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Abstract

We show that randomized communication complexity can be superlogarithmic in the partition

number of the associated communication matrix, and we obtain near-optimal randomized lower

bounds for the Clique vs. Independent Set problem. These results strengthen the deterministic

lower bounds obtained in prior work (Göös, Pitassi, and Watson, FOCS 2015). One of our

main technical contributions states that information complexity when the cost is measured with

respect to only 1-inputs (or only 0-inputs) is essentially equivalent to information complexity

with respect to all inputs.
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1 Introduction

A prior work [16] exhibited a boolean function F : X × Y → {0, 1} whose deterministic

communication complexity is superlogarithmic in the partition number

χ(F ) := χ0(F ) + χ1(F )

where χi(F ) is the least number of rectangles (sets of the form A × B where A ⊆ X , B ⊆ Y)

needed to partition the set F −1(i). In this follow-up work, we upgrade the lower-bound

results from [16] to hold against randomized protocols – here the notation Ω̃(m) hides factors

polylogarithmic in m.

I Theorem 1. There is an F with randomized communication complexity Ω̃(log1.5 χ(F )).

I Theorem 2. There is an F with randomized communication complexity Ω̃(log2 χ1(F )).

A main technical contribution of our paper – which is key to both the proofs of Theorem 1

as well as the subsequent strengthening by [5] – informally states that the information

complexity of a function (as defined by [9]) remains essentially unchanged if the cost is

∗ The full version of this work is available at [14], https://eccc.weizmann.ac.il/report/2015/169/.
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52:2 Randomized Communication vs. Partition Number

measured with respect to only 1-inputs (or only 0-inputs) rather than all inputs. We say a

protocol Π is ε-correct if it succeeds with probability at least 1 − ε on each input, and define

IC(Π) as the maximum over all input distributions of the information cost (defined later),

and define ICb(Π) similarly but with the maximum over all distributions over b-inputs (for

some b ∈ {0, 1}).

I Theorem 3. Fix any F and b ∈ {0, 1}. For every 1/3-correct protocol Π there is a 1/3-

correct protocol Π′ such that IC(Π′) ≤ O
(

ICb(Π) + log(CC(Π) + 2)
)

. Moreover, CC(Π′) ≤

O
(

CC(Π) · log(CC(Π) + 2)
)

.

In the theorem statement above, the additional lower order term involving the communication

cost appears due to technical reasons. This makes the statement slightly weaker but this

is mitigated in the aforementioned applications due to the additional fact that we can also

bound the communication cost of the new protocol.

1.1 Applications and discussion

Theorem 1

Prior to this work, no examples of F were known with randomized communication complexity

larger than log χ(F ). In fact, such a separation cannot be obtained using the usual rectangle-

based lower-bound methods, as catalogued by Jain and Klauck [17]. In particular, Theorem 1

shows that randomized complexity can be polynomially larger than the partition bound [17, 19],

which is one of the most powerful general lower bound methods for randomized communication.

(Consequently, our proof of Theorem 1 has to exploit another powerful lower-bound method,

namely information complexity.) Note also that every F has deterministic communication

complexity at least log χ(F ) and at most O(log2 χ(F )), where the latter upper bound is a

classical result of [2]. Theorem 1 shows that the upper bound cannot be improved much even

if we allow randomization.

Theorem 2

The relationship between χ1(F ) and the communication complexity of F can be equivalently

formulated in the language of the Clique vs. Independent Set game, played on a graph derived

from F (Alice holds a clique, Bob holds an independent set: do they intersect?). See [34, §4]

or [21, §4.4] for the equivalence. Yannakakis [34] (extending [2]) proved that every F has

deterministic communication complexity at most O(log2 χ1(F )). Our Theorem 2 shows that

this upper bound is essentially tight even if we allow randomized protocols, and it implies

that there is a graph on n nodes for which Clique vs. Independent Set requires Ω̃(log2 n)

randomized communication. (The deterministic upper bound O(log2 n) holds for all graphs.)

Extension complexity. In fact, we prove Theorem 2 by showing that (the negation of)

the function F has high approximate nonnegative rank (a.k.a. smooth rectangle bound; see

Section 2 for definitions). One consequence in the field of extended formulations (see [34, 11]

for definitions) is that we obtain a graph G such that the polytope generated by the so-called

“clique inequalities” of G has extension complexity nΩ̃(log n). (The slack matrix associated

with the clique inequalities is simply (the negation of) the Clique vs. Independent Set game.

