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1 INTRODUCTION

A prior work [20] exhibited a Boolean function F : X X Y — {0, 1} whose deterministic commu-
nication complexity is superlogarithmic in the partition number

X(F) = xo(F) + 1 (F),
where y;(F) is the least number of rectangles (sets of the form A X B, where A € X, B C M) needed
to partition the set F~1(i). In this follow-up work, we upgrade the lower-bound results from [20]
to hold against randomized protocols—here the notation Q(m) hides factors polylogarithmic in m.

THEOREM 1. There is an F with randomized communication complexity Q(log'*® y(F)).
THEOREM 2. There is an F with randomized communication complexity Q(log? y1(F)).

A main technical contribution of our article—which is key to both the proofs of Theorem 1
and the subsequent strengthening by [5]—informally states that the information complexity of a
function (as defined by [10]) remains essentially unchanged if the cost is measured with respect
to only 1-inputs (or only 0-inputs) rather than all inputs. We say a protocol II is e-correct if it
succeeds with probability at least 1 — € on each input, and we define CC(II) as the worst-case
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4:2 M. Goos et al.

communication cost, define IC(IT) as the maximum over all input distributions of the information
cost (defined later), and define IC? (IT) similarly but with the maximum over all distributions over
b-inputs (for some b € {0, 1}).

THEOREM 3. Fix any F and b € {0, 1}. For every 1/3-correct protocol 11, there is a 1/3-correct
protocol I’ such that IC(IT") < O(ICY(II) + log(CC(IT) + 2)). Moreover, CC(IT") < O (CC(II) - log
(CCII) + 2)).

In the theorem statement above, the additional lower-order term involving the communication
cost appears due to technical reasons. This makes the statement slightly weaker, but this is mit-
igated in the aforementioned applications due to the additional fact that we can also bound the
communication cost of the new protocol.

1.1 Applications and Discussion

Theorem 1: Prior to this work, no examples of F were known with randomized communica-
tion complexity larger than log y(F). In fact, such a separation cannot be obtained using the
usual rectangle-based lower-bound methods, as catalogued by Jain and Klauck [22]. In particular,
Theorem 1 shows that randomized complexity can be polynomially larger than the partition
bound [22, 24], which is one of the most powerful general lower-bound methods for randomized
communication. (Consequently, our proof of Theorem 1 has to exploit another powerful lower-
bound method, namely, information complexity.) Note also that every F has deterministic commu-
nication complexity at least log y(F) and at most O(log® y(F)), where the latter upper bound is a
classical result of [2]. Theorem 1 shows that the upper bound cannot be improved much even if
we allow randomization.

Theorem 2: The relationship between y;(F) and the communication complexity of F can be
equivalently formulated in the language of the Clique versus Independent Set game, played on a
graph derived from F (Alice holds a clique, and Bob holds an independent set: do they intersect?).
See [39, Section 4] or [26, Section 4.4] for the equivalence. Yannakakis [39] (extending [2]) proved
that every F has deterministic communication complexity at most O(log? y; (F)). Our Theorem 2
shows that this upper bound is essentially tight even if we allow randomized protocols, and it
implies that there is a graph on n nodes for which Clique versus Independent Set requires Q (log? n)
randomized communication. (The deterministic upper bound O(log? n) holds for all graphs.)

Extension complexity. In fact, we prove Theorem 2 by showing that (the negation of) the function
F has high approximate nonnegative rank (a.k.a. smooth rectangle bound; see Section 2 for defini-
tions). One consequence in the field of extended formulations (see [15, 39] for definitions) is that
we obtain a graph G such that the polytope generated by the so-called clique inequalities of G has
extension complexity n*1°¢™ (The slack matrix associated with the clique inequalities is simply
(the negation of) the Clique versus Independent Set game. These inequalities capture the inde-
pendent set polytope of G when G is perfect—our graph G, however, is not.) The previous bound
in this direction was n21°¢" ") from a related work [17]. Technically speaking, the lower bound
from [17] was proved for nondeterministic communication complexity, so the full result remains
incomparable with Theorem 2.

Log-rank conjecture. The famous log-rank conjecture of Lovasz and Saks [34] postulates that the
deterministic communication complexity of F is polynomially related to logrank(F). Gavinsky
and Lovett [16] have shown that the conjecture is equivalent to asking whether the randomized
communication complexity of F is polynomially bounded in log rank(F). Here our Theorem 2
gives at least a near-quadratic separation between the randomized communication complexity
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of F and log rank(F) < log y;(F); the previous best lower bound was Q(log'®* rank(F)) due to
Kushilevitz [31].

Theorem 3: One-sided information complexity satisfies a famous direct sum property ([7, 10]):
for any protocol IT computing ANDy. o FX (i.e., the AND of k copies of F), there exists a protocol
I’ computing F with IC!(IT") < O(IC!(IT)/k) (see, e.g., [5, Claim 37]). One can also formulate
a dual lemma for OR o F¥ in terms of IC’. This is the context where our Theorem 3 relating
IC and IC! (and IC) is useful: it implies that analogous direct sum lemmas hold for two-sided
information complexity, up to low-order terms. Iterating such a two-sided lemma some constantly
many times, one obtains an alternative proof for the result that every n-bit constant-depth balanced
read-once AND-OR tree with binary bottom fan-in (defining an Alice-Bob bipartition of input
bits) has randomized communication complexity Q(n); this result was first proved in [25, 33] even
for unbalanced trees.

Another application of Theorem 3 appears in recent work [5]. They improved our 1.5th power
separation in Theorem 1 to near quadratic (which is optimal) by iteratively applying Theorem 3 to
analyze a communication analog of a query-complexity construction due to Ambainis, Kokainis,
and Kothari [4] (which is a variation of usual AND-OR trees).

Our one-versus-two-sided information complexity equivalence has also been used in [6] to
prove certain streaming lower bounds for the set cover problem.

1.2 Our Techniques

The basic strategy in [20] for obtaining the deterministic versions of Theorems 1 and 2 was to
first obtain analogous gaps in the easier-to-understand world of query complexity, then “lift” the
results to communication complexity using a so-called simulation lemma. For getting randomized
lower bounds, two obstacles immediately present themselves: (i) the functions studied in [20] are
too easy for randomized protocols (as shown by [35]), and (ii) there is no known simulation lemma
for the bounded-error randomized setting (though since this article was written, such alemma has,
in fact, been proven [21]).

To handle obstacle (i), we modify the functions from [20] in a way that preserves their low
partition numbers while eliminating the structure that was exploitable by randomized protocols.
(Similar constructions have been given by [1, 3].) To handle obstacle (ii) for Theorem 2, we actu-
ally prove a lower bound for a model that is stronger than the standard randomized model, but
for which there is a known simulation lemma [19]. This idea alone does not handle obstacle (ii)
for Theorem 1, though. For that, we start by giving a proof of the query complexity analog of
Theorem 1, then develop a way to mimic that argument using communication complexity, by go-
ing through information complexity (exploiting machinery from [28] and [13]). In the process, this
yields our Theorem 3 (one-sided is equivalent to two-sided information complexity), which is of
independent interest.

