alice (seller) and Bob (buyer)

engage in an oline phase, where Alice encrypts the string fA
with a key k (using any symmetric encryption scheme E, i.e. AES)

and publishes f̂ = Ek (fA) and s = SHA256(k) together with a ZK

proof that E−1
SHA256−1 (s)

(f̂) satisies the veriication procedure VB .

Again this is an NP statement and therefore can be proven in ZK.

Since this interaction between Alice and Bob will not be posted

on the blockchain, the proof could be performed interactively or

non-interactively.

If the proof is correct, Bob then broadcasts the following trans-

action to be included in the blockchain:

Transfer fB Bitcoins to the party who presents a

SHA256 preimage of s and signs the transaction with

pkAlice . If this output is still unspent after n blocks,

then the bitcoins can be claimed by pkBob .

At this point Alice can claim the coins by signing the transaction

that publishes k , which in turn will allow Bob to recover the digital

good fA.

Note that the transaction that Bob posts requires that the seller

provides both the preimage k as well as a signature. The reason

that we also require a signature is to prevent a front-running attack

in which Alice broadcasts k to the network to claim the funds,

but before Alice’s transaction is included in a block, some other

party (perhaps the miner) sees k and uses it to claim the funds for

themselves. To prevent this attack, the transaction requires Alice’s

signature as well, which nobody else can produce.

Also notice the second condition in the transaction that speciies

that after a certain amount of time elapses, Bob can himself claim

the output of this transaction. This is a refund clause that allows Bob

to reclaim his output in case Alice decides not to post k . Without

this clause, in the event that Alice decides not to complete the

protocol and publish k , Bob’s funds would be locked up and he

would neither have his money nor the string fA.

2.6 Example: Pay for Sudoku Solutions

When Maxwell irst proposed ZKCP in 2011 it was only theoretical

as there was no known eicient general purpose zero-knowledge

protocol that could be used. But advances since then in zero knowl-

edge protocols [10, 25, 29] have made this protocol feasible and

indeed there is currently a publicly available implementation of

ZKCP for purchasing Sudoku solutions. Using the template above,

the string fA is the solution of an n × n input Sudoku table (which

also speciies the veriication algorithm VB). The main challenge of

course is the implementation of the ZK proof that the decryption

of f̂ under the preimage of s is indeed a valid Sudoku solution for

the input Sudoku table. They implemented this non-interactively,

using the ZK Succint Non-Interactive Arguments of Knowledge (ZK-

SNARK) based on Quadratic Arithmetic Programs [29, 40], using

the libsnark library [8, 11].

As with all NIZK proofs, QSP-based ZK-SNARGs require a com-

mon reference string (CRS) for the production and the veriication

of the proof3. Such CRS should be selected by a trusted party in

advance, which is obviously non-ideal for ZKCP. The entire premise

of ZKCP is to perform fair-exchange over the blockchain in a trust-

less manner, and introducing a trusted third party would largely

defeat the purpose.

To get around this, it was noticed that unlike proofs which are

produced to be veriied by the public, the ZK-proof in ZKCP only

need to convince a single person ś the buyer. In ZKCP it was

therefore proposed that the buyer (i.e. the veriier) generate the

CRS, to ensure that the seller could not cheat.

However, having the buyer generate the CRS is problematic as it

only protects against a soundness adversary but not a zero-knowledge

adversary. With regards to the proof’s soundness property, the seller

is the adversary as the seller would beneit from producing an in-

correct proof. However, with regards to the proof’s zero-knowledge

property, the buyer is the adversary as the buyer would beneit

from learning some information about fA without paying for it. If

one generates the CRS maliciously, and (as we show below) the CRS

is not checked for łcorrectness", they can break both soundness

and zero-knowledge.

Because the ZKCP protocol does not check the correctness of

the CRS it only ensures that the seller can not cheat, but it allows

the buyer to cheat and extract information about the witness fA
without paying for it. In the next section we use this fact to show a

concrete attack on the ZKCP protocol that leaks information about

the value of a Sudoku cell before the buyer pays for the solution.

3 ATTACKS ON ZKCPWITH UNTRUSTED
CRS

In this section we show how allowing the Veriier to choose the CRS

in the QAP-based SNARK leads to a loss of the Zero-Knowledge

property. While it is a well known fact in the cryptographic liter-

ature that a trusted CRS is needed for zero-knowledge, the point

of this section is to demonstrate this insecurity by developing con-

crete attacks that allow one to learn information in the łPay-to-

Sudokuž implementation, where the Veriier does indeed set the

CRS. Through our attack, the Veriier is able to verify if a particular

guess for a Sudoku cell is correct or not. This obviously break the

fairness of the protocol (as deined in Section 2.3) since the buyer

learns partial information about the seller’s input.

First we recall how Quadratic Arithmetic Span programs work,

since they are the proof backbone of the libsnark library used in

the implementation. Then we show our attacks, and describe our

implementation of the malicious veriier.

3.1 ZK-SNARKs from Quadratic Arithmetic
Programs

We recall here the notion of Quadratic Arithmetic Programs (QAPs)

[29, 40], using the notation of Ben-Sasson et al. [11].

Deinition 3.1 ([29]). A QAP Q over a ield F is deined by three

sets of polynomialsA := {Ai (x)}
m
i=0,B := {Bi (x)}

m
i=0,C := {Ci (x)}

m
i=0

and a target polynomial Z (x). If we take a function f : Fn →

F
n′ , then we say that Q computes f if, given a valid assignment

3In the SNARKs literature, the CRS is sometimes referred to as the proving key and the
verifying key.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

234

(c1, . . . , cn+n′) of inputs and outputs of f , there exist coeicients

(cn+n′+1, . . . , cm) such that Z (x) divides the following polynomial

p (x) :=
(

A0 (x) +

m
∑

k=1

ck · Ak (x)
)

·
(

B0 (x) +

m
∑

k=1

ck · Bk (x)
)

+

−
(

C0 (x) +

m
∑

k=1

ck ·Ck (x)
)

In other words there must exists a polynomial H (x) such that

p (x) = H (x) · Z (x). We refer tom and the degree of Z (x) as the

size and the degree of Q respectively.

To build a QAP for a function f , we use an arithmetic cir-

cuit C representing f ; we then pick a distinct root rд for any of

its multiplicative gates. Then, we build the target polynomial as

Z (z) :=
∏

д

(z − rд), and we label each input of the circuit and each

output of a multiplicative gate with an index i ∈ [m] (grouping

together all the additive gates). We deine the polynomialsA,B,C in

a way that they respectively encode the left, right and output wire

of each gate: for example, Bi (rд) = 1 if the i-th wire of the circuit is

a right input wire of the gate д, and Bi (rд) = 0 (and similarly with

A and C with left input and output wires respectively). So, for any

gate д and its root rд , the condition above can be seen as:

(

m
∑

k=1

ck · Ak (rд)
)

·
(

m
∑

k=1

ck · Bk (rд)
)

=

=

(
∑

k ∈IL

ck · Ak (rд)
)

·
(
∑

k ∈IR

ck · Bk (rд)
)

= cдCk (rд) = cд

which basically says that the output of a multiplication gate is the

multiplication between the values on the left and the right inputs

wire of the gate itself. Following the notation of [11], it is now

possible to use QAPs to build zk-SNARKs, as in [29, 40]:

Public Parameters: pp := (r , e,P1,P2,G1,G2,GT) where

G1 := ⟨P1⟩,G2 := ⟨P2⟩,GT are groups of prime order r and

e : G1 × G2 → GT is a pairing.

