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We show that randomized communication complexity can be superlogarithmic in the partition number of

the associated communication matrix, and we obtain near-optimal randomized lower bounds for the Clique

versus Independent Set problem. These results strengthen the deterministic lower bounds obtained in prior

work (Göös, Pitassi, and Watson, FOCS’15). One of our main technical contributions states that information

complexity when the cost is measured with respect to only 1-inputs (or only 0-inputs) is essentially equivalent

to information complexity with respect to all inputs.
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1 INTRODUCTION

A prior work [20] exhibited a Boolean function F : X ×Y → {0, 1} whose deterministic commu-
nication complexity is superlogarithmic in the partition number

χ (F ) � χ0 (F ) + χ1 (F ),

where χi (F ) is the least number of rectangles (sets of the formA × B, whereA ⊆ X, B ⊆ Y) needed
to partition the set F−1 (i ). In this follow-up work, we upgrade the lower-bound results from [20]

to hold against randomized protocols—here the notation Ω̃(m) hides factors polylogarithmic inm.

Theorem 1. There is an F with randomized communication complexity Ω̃(log1.5 χ (F )).

Theorem 2. There is an F with randomized communication complexity Ω̃(log2 χ1 (F )).

A main technical contribution of our article—which is key to both the proofs of Theorem 1
and the subsequent strengthening by [5]—informally states that the information complexity of a
function (as deined by [10]) remains essentially unchanged if the cost is measured with respect
to only 1-inputs (or only 0-inputs) rather than all inputs. We say a protocol Π is ϵ-correct if it
succeeds with probability at least 1 − ϵ on each input, and we deine CC(Π) as the worst-case
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4:2 M. Göös et al.

communication cost, deine IC(Π) as the maximum over all input distributions of the information

cost (deined later), and deine ICb (Π) similarly but with the maximum over all distributions over
b-inputs (for some b ∈ {0, 1}).

Theorem 3. Fix any F and b ∈ {0, 1}. For every 1/3-correct protocol Π, there is a 1/3-correct

protocol Π′ such that IC(Π′) ≤ O (ICb (Π) + log(CC(Π) + 2)). Moreover, CC(Π′) ≤ O (CC(Π) · log
(CC(Π) + 2)).

In the theorem statement above, the additional lower-order term involving the communication
cost appears due to technical reasons. This makes the statement slightly weaker, but this is mit-
igated in the aforementioned applications due to the additional fact that we can also bound the
communication cost of the new protocol.

1.1 Applications and Discussion

Theorem 1: Prior to this work, no examples of F were known with randomized communica-
tion complexity larger than log χ (F ). In fact, such a separation cannot be obtained using the
usual rectangle-based lower-bound methods, as catalogued by Jain and Klauck [22]. In particular,
Theorem 1 shows that randomized complexity can be polynomially larger than the partition

bound [22, 24], which is one of the most powerful general lower-bound methods for randomized
communication. (Consequently, our proof of Theorem 1 has to exploit another powerful lower-
bound method, namely, information complexity.) Note also that every F has deterministic commu-
nication complexity at least log χ (F ) and at most O (log2 χ (F )), where the latter upper bound is a
classical result of [2]. Theorem 1 shows that the upper bound cannot be improved much even if
we allow randomization.

Theorem 2: The relationship between χ1 (F ) and the communication complexity of F can be
equivalently formulated in the language of the Clique versus Independent Set game, played on a
graph derived from F (Alice holds a clique, and Bob holds an independent set: do they intersect?).
See [39, Section 4] or [26, Section 4.4] for the equivalence. Yannakakis [39] (extending [2]) proved
that every F has deterministic communication complexity at most O (log2 χ1 (F )). Our Theorem 2
shows that this upper bound is essentially tight even if we allow randomized protocols, and it

implies that there is a graph onn nodes for which Clique versus Independent Set requires Ω̃(log2 n)
randomized communication. (The deterministic upper bound O (log2 n) holds for all graphs.)

Extension complexity. In fact, we prove Theorem 2 by showing that (the negation of) the function
F has high approximate nonnegative rank (a.k.a. smooth rectangle bound; see Section 2 for deini-
tions). One consequence in the ield of extended formulations (see [15, 39] for deinitions) is that
we obtain a graphG such that the polytope generated by the so-called clique inequalities ofG has

extension complexity nΩ̃(logn) . (The slack matrix associated with the clique inequalities is simply
(the negation of) the Clique versus Independent Set game. These inequalities capture the inde-
pendent set polytope of G when G is perfect—our graph G, however, is not.) The previous bound

in this direction was nΩ(log0.128 n) from a related work [17]. Technically speaking, the lower bound
from [17] was proved for nondeterministic communication complexity, so the full result remains
incomparable with Theorem 2.

Log-rank conjecture. The famous log-rank conjecture of Lovász and Saks [34] postulates that the
deterministic communication complexity of F is polynomially related to log rank(F ). Gavinsky
and Lovett [16] have shown that the conjecture is equivalent to asking whether the randomized
communication complexity of F is polynomially bounded in log rank(F ). Here our Theorem 2
gives at least a near-quadratic separation between the randomized communication complexity
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Randomized Communication versus Partition Number 4:3

of F and log rank(F ) ≤ log χ1 (F ); the previous best lower bound was Ω(log1.63 rank(F )) due to
Kushilevitz [31].

Theorem 3: One-sided information complexity satisies a famous direct sum property ([7, 10]):
for any protocol Π computing ANDk ◦ Fk (i.e., the AND of k copies of F ), there exists a protocol
Π′ computing F with IC1 (Π′) ≤ O (IC1 (Π)/k ) (see, e.g., [5, Claim 37]). One can also formulate
a dual lemma for ORk ◦ Fk in terms of IC0. This is the context where our Theorem 3 relating
IC and IC1 (and IC0) is useful: it implies that analogous direct sum lemmas hold for two-sided
information complexity, up to low-order terms. Iterating such a two-sided lemma some constantly
many times, one obtains an alternative proof for the result that everyn-bit constant-depth balanced
read-once AND–OR tree with binary bottom fan-in (deining an Alice–Bob bipartition of input
bits) has randomized communication complexity Ω(n); this result was irst proved in [25, 33] even
for unbalanced trees.
Another application of Theorem 3 appears in recent work [5]. They improved our 1.5th power

separation in Theorem 1 to near quadratic (which is optimal) by iteratively applying Theorem 3 to
analyze a communication analog of a query-complexity construction due to Ambainis, Kokainis,
and Kothari [4] (which is a variation of usual AND–OR trees).
Our one-versus-two-sided information complexity equivalence has also been used in [6] to

prove certain streaming lower bounds for the set cover problem.

1.2 Our Techniques

The basic strategy in [20] for obtaining the deterministic versions of Theorems 1 and 2 was to
irst obtain analogous gaps in the easier-to-understand world of query complexity, then “lift” the
results to communication complexity using a so-called simulation lemma. For getting randomized
lower bounds, two obstacles immediately present themselves: (i) the functions studied in [20] are
too easy for randomized protocols (as shown by [35]), and (ii) there is no known simulation lemma
for the bounded-error randomized setting (though since this article was written, such a lemma has,
in fact, been proven [21]).
To handle obstacle (i), we modify the functions from [20] in a way that preserves their low

partition numbers while eliminating the structure that was exploitable by randomized protocols.
(Similar constructions have been given by [1, 3].) To handle obstacle (ii) for Theorem 2, we actu-
ally prove a lower bound for a model that is stronger than the standard randomized model, but
for which there is a known simulation lemma [19]. This idea alone does not handle obstacle (ii)
for Theorem 1, though. For that, we start by giving a proof of the query complexity analog of
Theorem 1, then develop a way to mimic that argument using communication complexity, by go-
ing through information complexity (exploiting machinery from [28] and [13]). In the process, this
yields our Theorem 3 (one-sided is equivalent to two-sided information complexity), which is of
independent interest.

