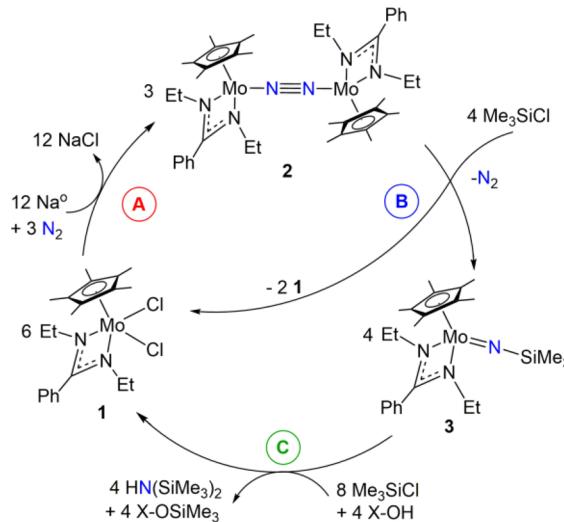


Closing the Loop on Transition-Metal-Mediated Nitrogen Fixation: Chemoselective Production of $\text{HN}(\text{SiMe}_3)_2$ from N_2 , Me_3SiCl , and $\text{X}-\text{OH}$ ($\text{X} = \text{R}$, R_3Si , or Silica Gel)

Leila M. Duman and Lawrence R. Sita*^{1,2}

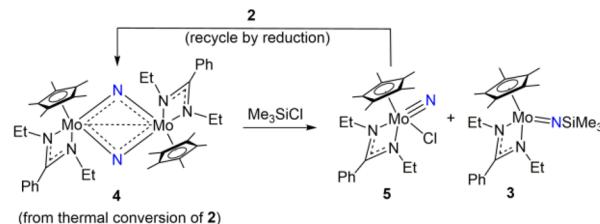

Laboratory of Applied Catalyst Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States

 Supporting Information

ABSTRACT: Treatment of the Mo(IV) terminal imido complex, $(\eta^5\text{-C}_5\text{Me}_5)[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{NSiMe}_3)$ (**3**), with a 1:2 mixture of iPrOH and Me_3SiCl resulted in the rapid formation of the Mo(IV) dichloride, $(\eta^5\text{-C}_5\text{Me}_5)[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{MoCl}_2$ (**1**), and the generation of 1 equiv each of $\text{HN}(\text{SiMe}_3)_2$ and iPrOSiMe_3 . Similarly, a 1:2 mixture of Me_3SiOH and Me_3SiCl provided **1**, $\text{HN}(\text{SiMe}_3)_2$, and $\text{O}(\text{SiMe}_3)_2$. Finally, silica gel, when coupled with excess equivalents of Me_3SiCl , was also effectively used as the $\text{X}-\text{OH}$ reagent for the generation of **1** and $\text{HN}(\text{SiMe}_3)_2$. A proposed mechanism for the **3** \rightarrow **1** transformation involves formal addition of HCl across the Mo=N imido bond through initial hydrogen-bonding between $\text{X}-\text{OH}$ and the N-atom of **3** to form the adduct **3b**, followed by chloride delivery from Me_3SiCl to the metal center via a six-membered transition state (**IV**) that leads to the intermediate, $(\eta^5\text{-C}_5\text{Me}_5)[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{Cl})(\text{NHSiMe}_3)$ (**V**), and XOSiMe_3 as a co-product. Metathetical exchange of the new Mo-N amido bond of **V** by a second equivalent of Me_3SiCl then generates **1** and $\text{HN}(\text{SiMe}_3)_2$. These results serve to complete a highly efficient chemical cycle for nitrogen fixation that is mediated by a set of well-characterized transition-metal complexes.