Key Generation The key generation procedure is composed

by several steps, it takes in input a circuit C : Fnr × F
h
r → F

ℓ
r

and outputs a proving key pk and a veriication key vk .

(1) Compute (A,B,C,Z) with respect to the circuit C

and extend A := {Ai (x)}
m
i=0,B := {Bi (x)}

m
i=0,C :=

{Ci (x)}
m
i=0 via Am+1 = Bm+2 = Cm+3 = Z , Am+2 =

Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 = 0.

(2) Sample τ ,φA,φB ,αA,αB ,αC , β ,γ
$
← Fr

(3) For i = 0, . . . ,m + 3, let

pkA,i := Ai (τ)φAP1, pk ′
A,i

:= Ai (τ)αAφAP1

pkB,i := Bi (τ)φBP2, pk ′
B,i

:= Bi (τ)αBφBP1

pkC,i := Ci (τ)φCP1, pk ′
C,i

:= Ci (τ)αCφAφBP1

pkK,i := β (Ai (τ)φA + Bi (τ)φB +Ci (τ)αCφAφB)P1

and for i = 0, . . . ,d let pkH,i := τ
iP1. Set

pk := (C,pkA,pk
′
A
,pkB ,pk

′
B
,pkC ,pk

′
C
,pkK ,pkH).

(4) Let

vkA := αAP2, vkB := αBP1, vkC := αCP2

vkγ := γP2, vk
1
γ β

:= γ βP1, vk
2
γ β

:= γ βP2

vkZ := Z (τ)φAφBP2

{vkIC,i }
n
i=0 := {Ai (τ)φAP1}

n
i=0.

Set

vk := (vkA,vkB ,vkC ,vkγ ,vk
1
γ β
,vk2

γ β
,vkZ ,vkIC).

(5) Output (pk,vk)

Prover:On input a proving key pk , an input x ∈ Fnr , a witness

a ∈ Fhr , it outputs a proof π which is computed as follows:

(1) Compute (A,B,C,Z) with respect to the circuit C.

(2) Compute the QAP witness s ∈ Fm with respect to

C,x ,a.

(3) Sample δ1,δ2,δ3
$
← Fr .

(4) Compute the polynomial

H (z) :=
A(z)B (z)−C (z)

Z (z)

where

A(z) := A0 (z) +
∑m
i=1 siAi (z) + δ1Z (z),

B (z) := B0 (z) +
∑m
i=1 siBi (z) + δ2Z (z),

C (z) := C0 (z) +
∑m
i=1 siCi (z) + δ3Z (z).

and represent H (z) as (h0, . . . ,hd) ∈ F
d+1
r

(5) Set

p̃kA := (0n ,pkA,n+1, . . . ,pkA,m+3)

p̃k
′

A := (0n ,pk ′
A,n+1

, . . . ,pkA,m+3).

(6) Let c := (1, s,δ1,δ2,δ3) ∈ F
4+m
r , compute

πA := ⟨c, p̃kA⟩, π ′
A
:= ⟨c, p̃k

′

A⟩,

πB := ⟨c,pkB ⟩, π ′
B
:= ⟨c,pk ′

B
⟩,

πC := ⟨c,pkC ⟩, π ′
C
:= ⟨c,pk ′

C
⟩,

πK := ⟨c,pkK ⟩, πH := ⟨h,pkK ⟩.

(7) Output π := (πA,π
′
A
,πB ,π

′
B
,πC ,π

′
C
,πK ,πH).

Veriier: On input a veriication key vk , an input x ∈ Fnr and

a proof π , the veriier proceeds as follows:

(1) Compute vkx := vkIC,0 +
∑m
i=1 xivkIC,i ∈ G1.

(2) Verify validity of knowledge commitments for A,B,C

by checking:

e (πA,vkA) = e (π ′
A
,P2), e (vkB ,πB) =

e (π ′
B
,P2), e (πC ,vkC) = e (π ′

C
,P2).

(3) Verify that the same coeicients were used by checking:

e (πK ,vkγ) = e (vkx + πA + πC ,vk
2
γ β

) · e (vk1
γ β
,πB).

(4) Check QAP divisibility

e (vkx + πA,πB) = e (πH ,vkZ) · e (πC ,P2).

(5) Output 1 (accept) if and only if all the above checks are

satisied.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

235

3.2 Learning Information by modifying the
CRS

If a possibly malicious Veriier is allowed to set the CRS (as in

the łPay to Sudokuž (PtS) code [18]), then there are a variety of

attacks that can be attempted to learn information about the Sudoku

solution during the oline phase of the ZKCP (and therefore before

the payment phase is completed).

Changing the Circuit This is the easiest attack to consider. Recall

that the CRS of a QAP-based SNARK consists of an encoding of

a QAP encoding of the function f that veriies the NP witness

held by the prover. A malicious veriier could just replace the CRS

with the QAP encoding of a modiied function f̃ whose output

directly leaks the needed information. In other words, the sets of

polynomialsA,B,C andC , and the polynomialZ would be modiied

to Ã, B̃, C̃, Z̃ . Nevertheless this trivial attack does not work in a

libsnark implementation of QAP-based SNARKs. The reason is

that the QAP-encoding of a function f is a deterministic process,

and in libsnark both prover and veriier compute the polynomials

A,B,C,Z on their own directly from a description of the function

f , and this leads to a straightforward detection of any change.

Learning onewire is sufficient We now point out that in the PtS

implementation, for every Sudoku cell, there aren wiresw1, . . . ,wn

in the circuit C used in the SNARK, such thatw j = 1 if the cell is

set to j in the solution, while all the other wires related to that cell

are set to 0. Therefore learning the value of the wirew j will allow

us to learn if that particular cell is set to j or not. Recall from the

previous section that the value of the wires of C are the coeicients

ci used to compute the linear combinations so it is suicient to

learn c j . Note also that c j can only assume a binary value. We now

focus on attacks that allow us to compute a single coeicient c j .