2 COMPLEXITY MEASURES

We study the following communication complexity models/measures; see Figure 1. For any com-
plexity measure C, we write coC(F) := C(=F) and 2C(F) := max{C(F), coC(F)} for short.

—P°¢: The deterministic communication complexity of F is denoted P*“(F).

—BPP*‘: The randomized communication complexity of F is denoted BPP*“(F).

—UP*“: Recall (e.g., [26, 32]) that a cost-c nondeterministic protocol for F corresponds to a
covering (allowing overlaps) of F~1(1) with 2¢ rectangles. A nondeterministic protocol is un-
ambiguousif on every 1-input there is a unique accepting computation; combinatorially, this
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=log x =log x1
p 2UP upP
BPP 2WAPP WAPP
> information complexity = 2-sided smooth rectangle = 1-sided smooth rectangle

Fig. 1. Models of computation that can be instantiated for both communication and query complexity. Here
A — B means that model B can simulate model A without any overhead.

means we have a disjoint covering (partition) of F~!(1). We define UP*(F) := [log y;(F)].
Thus, coUP*“(F) = [log xo(F)1, and 2UP*“(F) € [log y(F)] + 1.

—WAPP¢: Abstractly speaking, a WAPP computation (Weak Almost-Wide PP; introduced
in [9]) is a randomized computation that accepts 1-inputs with probability in [(1 — €)a, a],
and 0-inputs with probability in [0, ea], where € < 1/2is an error parameter and & = a(n) >
0 is arbitrary.

Instantiating this for protocols, we define WAPPS(F) as the least “cost” of a randomized
(public-coin) protocol IT that computes F in the above sense; the “cost” of a protocol IT with
parameter « is defined as the usual communication cost (number of bits communicated)
plus log(1/a). In this definition, we may assume w.l.o.g. that Il is zero-communication [28]:
IT is simply a probability distribution over rectangles R, and IT accepts an input (x, y) if and
only if (x,y) € R for the randomly chosen R. Such a protocol IT exchanges only 2 bits to
check the condition (x,y) € R, and the rest of the cost is coming from having a tiny «.

We note that WAPP® corresponds to the (one-sided) smooth rectangle bound of [22],
which is known to be equivalent to approximate nonnegative rank [29]. A consequence of
this equivalence is that WAPP¢ could alternatively be defined without charging anything
for @ > 0, as long as we restrict our protocols to be private-coin; see also [19, Theorem 9].
Also, 2WAPP is equivalent to the relaxed partition bound of [28] (we elaborate on this in
Section 5.2). We remark that WAPP® is not amenable to efficient amplification of the er-
ror parameter; there can be an exponential gap between WAPP(® and WAPP{® for different
constants € and J, at least for partial functions [19, Theorem 6].

For a Boolean function f :{0,1}" — {0,1}, we consider the following decision tree models/
measures:

— P9t The deterministic decision tree complexity of f is denoted P4(f).

—BPPY: The randomized decision tree complexity of f is denoted BPPY(f).

—UPY: A nondeterministic decision tree is a DNF formula. We think of the conjunctions
in the DNF formula as certificates—partial assignments to inputs that force the function to
be 1. The cost is the maximum number of input bits read by a certificate. A nondeterministic
decision tree is unambiguous if on every 1-input there is a unique accepting certificate. We
define UPY'(f) as the least cost of an unambiguous decision tree for f. Other works that
have studied unambiguous decision trees include [8, 17, 20, 30, 37].

—WAPP?: We define WAPP(f) as the least height of a randomized decision tree that ac-
cepts 1-inputs with probability in [(1 — €)a, @], and 0-inputs with probability in [0, ex],
where a = a(n) > 0 is arbitrary. (Note that only the number of queries matters; we do not
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charge for a being small.) Like the communication version, this measure is not amenable
to efficient amplification of the error parameter [19].

The analog of a WAPP protocol being w.l.o.g. a distribution over rectangles is that a
WAPPY decision tree is w.l.o.g. a distribution over conjunctions. This implies that we may
characterize WAPPgt( f) using conical juntas: a conical junta h is a nonnegative linear com-
bination of conjunctions. That is, h = ), wcC, where the sum ranges over conjunctions
C:{0,1}" — {0,1} and w¢c > 0 for all C. Then WAPPCE“(f) is the least degree (maximum
width of a conjunction with positive weight in h) of a conical junta h that e-approximates f
in the sense that h(z) € [1 —¢,1] forallz € f~1(1),and h(z) € [0, €] forallz € £~1(0). Other
works have studied conical juntas under such names as the (one-sided) partition bound for
query complexity [22] and query complexity in expectation [27].

3 OVERVIEW

In this section, we give an outline for obtaining our main results, Theorems 1 and 2. For complexity
models/measures C and C’, we informally say “C-vs-C’ gap” to mean the existence of a function
whose C complexity is significantly higher than its C’ complexity. Using the notation defined in
Section 2, we can rephrase our main results as follows:

THEOREM 1 (BPP¢-vs-2UP). There is an F such that BPP(F) > Q(2UP(F)!-%).
THEOREM 2 (BPP¢-vs-UP). There is an F such that BPP(F) > Q(UP(F)?).

(Section 3.1) Tribes-List: Our starting point is to define Tribes-List, a variant of a func-
tion introduced in [20]. Its purpose is to witness a BPP-vs-UP gap for query
complexity.

(Section 3.2) Composition: Next, we modify Tribes-List using two types of function compo-
sition, which we call lifting and AND-composition, to obtain candidate functions
for BPP-vs-2UP gaps in both query and communication complexity.

(Section 3.3) Overview of proofs: With the candidate functions defined, we outline our
strategy to prove the desired communication lower bounds.

3.1 Tribes-List

The Tribes-List function TL : {0,1}" — {0, 1} is defined on n := ©(k®logk) bits, where k is a pa-
rameter. We think of the input as a k X k matrix M with entries M;; taking values from the alphabet
% = {0,1} x ([k]*' U {L}). Here each entry is encoded with ©(k log k) bits, and we assume that
the encoding of M;; = (m;j, pij) € X is such that a single bit is used to encode the value m;; € {0, 1}
and another bit is used to encode whether or not p;; = L. If p;; # L, then we can learn its exact
value in [k]*~! by querying all the ©(k log k) bits.

Informally, we have TL(M) =1 if and only if M has a unique all-(1, *) column (here * is a
wildcard) that also contains an entry with k — 1 pointers to entries of the form (0, *) in all other
columns. More formally, we define TL in Figure 2 by describing an unambiguous decision tree of
cost O(k log k) computing it.