The development of transition-metal-mediated catalytic processes that can convert abundant dinitrogen (N_2) into ammonia (NH_3), or other nitrogen-containing materials, through a sequence of steps involving $\text{N}\equiv\text{N}$ bond cleavage, N-atom functionalization, and N-product-forming reactions remains a scientific “grand challenge” of significant importance to society.^{1–3} A further desirable outcome for such synthetic nitrogen fixation schemes is that they proceed with high chemical efficiency and atom economy, and under relatively mild conditions, so as to minimize overall energy requirements and chemical waste.² In recent years, several significant advances have been made toward achieving these goals.³ However, there still remains ample space for the development of alternative strategies for achieving nitrogen fixation that proceed through a mechanistically sound (catalytic) chemical cycle that is based on structurally well characterized transition-metal complexes. Herein, we now report the highly efficient nitrogen fixation cycle of Scheme 1 that chemoselectively converts N_2 , chlorotrimethylsilane (Me_3SiCl), and a proton

Scheme 1

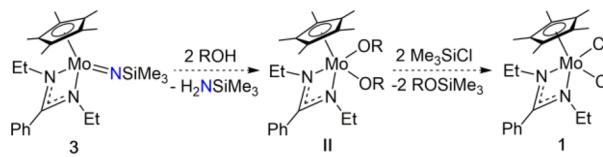

source, such as an alcohol (ROH), a triorganosilanol (R_3SiOH), or even partially dehydrated silica gel (SiO_2), into hexamethyldisilazane [$\text{HN}(\text{SiMe}_3)_2$].^{4,5} As shown, the favorable features of this new cycle include (a) only three steps (steps A–C) and three intermediates (**1–3**) that collectively constitute a formal overall Mo(II)/Mo(IV) redox process, (b) a single metal-centered chemical reduction (step A), (c) a thermally promoted $\text{N}\equiv\text{N}$ bond cleavage (step B), and (d) the use of innocuous chemical reagents for N-atom functionalization (steps B and C) that are chemically compatible with other intermediates in the cycle. Finally, in addition to all of the byproducts from the three steps of Scheme 1 being readily recyclable, the final product, $\text{HN}(\text{SiMe}_3)_2$, can be either converted to ammonium chloride (H_4NCl), with additional recycle of Me_3SiCl upon acidolysis with hydrochloric acid (HCl), or employed directly as a useful chemical reagent.⁴

We have previously reported the chemistry for steps A and B of Scheme 1 that proceed through mechanistically well-established intermediates and pathways.^{6–8} To recap briefly, in A, chemical reduction of the cyclopentadienyl amidinate (CPAM) Mo(IV) dichloride complex, $\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{MoCl}_2$ ($\text{Cp}^* = \eta^5\text{-C}_5\text{Me}_5$) (**1**), with sodium amalgam

Received: August 19, 2017

Published: November 15, 2017

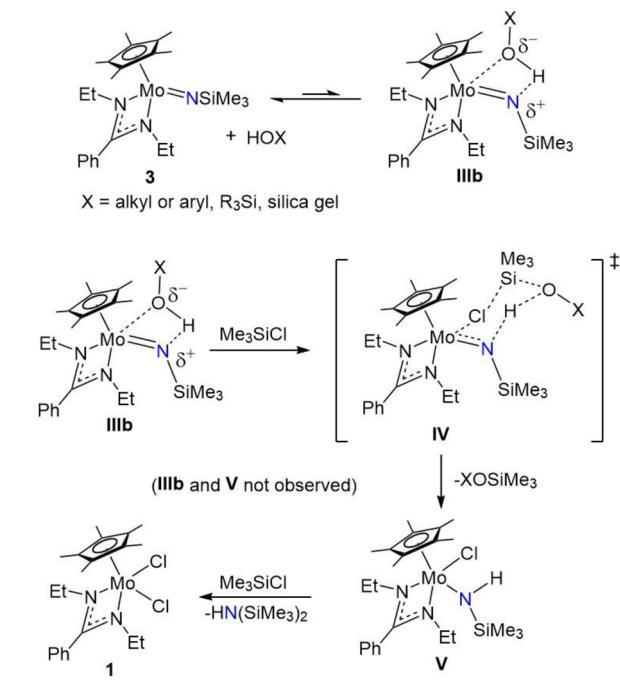
(NaHg) in tetrahydrofuran (THF), from -30 to 25 $^{\circ}\text{C}$ under an atmosphere of N_2 , produces a high yield of the formal $[\text{Mo}(\text{II}),\text{Mo}(\text{II})]$ dinuclear “end-on-bridged” $\mu\text{-N}_2$ complex, $\{\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}\}_2(\mu\text{-}\eta^1\text{-}\eta^1\text{-N}_2)$ (**2**).^{6,8} In **B**, addition of excess equivalents of Me_3SiCl to a solution of **2** in toluene at 60 $^{\circ}\text{C}$ for 18 h directly provides 4 equiv of the CPAM Mo(IV) terminal imido derivative, $\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{NSiMe}_3)$ (**3**), along with regeneration of 2 equiv of **1** (see **Scheme 1**).^{7,8} As clarified in **Scheme 2**, after quantitative