These inequalities capture the independent set polytope of G when G is perfect – our graph

G however is not.) The previous bound in this direction was nΩ(log0.128 n) from a related

work [13]. Technically speaking, the lower bound from [13] was proved for nondeterministic

communication complexity, so the full result remains incomparable with Theorem 2.
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Log-rank conjecture. The famous log-rank conjecture of Lovász and Saks [30] postulates

that the deterministic communication complexity of F is polynomially related to log rank(F ).

Gavinsky and Lovett [12] have shown that the conjecture is equivalent to asking whether

the randomized communication complexity of F is polynomially bounded in log rank(F ).

Here our Theorem 2 gives at least a near-quadratic separation between the randomized

communication complexity of F and log rank(F ) ≤ log χ1(F ); the previous best lower bound

was Ω(log1.63 rank(F )) due to Kushilevitz [26]. Furthermore, Troy Lee has pointed out to us

that our construction underlying Theorem 2 exhibits nearly a 4-th power separation between

the logarithms of approximate nonnegative rank and approximate rank. This gives lower

bounds for the so-called log-approximate-rank conjecture [28, Conjecture 42], which is the

randomized analogue of the log-rank conjecture. The previous best separation was quadratic

(as witnessed by the set-disjointness problem).

Theorem 3

One-sided information complexity satisfies a famous direct sum property ([6, 9]): for any

protocol Π computing ANDk ◦ F k (i.e., the AND of k copies of F ) there exists a protocol Π′

computing F with IC1(Π′) ≤ O(IC1(Π)/k) (see, e.g., [5, Claim 37]). One can also formulate

a dual lemma for ORk ◦ F k in terms of IC0. This is the context where our Theorem 3

relating IC and IC1 (and IC0) is useful: it implies that analogous direct sum lemmas hold for

two-sided information complexity, up to low order terms. Iterating such a two-sided lemma

some constantly many times, one obtains an alternative proof for the result that every n-bit

constant-depth balanced read-once AND–OR tree with binary bottom fan-in (defining an

Alice–Bob bipartition of input bits) has randomized communication complexity Ω(n); this

result was first proved in [20, 29] even for unbalanced trees.

Another application of Theorem 3 appears in the recent work [5]. They improved our

1.5-th power separation in Theorem 1 to near-quadratic (which is optimal) by iteratively

applying Theorem 3 to analyze a communication analogue of a query-complexity construction

due to Ambainis, Kokainis, and Kothari [4] (which is a variation of usual AND–OR trees).

1.2 Our techniques

The basic strategy in [16] for obtaining the deterministic versions of Theorems 1–2 was to

first obtain analogous gaps in the easier-to-understand world of query complexity, then “lift”

the results to communication complexity using a so-called simulation lemma. For getting

randomized lower bounds, two obstacles immediately present themselves: (i) The functions

studied in [16] are too easy for randomized protocols (as shown by [31]). (ii) There is no

known simulation lemma for the bounded-error randomized setting.

To handle obstacle (i), we modify the functions from [16] in a way that preserves their

low partition numbers while eliminating the structure that was exploitable by randomized

protocols. (Similar constructions have been given by [3, 1].) To handle obstacle (ii) for

Theorem 2, we actually prove a lower bound for a model that is stronger than the standard

randomized model, but for which there is a known simulation lemma [15]. This idea alone

does not handle obstacle (ii) for Theorem 1, though. For that, we start by giving a proof of the

query complexity analogue of Theorem 1, then develop a way to mimic that argument using

communication complexity, by going through information complexity (exploiting machinery

from [23] and [10]). In the process, this yields our Theorem 3 (one-sided is equivalent to

two-sided information complexity), which is of independent interest.

ICALP 2017
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2 Complexity Measures

We study the following communication complexity models/measures; see Figure 1. For any

complexity measure C we write coC(F ) := C(¬F ) and 2C(F ) := max{C(F ), coC(F )} for short.

Pcc: The deterministic communication complexity of F is denoted Pcc(F ).

BPPcc: The randomized communication complexity of F is denoted BPPcc(F ).