Choosing τ as one of the roots of Z In the correct CRS genera-

tion, τ is chosen at random in the ield Fr . It turns out that if one

selects τ as one of the roots of Z (x), then τ is also the root of all the

polynomials A,B,C except for one of them, say Bj (x), for which

Bj (τ) , 0. In this case the component πB of the proof produced by

the prover reveals the valueγj = c jϕBP2 which allows to recover c j
since it can only assume a binary value. This attack is not detected

in libsnark on the prover side (it would be easily detected by check-

ing the public key pk and see if it contains the identity in either

G1 or G2, but this check is not performed in libsnark). However

the attack does not work in the łPay-to-Sudokuž ZKCP for a very

interesting reason. The prover code actually produces the łwire

value leakingž proof πB without an error, but then before sending

it out to the Veriier, the PtS code has the Prover run a veriication

of its own proof π . This veriication fails because the polynomial

H (x) is computed by dividing via the polynomial Z (x) and so when

evaluated at τ the QAP divisibility check fail. Moreover, because

of an optimization step of the veriication procedure that does not

expect to compute a pairing operation where the input in G2 is the

identity, the proof fails even before getting to the QAP divisibility

check (this will happen in the veriication equation since Z (τ) = 0

implies that vkZ = 0P2 = 0 ∈ G2 and this value is placed in the G2
pairing input of one of the veriication equations).

Setting all the pk eqal to the identity, except for one

wire This is the attack that works. The attack is described in

detail below, but here we give an informal explanation. Here τ is

selected at random, but it is not used to evaluate the polynomials.

Similar to the attack above, the malicious veriier will set all the

pkA,pk
′
A
,pkC ,pk

′
C
∈ G1 equal to 0 instead of setting them as the

evaluation łin the exponentž of the polynomials A,C evaluated at

τ . Similarly pkB,i = 0 ∈ G2 and pk
′
B,i
= 0 ∈ G1 for all i , j and

pkB, j = φBP2, pk
′
B, j
= αBφBP1 for known αB ,φB . By setting the

pk,pk ′ values this way, the proof π will reveal the value γj as above,

and therefore the value c j . Since the prover checks its own proof

before releasing it, we need to make sure that the proof veriies. We

do that by setting pkH,i = 0 ∈ G1 which will force the value πH
produced by the prover to be πH = 0 ∈ G1. Moreover since all the

identities are now only in the group G1, the error caused by the

optimization in the libsnark implementation will not appear and

indeed the proof is produced by the Prover (seller) and sent out to

the Veriier (buyer), who will recover the value c j .

More in details:

Public Parameters: Both the buyer and the prover get the

public parameters and pp := (r , e,P1,P2,G1,G2,GT ,C)

which include the description of the circuit C.

Key Generation: The buyer takes the circuit C : Fnr × F
h
r →

F
ℓ
r and outputs a proving key pk and a veriication key vk as

follows:

(1) Honestly computes (A,B,C,Z) with respect to the cir-

cuit C, where A := {Ai (x)}
m
i=0,B := {Bi (x)}

m
i=0,C :=

{Ci (x)}
m
i=0.

Now he extends A,B,C via

Am+1 = Am+2 = Am+3 = 0,

Bm+1 = Bm+2 = Bm+3 = 0,

Cm+1 = Cm+2 = Cm+3 = 0.

(2) Sample τ ,φA,φB ,αA,αB ,αC , β ,γ
$
← Fr .

(3) For i = 0, . . . ,m + 3, let

pkA,i := 0 ∈ G1, pk ′
A,i

:= 0 ∈ G1,

pkB,i := 0 ∈ G2 for all i , j and pkB, j := φBP2,

pk ′
B,i

:= 0 ∈ G1 for all i , j and

pk ′
B, j
= αBφBP1,

pkC,i := 0 ∈ G1, pk ′
C,i

:= 0 ∈ G1,

pkK,i := 0 ∈ G1 for all i , j, pkK, j := βφBP1.

For i = 0, . . . ,d let pkH,i := 0 ∈ G1, and set

pk := (pkA,pk
′
A
,pkB ,pk

′
B
,pkC ,pk

′
C
,pkK ,pkH).

(4) Let vkA := αAP2, vkB := αBP1, vkC := αCP2
vkγ := γP2, vk1

γ β
:= γ βP1, vk2

γ β
:= γ βP2

vkZ := Z (τ)φAφBP2, {vkIC,i }
n
i=0 := {0 ∈ G1}

n
i=0

and set

vk := (vkA,vkB ,vkC ,vkγ ,vk
1
γ β
,vk2

γ β
,vkZ ,vkIC).

(5) Output (pk,vk)

It is not hard to see that all the veriication equations are satisied,

and that the proof leaks the value c j . If used against the PtS code

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

236

for contingent payments for Sudoku solutions, this attack allows

to ind out the value for a Sudoku cell with probability 1/9. We

provide an implementation for the attack above; see Section 5.1 for

more details.

3.3 Countermeasures

In this section we show some possible countermeasures to our

attack above.

Checking the CRS. As already discussed in the original paper

on QSP/QAP [29] the prover can check that the CRS is łcorrectly

formed" and in this case the protocol iswitness indistinguishable (WI)

[27]. In the QAP-based SNARK described in the previous section, it

is suicient that the prover/seller checks that

• The polynomials A,B,C,Z are well formed with respect to

the circuit C .

• The elements pkAm+1 , pk
′
Am+1

, pk ′
Bm+2

, pkCm+3 , pk
′
Cm+3

are

not equal to 0 ∈ G1 and the element pkBm+2 is not equal to

0 ∈ G2
• All the elements pkH,i are not 0 ∈ G1.

• The element vkZ is such that vkZ , 0 ∈ G2.

since this will guarantee that the proof is a uniformly distributed

random value no matter what witness is used (see [29]). This could

be a good option for some applications of ZKCP, but unfortunately

not for the PtS application since a Sudoku puzzle typically has only

one solution and witness indistinguishability guarantees only that

proofs łlook the same" no matter what witness is used in the case

that there are two or more such witnesses. It does not guarantee

that no knowledge is leaked about a unique witness.

Subversion Resistant ZK. In a recent paper Bellare et al. introduce

the notion of Subversion Zero Knowledge [7], i.e. the ability to

prove ZK even when the CRS is maliciously selected by the veriier.

Note that given some well known impossibility results [30, 31], the

notion of ZK obtained in this case is somewhat weak (ZK does not

hold with respect to arbitrary auxiliary inputs the veriier might

have). One could then run a ZKCP with a subversion resistant ZK

protocol.

The proposed solution in [7] is not a SNARK (the proof is not

succinct), but it is not hard to see that their techniques extend to

the original QSP/QAP protocol in [29]. Indeed subversion-ZK can

be obtained as long as the above łWI checks" are performed and

the value τ can be extracted by the simulator from the Veriier

when it produces the CRS. Following the approach in [7] one could

use a łknowledge of exponent" type of assumption to extract τ

after checking that each pkH,i is correct, i.e pkH,i = τ iP1. In the

original QSP/QAP protocol in [29], where G1 = G2, this can be

checked using the bilinear map by checking that e (P1,pkH,i) =

e (pkH,1,pkH,i−1) for all i . The above intuition is actually formalized

in [28] (a diferent subversion-ZK SNARK is presented in [1]).