Scheme 2

thermal conversion of **2** into the formal $[\text{Mo}(\text{V}),\text{Mo}(\text{V})]$ dinuclear bis(μ -nitrido complex, $\{\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\mu\text{-N})\}_2$ (**4**), the observed stoichiometry of step **B** arises from the critical role played by 1 equiv of **2** as a sacrificial reductant that is necessary for converting the intermediate Mo(VI) nitrido chloride co-product, $\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{N})\text{Cl}$ (**5**), back into **4** for eventual complete conversion to **3** and **1**.⁸

In order to close the loop in **Scheme 1** for a complete nitrogen fixation cycle, a step **C** was required that could convert **3** directly back into **1** while maintaining the Mo(IV) metal oxidation state that is common to both. A previously reported solution to this problem involved simultaneous nitrene group transfer (NGT) and oxygen atom transfer (OAT) between a structural analogue of **3** and carbon dioxide (CO_2) in the presence of excess equivalents of Me_3SiCl at elevated temperature and pressure to effect the formal transformation: $[\text{CPAM}]\text{Mo}=\text{NSiMe}_3 + \text{CO}_2 + 2 \text{Me}_3\text{SiCl} \rightarrow [\text{CPAM}]\text{MoCl}_2 + \text{Me}_3\text{SiNCO} + \text{O}(\text{SiMe}_3)_2$.⁷ In addition to requiring exceedingly long reaction times, a significant disadvantage of this strategy is that the class of CPAM group 6 dinuclear ($\mu\text{-}\eta^1\text{:}\eta^1\text{-N}_2$) complexes to which **2** belongs also undergoes OAT with CO_2 ,⁹ thereby negating the ability to achieve chemical compatibility within a complete nitrogen fixation cycle. In considering other alternatives that are based on existing precedents,^{10–13} treatment of **3** with anhydrous HCl would seem to provide the most straightforward way in which to regenerate **1** while also producing 1 equiv of H_4NCl and Me_3SiCl through acidolysis of the initially formed trimethylsilylamine (H_2NSiMe_3).¹¹ Metathetical exchange of **3** with 1 equiv of H_2O could also potentially serve to provide H_2NSiMe_3 and the Mo(IV) terminal oxo, $\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{O})$ (**1**), which is a structural derivative for this class of complex that we have previously reported.^{9,12} Subsequent treatment of **1** with 2 equiv of Me_3SiCl should then provide a high yield of **1** along with coproduction of 1 equiv of hexamethyldisiloxane [$\text{O}(\text{SiMe}_3)_2$].⁷ Unfortunately, in practice, **3** proved to be highly sensitive to even trace quantities of H_2O in either nonpolar (benzene) or polar solvents (THF), leading to only a complex mixture of unidentifiable materials in each case. In addition, since neither HCl nor H_2O is likely to be chemically compatible with other complexes involved in the nitrogen fixation cycle of

Scheme 1, no further studies with these rather harsh hydrolytic reagents were pursued.