2 COMPLEXITY MEASURES

We study the following communication complexity models/measures; see Figure 1. For any com-
plexity measure C, we write coC (F ) � C (¬F ) and 2C (F ) � max{C (F ), coC (F )} for short.

—Pcc: The deterministic communication complexity of F is denoted Pcc (F ).
—BPPcc: The randomized communication complexity of F is denoted BPPcc (F ).
—UPcc: Recall (e.g., [26, 32]) that a cost-c nondeterministic protocol for F corresponds to a
covering (allowing overlaps) of F−1 (1)with 2c rectangles. A nondeterministic protocol is un-
ambiguous if on every 1-input there is a unique accepting computation; combinatorially, this
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Fig. 1. Models of computation that can be instantiated for both communication and query complexity. Here
A→ B means that model B can simulate model A without any overhead.

means we have a disjoint covering (partition) of F−1 (1). We deine UPcc (F ) � �log χ1 (F )	.
Thus, coUPcc (F ) = �log χ0 (F )	, and 2UPcc (F ) ∈ �log χ (F )	 ± 1.

—WAPPcc: Abstractly speaking, a WAPP computation (Weak Almost-Wide PP; introduced
in [9]) is a randomized computation that accepts 1-inputs with probability in [(1 − ϵ )α ,α],
and 0-inputs with probability in [0, ϵα], where ϵ < 1/2 is an error parameter andα = α (n) >

0 is arbitrary.
Instantiating this for protocols, we deineWAPPccϵ (F ) as the least “cost” of a randomized

(public-coin) protocol Π that computes F in the above sense; the “cost” of a protocol Π with
parameter α is deined as the usual communication cost (number of bits communicated)
plus log(1/α ). In this deinition, we may assume w.l.o.g. that Π is zero-communication [28]:
Π is simply a probability distribution over rectangles R, and Π accepts an input (x ,y) if and
only if (x ,y) ∈ R for the randomly chosen R. Such a protocol Π exchanges only 2 bits to
check the condition (x ,y) ∈ R, and the rest of the cost is coming from having a tiny α .

We note that WAPPcc corresponds to the (one-sided) smooth rectangle bound of [22],
which is known to be equivalent to approximate nonnegative rank [29]. A consequence of
this equivalence is that WAPPcc could alternatively be deined without charging anything
for α > 0, as long as we restrict our protocols to be private-coin; see also [19, Theorem 9].
Also, 2WAPPcc is equivalent to the relaxed partition bound of [28] (we elaborate on this in
Section 5.2). We remark that WAPPcc is not amenable to eicient ampliication of the er-
ror parameter; there can be an exponential gap between WAPPccϵ and WAPPcc

δ
for diferent

constants ϵ and δ , at least for partial functions [19, Theorem 6].

For a Boolean function f : {0, 1}n → {0, 1}, we consider the following decision tree models/
measures:

—Pdt: The deterministic decision tree complexity of f is denoted Pdt ( f ).
—BPPdt: The randomized decision tree complexity of f is denoted BPPdt ( f ).
—UPdt: A nondeterministic decision tree is a DNF formula. We think of the conjunctions
in the DNF formula as certiicates—partial assignments to inputs that force the function to
be 1. The cost is the maximum number of input bits read by a certiicate. A nondeterministic
decision tree is unambiguous if on every 1-input there is a unique accepting certiicate. We
deine UPdt ( f ) as the least cost of an unambiguous decision tree for f . Other works that
have studied unambiguous decision trees include [8, 17, 20, 30, 37].

—WAPPdt: We deine WAPPdtϵ ( f ) as the least height of a randomized decision tree that ac-
cepts 1-inputs with probability in [(1 − ϵ )α ,α], and 0-inputs with probability in [0, ϵα],
where α = α (n) > 0 is arbitrary. (Note that only the number of queries matters; we do not
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charge for α being small.) Like the communication version, this measure is not amenable
to eicient ampliication of the error parameter [19].

The analog of a WAPPcc protocol being w.l.o.g. a distribution over rectangles is that a
WAPPdt decision tree is w.l.o.g. a distribution over conjunctions. This implies that we may
characterizeWAPPdtϵ ( f ) using conical juntas: a conical junta h is a nonnegative linear com-
bination of conjunctions. That is, h =

∑
wCC, where the sum ranges over conjunctions

C : {0, 1}n → {0, 1} and wC ≥ 0 for all C . Then WAPPdtϵ ( f ) is the least degree (maximum
width of a conjunction with positive weight in h) of a conical junta h that ϵ-approximates f
in the sense thath(z) ∈ [1 − ϵ, 1] for all z ∈ f −1 (1), andh(z) ∈ [0, ϵ] for all z ∈ f −1 (0). Other
works have studied conical juntas under such names as the (one-sided) partition bound for

query complexity [22] and query complexity in expectation [27].

3 OVERVIEW

In this section, we give an outline for obtaining our main results, Theorems 1 and 2. For complexity
models/measures C and C′, we informally say “C-vs-C′ gap” to mean the existence of a function
whose C complexity is signiicantly higher than its C′ complexity. Using the notation deined in
Section 2, we can rephrase our main results as follows:

Theorem 1 (BPPcc-vs-2UPcc). There is an F such that BPPcc (F ) ≥ Ω̃(2UPcc (F )1.5).

Theorem 2 (BPPcc-vs-UPcc). There is an F such that BPPcc (F ) ≥ Ω̃(UPcc (F )2).

(Section 3.1) Tribes-List: Our starting point is to deine Tribes-List, a variant of a func-
tion introduced in [20]. Its purpose is to witness a BPP-vs-UP gap for query
complexity.

(Section 3.2) Composition: Next, we modify Tribes-List using two types of function compo-
sition, which we call lifting and AND-composition, to obtain candidate functions
for BPP-vs-2UP gaps in both query and communication complexity.

(Section 3.3) Overview of proofs: With the candidate functions deined, we outline our
strategy to prove the desired communication lower bounds.

3.1 Tribes-List

The Tribes-List function TL : {0, 1}n → {0, 1} is deined on n � Θ(k3 logk ) bits, where k is a pa-
rameter.We think of the input as a k × k matrixM with entriesMi j taking values from the alphabet

Σ � {0, 1} × ([k]k−1 ∪ {⊥}). Here each entry is encoded with Θ(k logk ) bits, and we assume that
the encoding ofMi j = (mi j ,pi j ) ∈ Σ is such that a single bit is used to encode the valuemi j ∈ {0, 1}
and another bit is used to encode whether or not pi j = ⊥. If pi j � ⊥, then we can learn its exact

value in [k]k−1 by querying all the Θ(k logk ) bits.
Informally, we have TL(M ) = 1 if and only if M has a unique all-(1, ∗) column (here ∗ is a

wildcard) that also contains an entry with k − 1 pointers to entries of the form (0, ∗) in all other
columns. More formally, we deine TL in Figure 2 by describing an unambiguous decision tree of
cost Θ(k logk ) computing it.

3.2 Composition

Given a base function witnessing some complexity gap, we will establish a diferent but re-
lated complexity gap by transforming the function into a more complex one via one (or both)
of the following operations involving function composition: lifting and AND-composition. Lifting
is used to go from a query complexity gap to an analogous communication complexity gap. AND-
composition is used to go from a gap with an UP upper bound to a gap with a 2UP upper bound.
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Fig. 2. The unambiguous decision tree that defines the Tribes-List function.