3.2 Composition

Given a base function witnessing some complexity gap, we will establish a different but re-
lated complexity gap by transforming the function into a more complex one via one (or both)
of the following operations involving function composition: lifting and AND-composition. Lifting
is used to go from a query complexity gap to an analogous communication complexity gap. AND-
composition is used to go from a gap with an UP upper bound to a gap with a 2UP upper bound.
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Unambiguous decision tree for TL:

1,L | 0,
Nondeterministically guess a column index

j € [k]. Consider the entries M;; = (myj, pij) i

for i € [k]: check that m;; = 1 for all i and 0, | 1,1 /

that p;; # L for at least one i (this is < 2k A

queries). Let i be the first row index for which 1,1

pij # L and read the full value of p;; (this is N /

O(k log k) queries). Interpret p;; € [k]UIN U o \
. . s . > Pij

as a list of pointers, describing a row index for

all columns other than j. For each of these k— X

1 pointed-to entries My 7, check that my; = L x 0,*

0 (this is k — 1 queries).

Fig. 2. The unambiguous decision tree that defines the Tribes-List function.

To show that an operation indeed converts one gap to another gap, we need two types of results:
an observation showing how the relevant upper bounds behave under the operation, and a more
difficult lemma showing how the relevant lower bounds behave under the operation.

Lifting. Let g:{0,1}” x {0,1}% = {0,1} be a fixed two-party function (called the gadget).
We can lift f:{0,1}" — {0,1} via the gadget g to obtain a two-party composed func-
tion f og": ({0, l}b)" x ({0, 1}b)” — {0,1}, where Alice is given x = (x1,...,%,) and Bob is
given y = (y1,...,Yyn) (with each x;,y; € {0, 1}?) and the goal is to compute (f o g")(x,y) =
f(g(xl’ yl)’ cee ’g(xm yn))

A decision tree for f generally yields a corresponding type of communication protocol for f o
g": whenever the decision tree queries the ith bit, Alice and Bob communicate b + 1 bits to evaluate
the corresponding bit g(x;, y;). By counting conjunctions, it can be verified that such a connection
holds for the 2UP and UP models as well:

OBSERVATION 4. Forall f :{0,1}" — {0,1}, g : {0, 112 x {0,1}? - {0, 1}, and C € {2UP, UP}, we
have C(f o g") < CU(f) - O(b + logn).

For any model C, a result in the converse direction (giving a black-box method of converting
a communication protocol for f o g” into a comparably efficient decision tree for f) is highly
nontrivial and is called a simulation lemma. In this work, we use a simulation lemma for C = WAPP:

LEMMA 5 (SIMULATION FOR WAPP [19]). For all f : {0,1}" — {0, 1} and constants 0 < € < § <
1/2, we have WAPPgt(f) < O (WAPPE(f o g")/logn), where g : {0,1}% x {0,1}® — {0,1} is the
inner-product gadget defined as follows: b = b(n) := 100logn, and g(x;,y;) = (x;,y;) mod 2.

AND-composition. Given f : {0,1}" — {0, 1}, we can compose it with the k-bit AND function to
obtain AND o £* : ({0,1}")k — {0, 1} defined by (AND o f¥)(zy,...,z;) = 1ifand only if f(z;) =
1 for all i. Similarly, given F : X X Y — {0, 1}, we can obtain AND o Fk . Xk x Yk (0,1} defined
by (AND o F¥)(x,y) = 1 if and only if F(x;,y;) = 1 for all .

AND-composition converts an UP upper bound into a 2UP upper bound [20]:

OBSERVATION 6. For all f and k, we have 2UP(AND o f¥) < k - UPY(f) + O(UPY(£)?). Sim-
ilarly, for all F and k, we have 2UP“(AND o F¥) < k - UP*(F) + O(UP*(F)? + log k).
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The two parts of Observation 6 are analogous, so we describe the idea only in terms of the
query complexity part. Since coUP¥(£) < PU(£) < O(UPY(£)?), it suffices to have coUPY(f) as
the second term on the right side. The idea is to let a 1-certificate for AND o f* be composed of
1-certificates for each of the k copies of f, and a 0-certificate for AND o f* be composed of a 0-
certificate for the first copy of f that evaluates to 0, together with 1-certificates for each of the
preceding copies of f.

On the other hand, the following lemma (proven in Section 5.1) shows that randomized query
complexity goes up by a factor of k under AND-composition.

LEMMA 7. For all f and k, we have BPPY(f) < O(BPPY(AND o £¥)/k).

We note that Lemma 7 qualitatively strengthens the tight direct sum result for randomized query
complexity in [23] since computing the outputs of all k copies of f is at least as hard as computing
the AND of the outputs. Similarly, if we could prove an analog of Lemma 7 for communication
complexity, it would qualitatively strengthen the notoriously open direct sum conjecture for ran-
domized communication complexity.

3.3 Overview of Proofs

The following diagram shows how we construct the functions used to witness our gaps. Starting
with some f, we can lift it to obtain F, or we can apply AND-composition to obtain f*. We can
obtain F* by either lifting f* or equivalently applying AND-composition to F.
COWAPP¢-ys-UP* BPP“-vs-2UP*¢
AND-composition
F F*

lifting lifting

f f

AND-composition
coOWAPPdt-ys-Updt BPPIt-ys-2Updt

Proof Sketch of Theorem 2. We start by discussing the proof of Theorem 2 as it will be used in
the proof of Theorem 1. We actually prove the following stronger version of Theorem 2 that gives
a lower bound even against coWAPPS(F) < O(BPP“(F)):

THEOREM 2* (COWAPP“-vs-UP). There is an F such that coWAPP{C, (F) > Q(UP(F)?).

Our proof follows the same outline as in [20] and only requires us to lift the following analogous
result for query complexity (proved in Section 4):

LEMMA 8 (cOWAPPYt-vs-UPt). coWAPP _(TL) > Q(UPY(TL)?).

To derive Theorem 2*, set f := TL and F = f o g", where g is the gadget from Lemma 5
and n is the input length of f. Recall that UPY(£) > n®(. Thus, by Observation 4, UP*(F) <
UPY(f) - O(logn) < O(UPY(f)), and by Lemma 5, coWAPP{S,, (F) > Q(coWAPP _(f) - logn) >
Q(coWAPPgFOS(f)). Thus, cOWAPPS,,(F) > Q(UP(F)?).

Proof Sketch of Theorem 1. An “obvious” strategy for Theorem 1 would be again to first prove
the analogous query complexity result and then lift it to communication complexity. (This is the
outline used for the analogous result in [20].) In other words, we would follow the lower-right
path in the above diagram:
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Obvious strategy
(a) Start with f witnessing a BPPY-vs-UP4! gap.
(b) Obtain f* witnessing a BPP4'-vs-2UP4" gap by applying AND-composition to f.
(c) Obtain F* witnessing a BPP“-vs-2UP® gap by lifting ™.