Note that this check requires the computation ofm bilinear maps,

a much more expensive task than the simple checks required for WI.

Moreover it is not clear if those techniques extend to Pinocchio [40],

the optimized version of the QSP/QAP protocol used by Libsnark

[8], since in that case G1 , G2 and the above check cannot be

performed. Our experimental results suggests that running the

subversion-resistant checks of [28] for the pay-to-sudoku example

would take more than an hour on our benchmark machine. See the

extended version of this paper for full details.

So to summarize, one could obtain (a weak non-aux input notion

of) zero-knowledge by using subversion resistant ZK, but it would

require major changes in the current implementation of ZKCP

protocols, and increase the computation required of the Prover.

Distributed Generation of the CRS. Another possible solution

is to have buyer and seller run a two-party secure computation

protocol to compute the CRS together. Note that due to the algebraic

structure of the CRS, this could be done via a much more eicient

ad-hoc protocol, rather than say a generic solution such as Yao’s

protocol. A similar approach was followed by the designers of

Zcash [9, 19] to remove a trusted generation of the CRS in their the

QAP-based SNARKs4.

Using Contingent Payments for Services. At the end the best

solution in our opinion is to use the protocol for ZK Contingent

Service Payments that we describe in the Section 4.3. In contrast to

the protocol of [28] that would take an hour to run, this protocol

adds less than a minute to the prover’s runtime. See the extended

version of this paper for full details.

4 CONTINGENT SERVICE PAYMENTS

In this section we discuss Contingent Payments for services such as

auditing. Consider for example the case where Alice (the seller) is a

data storage company, and Bob (the buyer) is a customer. Bob will

store his iles with Alice, and will pay her for this service. Assume

that the contract between Bob and Alice is that periodically Alice

will prove to Bob that his iles are all correctly stored, and upon

that proof Bob will pay the contracted rent.

There are several cryptographic protocols that allow a data stor-

age provider to eiciently prove the integrity of the stored iles to

a customer. These are known under the name of Proofs of Retriev-

ability (PoR) [32] and they all work by requiring that the prover

shows the possession of a certain number of blocks previously

authenticated by the client5.

This can be achieved easily using a smart contract over a blockchain

with a suiciently rich scripting language. The client simply posts

a transaction that pays whoever shows possession of such authen-

ticated blocks. When the server posts those blocks, it will receive

payment and the client will be assured all its iles are still correctly

stored.

But it does not work using the generic blueprint for ZKCP over

Bitcoin described earlier. Indeed that blueprint requires the Server

to prove possession of such blocks during the oline phase, but at

this point the client has the desired knowledge (the server knows

those blocks, therefore it must know the entire ile) without having

paid for it, and indeed the client does not have to post the payment

transaction on the Bitcoin blockchain. The reason is that the ZKCP

4 We also point out that the CRS in their case is an łextended" version of the Pinocchio

CRS, where both τ i P1 and τ
i P2 appear in the CRS. This allows anybody to verify the

correctness of the CRS via bilinear maps. Moreover, even if this CRS was computed by
a single malicious party, rather than distributively, subversion ZK is guaranteed since
the value τ can be extracted via a łknowledge of exponent" type of assumption.
5 Trivially the client can ask the prover to send back all the data originally stored and
authenticated by the client, but this is not eicient. PoR protocols allow the server to
prove that all the data is there by showing only a small number of blocks authenticated
by the client (see appendix).

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

237

blueprint is designed for the sale of digital goods, but not digital

services. In the ZKCP protocol described earlier the prover proves

possession of a certain string, without revealing it, and the payment

is contingent on the disclosure of the string. But in this case it’s the

proof of possession itself that is the valuable łservicež desired by

the buyer.

In the following we show how to design a ZKCP for digital

services such as auditing and the other applications discussed in

the Introduction.

4.1 Deining ZKCP for Services (ZKCSP)

We are looking for a protocol where a server A proves to a client

B that he (the server) knows s such f (s) = 1 for an eiciently

computable veriication function f : {0, 1}∗ → {0, 1} and needs

to be paid for this information. Informally the properties that we

would like to have are

• If a possibly malicious Â is paid then Âmust łknownž a value

s such that f (s) = 1;

• If a possibly malicious B̂ does not pay then B̂ has learned no

information

• additionally, a possibly malicious B̂ who pays, learns only

that A knows s such that f (s) = 1 and nothing else.

The latter condition can be relaxed in some settings, but by enforc-

ing it we really limit the knowledge disclosure from A to B to a

minimum.

We use a trusted partyT which models a blockchain.T maintains

a ledger of all the łcoin balancesž of each party. MoreoverT accepts

messages from A and B of only two types, and will execute the

instructions honestly:

Contingent Payments from B which are of the form

Transferm of my coins to a party who publishes x such

that when you run this program P on x you get P (x) = 1

In this case T checks that B has more thanm coins and if

so accepts the message and publishes it on the blockchain,

otherwise it rejects it.

Redemption Payments from A which are of the form

Transferm coins to my account since I am publishing x

such that when you run P on x you get P (x) = 1

In this case T checks that there is a previously accepted

Contingent Payment message that refers to this program

P , and that P (x) = 1. If so it will posts the message to the

blockchain and will deductm coins from the balance of the

party B who posted the message, and adds has thosem coins

to the balance of A.

A Zero-Knowledge Contingent Service Payment (ZKCSP) pro-

tocol is a three party protocol deined by the interactive machines

A,B,T where A runs on a private input s , and all parties run on

public input a function f . We deine the view of B, View
B̂
(s, f) as

his coin tosses together with all the messages exchanged during

the protocol:

View
B̂
(s, f) :=

[Coins
B̂
| |Messaдes[A(s, f), B̂ (f),T (f)]| |

Out (A(s, f), B̂ (f),T (f)]

We say that (A,B,T) is a secure ZKCSP protocol if the following

conditions are satisied (all parties run on a security parameter 1n)

Extraction For any possibly malicious eicient Â, if at the end

of the protocol Â’s balance increases with non-negligible

probability, then there exists an eicient extractor Ext
Â
,

which outputs a string ŝ such that f (ŝ) = 1;

Zero-Knowledge For any possibly malicious eicient B̂, there

exists an eicient simulator Sim
B̂
which on input f outputs

a distribution which is computationally indistinguishable

from View
B̂
(s, f);

4.2 A ZKCSP Protocol

Given that s is basically the witness of an NP statement, it is possible

to construct NIZK proofs of knowledge for it ([41] and the more

recent literature on SNARKs [11, 29, 40]). If V is the program that

veriies this NIZK proof (using a trusted CRS) then it is easy to

implement a ZKCSP over any blockchain with suiciently rich

scripting languages such as Ethereum. The client B will post the

transaction

Transfer m of my coins to a party who publishes a

proof π such that V (π) = 1

Once A publishes π she will get paid and B has conidence that

A really knows s (with the simulation and extraction procedures

being guaranteed by the simulation and extraction procedure of the

NIZK used in the protocol). The question then is how to implement

this over more limited scripting languages, including Bitcoin. What

follows is a protocol where the program P associated with łpayment

transactionsž can only be of the form łind a SHA256 preimage of a

speciied valuež, i.e. hash-locked transactions.