To show that an operation indeed converts one gap to another gap, we need two types of results:
an observation showing how the relevant upper bounds behave under the operation, and a more
diicult lemma showing how the relevant lower bounds behave under the operation.

Lifting. Let д : {0, 1}b × {0, 1}b → {0, 1} be a ixed two-party function (called the gadget).
We can lift f : {0, 1}n → {0, 1} via the gadget д to obtain a two-party composed func-
tion f ◦ дn : ({0, 1}b )n × ({0, 1}b )n → {0, 1}, where Alice is given x = (x1, . . . ,xn ) and Bob is
given y = (y1, . . . ,yn ) (with each xi ,yi ∈ {0, 1}b ) and the goal is to compute ( f ◦ дn ) (x ,y) �
f (д(x1,y1), . . . ,д(xn ,yn )).
A decision tree for f generally yields a corresponding type of communication protocol for f ◦

дn : whenever the decision tree queries the ith bit, Alice and Bob communicateb + 1 bits to evaluate
the corresponding bit д(xi ,yi ). By counting conjunctions, it can be veriied that such a connection
holds for the 2UP and UP models as well:

Observation 4. For all f : {0, 1}n → {0, 1}, д : {0, 1}b × {0, 1}b → {0, 1}, and C ∈ {2UP,UP}, we
have Ccc ( f ◦ дn ) ≤ Cdt ( f ) ·O (b + logn).

For any model C, a result in the converse direction (giving a black-box method of converting
a communication protocol for f ◦ дn into a comparably eicient decision tree for f ) is highly
nontrivial and is called a simulation lemma. In thiswork, we use a simulation lemma forC =WAPP:

Lemma 5 (Simulation for WAPP [19]). For all f : {0, 1}n → {0, 1} and constants 0 < ϵ < δ <

1/2, we have WAPPdt
δ
( f ) ≤ O

(

WAPPccϵ ( f ◦ дn )/ logn) , where д : {0, 1}b × {0, 1}b → {0, 1} is the
inner-product gadget deined as follows: b = b (n) � 100 logn, and д(xi ,yi ) � 〈xi ,yi 〉 mod 2.

AND-composition. Given f : {0, 1}n → {0, 1}, we can compose it with the k-bit AND function to
obtain AND ◦ f k : ({0, 1}n )k → {0, 1} deined by (AND ◦ f k ) (z1, . . . , zk ) = 1 if and only if f (zi ) =
1 for all i . Similarly, given F : X ×Y → {0, 1}, we can obtain AND ◦ Fk : Xk × Yk → {0, 1} deined
by (AND ◦ Fk ) (x ,y) = 1 if and only if F (xi ,yi ) = 1 for all i .
AND-composition converts an UP upper bound into a 2UP upper bound [20]:

Observation 6. For all f and k , we have 2UPdt (AND ◦ f k ) ≤ k · UPdt ( f ) +O (UPdt ( f )2). Sim-

ilarly, for all F and k , we have 2UPcc (AND ◦ Fk ) ≤ k · UPcc (F ) +O (UPcc (F )2 + logk ).
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The two parts of Observation 6 are analogous, so we describe the idea only in terms of the

query complexity part. Since coUPdt ( f ) ≤ Pdt ( f ) ≤ O (UPdt ( f )2), it suices to have coUPdt ( f ) as
the second term on the right side. The idea is to let a 1-certiicate for AND ◦ f k be composed of
1-certiicates for each of the k copies of f , and a 0-certiicate for AND ◦ f k be composed of a 0-
certiicate for the irst copy of f that evaluates to 0, together with 1-certiicates for each of the
preceding copies of f .
On the other hand, the following lemma (proven in Section 5.1) shows that randomized query

complexity goes up by a factor of k under AND-composition.

Lemma 7. For all f and k , we have BPPdt ( f ) ≤ O (BPPdt (AND ◦ f k )/k ).

Wenote that Lemma 7 qualitatively strengthens the tight direct sum result for randomized query
complexity in [23] since computing the outputs of all k copies of f is at least as hard as computing
the AND of the outputs. Similarly, if we could prove an analog of Lemma 7 for communication
complexity, it would qualitatively strengthen the notoriously open direct sum conjecture for ran-
domized communication complexity.

3.3 Overview of Proofs

The following diagram shows how we construct the functions used to witness our gaps. Starting
with some f , we can lift it to obtain F , or we can apply AND-composition to obtain f ∗. We can
obtain F ∗ by either lifting f ∗ or equivalently applying AND-composition to F .

Proof Sketch of Theorem 2. We start by discussing the proof of Theorem 2 as it will be used in
the proof of Theorem 1. We actually prove the following stronger version of Theorem 2 that gives
a lower bound even against coWAPPccϵ (F ) ≤ O (BPPcc (F )):

Theorem 2� (coWAPPcc-vs-UPcc). There is an F such that coWAPPcc0.04 (F ) ≥ Ω̃(UPcc (F )2).

Our proof follows the same outline as in [20] and only requires us to lift the following analogous
result for query complexity (proved in Section 4):

Lemma 8 (coWAPPdt-vs-UPdt). coWAPPdt0.05 (TL) ≥ Ω̃(UPdt (TL)2).

To derive Theorem 2�, set f � TL and F � f ◦ дn , where д is the gadget from Lemma 5

and n is the input length of f . Recall that UPdt ( f ) ≥ nΩ(1) . Thus, by Observation 4, UPcc (F ) ≤
UPdt ( f ) ·O (logn) ≤ Õ (UPdt ( f )), and by Lemma 5, coWAPPcc0.04 (F ) ≥ Ω(coWAPPdt0.05 ( f ) · logn) ≥
Ω(coWAPPdt0.05 ( f )). Thus, coWAPPcc0.04 (F ) ≥ Ω̃(UPcc (F )2).

Proof Sketch of Theorem 1. An “obvious” strategy for Theorem 1 would be again to irst prove
the analogous query complexity result and then lift it to communication complexity. (This is the
outline used for the analogous result in [20].) In other words, we would follow the lower-right
path in the above diagram:
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Obvious strategy

(a) Start with f witnessing a BPPdt-vs-UPdt gap.
(b) Obtain f ∗ witnessing a BPPdt-vs-2UPdt gap by applying AND-composition to f .
(c) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by lifting f ∗.

We have the tools to complete steps (a) and (b):

Lemma 9 (BPPdt-vs-2UPdt). There is an f such that BPPdt ( f ) ≥ Ω̃(2UPdt ( f )1.5).

Proof. This is witnessed by f ∗ � AND ◦ TLk , where k � UPdt (TL). By Observation 6,
2UPdt ( f ∗) ≤ O (k2), and by Lemmas 7 and 8, BPPdt ( f ∗) ≥ Ω(k · BPPdt (TL)) ≥ Ω(k ·
coWAPPdt0.05 (TL)) ≥ Ω̃(k3). �

When this article was written, we did not know how to carry out step (c), because we lacked
a simulation lemma for BPP. (Such a lemma is now known [21].) We get around this obstacle by
reversing the order of steps (b) and (c); that is, we instead follow the upper-left path in the diagram:

Modiied strategy

(a′) Start with f witnessing a coWAPPdt-vs-UPdt gap.
(b′) Obtain F witnessing a coWAPPcc-vs-UPcc gap by lifting f .
(c′) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by applying AND-composition to F .