We have the tools to complete steps (a) and (b):
LEMMA 9 (BPPt-vs-2UP%). There is an f such that BPPY(f) > Q2UP(f)1-9).

Proor. This is witnessed by f* := AND o TLK, where k := UPY(TL). By Observation 6,
2UPY(f*) < O(k?*), and by Lemmas 7 and 8, BPPY(f*) > Q(k-BPPY(TL)) > Q(k -

coWAPP (TL)) > Q(K®). O

When this article was written, we did not know how to carry out step (c), because we lacked
a simulation lemma for BPP. (Such a lemma is now known [21].) We get around this obstacle by
reversing the order of steps (b) and (c); that is, we instead follow the upper-left path in the diagram:

Modified strategy

(a’) Start with f witnessing a coWAPPt-ys-UP4t gap.
b’) Obtain F witnessing a coWAPP“-vs-UP gap by lifting f.
g gap by g
(c’) Obtain F* witnessing a BPP“-vs-2UP® gap by applying AND-composition to F.

Steps (a’) and (b’) are just Theorem 2*. For step (c’), it would suffice to have an analog of Lemma 7
for communication complexity. This is open, but fortunately we have some wiggle room since it
suffices to have coWAPP, instead of BPP on the left side of Lemma 7. For this, we can prove a
communication analog (indeed, with 2WAPP,. instead of coWAPP,):

LEMMA 10. For all F, k, and constants 0 < € < 1/2, we have

2WAPPS(F) < O (BPP“(AND o FX)/k + log BPP*(AND o Fk)) )

To derive Theorem 1, let F be the function in Theorem 2*, and let F* := AND o F¥, where k :=
UP‘(F). Then F* witnesses Theorem 1: by Observation 6, 2UP*(F*) < O(k?), and by Lemma 10,
BPP“(F*) > Q(k - (2WAPP{<,,(F) — O(logk))) > Q(k - (coWAPP{S,(F) — O(logk))) > Q(k3).

Proof Sketch of Lemma 10. We start with the intuition for the proof of Lemma 7, which is a
warmup for Lemma 10. For brevity, let f* := AND o fX. Given an input z for f, the basic idea
is to plant z into a random coordinate of f*(zy,...,zk), plant random 1-inputs into the other
coordinates, and then run the randomized decision tree for f*. If g is the query complexity of f™,
the expected number of bits of z that are queried (over a random 1-input) will be at most q/k.
Our new randomized decision tree will simulate this but abort after 8q/k queries to z have been
made. If an answer is returned, we output the same value for f(z), and if no answer is returned
within this many queries, then we output 0. A simple analysis shows that we succeed with high
probability in the average case (which is equivalent to worst case by the minimax theorem).

To prove Lemma 10, we would like to mimic this argument in the communication world, using
the fact that internal information complexity is sandwiched between BPP“ and 2WAPP*“ [28] and
satisfies a sort of AND-composition analogous to Lemma 7 using well-known properties (by plant-
ing the input into a random coordinate and planting random 1-inputs into the other coordinates).
However, there is a significant barrier to this idea “just working”: the AND-composition property
(direct sum lemma) requires a distribution over 1-inputs of F (one-sided), while the relation to
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2WAPP¢ requires an arbitrary distribution over inputs to F (two-sided). To bridge this divide, we
prove a new property of information complexity: the one-sided version is essentially equivalent
to the two-sided version. A key ingredient in showing the latter is the “information odometer” of
[13], which allows us to keep track of the amount of information that has been revealed, abort the
protocol once we have reached our limit, and argue that we can carry this out without revealing too
much extra information. We note that this one-versus-two sided information complexity lemma
is the only component of the proof of Theorem 1 that distinguishes between arbitrary rectangle
partitions (2UP*®) and rectangle partitions induced by protocols (P¢). The log term in Lemma 10
comes from the information odometer ingredient, and it is known that by composing with the
k-bit majority function instead of AND, a version of Lemma 10 holds without the log term [38].

Organization. The only ingredients that remain to be proved are Lemma 8 (which we prove in
Section 4) and Lemma 7 and Lemma 10 (both of which we prove in Section 5).

4 DECISION TREE LOWER BOUND

In this section, we prove Lemma 8, restated here for convenience.
LEMMA 8 (cOWAPPY-vs-UP). coWAPPI! (TL) > Q(UP(TL)?).

Recall that UP¥(TL) < O(klogk) by definition. To prove Lemma 8, we show that there is no
o(k?)-degree conical junta h = Y wcC that outputs values in [0.95, 1] on inputs from TL™*(0) and
outputs values in [0, 0.05] on inputs from TL™(1). A similar lower bound for the plain k x k Tribes
function was proved by [22, Theorem 4] using LP duality; our argument is more direct.

To illustrate the basic style of argument, we start gently by proving an Q(n) conical junta de-
gree bound for approximating the NAND function—this lower bound will be used in the proof of
Lemma 8 too.

4.1 Warm-up: Lower Bound for NAND

Suppose for contradiction that h = ), weC is a conical junta of degree o(n) computing the n-
bit NAND function to within error 1/5. We will argue that if h is correct on inputs of Hamming
weights n and n — 1, then it must mess up on inputs of Hamming weight n — 2: h will output a
value larger than 1, which is a contradiction. We now give the details.

To begin, we have h(1) < 1/5 by the correctness of h (here 1 is the all-1 input). This means
that the total weight (sum of wcs) associated with conjunctions that read only 1s (i.e., have only
positive literals) is at most 1/5. Let X € NAND™!(1) be a uniformly random string of Hamming
weight n — 1. By correctness,

E[h(X)] = X wcE[C(X)] = ZwcP[C(X) =1] = 4/5.

In the above sum, there are two types of conjunctions that contribute with a positive acceptance
probability: those that read only 1s, and those that read a single 0 and some o(n) many 1s. Since the
first type has total weight < 1/5, we must have ), ccy wcP[C(X) = 1] > 3/5, where ¥ is the set of
conjunctions of the second type. Consider the acceptance probability of any C € % on a uniformly
random string Y € NAND™!(1) of Hamming weight n — 2: if the width of C is d, then P[C(Y) =
1]=(n- d)/(’;), which is (2 — 0(1))/n for d = o(n). Since P[C(X) = 1] = 1/n, we conclude that

P[C(Y) =1] = (2-0(1)) - P[C(X) = 1]. (1)
We now arrive at the desired contradiction:

E[h(Y)] 2 Xcew weP[C(Y) =1] = (2-0(1)) Xcew weP[C(X) = 1] 2 (2-0(1)) -3/5 > 1.
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4:10 M. Goos et al.

4.2 Proof of Lemma 8

We prove a lower bound for TL : 2¥*k — {0, 1} by arguing that Q(k?) entries must be touched:
we only charge one query for reading a whole matrix entry in 3 = {0, 1} X ([k]*"! U {1}). That is,
we assume each conjunction either reads nothing from an entry or reads one fully. The width of a
conjunction is then understood as the number of entries it reads.