As an alternative means of converting **3** into **1** under more mild conditions, it was hypothesized that **3** might react with 2 equiv of an alcohol to form the Mo(IV) bisalkoxide intermediate, $\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{OR})_2$ (**II**), along with H_2NSiMe_3 .¹³ Subsequent Mo–O bond metathesis with 2 equiv of Me_3SiCl should then yield **1** and 2 equiv of a trimethylsilyl ether (Me_3SiOR) according to **Scheme 3**. In an

Scheme 3

effort to experimentally realize this goal, however, it was discovered that, unlike the case with H_2O , no *apparent* reaction (*vide infra*) occurred between **3** and excess equivalents of isopropanol (iPrOH) in benzene- d_6 solution after extended periods of time as monitored by ^1H NMR spectroscopy.¹⁴ An attempt to drive formation of a Mo(IV) bisalkoxide product through chelation control using **3** in combination with pinacol (2,3-dimethyl-2,3-butanediol) also failed to elicit any apparent reaction.^{13a,c} Finally, since triorganosilanol (R_3SiOH) are more acidic than alcohols,¹⁵ excess equivalents of a commercial source of nearly pure Me_3SiOH was added to a benzene- d_6 solution of **3**, but as before, no apparent reaction involving **3** occurred. On the other hand, addition of 2 equiv of phenol (PhOH) to a solution of **3** in benzene- d_6 rapidly produced a complex mixture of unidentifiable products, thus suggesting that an *acidity wall* for uncontrolled reactions of **3** with protic reagents does likely exist.

Although no evidence for formation of the desired target **II** was obtained, variable temperature (VT) ^1H NMR spectra were successful in revealing the existence of a rapid dynamic process between **3** and iPrOH that presumably involves reversible formation of a 1:1 adduct (**III**).¹⁴ Similar observations were made when iPrOH was substituted by *tert*-butanol (tBuOH) and Me_3SiOH , and qualitatively, the relative steric bulk of these protic reagents did not seem to have a major impact on the nature of this solution equilibrium. Accordingly, given (1) the lack of precedent for either the forward addition of $\text{RO}-\text{H}$ across the $\text{M}=\text{N}$ bond of a metal imido or for the formal reverse reaction, (2) the anticipated sensitivity of both of these processes to the steric and electronic features of the R group, and (3) the expected stability of a new Mo–O bond once formed, these collective observations strongly suggest that the identity of **III** is not the formal CPAM-Mo(IV) alkoxy amido complex, $\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{OR})(\text{NHSiMe}_3)$ (**IIIa**), but rather that of the resonance hybrid shown in **Scheme 4** that exists along a continuum between **IIIa** at one end of the spectrum and a 1:1 adduct **IIIb** at the other end, in which the N-atom of the imido group of **3** serves as a hydrogen-bond acceptor. Using standard NMR methods,¹⁶ the equilibrium constant, K_{eq} for **3** and iPrOH (100 mM of each in toluene- d_8) forming **IIIb** ($\text{R} = \text{iPr}$), was determined to be 0.68 at 273 K, and this value establishes a concentration of **IIIb** of 6 mM under these solution conditions; in other words, 6% of **3** and iPrOH exist in the form of **IIIb** at equilibrium.

Scheme 4

Since **IIIb** has a finite concentration in solution, it was reasoned that this “activated” complex could potentially be chemically trapped upon addition of Me_3SiCl .¹⁷ Gratifyingly, this hypothesis not only proved to be correct, but it provided an unexpected fortuitous result. Namely, upon addition of >2 equiv of Me_3SiCl to a benzene- d_6 solution containing **3** and 1 equiv of iPrOH at ambient temperature, a near instantaneous and quantitative formation of **1** occurred along with 1 equiv each of $\text{HN}(\text{SiMe}_3)_2$ and iPrOSiMe_3 , the identities of which were confirmed by gas chromatography/mass spectrometry (GC/MS) analysis.¹⁴ Importantly, this chemistry not only now provides a highly efficient process by which to complete the chemical cycle of Scheme 1, but it establishes the first example of the chemoselective production of $\text{HN}(\text{SiMe}_3)_2$ through metal-mediated trimethylsilylation of N_2 .⁵ In terms of generality, both tBuOH and Me_3SiOH are effective replacements for iPrOH , and the corresponding reactions with **3** and 2 equiv of Me_3SiCl produce tBuOSiMe_3 and $\text{O}(\text{SiMe}_3)_2$, respectively, along with $\text{HN}(\text{SiMe}_3)_2$ and **1**. Quite surprisingly, even PhOH can now be used as the protic reagent in this reaction, and clean production of **1**, $\text{HN}(\text{SiMe}_3)_2$, and PhOSiMe_3 is observed.¹⁴ For silanols, a variety of commercially available derivatives, R_3SiOH ($\text{R} = \text{Me}$, Et , and Ph), could be used, and in these cases, the respective hexaorganodisiloxanes ($\text{Me}_3\text{SiOSiR}_3$) were the only products formed along with **1** and $\text{HN}(\text{SiMe}_3)_2$. Finally, it was determined that the protic reagent requirement could also be satisfied by simply adding a small quantity of partially dehydrated silica gel to a benzene- d_6 solution containing **3** and an excess of Me_3SiCl . Stirring the resulting heterogeneous mixture at room temperature for a short period of time once again cleanly produced **1** in good yield along with $\text{HN}(\text{SiMe}_3)_2$.^{14,18}