Steps (a′) and (b′) are just Theorem 2�. For step (c′), it would suice to have an analog of Lemma 7
for communication complexity. This is open, but fortunately we have some wiggle room since it
suices to have coWAPPϵ instead of BPP on the left side of Lemma 7. For this, we can prove a
communication analog (indeed, with 2WAPPϵ instead of coWAPPϵ ):

Lemma 10. For all F , k , and constants 0 < ϵ < 1/2, we have

2WAPPccϵ (F ) ≤ O
(

BPPcc (AND ◦ Fk )/k + logBPPcc (AND ◦ Fk )
)

.

To derive Theorem 1, let F be the function in Theorem 2�, and let F ∗ � AND ◦ Fk , where k �
UPcc (F ). Then F ∗ witnesses Theorem 1: by Observation 6, 2UPcc (F ∗) ≤ O (k2), and by Lemma 10,

BPPcc (F ∗) ≥ Ω(k · (2WAPPcc0.04 (F ) −O (logk ))) ≥ Ω(k · (coWAPPcc0.04 (F ) −O (logk ))) ≥ Ω̃(k3).

Proof Sketch of Lemma 10. We start with the intuition for the proof of Lemma 7, which is a
warmup for Lemma 10. For brevity, let f ∗ � AND ◦ f k . Given an input z for f , the basic idea
is to plant z into a random coordinate of f ∗ (z1, . . . , zk ), plant random 1-inputs into the other
coordinates, and then run the randomized decision tree for f ∗. If q is the query complexity of f ∗,
the expected number of bits of z that are queried (over a random 1-input) will be at most q/k .
Our new randomized decision tree will simulate this but abort after 8q/k queries to z have been
made. If an answer is returned, we output the same value for f (z), and if no answer is returned
within this many queries, then we output 0. A simple analysis shows that we succeed with high
probability in the average case (which is equivalent to worst case by the minimax theorem).
To prove Lemma 10, we would like to mimic this argument in the communication world, using

the fact that internal information complexity is sandwiched between BPPcc and 2WAPPcc [28] and
satisies a sort of AND-composition analogous to Lemma 7 using well-known properties (by plant-
ing the input into a random coordinate and planting random 1-inputs into the other coordinates).
However, there is a signiicant barrier to this idea “just working”: the AND-composition property
(direct sum lemma) requires a distribution over 1-inputs of F (one-sided), while the relation to
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2WAPPcc requires an arbitrary distribution over inputs to F (two-sided). To bridge this divide, we
prove a new property of information complexity: the one-sided version is essentially equivalent
to the two-sided version. A key ingredient in showing the latter is the “information odometer” of
[13], which allows us to keep track of the amount of information that has been revealed, abort the
protocol oncewe have reached our limit, and argue that we can carry this out without revealing too
much extra information. We note that this one-versus-two sided information complexity lemma
is the only component of the proof of Theorem 1 that distinguishes between arbitrary rectangle
partitions (2UPcc) and rectangle partitions induced by protocols (Pcc). The log term in Lemma 10
comes from the information odometer ingredient, and it is known that by composing with the
k-bit majority function instead of AND, a version of Lemma 10 holds without the log term [38].

Organization. The only ingredients that remain to be proved are Lemma 8 (which we prove in
Section 4) and Lemma 7 and Lemma 10 (both of which we prove in Section 5).

4 DECISION TREE LOWER BOUND

In this section, we prove Lemma 8, restated here for convenience.

Lemma 8 (coWAPPdt-vs-UPdt). coWAPPdt0.05 (TL) ≥ Ω̃(UPdt (TL)2).

Recall that UPdt (TL) ≤ O (k logk ) by deinition. To prove Lemma 8, we show that there is no
o(k2)-degree conical junta h =

∑
wCC that outputs values in [0.95, 1] on inputs from TL−1 (0) and

outputs values in [0, 0.05] on inputs from TL−1 (1). A similar lower bound for the plain k × k Tribes

function was proved by [22, Theorem 4] using LP duality; our argument is more direct.
To illustrate the basic style of argument, we start gently by proving an Ω(n) conical junta de-

gree bound for approximating the NAND function—this lower bound will be used in the proof of
Lemma 8 too.

4.1 Warm-up: Lower Bound for NAND

Suppose for contradiction that h =
∑
wCC is a conical junta of degree o(n) computing the n-

bit NAND function to within error 1/5. We will argue that if h is correct on inputs of Hamming
weights n and n − 1, then it must mess up on inputs of Hamming weight n − 2: h will output a
value larger than 1, which is a contradiction. We now give the details.

To begin, we have h(�1) ≤ 1/5 by the correctness of h (here �1 is the all-1 input). This means
that the total weight (sum of wC s) associated with conjunctions that read only 1s (i.e., have only
positive literals) is at most 1/5. Let X ∈ NAND−1 (1) be a uniformly random string of Hamming
weight n − 1. By correctness,

E[h(X )] =
∑
wCE[C (X )] =

∑
wCP[C (X ) = 1] ≥ 4/5.

In the above sum, there are two types of conjunctions that contribute with a positive acceptance
probability: those that read only 1s, and those that read a single 0 and some o(n) many 1s. Since the
irst type has total weight ≤ 1/5, we must have

∑

C ∈C wCP[C (X ) = 1] ≥ 3/5,where C is the set of
conjunctions of the second type. Consider the acceptance probability of anyC ∈ C on a uniformly
random string Y ∈ NAND−1 (1) of Hamming weight n − 2: if the width of C is d , then P[C (Y ) =

1] = (n − d )/
(
n
2

)

, which is (2 − o(1))/n for d = o(n). Since P[C (X ) = 1] = 1/n, we conclude that

P[C (Y ) = 1] = (2 − o(1)) · P[C (X ) = 1]. (1)

We now arrive at the desired contradiction:

E[h(Y )] ≥ ∑C ∈C wCP[C (Y ) = 1] = (2 − o(1))∑C ∈C wCP[C (X ) = 1] ≥ (2 − o(1)) · 3/5 > 1.
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4.2 Proof of Lemma 8

We prove a lower bound for TL : Σk×k → {0, 1} by arguing that Ω(k2) entries must be touched:
we only charge one query for reading a whole matrix entry in Σ = {0, 1} × ([k]k−1 ∪ {⊥}). That is,
we assume each conjunction either reads nothing from an entry or reads one fully. The width of a
conjunction is then understood as the number of entries it reads.
We study three types of random inputs to TL:

—X ∈ TL−1 (0) is deined so that the columns in X are independent, and in each column all
entries are (1,⊥) except we plant a single (0,⊥) entry in a random row index. Hence, there
are altogether k many (0,⊥) entries in X .

—Y ∈ TL−1 (0) is deined like X except we replace a random (1,⊥) entry in X with a (0,⊥)
entry. Hence, there are altogether k + 1 many (0,⊥) entries in Y , two of them sharing a
column.

—Z ∈ TL−1 (1) is deined like X except we replace a random (0,⊥) entry (k diferent choices)
in X with a (1,p) entry, where p is a list of pointers to all other positions of (0,⊥) entries
(making Z indeed a 1-input).

The crux of the argument is contained in the following claim.

Claim 11. For every conjunction C of width o(k2), either P[C (Y ) = 1] ≥ 1.4 · P[C (X ) = 1] or

P[C (Z ) = 1] ≥ 0.5 · P[C (X ) = 1].

Before proving Claim 11, let us see how to inish the proof of Lemma 8 assuming it. We have a
similar claim for conical juntas.

Claim 12. For every conical junta h of degree o(k2), either E[h(Y )] ≥ 1.1 · E[h(X )] or E[h(Z )] ≥
0.1 · E[h(X )].

Proof. Let h =
∑
wCC . By linearity, E[h(X )] =

∑
wCP[C (X ) = 1] and similarly for Y and Z .