We study three types of random inputs to TL:

—X € TL™Y(0) is defined so that the columns in X are independent, and in each column all
entries are (1, L) except we plant a single (0, L) entry in a random row index. Hence, there
are altogether k many (0, L) entries in X.

—Y € TL7(0) is defined like X except we replace a random (1, 1) entry in X with a (0, 1)
entry. Hence, there are altogether k + 1 many (0, L) entries in Y, two of them sharing a
column.

—Z € TL™'(1) is defined like X except we replace a random (0, L) entry (k different choices)
in X with a (1, p) entry, where p is a list of pointers to all other positions of (0, L) entries
(making Z indeed a 1-input).

The crux of the argument is contained in the following claim.

Cram 11. For every conjunction C of width o(k?), either P[C(Y) = 1] > 1.4-P[C(X) = 1] or
P[C(Z) =1] = 0.5-P[C(X) = 1].

Before proving Claim 11, let us see how to finish the proof of Lemma 8 assuming it. We have a
similar claim for conical juntas.

CLam 12. For every conical junta h of degree o(k?), either E[h(Y)] > 1.1 - E[h(X)] or E[h(Z)] >
0.1-E[A(X)].

Proor. Let h = Y wcC. By linearity, E[h(X)] = X wcP[C(X) = 1] and similarly for Y and Z.
By Claim 11, let 4 be a set of conjunctions such that for each C € %, P[C(Y)=1] > 1.4-
P[C(X) = 1],and foreach C ¢ €,P[C(Z) = 1] > 0.5 - P[C(X) = 1].Either ey wcP[C(X) = 1] >
0.8 - E[A(X)], in which case

E[R(Y)] = Ycee WcP[C(Y) =1] = Y e we - 1.4-P[C(X) =1] > 1.4-0.8 - E[A(X)],
or Y, cge weP[C(X) = 1] = 0.2 - E[h(X)], in which case
E[h(Z)] = Y cee WeP[C(Z) = 1] = Y cge we - 0.5-P[C(X) =1] > 0.5-0.2 - E[A(X)]. O

Now to prove Lemma 8, suppose for contradiction that & is a conical junta of degree o(k?)
computing —~TL to within error 0.05. That is, the value of & is in [0.95, 1] on 0-inputs of TL and
in [0, 0.05] on 1-inputs of TL. In particular, E[A(X)] € [0.95, 1], E[h(Y)] € [0.95, 1], and E[h(Z)] €
[0, 0.05]. This directly contradicts Claim 12.

Proor or Cramm 11. We may assume that C accepts X with positive probability for otherwise
the claim is trivial. Hence, C reads at most a single (0, L) entry from each column. We analyze two
cases depending on how many (0, L) entries C reads in total.

The first (easy) case is when C reads less than k/2 many (0, L) entries. Here C cannot detect
us replacing a random (0, L) entry with a (1, p) entry with probability better than 1/2. That is,
P[C(Z)=1] 2 P[C(Z2) =1|C(X) =1]-P[C(X) =1] 2 0.5-P[C(X) = 1], where X,Z are jointly
distributed as described above.

The second case is when C reads at least k/2 many (0, 1) entries. Because C has width o(k?),
there is some S; C [k] of size |Si| = (1 — o(1))k such that C reads o(k) entries from each of the
columns indexed by S;. (More precisely, if C has width 5k2, then there is a set of (1 — V&)k columns
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from each of which C reads at most V5k entries.) Let S, C [k], |S2] > k/2, be the set of columns
where Creads a (0, L). Let i € [k] denote the unique column where the jointly distributed X and Y
differ. Note that i is a uniform random variable; for example, P[i € S;] = 1 — 0(1). In what follows,
we take ~ to mean up to a (1 + o(1)) factor. We calculate:

P[C(Y)=1] = P[C(Y) =1 and i€ S;]

P[C(Y) =1]i€ S]

P[C(Y)=1 and i€ S,]i€S;] + P[C(Y)=1 and i ¢ Sy |i € 1]

A-P[C(Y)=1]i€eSNS] +(1=A)-P[C(Y)=1]i€ S \S],
(Y] (Im)

Q

where A :=P[i € Sy |i € S;] = 1/2 — 0(1). In the first term, the condition (i € S; N S;) means that
C reads a single (0, L) and o(k) many (1, L)’s from the ith column. Hence, we are in a situation
analogous to that in Equation (1), and the same argument yields

1) > (2-0(1)) -P[C(X) =1]i €8 NSs] ~ 2-P[C(X) = 1]

since X and i are independent. In the second term, the condition (i € S; \ S;) means that C reads
o(k) many (1, L)’s from the ith column. Hence, C cannot detect our planting of an additional (0, L)
entry in that column with probability better than o(1):

D) = (1-0(1)-P[C(X) =1]i € S\ 5] ~ P[C(X) =1]

since X and i are independent. In summary, we get that for some A > 1/2 — o(1),

PIC(Y) = 1] > 24+ (1=2) = o(1)) - P[C(X) = 1]
> (3/2-0(1)) - P[C(X) = 1]
> 1.4-P[C(X) = 1]. O

5 AND-COMPOSITION LEMMAS

In this section, we prove Lemma 7 and Lemma 10, restated here for convenience.
LEMMA 7. For all f and k, we have BPPY(f) < O(BPPY(AND o £¥)/k).

LEMMA 10. For all F, k, and constants 0 < € < 1/2, we have
2WAPPE(F) < O (BPP“(AND ) Fk)/k + log BPP““(AND o Fk)) .

5.1 AND-Composition for Query Complexity

We now prove Lemma 7. For brevity, let f* := AND o f*. Let T* be a height-q randomized decision
tree for f* with error 1/8. We design a height-8q/k randomized decision tree for f with error 1/4.

Let D be an arbitrary distribution over f~!(1). (We need to go through average-case complexity
in order to “hide” from T* which coordinate contains the true input to f.) Consider the following
randomized decision tree T that takes z € {0, 1}" as input:
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4:12 M. Goos et al.

(1) Picki € [k] uniformly at random and let z; = z.

(2) For j € [k] \ {i}, sample z; ~ D independently.

(3) Run T*(zy, ..., zx) until it has made 8q/k queries in the ith component.

(4) If T* already produced an output in Step 3, output the same bit; otherwise, output 0.

Note that with probability 1 we have f*(z1,...,zx) = f(z). Let Ry denote T’s randomness and Rr+
denote T*’s randomness. If f(z) = 0, then

Pr, [T(z) =1] < MaX(z, . z0)e(f*)"1(0) Pr [T*(z1,...,2k) = 1] < 1/8 < 1/4.

Furthermore,
e T*(z1, . ..,zx) outputs 0 or makes more
Peon, ke [T(z) = 0] = Py ziop, icih] Ry [than 8q/k queries in the ith component
Prp [T*(21,. .., 2) = 0] +
< MaxXe, . z)e(f) (1) T*(z1,...,zx) makes more than
maxg;. Fie| 8q/k queries in the ith component
< 1/8+1/8 = 1/4.