Let H be a function H{0, 1}∗ → {0, 1}256 (i.e. like SHA256). Con-

sider the following function

Ff ,H : {0, 1}∗ × {0, 1}∗ → {0, 1}256

deined as follows

Ff ,H (s, r) =

SHA256(r) if f (s) = 1

H(r) otherwise.
(1)

We are going to use F to design our new ZKCSP protocol as

follows. Informally, the server/seller will choose a random r and

send to the client/buyer the value y = Ff ,H (s, r) and proves using

a WI protocol that he knows inputs (s, r) such that y = Ff ,H (s, r).

Note that if f (s) = 1 then y = SHA256(r), otherwise y = H(r).

Moreover, if the output of H łlooks likež the output of SHA256, the

client/buyer cannot tell at this point if the server actually knows

a łgoodž s (i.e. f (s) = 1) or not. To detect if this is the case or not

should be contingent to a payment by the buyer who therefore

publishes the following transaction:

Transferm Bitcoins to the partywho presents a SHA256

preimage of y

If f (s) = 1 then the server/seller knows such a preimage (which

is r), and can publish it to redeem the payment. Moreover, if we

assume that inding a SHA256 preimage of H(r) is hard, then the

seller cannot redeem payment when f (s) , 1.

More formally, let A denote the seller, B denote the buyer and T

denote the blockchain:

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

238

Protocol 1

(1) A on input s , chooses r at random in {0, 1}256 and com-

putes y = Ff ,H (s, r)

(2) A sends y to B and the two parties engage in a WI proof

that the seller knows r , s such that y = Ff ,H (s, r). If the

proof fails, the buyer rejects and stops.

(3) B posts a transaction to the Bitcoin blockchain to

paym Bitcoins to the party who presents x such that

SHA256(x) = y

(4) A presents z to T . If SHA256(z) = y then T posts it and

the seller redeems the Bitcoins, otherwise the Bitcoins

are returned to the buyer.

We can prove the following6:

Theorem 4.1. Assume that

• SHA256 and H are a claw-free pair

• the distributions SHA256(r) and H(r) for r chosen at random

in {0, 1}256 are computationally indistinguishable

then Protocol 1 is a secure ZKCSP protocol.

Proof. (Sketch).

Extraction: Let Â be an eicient, possibly malicious seller. In

step 2, Â runs a ZK proof of knowledge of the values s, r which can

therefore be extracted if the proof is successful. Assume for sake

of contradiction that f (s) , 1 and Â gets paid. By the correctness

of the NIZK we know that since f (s) , 1, then y = H(r). In Step

4 Â gets paid only if she produces z such that y = SHA256(z).

Therefore we have found a claw (r , z) for SHA256 and H, since

SHA256(z) = H(r) = y.

Zero-Knowledge is a consequence of thewitness indistinguisha-

bility of the proof in step 2, and the computational indistinguisha-

bility of the output distributions of SHA256 and H. A bit more for-

mally, For step 1, Sim
B̂
will choose r , s at random and compute

y = Ff ,H (s, r). Note that the message in step 1 is computationally

indistinguishable from the message sent by the real A due to the

computational indistinguishability of the output distributions of

SHA256 and H. For step 2, Sim
B̂
will just run a "real" proof that

y = Ff ,H (s, r): note that due to witness indistinguishability, this

proof is indistinguishable from a proof of a "correct" proof when

the witness is such that f (s) = 1. □

Letting B choose the CRS. Note that we only require the proof

to be WI. If we were to use a QSP-based SNARK, such as Libsnark,

then (as already pointed out in [29]) the veriier B can be allowed

to select the CRS, provided the prover A performs some minimal

correctness checks (described in detail in Section 3.3).

4.3 An alternative ZKCP construction

The idea behind our ZKCSP can be used to build an alternative

ZKCP protocol. Recall (using the notation in Section 2.5) that in

6 The assumptions underlying Theorem 4.1 are expressed in asymptotic terms but
for sake of simplicity we are using concrete security parameters and functions used
by Bitcoin (e.g. SHA256, with 256 bits output etc). It is easy to reframe the protocol
description and the theorem using a security parameter

this case, Alice (the seller) wants to sell to Bob (the buyer) a string

fA that satisies some veriication procedure VB .

The basic idea remains the same: Alice encrypts the string fA
with a key k (using any symmetric encryption scheme E, i.e. AES)

and publishes f̂ = Ek (fA) and y = SHA256(k). She then proves

(using a WI proof) that

y = G
VB, f̂ ,H

(k) =

SHA256(k) if VB (Dk (f̂)) = 1

H(k) otherwise.
(2)

Note that in this case WI is suicient since at the end of the

protocol, Bob does not know if Alice encrypted a valid string or

garbage, and this guarantees that he learns no information about fA.

At the same time, he is guaranteed that if Alice presents a SHA256

preimage of y, then the encrypted string must be valid and he will

be able to recover it. Again relying simply on WI, removes the need

for a trusted party to generate the CRS, since Bob can be allowed

to generate it, provided that Alice performs the minimal checks

to guarantee WI (described in Section 3.3) and without having to

resort to the heavy tests required by subversion-ZK.

4.4 A Protocol with private veriication

In the protocol above we assumed a scenario in which anybody

can verify that s is łcorrectž (i.e. f (s) = 1). There are however

situations in which the buyer is the only one who can verify the

correctness of s . In other words the buyer is only interested in s

such that f (k, s) = 1 where k is a secret łkeyž held by the buyer. In

this case we modify the protocol to have the parties jointly compute

the following function

F ′
f ,H

(k, s, r) =

SHA256(r) if f (k, s) = 1

H(r) otherwise.
(3)

Because both buyer and seller want to keep k and s secret respec-

tively, they will have to use a secure two-party computation proto-

col, such as Yao’s garbled circuit [51] to compute F ′. It is important

to use a two-party computation protocol which is secure against

malicious players. The protocol is described below

Protocol 2

(1) A on input s , chooses r at random in {0, 1}256

(2) Using a 2-party computation protocol, secure against

malicious players, A and B jointly compute y =

F ′
f ,H

(k, s, r) where k is B’s private input.

(3) B posts a transaction to the Bitcoin blockchain to

paym Bitcoins to the party who presents x such that

SHA256(x) = y

(4) A presents z to T . If SHA256(z) = y then T posts it and

the seller redeems the Bitcoins, otherwise the Bitcoins

are returned to the buyer.

Theorem 4.2. Assume that

• SHA256 and H are a claw-free pair

• the distributions SHA256(r) and H(r) for r chosen at random

in {0, 1}256 are computationally indistinguishable

then Protocol 2 is a secure ZKCSP protocol.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

239

Proof. (Sketch).