By Claim 11, let C be a set of conjunctions such that for each C ∈ C , P[C (Y ) = 1] ≥ 1.4 ·
P[C (X ) = 1], and for eachC � C , P[C (Z ) = 1] ≥ 0.5 · P[C (X ) = 1]. Either

∑

C ∈C wCP[C (X ) = 1] ≥
0.8 · E[h(X )], in which case

E[h(Y )] ≥ ∑C ∈C wCP[C (Y ) = 1] ≥ ∑C ∈C wC · 1.4 · P[C (X ) = 1] ≥ 1.4 · 0.8 · E[h(X )],

or
∑

C�C wCP[C (X ) = 1] ≥ 0.2 · E[h(X )], in which case

E[h(Z )] ≥ ∑C�C wCP[C (Z ) = 1] ≥ ∑C�C wC · 0.5 · P[C (X ) = 1] ≥ 0.5 · 0.2 · E[h(X )]. �

Now to prove Lemma 8, suppose for contradiction that h is a conical junta of degree o(k2)

computing ¬TL to within error 0.05. That is, the value of h is in [0.95, 1] on 0-inputs of TL and
in [0, 0.05] on 1-inputs of TL. In particular, E[h(X )] ∈ [0.95, 1], E[h(Y )] ∈ [0.95, 1], and E[h(Z )] ∈
[0, 0.05]. This directly contradicts Claim 12.

Proof of Claim 11. We may assume that C accepts X with positive probability for otherwise
the claim is trivial. Hence,C reads at most a single (0,⊥) entry from each column. We analyze two
cases depending on how many (0,⊥) entries C reads in total.

The irst (easy) case is when C reads less than k/2 many (0,⊥) entries. Here C cannot detect
us replacing a random (0,⊥) entry with a (1,p) entry with probability better than 1/2. That is,
P[C (Z ) = 1] ≥ P[C (Z ) = 1 |C (X ) = 1] · P[C (X ) = 1] ≥ 0.5 · P[C (X ) = 1], where X ,Z are jointly
distributed as described above.
The second case is when C reads at least k/2 many (0,⊥) entries. Because C has width o(k2),

there is some S1 ⊆ [k] of size |S1 | ≥ (1 − o(1))k such that C reads o(k ) entries from each of the

columns indexed by S1. (More precisely, ifC has width δk2, then there is a set of (1 −
√
δ )k columns
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from each of which C reads at most
√
δk entries.) Let S2 ⊆ [k], |S2 | ≥ k/2, be the set of columns

whereC reads a (0,⊥). Let i ∈ [k] denote the unique column where the jointly distributedX andY
difer. Note that i is a uniform random variable; for example, P[i ∈ S1] = 1 − o(1). In what follows,
we take ≈ to mean up to a (1 ± o(1)) factor. We calculate:

P[C (Y ) = 1] ≥ P[C (Y ) = 1 and i ∈ S1]
≈ P[C (Y ) = 1 | i ∈ S1]
= P[C (Y ) = 1 and i ∈ S2 | i ∈ S1] + P[C (Y ) = 1 and i � S2 | i ∈ S1]
= λ · P[C (Y ) = 1 | i ∈ S1 ∩ S2]

︸��������������������������︷︷��������������������������︸
(I)

+ (1 − λ) · P[C (Y ) = 1 | i ∈ S1 \ S2]
︸�������������������������︷︷�������������������������︸

(II)

,

where λ � P[i ∈ S2 | i ∈ S1] ≥ 1/2 − o(1). In the irst term, the condition (i ∈ S1 ∩ S2) means that
C reads a single (0,⊥) and o(k ) many (1,⊥)’s from the ith column. Hence, we are in a situation
analogous to that in Equation (1), and the same argument yields

(I) ≥ (2 − o(1)) · P[C (X ) = 1 | i ∈ S1 ∩ S2] ≈ 2 · P[C (X ) = 1]

since X and i are independent. In the second term, the condition (i ∈ S1 \ S2) means that C reads
o(k ) many (1,⊥)’s from the ith column. Hence,C cannot detect our planting of an additional (0,⊥)
entry in that column with probability better than o(1):

(II) ≥ (1 − o(1)) · P[C (X ) = 1 | i ∈ S1 \ S2] ≈ P[C (X ) = 1]

since X and i are independent. In summary, we get that for some λ ≥ 1/2 − o(1),

P[C (Y ) = 1] ≥ (2λ + (1 − λ) − o(1)) · P[C (X ) = 1]

≥ (3/2 − o(1)) · P[C (X ) = 1]

≥ 1.4 · P[C (X ) = 1]. �

5 AND-COMPOSITION LEMMAS

In this section, we prove Lemma 7 and Lemma 10, restated here for convenience.

Lemma 7. For all f and k , we have BPPdt ( f ) ≤ O (BPPdt (AND ◦ f k )/k ).

Lemma 10. For all F , k , and constants 0 < ϵ < 1/2, we have

2WAPPccϵ (F ) ≤ O
(

BPPcc (AND ◦ Fk )/k + logBPPcc (AND ◦ Fk )
)

.

5.1 AND-Composition foruery Complexity

We now prove Lemma 7. For brevity, let f ∗ � AND ◦ f k . LetT ∗ be a height-q randomized decision
tree for f ∗ with error 1/8. We design a height-8q/k randomized decision tree for f with error 1/4.
Let D be an arbitrary distribution over f −1 (1). (We need to go through average-case complexity

in order to “hide” from T ∗ which coordinate contains the true input to f .) Consider the following
randomized decision tree T that takes z ∈ {0, 1}n as input:
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(1) Pick i ∈ [k] uniformly at random and let zi � z.
(2) For j ∈ [k]� {i}, sample zj ∼ D independently.
(3) Run T ∗ (z1, . . . , zk ) until it has made 8q/k queries in the ith component.
(4) If T ∗ already produced an output in Step 3, output the same bit; otherwise, output 0.

Note that with probability 1 we have f ∗ (z1, . . . , zk ) = f (z). Let RT denoteT ’s randomness and RT ∗

denote T ∗’s randomness. If f (z) = 0, then

PRT [T (z) = 1] ≤ max(z1, ...,zk )∈(f ∗ )−1 (0) PRT ∗ [T
∗ (z1, . . . , zk ) = 1] ≤ 1/8 ≤ 1/4.

Furthermore,

Pz∼D, RT [T (z) = 0] = Pz1, ...,zk∼D, i ∈[k], RT ∗

[
T ∗ (z1, . . . , zk ) outputs 0 or makes more
than 8q/k queries in the ith component

]

≤ max(z1, ...,zk )∈(f ∗ )−1 (1)
���
PRT ∗ [T

∗ (z1, . . . , zk ) = 0] +

maxRT ∗ Pi ∈[k]

[
T ∗ (z1, . . . , zk ) makes more than
8q/k queries in the ith component

] �	

≤ 1/8 + 1/8 = 1/4.

Now let D be an arbitrary distribution over {0, 1}n and deine T w.r.t. (D | f −1 (1)). We have

Pz∼D, RT [T (z) � f (z)] =
∑

b ∈{0,1} Pz∼(D | f −1 (b )), RT [T (z) � b] · Pz∼D [f (z) = b]
≤ ∑b ∈{0,1} (1/4) · Pz∼D [f (z) = b] = 1/4.

By the minimax theorem, there is a height-8q/k randomized decision tree (a mixture of the T ’s)
that on any input produces the wrong output with probability ≤ 1/4.