Now let D be an arbitrary distribution over {0, 1}" and define T w.r.t. (D | f~1(1)). We have
Poop, rr[T(2) # f(2)] = Zpeqo,1) Peup 1)), Re[T(2) # D] - Poop[f(2) = b]
< Ybejoy(1/4) - P.op[f(z) = b] = 1/4.

By the minimax theorem, there is a height-8q/k randomized decision tree (a mixture of the T’s)
that on any input produces the wrong output with probability < 1/4.

A

5.2 Definitions

We adopt the following conventions throughout the proof of Lemma 10. We denote random
variables with uppercase letters, and we denote particular outcomes of the random variables
with the corresponding lowercase letters. All communication protocols are randomized and
mixed-coin, and we use (R, R4, Rp) to denote the public randomness, Alice’s private random-
ness, and Bob’s private randomness, respectively. We say a protocol II is e-correct for F if for
all (x,y), Pr.r4, s [1(x,y) = F(x,y)] = 1 — €. For a distribution D over inputs, we say II is (e, D)-
correct for F if P(x v)~p, R R4 rx[II(X,Y) = F(X,Y)] > 1 — €. The internal information cost of a
protocol II with respect to (X,Y) ~ D is defined as ICH(II) :=I(R,M;X|Y) +I(R,M;Y|X) =
I(M;X|Y,R)+I(M;Y|X,R), where the random variable M is the concatenation of all messages.
We also let CC(IT) denote the worst-case communication cost of II.

It is convenient for us to work with a measure 2WAPP* that is defined slightly differently
from 2WAPP® but is equivalent in the sense that for all F and 0 < e < 1/2, 2WAPPS(F) <
2WAPP*(F) < O(ZWAPPCC/Z(F)) We note that 2WAPP® directly expresses the two-sided smooth
rectangle bound of [22], while 2WAPP“* directly expresses the relaxed partition bound of [28] and
was the definition used in [19].

Definition 13. We define 2WAPP{™ (F) as the minimum of CC(II) + log(1/a) over all a > 0
and all protocols IT with output values {0, 1, L} such that for all (x,y), P[II(x,y) # L] < « and
P[II(x,y) = F(x,y)] = (1 —€)a (ie,ITis (1 — (1 — €)a)-correct).

We also need the distributional version of 2WAPP<*,

Definition 14. For an input distribution D, we define 2ZWAPP{“, (F) as the minimum of CC(II) +
log(1/a) over all & > 0 and all protocols IT with output values {0, 1, L} such that P[TI(x,y) # 1] <
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a for all (x,y), and P[II(X,Y) = F(X,Y)] = (1 —¢)a for (X,Y) ~D (ie,IIis (1-(1-¢€)a,D)-
correct).

5.3 AND-Composition for Communication Complexity

We now outline the proof of Lemma 10. Recall that the proof of Lemma 7 involved these steps:

(i) embedding the input into a random coordinate of a k-tuple and filling the other coordinates
with random 1-inputs (to cut the cost on 1-inputs by a factor k),
(if) aborting the execution if the cost became too high (to ensure low cost also on 0-inputs while
maintaining average-case correctness on 1-inputs), and
(iii) using the minimax theorem to go from average-case to worst-case correctness.

We start by noting that an analog of (i) holds for information complexity (which lower bounds
BPP). Then as one of our main technical contributions, we prove an analog of (ii) for infor-
mation complexity. Then in between (ii) and (iii), we insert a step applying the known result
that information complexity upper bounds 2WAPP* in the distributional setting. Finally, we use
the analog of (iii) for 2WAPP*“*. Formally, Lemma 10 follows by stringing together the following
lemmas.

LeEmMA 15. FixanyF,k,0 < € < 1/2, and distribution D over F1(1). For every e-correct protocol 11
for AND o F¥, there is an e-correct protocol TI' for F withICp(I1') < CC(IT)/k and CC(IT") < CC(TI).

LEMMA 16. Fix any F, constants 0 < € <6 < 1/2, and input distribution D, and let D! =
(D | F~1(1)). For every (e, D)-correct protocol 11, there is a (8, D)-correct protocol I withICp(Il') <
O (ICp: (IT) + log(CC(IT) + 2)).

LEmMMA 17. FixanyF, constants0 < € < § < 1/2, and input distribution D. For every (e, D)-correct
protocol I1, we have 2WAPPS” (F) < O(ICp(I) + 1).

LEMMA 18. Fix any F and 0 < € < 1/2. Then 2WAPP¢™ (F) < 2 + maxp 2WAPP (F).

Lemma 15 is a standard application of the “direct sum” property of information cost; for com-
pleteness we sketch the argument in Appendix A. Theorem 16 is proved in Section 5.4 and relies
n [13]. Lemma 17 is due to [28, Theorem 1.1 of the ECCC version]. Lemma 18 follows from an
argument in [28, Appendix A of the ECCC version] that uses LP duality; for completeness, in
Appendix A, we give a more intuitive version of the argument phrased in terms of the minimax
theorem.

The moral conclusion of Lemma 16 is that “one-sided information complexity” is essen-
tially equivalent to “two-sided information complexity” for average-case protocols. Combining
Lemma 16 with [10, Theorem 3.5 of the ECCC version] shows that a similar equivalence holds
for worst-case protocols. More specifically, a distribution-independent definition of information
complexity for bounded-error protocols can be obtained by maximizing over all input distribu-
tions; our corollary shows that this measure is essentially unchanged if we maximize only over
distributions over 1-inputs (or symmetrically, 0-inputs).

COROLLARY 19. Fix any F, constants0 < € < 6 < 1/2, and b € {0, 1}. Then

inf max ICp(IT) £ max inf O (ICp(II) + log(CC(I) + 2)).
S-correct D over D over  e-correct

protocols I1  all inputs b-inputs protocols I1

Theorem 3 follows by swapping the quantifiers on the right side of the inequality in Corollary 19
(which only weakens the statement) and by straightforwardly accounting for the communication
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4:14 M. Goos et al.

cost in the proof. We can also assume the protocol II” has error < 1/3 by a standard error reduction
technique (take a majority vote of several runs of the protocol), which does not affect informa-
tion complexity except by constant factors. We do not directly employ this worst-case version of
Lemma 16, but it is used in the follow-up work [5].

5.4 One-Sided Information versus Two-Sided Information

Intuition for Lemma 16. Recall the following idea, which was implicit in the proof of Lemma 7.
Suppose we have a randomized decision tree computing some function, and we have a bound b on
the expected number of queries made over a random 1-input. Then to obtain a randomized decision
tree with a worst-case query bound, we can keep track of the number of queries made during the
execution and halt and output 0 if it exceeds, say, 8b. Correctness on 0-inputs is maintained since
either we run the original decision tree to completion and thus output 0 with high probability
or we abort and output 0 anyway. We get average-case correctness on 1-inputs since by Markov’s
inequality, with probability at least 7/8, the original decision tree uses at most 8b queries, in which
case we run it to completion and output 1 with high probability.