UPcc: Recall (e.g., [27, 21]) that a cost-c nondeterministic protocol for F corresponds

to a covering (allowing overlaps) of F −1(1) with 2c rectangles. A nondeterministic

protocol is unambiguous if on every 1-input there is a unique accepting computation;

combinatorially, this means we have a disjoint covering (partition) of F −1(1). We define

UPcc(F ) := dlog χ1(F )e. Thus coUPcc(F ) = dlog χ0(F )e, and 2UPcc(F ) ∈ dlog χ(F )e ± 1.

WAPPcc: Abstractly speaking, a WAPP computation (Weak Almost-Wide PP; introduced

in [8]) is a randomized computation that accepts 1-inputs with probability in [(1 − ε)α, α],

and 0-inputs with probability in [0, εα], where ε < 1/2 is an error parameter and

α = α(n) > 0 is arbitrary.

Instantiating this for protocols, we define WAPPcc

ε (F ) as the least “cost” of a randomized

(public-coin) protocol Π that computes F in the above sense; the “cost” of a protocol Π with

parameter α is defined as the usual communication cost (number of bits communicated)

plus log(1/α). In this definition, we may assume w.l.o.g. that Π is zero-communication [23]:

Π is simply a probability distribution over rectangles R, and Π accepts an input (x, y) iff

(x, y) ∈ R for the randomly chosen R. Such a protocol Π exchanges only 2 bits to check

the condition (x, y) ∈ R, and the rest of the cost is coming from having a tiny α.

We note that WAPPcc corresponds to the (one-sided) smooth rectangle bound of [17],

which is known to be equivalent to approximate nonnegative rank [24]. A consequence of

this equivalence is that WAPPcc could alternatively be defined without charging anything

for α > 0, as long as we restrict our protocols to be private-coin; see also [15, Theorem 9].

Also, 2WAPPcc is equivalent to the relaxed partition bound of [23] (we elaborate on this

in Section 4.2). We remark that WAPPcc is not amenable to efficient amplification of

the error parameter; there can be an exponential gap between WAPPcc

ε and WAPPcc

δ for

different constants ε and δ, at least for partial functions [15, Theorem 6].

Define the following decision tree models/measures for a boolean function f : {0, 1}n → {0, 1}:

Pdt: The deterministic decision tree complexity of f is denoted Pdt(f).

BPPdt: The randomized decision tree complexity of f is denoted BPPdt(f).

UPdt: A nondeterministic decision tree is a DNF formula. We think of the conjunctions

in the DNF formula as certificates – partial assignments to inputs that force the function

to be 1. The cost is the maximum number of input bits read by a certificate. A

nondeterministic decision tree is unambiguous if on every 1-input there is a unique

accepting certificate. We define UPdt(f) as the least cost of an unambiguous decision tree

for f . Other works that have studied unambiguous decision trees include [33, 7, 13, 16, 25].

WAPPdt: We define WAPPdt

ε (f) as the least height of a randomized decision tree that

accepts 1-inputs with probability in [(1 − ε)α, α], and 0-inputs with probability in [0, εα],

where α = α(n) > 0 is arbitrary. (Note that only the number of queries matters; we

do not charge for α being small.) Like the communication version, this measure is not

amenable to efficient amplification of the error parameter [15].

The analogue of a WAPPcc protocol being w.l.o.g. a distribution over rectangles is that a

WAPPdt decision tree is w.l.o.g. a distribution over conjunctions. This implies that we

may characterize WAPPdt

ε (f) using conical juntas: A conical junta h is a nonnegative
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P 2UP UP

BPP 2WAPP WAPP
≥ information complexity = 2-sided smooth rectangle = 1-sided smooth rectangle

= log χ = log χ1

Figure 1 Models of computation that can be instantiated for both communication and query

complexity. Here A B means that model B can simulate model A without any overhead.

linear combination of conjunctions. That is, h =
∑

wCC where the sum ranges over

conjunctions C : {0, 1}n → {0, 1} and wC ≥ 0 for all C. Then WAPPdt

ε (f) is the least

degree (maximum width of a conjunction with positive weight in h) of a conical junta

h that ε-approximates f in the sense that h(z) ∈ [1 − ε, 1] for all z ∈ f−1(1), and

h(z) ∈ [0, ε] for all z ∈ f−1(0). Other works have studied conical juntas under such

names as the (one-sided) partition bound for query complexity [17] and query complexity

in expectation [22].