5.2 Definitions

We adopt the following conventions throughout the proof of Lemma 10. We denote random
variables with uppercase letters, and we denote particular outcomes of the random variables
with the corresponding lowercase letters. All communication protocols are randomized and
mixed-coin, and we use (R,RA,RB ) to denote the public randomness, Alice’s private random-
ness, and Bob’s private randomness, respectively. We say a protocol Π is ϵ-correct for F if for
all (x ,y), PR,RA,RB [Π(x ,y) = F (x ,y)] ≥ 1 − ϵ . For a distribution D over inputs, we say Π is (ϵ,D)-
correct for F if P(X ,Y )∼D, R,RA,RB [Π(X ,Y ) = F (X ,Y )] ≥ 1 − ϵ . The internal information cost of a
protocol Π with respect to (X ,Y ) ∼ D is deined as ICD (Π) � I(R,M ;X |Y ) + I(R,M ;Y |X ) =

I(M ;X |Y ,R) + I(M ;Y |X ,R), where the random variableM is the concatenation of all messages.
We also let CC(Π) denote the worst-case communication cost of Π.

It is convenient for us to work with a measure 2WAPPcc∗ that is deined slightly diferently
from 2WAPPcc but is equivalent in the sense that for all F and 0 < ϵ < 1/2, 2WAPPccϵ (F ) ≤
2WAPPcc∗ϵ (F ) ≤ O (2WAPPcc

ϵ/2
(F )). We note that 2WAPPcc directly expresses the two-sided smooth

rectangle bound of [22], while 2WAPPcc∗ directly expresses the relaxed partition bound of [28] and
was the deinition used in [19].

Deinition 13. We deine 2WAPPcc∗ϵ (F ) as the minimum of CC(Π) + log(1/α ) over all α > 0
and all protocols Π with output values {0, 1,⊥} such that for all (x ,y), P[Π(x ,y) � ⊥] ≤ α and
P[Π(x ,y) = F (x ,y)] ≥ (1 − ϵ )α (i.e., Π is (1 − (1 − ϵ )α )-correct).

We also need the distributional version of 2WAPPcc∗.

Deinition 14. For an input distribution D, we deine 2WAPPcc∗ϵ,D (F ) as the minimum of CC(Π) +

log(1/α ) over all α > 0 and all protocols Π with output values {0, 1,⊥} such that P[Π(x ,y) � ⊥] ≤
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α for all (x ,y), and P[Π(X ,Y ) = F (X ,Y )] ≥ (1 − ϵ )α for (X ,Y ) ∼ D (i.e., Π is (1 − (1 − ϵ )α ,D)-
correct).

5.3 AND-Composition for Communication Complexity

We now outline the proof of Lemma 10. Recall that the proof of Lemma 7 involved these steps:

(i) embedding the input into a random coordinate of a k-tuple and illing the other coordinates
with random 1-inputs (to cut the cost on 1-inputs by a factor k),

(ii) aborting the execution if the cost became too high (to ensure low cost also on 0-inputs while
maintaining average-case correctness on 1-inputs), and

(iii) using the minimax theorem to go from average-case to worst-case correctness.

We start by noting that an analog of (i) holds for information complexity (which lower bounds
BPPcc). Then as one of our main technical contributions, we prove an analog of (ii) for infor-
mation complexity. Then in between (ii) and (iii), we insert a step applying the known result
that information complexity upper bounds 2WAPPcc∗ in the distributional setting. Finally, we use
the analog of (iii) for 2WAPPcc∗. Formally, Lemma 10 follows by stringing together the following
lemmas.

Lemma 15. Fix any F ,k , 0 < ϵ < 1/2, and distributionD over F−1 (1). For every ϵ-correct protocol Π
forAND ◦ Fk , there is an ϵ-correct protocol Π′ for F with ICD (Π

′) ≤ CC(Π)/k andCC(Π′) ≤ CC(Π).

Lemma 16. Fix any F , constants 0 < ϵ < δ < 1/2, and input distribution D, and let D1
�

(D | F−1 (1)). For every (ϵ,D)-correct protocol Π, there is a (δ ,D)-correct protocol Π′ with ICD (Π
′) ≤

O (ICD1 (Π) + log(CC(Π) + 2)).

Lemma 17. Fix any F , constants 0 < ϵ < δ < 1/2, and input distributionD. For every (ϵ,D)-correct
protocol Π, we have 2WAPPcc∗

δ,D
(F ) ≤ O (ICD (Π) + 1).

Lemma 18. Fix any F and 0 < ϵ < 1/2. Then 2WAPPcc∗ϵ (F ) ≤ 2 +maxD 2WAPPcc∗ϵ,D (F ).

Lemma 15 is a standard application of the “direct sum” property of information cost; for com-
pleteness we sketch the argument in Appendix A. Theorem 16 is proved in Section 5.4 and relies
on [13]. Lemma 17 is due to [28, Theorem 1.1 of the ECCC version]. Lemma 18 follows from an
argument in [28, Appendix A of the ECCC version] that uses LP duality; for completeness, in
Appendix A, we give a more intuitive version of the argument phrased in terms of the minimax
theorem.
The moral conclusion of Lemma 16 is that “one-sided information complexity” is essen-

tially equivalent to “two-sided information complexity” for average-case protocols. Combining
Lemma 16 with [10, Theorem 3.5 of the ECCC version] shows that a similar equivalence holds
for worst-case protocols. More speciically, a distribution-independent deinition of information
complexity for bounded-error protocols can be obtained by maximizing over all input distribu-
tions; our corollary shows that this measure is essentially unchanged if we maximize only over
distributions over 1-inputs (or symmetrically, 0-inputs).

Corollary 19. Fix any F , constants 0 < ϵ < δ < 1/2, and b ∈ {0, 1}. Then
inf

δ -correct
protocols Π

max
D over

all inputs

ICD (Π) ≤ max
D over
b-inputs

inf
ϵ -correct
protocols Π

O (ICD (Π) + log(CC(Π) + 2)) .

Theorem 3 follows by swapping the quantiiers on the right side of the inequality in Corollary 19
(which only weakens the statement) and by straightforwardly accounting for the communication
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cost in the proof. We can also assume the protocol Π′ has error ≤ 1/3 by a standard error reduction
technique (take a majority vote of several runs of the protocol), which does not afect informa-
tion complexity except by constant factors. We do not directly employ this worst-case version of
Lemma 16, but it is used in the follow-up work [5].

5.4 One-Sided Information versus Two-Sided Information

Intuition for Lemma 16. Recall the following idea, which was implicit in the proof of Lemma 7.
Suppose we have a randomized decision tree computing some function, and we have a bound b on
the expected number of queries made over a random 1-input. Then to obtain a randomized decision
tree with a worst-case query bound, we can keep track of the number of queries made during the
execution and halt and output 0 if it exceeds, say, 8b. Correctness on 0-inputs is maintained since
either we run the original decision tree to completion and thus output 0 with high probability
or we abort and output 0 anyway. We get average-case correctness on 1-inputs since by Markov’s
inequality, with probability at least 7/8, the original decision tree uses at most 8b queries, in which
case we run it to completion and output 1 with high probability.
The high-level intuition is to mimic this idea for information complexity. We have a protocol

with a bound on the information cost w.r.t. the distribution D1 over 1-inputs. The “information
odometer” of [13] allows us to “keep track of ” information cost, so we can halt and output 0 if it
becomes too large. This will guarantee that the information cost is low w.r.t. the input distribution
D, and correctness on 0-inputs is maintained. However, there is a complication with showing the
average-case correctness on 1-inputs.
For each computation path speciied by an input (x ,y), an outcome of public randomness r ,

and a full sequence of messagesm, there is a contribution cx,y,r,m such that the information cost
w.r.t. D is the expectation of cx,y,r,m over a random computation path with (x ,y) ∼ D. Similarly,

there is a contribution c1x,y,r,m such that the information cost w.r.t.D1 is the expectation of c1x,y,r,m
over a random computation path with (x ,y) ∼ D1. These contributions play the role of “number
of queries” along a computation path in the decision tree setting, but a crucial diference is that
cx,y,r,m � c

1
x,y,r,m in general; i.e., the contribution to information cost depends on the input dis-

tribution (whereas number of queries did not). To show the average-case correctness on 1-inputs,
we need a bound on the typical value of cx,y,r,m , whereas the assumption that information cost

w.r.t. D1 is low gives us a bound on the typical value of c1x,y,r,m .