Extraction: Let Â be an eicient, possibly malicious seller. In

step 2, Â runs two-party computation protocol which is secure

against a malicious adversary. Such protocols require the ability to

extract the input during the simulation [36], so we use the simulator

of the two-party protocol to extract r , s . Now the proof continues

as in the proof of Theorem 4.1. Assume for sake of contradiction

tha f (k, s) , 1 and Â gets paid. By the correctness of the two-

party computation protocol we know that since f (k, s) , 1, then

y = H(r). In Step 4 Â gets paid only if she produces z such that

y = SHA256(z). Therefore we have found a claw (r , z) for SHA256

and H, since SHA256(z) = H(r) = y.

Zero-Knowledge is a consequence of the simulatability of the

two-party protocol in step 2, and the computational indistinguisha-

bility of the output distributions of SHA256 and H. A bit more for-

mally, For steps 1 and 2, Sim
B̂
will choose r at random and compute

y = SHA256(r) and simulate the two-party computation with y as

output. Now ifA has a correct s then step 4 will be executed and the

simulator will simulate it perfectly by releasing a SHA256 preimage

of y. If A did not have a correct s , then step 4 is a message between

A and T but is not posted to the blockchain and therefore does not

belong to the view of B̂ and the simulator does not have to simulate

it. □

5 IMPLEMENTATION

In this section we discuss our implementation work on: the attack

against Maxwell’s ZKCP; a proof of concept of our protocol for

ZKCP for Services; a more eicient SHA256 circuit implementation

(used in Protocol 2). The code is available at [21, 22]. All bench-

marks in this section were evaluated on a Debian 3.16.39-1 x86_64

GNU/Linux Virtual Machine (virtual CPU and RAM respectively

2.4 GhZ and 3.5 GB).

5.1 Pay-to-Sudoku

Attack. We modiied the Pay-to-Sudoku’s code [18] in a way

that allows a malicious buyer to learn information about the value

of a cell of the Sudoku solution without paying for it. To do that

we created a modiied version of libsnark that implements the

attack described in Section 3 (under łSetting all the pk equal to the

identity except for one wirež). The malicious buyer can generate a

CRS running this code and ind out the exact value of a cell with

probability at least 1/9 from the proof received by the seller. Note

that the seller in [18] does not ind out the CRS was generated

maliciously and that we did not modify any code involving the

Sudoku solution seller or the prover in libsnark.

Alternative Pay-to-Sudoku. We also implemented our alterna-

tive ZKCP protocol using only WI proofs (described in Section 4.3)

for the case of Pay-to-Sudoku. In our protocol the prover runs a

bit slower than the insecure original protocol due to the fact that

the proof is run over a larger circuit (veriication time is basically

unchanged as to be expected in the case of QSP-based protocols).

On the other hand, the cost of the expensive subversion-ZK CRS

checks to the original Pay-to-Sudoku protocol dominates the over-

head of the larger circuit in our protocol (which does not require

such expensive checks). In particular, our results suggest that

ZKCSP for Su-

doku with WI

checks

Pay-to-

Sudoku with

Subversion-

ZK

Key Generation 54 s 22s

Proof 10900 ms > 1 hour (5500

ms without

checks)

Veriication 25 ms 24 ms

Table 1: Estimated Running Time for Contingent Payment

for Sudoku with checked CRS

the proving process would require more than an hour in to-

tal (instead of a few seconds without the ZK-subversion checks).

This time has been obtained by computing tP · nP , where tP is the

experimental estimate for the the average time per pairing check

(i.e. 4.50 ms) and nP is the number of pairing checks for subversion-

ZK in [28]. A lower bound on nP is 7m where m is the number

of constraints. The quantity m is sligthly greater than 115K for

Pay-to-Sudoku. In these benchmarks we used curve ALT_BN128,

the same originally used in Pay-to-Sudoku. Table 1 summarizes the

performance comparison.

5.2 Proofs of Retrievability (PoR) over Bitcoin

As a proof of concept, we provide an implementation for a ZKCSP

for Auditing of Proofs of Retrievability (PoR). Our implementation

is based on the PoR scheme in [44] (See Appendix for details of the

the scheme). In the context of PoR, a party delegates storage of her

data to a server. A PoR scheme consists of an (eicient) protocol by

which the delegator can verify at any time whether the server is

still keeping her data intact. Our protocol allows the client to pay

the server if such veriication procedure succeeds. The PoR scheme

in [44] can be instantiated both as privately and publicly veriiable

(see appendix for details). For this application, the curve we used

in libsnark was MNT6. Although less eicient than BN128 or

ALT_BN128, this curve was one of the few ones which ofered

veriication gadgets for pairings.

Private Verification. In this case the PoR scheme in [44] reduces

to the veriication of a (linearly homomorphic) MAC jointly by the

server and the client. Here the PoR is successful if the server proves

to the client that it knows s = (m, t) such that t = MACk (m) where

k is the secret authentication key of the client.

We used Protocol 2 described in Section 4.4 where f (k, s) = 1

if and only if s = (m, t) and t = MACk (m). We implemented a

two-party protocol for the computation of the associated function

F ′ using the SCAPI library [26] following [48]. We used λ = 128

bits of computational security and ρ = 80 bits of statistical security.

We chose a Carter-Wegman [49] style MAC, speciically the one in

[34]. The circuit has 150441 gates and 151017 wires. The number of

input wires for the two parties, seller and buyer, are respectively

416 and 160. The output of the circuit is 256 bits. See Table 2 for

evaluation of running time and bandwidth.

Public Verification. In this case the PoR scheme in [44] reduces

to the veriication of a (linearly homomorphic) signature scheme,

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

240

Bandwidth (KB) Time (ms)

Garbler 38879 155

Evaluator 51 159

Table 2: Stats for Fair Auditing of Privately Veriiable PoR

with Secure Two Party Computation.

Bandwidth Time (ms)

Key Generation pk: 41959 KB

sk: 13 KB

14041

Proof 374 bytes 3287

Veriication Ð 37

Table 3: Stats for Fair Auditing of Publicly Veriiable PoR

with SNARKs.

speciically the BLS scheme from [15]. More speciically the PoR is

succesfull if the server proves to the client that it knows s = (m,σ)

such thatVer (PK ,m,σ) = 1whereVer is the veriication algorithm

of the BLS signature scheme, and PK is the public key of the client.

In this case we used Protocol 1 described in Section 4.2 where

f (s) = 1 if and only if s = (m,σ) andVer (PK ,m,σ) = 1. We imple-

mented ZK-SNARK to enable the server to prove that she knows

(s, r) such that y = Ff ,H (s, r). This proof was implemented in C++

using libsnark [11]. The function F was described in libsnark

as set of constraints called Rank-One Constraint System (R1CS).

Implementing the above F we obtained a R1CS system with 39409

constraints. In this setting we used λ = 80 bits of computational

security. See Table 3 for evaluation of running time and bandwidth.

For

Generation of the CRS The timing results in the tables above

refer to a Key Generation performed by a trusted party.