3 Overview

In this section we give an outline for obtaining our main results, Theorems 1–2. For

complexity models/measures C and C′, we informally say “C-vs-C′ gap” to mean the existence

of a function whose C complexity is significantly higher than its C′ complexity. Using the

notation defined in Section 2, we can rephrase our main results as follows.

I Theorem 1 (BPPcc-vs-2UPcc). There is an F such that BPPcc(F ) ≥ Ω̃(2UPcc(F )1.5).

I Theorem 2 (BPPcc-vs-UPcc). There is an F such that BPPcc(F ) ≥ Ω̃(UPcc(F )2).

1. Tribes-List (Section 3.1): Our starting point is to define Tribes-List, a variant of

a function introduced in [16]. Its purpose is to witness a BPP-vs-UP gap for query

complexity.

2. Composition (Section 3.2): Next, we modify Tribes-List using two types of function

composition, which we call lifting and AND-composition, to obtain candidate functions

for BPP-vs-2UP gaps in both query and communication complexity.

3. Overview of proofs (Section 3.3): With the candidate functions defined, we outline our

strategy to prove the desired communication lower bounds.

3.1 Tribes-List

The Tribes-List function TL : {0, 1}n → {0, 1} is defined on n := Θ(k3 log k) bits where k is a

parameter. We think of the input as a k × k matrix M with entries Mij taking values from

the alphabet Σ := {0, 1} × ([k]k−1 ∪ {⊥}). Here each entry is encoded with Θ(k log k) bits,

and we assume that the encoding of Mij = (mij , pij) ∈ Σ is such that a single bit is used to

encode the value mij ∈ {0, 1} and another bit is used to encode whether or not pij = ⊥. If

pij 6= ⊥, then we can learn its exact value in [k]k−1 by querying all the Θ(k log k) bits.

Informally, we have TL(M) = 1 iff M has a unique all-(1, ∗) column (here ∗ is a wildcard)

that also contains an entry with k − 1 pointers to entries of the form (0, ∗) in all other

ICALP 2017
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Unambiguous decision tree for TL:

Nondeterministically guess a column in-

dex j ∈ [k]. Consider the entries Mij =

(mij , pij) for i ∈ [k]: check that mij = 1

for all i and that pij 6= ⊥ for at least one i

(this is ≤ 2k queries). Let i be the first row

index for which pij 6= ⊥ and read the full

value of pij (this is Θ(k log k) queries). In-

terpret pij ∈ [k][k]r{j} as a list of pointers,

describing a row index for all columns other

than j. For each of these k − 1 pointed-to

entries Mi′j′ , check that mi′j′ = 0 (this is

k − 1 queries).

1, ⊥

1, ⊥

1, ⊥

1, pij

1, ∗

0, ∗

0, ∗

0, ∗

0, ∗

Figure 2 The unambiguous decision tree that defines the Tribes-List function.

columns. More formally, we define TL in Figure 2 by describing an unambiguous decision

tree of cost Θ(k log k) computing it.

3.2 Composition

Given a base function witnessing some complexity gap, we will establish a different but related

complexity gap by transforming the function into a more complex one via one (or both)

of the following operations involving function composition: lifting and AND-composition.

Lifting is used to go from a query complexity gap to an analogous communication complexity

gap. AND-composition is used to go from a gap with a UP upper bound to a gap with a 2UP

upper bound. To show that an operation indeed converts one gap to another gap, we need

two types of results: an observation showing how the relevant upper bounds behave under

the operation, and a more difficult lemma showing how the relevant lower bounds behave

under the operation.

Lifting

Let g : {0, 1}b × {0, 1}b → {0, 1} be a fixed two-party function (called the gadget). We

can lift f : {0, 1}n → {0, 1} via the gadget g to obtain a two-party composed function

f ◦ gn : ({0, 1}b)n × ({0, 1}b)n → {0, 1} where Alice is given x = (x1, . . . , xn) and Bob is

given y = (y1, . . . , yn) (with each xi, yi ∈ {0, 1}b) and the goal is to compute (f ◦ gn)(x, y) :=

f(g(x1, y1), . . . , g(xn, yn)).