The high-level intuition is to mimic this idea for information complexity. We have a protocol
with a bound on the information cost w.r.t. the distribution D' over 1-inputs. The “information
odometer” of [13] allows us to “keep track of ” information cost, so we can halt and output 0 if it
becomes too large. This will guarantee that the information cost is low w.r.t. the input distribution
D, and correctness on 0-inputs is maintained. However, there is a complication with showing the
average-case correctness on 1-inputs.

For each computation path specified by an input (x,y), an outcome of public randomness r,
and a full sequence of messages m, there is a contribution cy. 4, »,m such that the information cost
w.rt. D is the expectation of ¢y y ,,» over a random computation path with (x,y) ~ D. Similarly,
there is a contribution ¢y , . ,, such that the information cost w.r.t. D' is the expectation of ¢ , . ,,
over a random computation path with (x,y) ~ D'. These contributions play the role of “number
of queries” along a computation path in the decision tree setting, but a crucial difference is that
Cx,y,r.m # Cy, y.r,m 10 general; i.e., the contribution to information cost depends on the input dis-
tribution (whereas number of queries did not). To show the average-case correctness on 1-inputs,
we need a bound on the typical value of ¢y, m, whereas the assumption that information cost

w.r.t. D' is low gives us a bound on the typical value of ¢ yorom-

Thus, the heart of the argument is to show that typically, cy. y, . mm is not much larger than ¢, yorm-
Intuitively, one might expect the difference to be at most 1, since the only additional information
that can be revealed (beyond what is revealed under D') should be the fact that (x,y) is a 1-
input (which is 1 bit of information). More precisely, we show that for given (x, y), the expected
difference depends on how balanced F is on the x row and the y column. Then we just need to

note that F is typically reasonably balanced for both the x row and the y column.

Formal Proof of Lemma 16. Assume w.l.o.g. that every execution of II communicates exactly the
same number of bits, and that Alice always sends a bit in odd rounds and Bob always sends a bit
in even rounds (by inserting dummy coin flip rounds if necessary). As shown in [13], we can also
assume that IT is “smooth” (i.e., in every step, the bit to be communicated is 1 with probability
between 1/3 and 2/3)—this is needed in order to apply Lemma 20 below.

Consider a probability space with random variables X, Y, R, R4, Rp, M, F where (X,Y) ~ Dis the
input, (R, R4, Rp) is II’s randomness, M = My, ..., Mccm) is the sequence of bits communicated
by IT, and F = F(X,Y) is the function value. For convenience of notation, if we condition on “x,”
this is shorthand for conditioning on “X = x.” Letting ¢ € {1,...,CC(II)} and letting D denote
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KL-divergence (relative entropy), if we define

dx,y,r,m<z

D(Mtlx,y,r,mq) +D(Mt|x,y,r,m<t)’

Mtly,r,m« M |x,r,m<;
Cx,y,r,m = Zt dx,y,r,m<[’
cx,y = Elex,y,rum X, 4],

then it can be seen [13, Appendix C of the ECCC version] that
ICp(IT) = Elex,v,rm] = Elex,v]. (2)

Note that if ¢ is odd, the second term of d y,,,m_, is 0, and if ¢ is even, the first term is 0; hence,
we think of dy ;. ., as defined by a single term (depending on who communicates in round t).

Although the following lemma was not explicitly stated in this way in [13], it follows imme-
diately from the corresponding part of the argument for the “conditional abort theorem” in that
paper [14].

LEmMMA 20 (ODOMETER). For every smooth protocol I, constant y > 0, input distribution D, and
I > 0, there is a protocol IT* withICp(IT*) < O (I + log(CC(I1) + 2)) that simulatesII in the following
sense: IT* uses the same randomness (R, R4, Rp) as I1 and some additional, independent randomness
Q. Consider any fixed outcome x,y,r,ra, rg, and let m be I1’s messages. Then

(i) for every q,II* outputs either L or the same bit that I does, and
(ii) ifcx,y,r,m < 1, then Po[IT" outputs 1] < y.

Definey := (6 — €)/5. To obtain II” witnessing Lemma 16, we obtain IT* from Lemma 20 with I :
(ICp1(IT)/y + 21log(1/y))/y and replace the output L with 0. Then we have ICp(I1") = ICp(IT%)
O (ICp:(IT) + log(CC(II) + 2)), so we just need to verify that IT’ is (J, D)-correct. In the follow-
ing, we use IL, IT*, IT’ to denote random variables (jointly distributed with X, Y, R, R4, Rg, M, F, Q)
representing the outputs of the protocols.

IA

Cramm 21. Plex,y.rm > ITand F = 1] < 4y.

Assuming Claim 21, we have

PI' #I1=F] = P[II* = Land Il = F = 1]
< P[IT" = Land F = 1]
< Plex.yom >Iand F=1] +P[II" = L |ex y.ra < Tand F = 1]
<4y +y
=5y,

where the first line follows by construction of II” and part (i) of Lemma 20, and the fourth line
follows by Claim 21 and part (ii) of Lemma 20. Finally,

PI"#F] < Pl #F]+PII'"#II1=F] < e+5y =6
since I1 is (e, D)-correct. This finishes the proof of Lemma 16.
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To prove Claim 21, we first need to state another claim. Analogously to the notation leading up
to Equation (2), if for (x,y) € F~'(1) we define

g ) M; | x,y,r,me; ) D(Mtlx,y,r,mq

XY, FMey T — _ >
Y <t Mt|y3r’m<t,F_1 Mtlx,r9m<t’F_1
1 — 1
Cx,y,rom = Zt dx,y,r,m«’

— 1
¢xy = Elex y rar 1%yl
then we have

ICHi () = Elck y g | F=1] = E[c y |F=1]. 3)

Cram 22. For (x,y) € F7!(1), we have cy , — ¢ y < log (1/P[F = 1]y]) +log (1/P[F = 1] x]).

1
x,
Proor or Craim 21. For any (x,y), by Markov’s inequality we have

Plex.v.rm > exy/y|xy] <. (4)

Say y is bad if P[F = 1|y] < y, and x is bad if P[F = 1| x] < y. By Claim 22 and a union bound,

A

P [cx,y > ci(’y +2log(1/y) and F = 1] < P[(Y is bad or X is bad) and F = 1]
P[F =1|Y isbad] + P[F = 1| X is bad]
2y. 6))

IA

IA

By Markov’s inequality and Equation (3), we have
Plcky > ICpi(I)/yand F = 1] < P[cky > ICp(M)/y|[F=1] <. (6)
Claim 21 follows by combining Equations (4), (5), and (6) using a union bound. O

ProoF oF Cramm 22. Fix (x,y) € F1(1). Let My := My, Ms, . .. be the bits sent by Alice, and let
Mp = My, My, ... be the bits sent by Bob. Let Mg <; := My, Ms, ..., My, where k is the largest odd
value < t, and let Mp <; := My, My, . .., My, where k is the largest even value < t.