In terms of mechanism, control experiments established that **3** is inert to excess equivalents of Me_3SiCl in benzene- d_6 at elevated temperatures for extended periods of time. Further, under strictly anhydrous conditions, a 1:2 mixture of iPrOH and Me_3SiCl in benzene- d_6 solution only very slowly produced

iPrOSiMe_3 at ambient temperature as monitored by NMR spectroscopy, and a similar mixture of tBuOH and Me_3SiCl in benzene- d_6 reacted even more slowly over the same period of time to form a trace amount of tBuOSiMe_3 . However, to rule out the possibility that an adventitious amount of HCl from these silylation reactions might be catalyzing the conversion of **3** to **1**, an additional control experiment was performed in which a 1:2 mixture of iPrOH and Me_3SiCl was added to a solution of **3** containing 0.1 equiv of 1,8-bis(dimethylamino)-naphthalene (also known as “proton sponge”) in benzene- d_6 at room temperature.¹⁴ Once again, however, rapid and quantitative formation of **1**, $\text{HN}(\text{SiMe}_3)_2$, and iPrOSiMe_3 occurred.¹⁴ Finally, when a 1:1 mixture of tBuOH and Me_3SiCl was added to a solution of **3**, the nature of the products remained the same, but now only 50% conversion of **3** was observed.

The above results are consistent with the mechanism presented in Scheme 4 in which a formal equivalent of “ $\text{H}-\text{Cl}$ ” is added across the $\text{Mo}=\text{N}$ imido bond through a six-membered ring transition state (**IV**) in which the $\text{X}-\text{OH}$ ($\text{X} = \text{R}$, R_3Si , and SiO_2) protic reagent is activated through prior formation of **IIIb**. This proposal further accommodates the apparent lack of sensitivity of the process to the steric size of the XOH component since it avoids formation of a $\text{Mo}-\text{OX}$ bonded intermediate. Further, although unique for metal imido chemistry, precedent does exist for a similar mechanism involving intramolecular hydrogen-bonding assisted trimethylsilylation of alcohols with Me_3SiCl .¹⁹ Finally, as shown in Scheme 4, after formation of the CPAM Mo(IV) amido, chloride intermediate, $\text{Cp}^*[\text{N}(\text{Et})\text{C}(\text{Ph})\text{N}(\text{Et})]\text{Mo}(\text{Cl})-(\text{NHSiMe}_3)_2$ (**V**), rapid metathetical exchange with a second equivalent of Me_3SiCl serves to generate **1** while releasing $\text{HN}(\text{SiMe}_3)_2$.

Scheme 1 now represents perhaps the shortest chemical cycle yet reported for nitrogen fixation that is mediated by a set of well-characterized transition metal complexes.³ The simplicity of each of the three steps, along with a verified chemical compatibility of complexes **1** and **2** to a mixture of Me_3SiCl and iPrOH (or tBuOH) for extended periods of time,¹⁴ bodes well for the eventual development of a catalytic cycle based on this chemistry. Indeed, we are currently exploring alternatives to NaHg for step A that can drive this cycle forward through the chemical or electrochemical reductive conversion of **1** to **2** that occurs in the presence of R_3SiCl and XOH reagents and under more environmentally benign conditions. The results of these efforts will be reported in due course.

■ ASSOCIATED CONTENT

§ Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b08859.

Supporting spectra and characterization data (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*lsita@umd.edu

ORCID

Lawrence R. Sita: 0000-0002-9880-1126

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the National Science Foundation (CHE-1665421) for financial support of this work.