A decision tree for f generally yields a corresponding type of communication protocol for

f ◦ gn: whenever the decision tree queries the i-th bit, Alice and Bob communicate b + 1 bits

to evaluate the corresponding bit g(xi, yi). By counting conjunctions, it can be verified that

such a connection holds for the 2UP and UP models as well:

I Observation 4. For all f : {0, 1}n → {0, 1}, g : {0, 1}b × {0, 1}b → {0, 1}, and C ∈

{2UP, UP}, we have Ccc(f ◦ gn) ≤ Cdt(f) · O(b + log n).

For any model C, a result in the converse direction (giving a black-box method of

converting a communication protocol for f ◦ gn into a comparably efficient decision tree for
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f) is highly nontrivial and is called a simulation lemma. In this work, we use a simulation

lemma for C = WAPP:

I Lemma 5 (Simulation for WAPP [15]). For all f : {0, 1}n → {0, 1} and constants 0 < ε <

δ < 1/2, we have WAPPdt

δ (f) ≤ O
(

WAPPcc

ε (f ◦gn)/ log n
)

where g : {0, 1}b ×{0, 1}b → {0, 1}

is the inner-product gadget defined as follows: b = b(n) := 100 log n, and g(xi, yi) :=

〈xi, yi〉 mod 2.

AND-composition

Given f : {0, 1}n → {0, 1} we can compose it with the k-bit AND function to obtain AND ◦

fk : ({0, 1}n)k → {0, 1} defined by (AND ◦ fk)(z1, . . . , zk) = 1 iff f(zi) = 1 for all i. Similarly,

given F : X × Y → {0, 1} we can obtain AND ◦ F k : X k × Yk → {0, 1} defined by (AND ◦

F k)(x, y) = 1 iff F (xi, yi) = 1 for all i.

AND-composition converts a UP upper bound into a 2UP upper bound [16]:

I Observation 6. For all f and k, we have 2UPdt(AND ◦ fk) ≤ k · UPdt(f) + O(UPdt(f)2).

Similarly, for all F and k, we have 2UPcc(AND ◦ F k) ≤ k · UPcc(F ) + O(UPcc(F )2 + log k).

The two parts of Observation 6 are analogous, so we describe the idea only in terms

of the query complexity part. Since coUPdt(f) ≤ Pdt(f) ≤ O(UPdt(f)2), it suffices to have

coUPdt(f) as the second term on the right side. The idea is to let a 1-certificate for AND ◦ fk

be comprised of 1-certificates for each of the k copies of f , and a 0-certificate for AND ◦ fk

be comprised of a 0-certificate for the first copy of f that evaluates to 0, together with

1-certificates for each of the preceding copies of f .

On the other hand, the following lemma (proven in Section 4.1) shows that randomized

query complexity goes up by a factor of k under AND-composition.

I Lemma 7. For all f and k, we have BPPdt(f) ≤ O
(

BPPdt(AND ◦ fk)/k
)

.

We note that Lemma 7 qualitatively strengthens the tight direct sum result for randomized

query complexity in [18] since computing the outputs of all k copies of f is at least as hard

as computing the AND of the outputs. Similarly, if we could prove an analogue of Lemma 7

for communication complexity, it would qualitatively strengthen the notoriously-open tight

direct sum conjecture for randomized communication complexity.

3.3 Overview of proofs

The following diagram shows how we construct the functions used to witness our gaps.

Starting with some f , we can lift it to obtain F , or we can apply AND-composition to obtain

f∗. We can obtain F ∗ by either lifting f∗ or equivalently applying AND-composition to F .

f f∗

F F ∗

coWAPP
dt-vs-UP

dt
BPP

dt-vs-2UP
dt

coWAPP
cc-vs-UP

cc
BPP

cc-vs-2UP
cc

AND-composition

lifting lifting

AND-composition

ICALP 2017
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Proof of Theorem 2

We start by discussing the proof of Theorem 2 as it will be used in the proof of Theorem 1.

We actually prove the following stronger version of Theorem 2 that gives a lower bound even

against coWAPPcc

ε (F ) ≤ O(BPPcc(F )):

I Theorem 2? (coWAPPcc-vs-UPcc). There is an F s.t. coWAPPcc

0.04(F ) ≥ Ω̃(UPcc(F )2).