For the moment, also consider any fixed r, rg. Consider a separate probability space with ran-
dom variables X*, M* distributed as (X, M | y, , rg), and note that for even t, M; is a deterministic

function of M}, _ ;- For the conditioning notation in the following, let x* := x. We have

Mlxm |
ZoddzE[dx,Y,R,M<, x,y,r,rB] = Xoad:tBary , PS5 |*
’ Plmy
_ p(Malx”
M,
(MAIx,y,r,rB)
MA|y,rJ”B

where the middle equality is a direct application of the chain rule for D. Similarly, for any fixed
r,ra, we have

Tevent B [dx.v.r 0t

Mg |x,y,r,
s = D(#)

Mg |x,r,ra
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Then (no longer fixing any of r,r4, rg) we have

E [ dxv.ri, | Y]

= ErRrp [Zodd +E [dx, Y.R M-, x,Y,r, rA]]

Malx,y,r.18 Mg |x,y,r,1a
E D f—— +E D f— s 7
e [ (MAIy, r,TB )] o [ (MB [x,r,7a @

Cx,y

%,9,7,78) | + Br Ry [ Zeven + E [dx.v.r 0,

and similarly,

Malx,y,r,78 Mg |x,y,r,ra

1

=E D +E D . 8
xy R.Rs [ (MAIy, rrg, F =1 R.Ra Mg |x,r,ra, F =1 ®)

Note that

D Malx,y,r,rp D Myl x,y,r,rp
Maly,r,r8 Maly,r,rg, F=1

[mA|y5r5rBaF: 1]
[maly,r, ]

< Yma Plmalx,y,r,rg] - log (1/P[F = 1]y])
=log (1/P[F = 11y)), ©)

P
=Yma Plmalx,y,r,rg] - log (IP

and similarly,

(MBIx,y,r,rA) (MBIx,y,r,rA

MBIx,r,rA,le) < log (1/P[F = 1]x]). (10)

Mp|x,r,ra

Claim 22 follows by combining Equations (7), (8), (9), and (10) using linearity of expectation. O

A APPENDIX: BASIC LEMMAS
A.1 Proof of Lemma 15

Write the input to AND o F¥ as ((Xy,Y:), ..., (Xk, Yx)) ~ DX. Let (R, Ra, Rp) be II’s randomness
and M be IT’s messages. It is known (see [12, Lemma 3.14 of the ECCC Revision #1 version] and
[11, Fact 2.3 of the ECCC Revision #1 version]) that

k
CC(IT) > ICpk(IT) > ZH(KM;XL' |X1,...,i—1, Yi, Yi+1,...,k) +1 (R,M§ Y; |X1,...,i—1,Xi, Yi+1,...,k) .

i=1

Therefore, there exists i and x1,._;j—1, yi+1,... k such that
CC(m)/k 2 T(RM;: X |x1.imts Yoo Yir,.k) + T(R M3 i |0 ict Xio Yiv,..k) »

which is exactly ICp (I1"), where IT” is the following protocol with input denoted (X;, Y;):

(1) Sample the same public randomness R as II.

(2) Alice privately samples R4 and X1,k according to D conditioned on Yit1, . k-

(3) Bob privately samples Rp and Y;_ ;1 according to D! conditioned on x;, ;.

(4) Run II on input (xy,.i-1,X: Xi+1, . k)» (V1,...,i-1, Vi, Yi+1, k) Wwith randomness
(R’ RA7 RB)
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Trivially, CC(IT") < CC(II). The e-correctness of II” follows from the e-correctness of II since
with probability 1, F(x;,Y;) = 1 for j < i and F(X},y;) = 1 for j > i and thus,

(AND o FY ((er, i1 Xt Xivn, i)y (Ya,im1, Yo Yisn. k) = F(Xi, Yi).

A.2 Proof of Lemma 18

Define a* such that log(1/a*) = maxp 2WAPPE, (F). Consider the following two-player zero-sum
game:

e Each pure row strategy is an input (x, y) to F.

e Each pure column strategy is a distribution p over pairs (S, b), where S is a rectangle and
b € {0,1, L}, such that P(s )~ [(x,y) € Sand b # L] < " holds for each (x,y).

o The payoff to the column player is P((x, y), 1) = P(s,p)~u [(x,y) € Sand b = F(x,y)].

We claim that for every mixed row strategy D, there exists a pure column strategy p such that
E(x,4)~p[P((x,y), )] = (1 — €)a”. By assumption, there exists a 2WAPP‘:E protocol IT with com-
munication cost ¢ and associated « satisfying ¢ + log(1/a) < log(1/a"). Assume II only uses pub-
lic randomness (by making any private randomness public). Consider the distribution y over pairs

(S, b) sampled as follows:

e With probability 1 — a* - 2°/a, let S be arbitrary and b = L.

e Otherwise, sample the randomness of II and a uniformly random transcript (of which we
may assume there are exactly 2¢ many) from the induced deterministic protocol, and let
(S, b) be the rectangle and output of that transcript.

Then for each (x,y),

P(s,py~p [(x,y) € Sand b # L] =(a" - 2°/a) - Py, Lo domness L1 Y) # L] -
Puniform transcript [IL(x, y) has that transcript]
(a*-2%a)-a-(1/2°

*
=a,

IA

so p is a valid pure column strategy. Similarly, for each (x,y), we have P((x,y), ) = (a*/a) -
PH’S randomness [H(X, y) = F(X, y)]a and thus;

E(x,y)~p[P((x.y). )] = (" /@) - B ) b 116 randomness L6 9) = F(x. y)] = (1 - €)a’.

Since the set of all pure column strategies p forms a polytope, and since P((x,y), ) is an affine
function of i for each (x, y), we may consider w.l.o.g. only the finitely many pure column strategies
that are vertices of the polytope. Thus, we may employ the minimax theorem to find a mixed col-
umn strategy v such that for every pure row strategy (x, y), wehave E, ., [P((x,y), )] > (1 - €)a".
Consider a protocol IT that publicly samples p ~ v and (S, b) ~ p, then checks whether (x,y) € S
(with 2 bits of communication) and outputs b if so and L if not. Then for each (x,y),

o P[II(x,y) # L] = Eyr[P(s,p)~u [(x,y) € Sand b # L]] < E,,[a"] = a” by the definition
of pure column strategies, and

o Pli(x,y) = F(x,y) = Epv[Ps,p)~p [(x,y) € Sand b = F(x,y)]] = Euer [P((x,y), )] 2
(1-¢€)a.

Thus, IT witnesses that 2WAPPS (F) < 2 + log(1/a").
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