5.3 A More Eicient SHA256 Circuit
Implementation

SCAPI and other cryptographic libraries require the user to supply

the circuit for the function that want to compute. Building a circuit

ile in this format is complex, and there is a library of such circuit

iles made available by researchers at Bristol University [45].

As part of the implementation in the proof of concept above, we

constructed a new optimized reusable boolean circuit for SHA256.

Our circuit may be of independent use for circuit-based MPC and

FHE protocols that require SHA256 computations.

To the best of our knowledge, the only other re-usable circuit im-

plementation openly available for SHA256was developed the Bristol

circuit. See Table 4 for a comparison of the circuit parameters be-

tween the Bristol circuit and ours. Our circuit compares favorably

both with respect to the total number of gates and to the number

of AND gates. The latter parameter is particularly important if one

intends to use SHA256 in Secure Multi-Party Computation. In fact,

in modern MPC protocols the number of AND gates dominates the

total evaluation cost thanks to a technique called Free-XOR [33]

which evaluates XOR gates łfor freež. In the process of building

our SHA256 circuit we developed a library for semi-automated gen-

eration of optimized boolean circuits which we believe may be of

Bristol Circuit Our Circuit

Total gates 236112 116245

AND gates 90825 22272

XOR gates 42029 91780

INV gates 103258 2194

Table 4: Number of gates in SHA256 circuit implementations.

independent interest. We stress that our contribution here is not the

optimizations themselves as they were mostly straightforward from

the SHA2 speciication, but or contributions is the the optimized

implementation of SHA2 in a boolean circuit format that can be

reused by other cryptographic libraries and protocols.

6 ACKNOWLEDGMENTS

We thank Dario Fiore, Hugo Krawczyk, Arvind Narayanan, Pino

Persiano, and Eran Tromer and the anonymous reviewers for useful

discussions and advice.

Matteo Campanelli is supported by NSF Grant 1545759. Rosario

Gennaro is supported by NSF Grant 1565403. Steven Goldfeder is

supported by the NSF Graduate Research Fellowship under grant

number DGE-1148900 and NSF award CNS-1651938.

REFERENCES
[1] B. Abdolmaleki, K. Baghery, H. Lipmaa, and M. Zajac. A subversion-resistant

snark. Cryptology ePrint Archive, Report 2017/599, 2017. http://eprint.iacr.org/
2017/599.

[2] G. Andresen. Github: Proposal: open up IsStandard for P2SH transactions. https:
//gist.github.com/gavinandresen/88be40c141bc67acb247, 2017.

[3] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Fair two-
party computations via bitcoin deposits. In R. Böhme, M. Brenner, T. Moore,
and M. Smith, editors, FC 2014 Workshops, volume 8438 of LNCS, pages 105ś121.
Springer, Mar. 2014.

[4] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. On the
malleability of bitcoin transactions. In International Conference on Financial
Cryptography and Data Security, pages 1ś18. Springer, 2015.

[5] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures (extended abstract). In K. Nyberg, editor, EUROCRYPT’98, volume 1403 of
LNCS, pages 591ś606. Springer, May / June 1998.

[6] W. Banasik, S. Dziembowski, and D. Malinowski. Eicient zero-knowledge
contingent payments in cryptocurrencies without scripts. In European Symposium
on Research in Computer Security, pages 261ś280. Springer, 2016.

[7] M. Bellare, G. Fuchsbauer, and A. Scafuro. Nizks with an untrusted crs: security
in the face of parameter subversion. In Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryptology
and Information Security, Part II, pages 777ś804. Springer, 2016.

[8] E. Ben-Sasson, A. Chiesa, D. Genkin, S. Kir, E. Tromer, M. S. L. Virza, and oth-
ers external contributors. Libsnark, 2017. https://github.com/scipr-lab/libsnark.

[9] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure sampling
of public parameters for succinct zero knowledge proofs. In IEEE Security and
Privacy Conference, pages 287ś304, 2015.

[10] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via
cycles of elliptic curves. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276ś294. Springer, Aug. 2014.

[11] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero
knowledge for a von neumann architecture. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, pages 781ś796, Berkeley, CA, USA,
2014. USENIX Association.

[12] BitcoinWiki. Bitcoin transaction, 2016. https://en.bitcoin.it/wiki/Transaction.
[13] BitcoinWiki. Zero knowledge contingent payment, 2016. https://en.bitcoin.it/

wiki/Zero_Knowledge_Contingent_Payment.
[14] BitcoinWiki. Scripts, 2017. https://en.bitcoin.it/wiki/Script.
[15] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.

In International Conference on the Theory and Application of Cryptology and
Information Security, pages 514ś532. Springer, 2001.

[16] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing.
In International Conference on the Theory and Application of Cryptology and

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

241

Information Security, pages 514ś532. Springer, 2001.
[17] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. Sok:

Research perspectives and challenges for bitcoin and cryptocurrencies, 2015.
[18] S. Bowe. pay-to-sudoku, 2016. https://github.com/zcash/pay-to-sudoku.
[19] S. Bowe, A. Gabizon, and M. Green. A multi-party protocol for constructing the

public parameters of the pinocchio zk-snark. 2016. https://github.com/zcash/
mpc/blob/master/whitepaper.pdf.

[20] V. Buterin et al. A next-generation smart contract and decentralized application
platform, 2014.

[21] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo. An attack to pay-to-
sudoku. https://github.com/matteocam/pay-to-sudoku-attack, 2017.

[22] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo. Zkcsp over bitcoin.
https://github.com/matteocam/zkcsp-over-bitcoin, 2017.

[23] R. Cleve. Limits on the security of coin lips when half the processors are faulty
(extended abstract). In J. Hartmanis, editor, Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,
pages 364ś369. ACM, 1986.

[24] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh. Provisions: Privacy-
preserving proofs of solvency for bitcoin exchanges. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pages 720ś
731. ACM, 2015.

[25] G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss. Square span programs with
applications to succinct NIZK arguments. In P. Sarkar and T. Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532ś550. Springer, Dec.
2014.

[26] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell. Scapi: The secure computation
application programming interface. IACR Cryptology EPrint Archive, 2012:629,
2012.

[27] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 416ś426, 1990.

[28] G. Fuchsbauer. Subversion-zero-knowledge snarks. Cryptology ePrint Archive,
Report 2017/587, 2017. http://eprint.iacr.org/2017/587.

[29] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626ś645. Springer, May 2013.

[30] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169ś192, 1996.

[31] O. Goldreich and Y. Oren. Deinitions and properties of zero-knowledge proof
systems. J. Cryptology, 7(1):1ś32, 1994.

[32] A. Juels and B. S. Kaliski Jr. Pors: Proofs of retrievability for large iles. In
Proceedings of the 14th ACM conference on Computer and communications security,
pages 584ś597. Acm, 2007.

[33] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and
applications. Automata, Languages and Programming, pages 486ś498, 2008.