Thus, the heart of the argument is to show that typically, cx,y,r,m is notmuch larger than c1x,y,r,m .
Intuitively, one might expect the diference to be at most 1, since the only additional information
that can be revealed (beyond what is revealed under D1) should be the fact that (x ,y) is a 1-
input (which is 1 bit of information). More precisely, we show that for given (x ,y), the expected
diference depends on how balanced F is on the x row and the y column. Then we just need to
note that F is typically reasonably balanced for both the x row and the y column.

Formal Proof of Lemma 16. Assume w.l.o.g. that every execution of Π communicates exactly the
same number of bits, and that Alice always sends a bit in odd rounds and Bob always sends a bit
in even rounds (by inserting dummy coin lip rounds if necessary). As shown in [13], we can also
assume that Π is “smooth” (i.e., in every step, the bit to be communicated is 1 with probability
between 1/3 and 2/3)—this is needed in order to apply Lemma 20 below.
Consider a probability space with random variablesX ,Y ,R,RA,RB ,M, F where (X ,Y ) ∼ D is the

input, (R,RA,RB ) is Π’s randomness, M � M1, . . . ,MCC(Π) is the sequence of bits communicated
by Π, and F � F (X ,Y ) is the function value. For convenience of notation, if we condition on “x ,”
this is shorthand for conditioning on “X = x .” Letting t ∈ {1, . . . ,CC(Π)} and letting D denote
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KL-divergence (relative entropy), if we deine

dx,y,r,m<t
� D

(

Mt | x ,y, r ,m<t

Mt |y, r ,m<t

)

+ D

(

Mt | x ,y, r ,m<t

Mt | x , r ,m<t

)

,

cx,y,r,m �
∑

t dx,y,r,m<t
,

cx,y � E[cX ,Y ,R,M | x ,y],

then it can be seen [13, Appendix C of the ECCC version] that

ICD (Π) = E[cX ,Y ,R,M ] = E[cX ,Y ]. (2)

Note that if t is odd, the second term of dx,y,r,m<t
is 0, and if t is even, the irst term is 0; hence,

we think of dx,y,r,m<t
as deined by a single term (depending on who communicates in round t ).

Although the following lemma was not explicitly stated in this way in [13], it follows imme-
diately from the corresponding part of the argument for the “conditional abort theorem” in that
paper [14].

Lemma 20 (Odometer). For every smooth protocol Π, constant γ > 0, input distribution D, and

I > 0, there is a protocolΠ∗ with ICD (Π
∗) ≤ O (I + log(CC(Π) + 2)) that simulatesΠ in the following

sense: Π∗ uses the same randomness (R,RA,RB ) as Π and some additional, independent randomness

Q . Consider any ixed outcome x ,y, r , rA, rB , and letm be Π’s messages. Then

(i) for every q, Π∗ outputs either ⊥ or the same bit that Π does, and

(ii) if cx,y,r,m ≤ I , then PQ [Π
∗ outputs ⊥] ≤ γ .

Deineγ � (δ − ϵ )/5. To obtainΠ′witnessing Lemma 16, we obtainΠ∗ from Lemma 20with I �
(ICD1 (Π)/γ + 2 log(1/γ ))/γ and replace the output ⊥ with 0. Then we have ICD (Π

′) = ICD (Π
∗) ≤

O (ICD1 (Π) + log(CC(Π) + 2)), so we just need to verify that Π′ is (δ ,D)-correct. In the follow-
ing, we use Π,Π∗,Π′ to denote random variables (jointly distributed with X ,Y ,R,RA,RB ,M, F ,Q)
representing the outputs of the protocols.

Claim 21. P[cX ,Y ,R,M > I and F = 1] ≤ 4γ .

Assuming Claim 21, we have

P[Π′ � Π = F ] = P[Π∗ = ⊥ and Π = F = 1]

≤ P[Π∗ = ⊥ and F = 1]

≤ P [cX ,Y ,R,M > I and F = 1
]

+ P

[
Π∗ = ⊥ ��� cX ,Y ,R,M ≤ I and F = 1

]
≤ 4γ + γ

= 5γ ,

where the irst line follows by construction of Π′ and part (i) of Lemma 20, and the fourth line
follows by Claim 21 and part (ii) of Lemma 20. Finally,

P[Π′ � F ] ≤ P[Π � F ] + P[Π′ � Π = F ] ≤ ϵ + 5γ = δ

since Π is (ϵ,D)-correct. This inishes the proof of Lemma 16.
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To prove Claim 21, we irst need to state another claim. Analogously to the notation leading up
to Equation (2), if for (x ,y) ∈ F−1 (1) we deine

d1x,y,r,m<t
� D

(

Mt | x ,y, r ,m<t

Mt |y, r ,m<t , F = 1

)

+ D

(

Mt | x ,y, r ,m<t

Mt | x , r ,m<t , F = 1

)

,

c1x,y,r,m �
∑

t d
1
x,y,r,m<t

,

c1x,y � E[c
1
X ,Y ,R,M | x ,y],

then we have

ICD1 (Π) = E[c1X ,Y ,R,M | F = 1] = E[c1X ,Y | F = 1]. (3)

Claim 22. For (x ,y) ∈ F−1 (1), we have cx,y − c1x,y ≤ log (1/P[F = 1 |y]) + log (1/P[F = 1 | x]).

Proof of Claim 21. For any (x ,y), by Markov’s inequality we have

P

[
cX ,Y ,R,M > cX ,Y /γ

���x ,y] ≤ γ . (4)

Say y is bad if P[F = 1 |y] ≤ γ , and x is bad if P[F = 1 | x] ≤ γ . By Claim 22 and a union bound,

P

[
cX ,Y > c1X ,Y + 2 log(1/γ ) and F = 1

]
≤ P [(Y is bad or X is bad) and F = 1]

≤ P[F = 1 |Y is bad] + P[F = 1 |X is bad]

≤ 2γ . (5)

By Markov’s inequality and Equation (3), we have

P

[
c1X ,Y > ICD1 (Π)/γ and F = 1

]
≤ P

[
c1X ,Y > ICD1 (Π)/γ

��� F = 1
]
≤ γ . (6)

Claim 21 follows by combining Equations (4), (5), and (6) using a union bound. �

Proof of Claim 22. Fix (x ,y) ∈ F−1 (1). LetMA � M1,M3, . . . be the bits sent by Alice, and let
MB � M2,M4, . . . be the bits sent by Bob. LetMA,<t � M1,M3, . . . ,Mk , where k is the largest odd
value < t , and letMB,<t � M2,M4, . . . ,Mk , where k is the largest even value < t .
For the moment, also consider any ixed r , rB . Consider a separate probability space with ran-

dom variables X ∗,M∗ distributed as (X ,M |y, r , rB ), and note that for even t ,M∗t is a deterministic
function ofM∗A,<t . For the conditioning notation in the following, let x∗ � x . We have

∑

odd t E

[
dX ,Y ,R,M<t

���x ,y, r , rB ] = ∑odd t EM∗
A, <t

⎡⎢⎢⎢⎢⎣D
��
M∗t | x∗,m∗A,<t
M∗t |m∗A,<t

�

�����x∗

⎤⎥⎥⎥⎥⎦
= D

(

M∗A | x∗
M∗A

)