■ REFERENCES

- (1) (a) Appl, M. *Ammonia: Principles and Industrial Practice*; Wiley-VCH: Weinheim, 1999. (b) Smil, V. *Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production*; MIT Press: Cambridge, MA, 2000.
- (2) Cavani, F.; Centi, G.; Perathoner, S.; Trifiro, F., Eds.; *Sustainable Industrial Chemistry: Principles, Tools and Industrial Examples*; Wiley-VCH: Weinheim, 2009.
- (3) For recent reviews of solution-based transition-metal-mediated nitrogen fixation, see: (a) Tanabe, Y.; Nishibayashi, Y. *Chem. Rec.* **2016**, *16*, 1549. (b) Nishibayashi, Y., Ed. *Topics in Organometallic Chemistry*, Vol. 60; Springer Verlag: Berlin/Heidelberg, 2017.
- (4) For reviews of the chemistry of metal amides derived from $\text{HN}(\text{SiMe}_3)_2$, see: (a) Lappert, M.; Protchenko, A.; Power, P.; Seeber, A. *Metal Amide Chemistry*; John Wiley & Sons: Chichester, 2009. (b) Gray, M.; Snieckus, V.; Lebel, H. Lithium hexamethyldisilazide. In *Handbook of Reagents for Organic Synthesis: Reagents for Silicon-Mediated Organic Synthesis*; Fuchs, P. L., Ed.; John Wiley & Sons: Chichester, 2011.
- (5) Several reports have appeared documenting the selective production of tris(trimethylsilyl)amine, $(\text{Me}_3\text{Si})_3\text{N}$, from N_2 and Me_3SiCl , see ref 3 and the following: (a) Shiina, K. *J. Am. Chem. Soc.* **1972**, *94*, 9266. (b) Komori, K.; Oshita, H.; Mizobe, Y.; Hidai, M. *J. Am. Chem. Soc.* **1989**, *111*, 1939. (c) Komori, K.; Sugura, S.; Mizobe, Y.; Yamada, M.; Hidai, M. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 2953. (d) Oshita, H.; Mizobe, Y.; Hidai, M. *J. Organomet. Chem.* **1993**, *456*, 213. (e) Kawaguchi, M.; Hamaoka, S.; Mori, M. *Tetrahedron Lett.* **1993**, *34*, 6907. (f) Mori, M.; Kawaguchi, M.; Hori, M.; Hamaoka, S. *Heterocycles* **1994**, *39*, 729. (g) Hidai, M.; Mizobe, Y. *Chem. Rev.* **1995**, *95*, 1115. (h) Mori, M. *J. Organomet. Chem.* **2004**, *689*, 4210. (i) Mori, M. *Heterocycles* **2009**, *78*, 281. (j) Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. *J. Am. Chem. Soc.* **2011**, *133*, 3498. (k) Yuki, M.; Tanaka, H.; Sasaki, K.; Miyake, Y.; Yoshizawa, K.; Nishibayashi, Y. *Nat. Commun.* **2012**, *3*, 1254. (l) Ogawa, T.; Kajita, Y.; Wasada-Tsutsui, Y.; Wasada, H.; Masuda, H. *Inorg. Chem.* **2013**, *52*, 182. (m) Miyazaki, T.; Tanaka, H.; Tanabe, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. *Angew. Chem., Int. Ed.* **2014**, *53*, 11488. (n) Liao, Q.; Saffon-Merceron, N.; Mézailles, N. *Angew. Chem., Int. Ed.* **2014**, *53*, 14206. (o) Liao, Q.; Saffon-Merceron, N.; Mézailles, N. *ACS Catal.* **2015**, *5*, 6902. (p) Ung, G.; Peters, J. C. *Angew. Chem., Int. Ed. Engl.* **2015**, *54*, 532. (q) Imayoshi, R.; Tanaka, H.; Matsuo, Y.; Yuki, M.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y. *Chem. - Eur. J.* **2015**, *21*, 8905. (r) Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. *J. Am. Chem. Soc.