[34] H. Krawczyk. Lfsr-based hashing and authentication. In Advances in Cryptology
- CRYPTO ’94, 14th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1994, Proceedings, volume 839, pages 129ś139.
Springer, 1994.

[35] A. Küpçü and A. Lysyanskaya. Usable optimistic fair exchange. In J. Pieprzyk,
editor, CT-RSA 2010, volume 5985 of LNCS, pages 252ś267. Springer, Mar. 2010.

[36] Y. Lindell and B. Pinkas. An eicient protocol for secure two-party computation
in the presence of malicious adversaries. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 52ś78. Springer,
2007.

[37] G. Maxwell. Zero knowledge contingent payment, 2015. https://en.bitcoin.it/
wiki/Zero_Knowledge_Contingent_Payment.

[38] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[39] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and

Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University
Press, 2016.

[40] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
veriiable computation. In 2013 IEEE Symposium on Security and Privacy, pages
238ś252. IEEE Computer Society Press, May 2013.

[41] A. D. Santis and G. Persiano. Zero-knowledge proofs of knowledge without
interaction (extended abstract). In 33rd Annual Symposium on Foundations of
Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 427ś
436, 1992.

[42] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In Security and
Privacy (SP), 2014 IEEE Symposium on, pages 459ś474. IEEE, 2014.

[43] H. Shacham and B. Waters. Compact proofs of retrievability. In J. Pieprzyk, editor,
ASIACRYPT 2008, volume 5350 of LNCS, pages 90ś107. Springer, Dec. 2008.

[44] H. Shacham and B. Waters. Compact proofs of retrievability. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 90ś107. Springer, 2008.

[45] S. Tillich and N. Smart. Circuits of basic functions suitable for mpc and fhe, 2016.

[46] F. Tramer, F. Zhang, H. Lin, J.-P. Hubaux, A. Juels, and E. Shi. Sealed-glass proofs:
Using transparent enclaves to prove and sell knowledge. Euro Security and
Privacy’17, 2017. To appear.

[47] J. van Lint. Introduction to coding theory, 1992.
[48] X. Wang, A. J. Malozemof, and J. Katz. Faster secure two-party computation in

the single-execution setting. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 399ś424. Springer, 2017.

[49] M. N.Wegman and J. L. Carter. New hash functions and their use in authentication
and set equality. Journal of computer and system sciences, 22(3):265ś279, 1981.

[50] G. Wood. Ethereum: A secure decentralised generalised transaction ledger, 2014.
[51] A. C. Yao. Protocols for secure computations. In Foundations of Computer Science,

1982. SFCS’08. 23rd Annual Symposium on, pages 160ś164. IEEE, 1982.

A APPENDIX: THE SHACHAM/WATERS POR
SCHEME

A Proof of Retrievability (PoR) scheme involves a client C, who

outsources some data, and a server S who is supposed to store

them, in a way that he can prove to a veriier that he is actually

storing the client’s data. In [43], Shacham and Waters presented

two compact proof of retrievability schemes, one with private and

another with public veriiability. The irst one is based on PRFs and

secure in the standard model, the second one based on BLS signa-

tures [16], secure in the Random Oracle Model. The framework is

the same for both: an erasured coded ile is divided into n blocks

m1, . . . ,mn ∈ Zp , where p is a large prime. Intuitively, the fact that

the ile is erasured coded ensures that it is possible to decode even

in presence of adversarial (or random) erasure (see [47] for further

details about erasure codes).

Privately Verifiable POR Scheme: In order to authenticate each

blockmi , the client C chooses a secret key which is composed by a

random α
$
← Zp and a PRF key k for a function f . Then, for each

i ∈ [n] she computes σi := fk (i) + αmi ∈ Zp .

The pairs {(mi ,σi)}i ∈[n] are then stored into the server and the

proof of retrievability between the server and the veriier works as

follows:

(1) The veriier chooses a challenge set I ⊂ [n], | I |= ℓ and

some coeicients ν1, . . . νℓ ∈ Zp . The set Q := {(i,νi)}i ∈[ℓ]
is then sent to the server.

(2) The server sends back a pair (σ , µ), where

σ ←
∑

(i,νi)∈Q

νi · σi and µ ←
∑

(i,νi)∈Q

νi ·mi .

(3) The veriies checks whether the following holds

σ = α · µ +
∑

(i,νi)∈Q

νi · fk (i)

.

Note the here the secret key is necessary in order to run the verii-

cation.

Public Verifiable POR Scheme: Let e : G ×G → G be a bilinear

map and let Zp be the support of G . The client sets a secret key

to be x ← Zp and the public key to be (v := дx ,u), where д,u

are two generators of G. Then, for each i ∈ [n] she computes

σi :=
[
H (i)umi

]x
. As before, the pairs {(mi ,σi)}i ∈[n] are then

stored into the server and the proof of retrievability between the

server and the veriier works as follows:

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

242

(1) The veriier chooses a challenge set I ⊂ [n], | I |= ℓ and

some coeicients ν1, . . . νℓ ∈ Zp . The set Q := {(i,νi)}i ∈[ℓ]
is then sent to the server.

(2) The server sends back a pair (σ , µ), where

σ ←
∏

(i,νi)∈Q

σ
νi
i and µ ←

∑

(i,νi)∈Q

νi ·mi .

(3) The veriies checks whether the following holds:

e (σ ,д) = e (
∏

(i,νi)∈Q

H (i)νi · uµ ,v)

.

Note that the secret key x is necessary in order to create the

authenticators {σi }. On the other hand the public element v is

suicient to perform the veriication.

Session A5: Cryptocurrency CCS’17, October 30-November 3, 2017, Dallas, TX, USA

243

	Abstract
	1 Introduction
	1.1 Breaking ZKCP
	1.2 Fixing ZKCP
	1.3 Zero-Knowledge Contingent Service Payments (ZKCSP): paying for digital services
	1.4 Our Contributions
	1.5 Other related work

	2 Preliminaries
	2.1 Bitcoin and Ethereum
	2.2 Cryptographic Definitions
	2.3 Fair Exchange
	2.4 Smart Contracts: Fair Exchange over Blockchains
	2.5 Zero-Knowledge Contingent Payments: Fair Exchange over Bitcoin
	2.6 Example: Pay for Sudoku Solutions

	3 Attacks on ZKCP with untrusted CRS
	3.1 ZK-SNARKs from Quadratic Arithmetic Programs
	3.2 Learning Information by modifying the CRS
	3.3 Countermeasures

	4 Contingent Service Payments
	4.1 Defining ZKCP for Services (ZKCSP)
	4.2 A ZKCSP Protocol
	4.3 An alternative ZKCP construction
	4.4 A Protocol with private verification

	5 Implementation
	5.1 Pay-to-Sudoku
	5.2 Proofs of Retrievability (PoR) over Bitcoin
	5.3 A More Efficient SHA256 Circuit Implementation

	6 Acknowledgments
	References
	A APPENDIX: The Shacham/Waters POR Scheme