= D

(

MA | x ,y, r , rB
MA |y, r , rB

)

,

where the middle equality is a direct application of the chain rule for D. Similarly, for any ixed
r , rA, we have

∑

even t E

[
dX ,Y ,R,M<t

���x ,y, r , rA] = D
(

MB | x ,y, r , rA
MB | x , r , rA

)

.
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Then (no longer ixing any of r , rA, rB ) we have

cx,y = E
[∑

t dX ,Y ,R,M<t

���x ,y]
= ER,RB

[∑
odd t E

[
dX ,Y ,R,M<t

���x ,y, r , rB ] ] + ER,RA [∑
even t E

[
dX ,Y ,R,M<t

���x ,y, r , rA] ]
= ER,RB

[
D

(

MA | x ,y, r , rB
MA |y, r , rB

)]
+ ER,RA

[
D

(

MB | x ,y, r , rA
MB | x , r , rA

)]
, (7)

and similarly,

c1x,y = ER,RB

[
D

(

MA | x ,y, r , rB
MA |y, r , rB , F = 1

)]
+ ER,RA

[
D

(

MB | x ,y, r , rA
MB | x , r , rA, F = 1

)]
. (8)

Note that

D

(

MA | x ,y, r , rB
MA |y, r , rB

)

− D
(

MA | x ,y, r , rB
MA |y, r , rB , F = 1

)

=

∑

mA
P[mA | x ,y, r , rB] · log

(

P[mA |y, r , rB , F = 1]
P[mA |y, r , rB]

)

≤∑mA
P[mA | x ,y, r , rB] · log (1/P[F = 1 |y])

= log (1/P[F = 1 |y]) , (9)

and similarly,

D

(

MB | x ,y, r , rA
MB | x , r , rA

)

− D
(

MB | x ,y, r , rA
MB | x , r , rA, F = 1

)

≤ log (1/P[F = 1 | x]) . (10)

Claim 22 follows by combining Equations (7), (8), (9), and (10) using linearity of expectation. �

A APPENDIX: BASIC LEMMAS

A.1 Proof of Lemma 15

Write the input to AND ◦ Fk as ((X1,Y1), . . . , (Xk ,Yk )) ∼ Dk . Let (R,RA,RB ) be Π’s randomness
and M be Π’s messages. It is known (see [12, Lemma 3.14 of the ECCC Revision #1 version] and
[11, Fact 2.3 of the ECCC Revision #1 version]) that

CC(Π) ≥ ICDk (Π) ≥
k∑

i=1

I

(

R,M ;Xi
���X1, ...,i−1,Yi ,Yi+1, ...,k

)

+ I

(

R,M ;Yi
���X1, ...,i−1,Xi ,Yi+1, ...,k

)

.

Therefore, there exists i and x1, ...,i−1,yi+1, ...,k such that

CC(Π)/k ≥ I
(

R,M ;Xi
���x1, ...,i−1,Yi ,yi+1, ...,k ) + I (R,M ;Yi

���x1, ...,i−1,Xi ,yi+1, ...,k
)

,

which is exactly ICD (Π
′), where Π′ is the following protocol with input denoted (Xi ,Yi ):

(1) Sample the same public randomness R as Π.
(2) Alice privately samples RA and Xi+1, ...,k according to Dk−i conditioned on yi+1, ...,k .
(3) Bob privately samples RB and Y1, ...,i−1 according to Di−1 conditioned on x1, ...,i−1.
(4) Run Π on input (x1, ...,i−1,Xi ,Xi+1, ...,k ), (Y1, ...,i−1,Yi ,yi+1, ...,k ) with randomness

(R,RA,RB ).
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Trivially, CC(Π′) ≤ CC(Π). The ϵ-correctness of Π′ follows from the ϵ-correctness of Π since
with probability 1, F (x j ,Yj ) = 1 for j < i and F (X j ,yj ) = 1 for j > i and thus,

(AND ◦ Fk ) ((x1, ...,i−1,Xi ,Xi+1, ...,k ), (Y1, ...,i−1,Yi ,yi+1, ...,k )
)

= F (Xi ,Yi ).

A.2 Proof of Lemma 18

Deine α∗ such that log(1/α∗) = maxD 2WAPPcc∗ϵ,D (F ). Consider the following two-player zero-sum
game:

• Each pure row strategy is an input (x ,y) to F .
• Each pure column strategy is a distribution μ over pairs (S,b), where S is a rectangle and

b ∈ {0, 1,⊥}, such that P(S,b )∼μ [(x ,y) ∈ S and b � ⊥] ≤ α∗ holds for each (x ,y).
• The payof to the column player is P ((x ,y), μ ) � P(S,b )∼μ [(x ,y) ∈ S and b = F (x ,y)].

We claim that for every mixed row strategy D, there exists a pure column strategy μ such that
E(x,y )∼D [P ((x ,y), μ )] ≥ (1 − ϵ )α∗. By assumption, there exists a 2WAPPcc∗ϵ,D protocol Π with com-

munication cost c and associated α satisfying c + log(1/α ) ≤ log(1/α∗). Assume Π only uses pub-
lic randomness (by making any private randomness public). Consider the distribution μ over pairs
(S,b) sampled as follows:

• With probability 1 − α∗ · 2c/α , let S be arbitrary and b = ⊥.
• Otherwise, sample the randomness of Π and a uniformly random transcript (of which we

may assume there are exactly 2c many) from the induced deterministic protocol, and let
(S,b) be the rectangle and output of that transcript.

Then for each (x ,y),

P(S,b )∼μ [(x ,y) ∈ S and b � ⊥] = (α∗ · 2c/α ) · P
Π’s randomness[Π(x ,y) � ⊥] ·

Puniform transcript[Π(x ,y) has that transcript]

≤ (α∗ · 2c/α ) · α · (1/2c )
=α∗,

so μ is a valid pure column strategy. Similarly, for each (x ,y), we have P ((x ,y), μ ) = (α∗/α ) ·
PΠ’s randomness[Π(x ,y) = F (x ,y)], and thus,

E(x,y )∼D [P ((x ,y), μ )] = (α∗/α ) · P
(x,y )∼D, Π’s randomness[Π(x ,y) = F (x ,y)] ≥ (1 − ϵ )α∗.

Since the set of all pure column strategies μ forms a polytope, and since P ((x ,y), μ ) is an aine
function of μ for each (x ,y), wemay consider w.l.o.g. only the initely many pure column strategies
that are vertices of the polytope. Thus, we may employ the minimax theorem to ind a mixed col-
umn strategyν such that for every pure row strategy (x ,y),we haveEμ∼ν [P ((x ,y), μ )] ≥ (1 − ϵ )α∗.
Consider a protocol Π that publicly samples μ ∼ ν and (S,b) ∼ μ, then checks whether (x ,y) ∈ S
(with 2 bits of communication) and outputs b if so and ⊥ if not. Then for each (x ,y),

• P[Π(x ,y) � ⊥] = Eμ∼ν [P(S,b )∼μ [(x ,y) ∈ S and b � ⊥]] ≤ Eμ∼ν [α∗] = α∗ by the deinition
of pure column strategies, and

• P[Π(x ,y) = F (x ,y) = Eμ∼ν [P(S,b )∼μ [(x ,y) ∈ S and b = F (x ,y)]] = Eμ∼ν [P ((x ,y), μ )] ≥
(1 − ϵ )α∗.

Thus, Π witnesses that 2WAPPcc∗ϵ (F ) ≤ 2 + log(1/α∗).
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