* **2015**, *137*, 4638. (s) Cammarota, R. C.; Clouston, L. J.; Lu, C. C. *Coord. Chem. Rev.* **2017**, *334*, 100. (t) Kuriyama, S.; Arashiba, K.; Tanaka, H.; Yoshizawa, K.; Nishibayashi, Y.; Nakajima, K. *Eur. J. Inorg. Chem.* **2016**, *30*, 4856. (u) Imayoshi, R.; Nakajima, K.; Nishibayashi, Y. *Chem. Lett.* **2017**, *46*, 466. (v) Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. *J. Am. Chem. Soc.* **2017**, *139*, 5596. (w) Prokopchuk, D. E.; Wiedner, E. S.; Walter, E. D.; Popescu, C. V.; Piro, N. A.; Kassel, W. S.; Bullock, R. M.; Mock, M. T. *J. Am. Chem. Soc.* **2017**, *139*, 9291. (x) Imayoshi, R.; Nakajima, K.; Takaya, J.; Iwasawa, N.; Nishibayashi, Y. *Eur. J. Inorg. Chem.* **2017**, *32*, 3769.
- (6) Fontaine, P. P.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. *J. Am. Chem. Soc.* **2010**, *132*, 12273.
- (7) Keane, A. J.; Farrell, W. S.; Yonke, B. Y.; Zavalij, P. Y.; Sita, L. R. *Angew. Chem., Int. Ed.* **2015**, *54*, 10220.
- (8) Duman, L. M.; Farrell, W. F.; Zavalij, P. Y.; Sita, L. R. *J. Am. Chem. Soc.* **2016**, *138*, 14856.
- (9) Yonke, B. L.; Reeds, J. P.; Zavalij, P. Y.; Sita, L. R. *Angew. Chem., Int. Ed.* **2011**, *50*, 12342.
- (10) For a review of transition-metal imido chemistry, see: Eikey, R. A.; Abu-Omar, M. M. *Coord. Chem. Rev.* **2003**, *243*, 83.
- (11) (a) Green, J. C.; Green, M. L. H.; James, J. T.; Konidaris, P. C.; Maunder, G. H.; Mountford, P. *J. Chem. Soc., Chem. Commun.* **1992**, *1361*. (b) Poli, R. *Coord. Chem. Rev.* **2008**, *252*, 1592.
- (12) (a) Wang, W. D.; Guzei, I. A.; Espenson, J. H. *Inorg. Chem.* **2000**, *39*, 4107. (b) Hayton, T. W.; Boncella, J. M.; Scott, B. L.; Batista, E. R. *J. Am. Chem. Soc.* **2006**, *128*, 12622.
- (13) (a) Michelman, R. I.; Andersen, R. A.; Bergman, R. G. *J. Am. Chem. Soc.* **1991**, *113*, 5100. (b) Jolly, M.; Mitchell, J. P.; Gibson, V. C. *J. Chem. Soc., Dalton Trans.* **1992**, *1329*. (c) Swallow, D.; McInnes, J. M.; Mountford, P. *J. Chem. Soc., Dalton Trans.* **1998**, *2253*. (d) Du, G. D.; Woo, K. *Organometallics* **2003**, *22*, 450.
- (14) See [Supporting Information](#) for experimental details.
- (15) Chandrasekhar, V.; Boomishankar, R.; Nagendran, S. *Chem. Rev.* **2004**, *104*, 5847 and references cited therein.
- (16) von Kugelgen, S.; Bellone, D. E.; Cloke, R. R.; Perkins, W. S.; Fischer, F. R. *J. Am. Chem. Soc.* **2016**, *138*, 6234.
- (17) The N-atom of the metal imido group is known to be basic, but its ability to serve in the capacity of a hydrogen-bond acceptor is a subject that has not received previous attention.¹⁰
- (18) As an extension of this observation, hydrocarbon or ether solutions of **1** containing excess equivalents of Me_3SiCl can be passed through a silica gel chromatography column without experiencing loss of the Mo(IV) dichloride. In contrast, in the absence of Me_3SiCl , **1** adheres (reacts) strongly with silica gel.
- (19) Park, S. Y.; Lee, J.-W.; Song, C. E. *Nat. Commun.* **2015**, *6*, 7512.