Our proof follows the same outline as in [16] and only requires us to lift the following

analogous result for query complexity (proved in the full version [14]):

I Lemma 8 (coWAPPdt-vs-UPdt). coWAPPdt

0.05(TL) ≥ Ω̃(UPdt(TL)2).

To derive Theorem 2?, set f := TL and F := f◦gn, where g is the gadget from Lemma 5 and

n is the input length of f . Recall that UPdt(f) ≥ nΩ(1). Thus by Observation 4, UPcc(F ) ≤

UPdt(f) · O(log n) ≤ Õ(UPdt(f)), and by Lemma 5, coWAPPcc

0.04(F ) ≥ Ω(coWAPPdt

0.05(f) ·

log n) ≥ Ω(coWAPPdt

0.05(f)). Thus coWAPPcc

0.04(F ) ≥ Ω̃(UPcc(F )2).

Proof of Theorem 1

An “obvious” strategy for Theorem 1 would be again to first prove the analogous query

complexity result and then lift it to communication complexity. (This is the outline used for

the analogous result in [16].) In other words, we would follow the lower-right path in the

above diagram:

Obvious strategy

(a) Start with f witnessing a BPPdt-vs-UPdt gap.

(b) Obtain f∗ witnessing a BPPdt-vs-2UPdt gap by applying AND-composition to f .

(c) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by lifting f∗.

We have the tools to complete steps (a) and (b):

I Lemma 9 (BPPdt-vs-2UPdt). There is an f such that BPPdt(f) ≥ Ω̃(2UPdt(f)1.5).

Proof. This is witnessed by f∗ := AND ◦ TLk where k := UPdt(TL). By Observation 6,

2UPdt(f∗) ≤ O(k2), and by Lemmas 7–8,

BPPdt(f∗) ≥ Ω(k · BPPdt(TL)) ≥ Ω(k · coWAPPdt

0.05(TL)) ≥ Ω̃(k3) . J

Unfortunately, we do not know how to carry out step (c), because we currently lack a

simulation lemma for BPP. (We believe that such a lemma is true, and it is an interesting

open problem to prove this!) We get around this obstacle by reversing the order of steps (b)

and (c), that is, we instead follow the upper-left path in the diagram:

Modified strategy

(a′) Start with f witnessing a coWAPPdt-vs-UPdt gap.

(b′) Obtain F witnessing a coWAPPcc-vs-UPcc gap by lifting f .

(c′) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by applying AND-composition to F .
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Steps (a′) and (b′) are just Theorem 2?. For step (c′) it would suffice to have an analogue of

Lemma 7 for communication complexity. This is open, but fortunately we have some wiggle

room since it suffices to have coWAPPε instead of BPP on the left side of Lemma 7. For this,

we can prove a communication analogue (indeed, with 2WAPPε instead of coWAPPε):

I Lemma 10. For all F , k, and constants 0 < ε < 1/2, we have

2WAPPcc

ε (F ) ≤ O
(

BPPcc(AND ◦ F k)/k + log BPPcc(AND ◦ F k)
)

.

To derive Theorem 1, let F be the function in Theorem 2?, and let F ∗ := AND ◦F k where

k := UPcc(F ). Then F ∗ witnesses Theorem 1: By Observation 6, 2UPcc(F ∗) ≤ O(k2), and

by Lemma 10, BPPcc(F ∗) ≥ Ω
(

k · (2WAPPcc

0.04(F ) − O(log k))
)

≥ Ω
(

k · (coWAPPcc

0.04(F ) −

O(log k))
)

≥ Ω̃(k3).

Proof of Lemma 10

We start with the intuition for the proof of Lemma 7, which is a warmup for Lemma 10.

For brevity let f∗ := AND ◦ fk. Given an input z for f , the basic idea is to plant z into a

random coordinate of f∗(z1, . . . , zk), and plant random 1-inputs into the other coordinates,

and then run the randomized decision tree for f∗. If q is the query complexity of f∗, the

expected number of bits of z that are queried (over a random 1-input) will be at most q/k.

Our new randomized decision tree will simulate this but abort after 8q/k queries to z have

been made. If an answer is returned, we output the same value for f(z), and if no answer

is returned within this many queries, then we output 0. A simple analysis shows that we

succeed with high probability in the average-case (which is equivalent to worst-case by the

minimax theorem).

To prove Lemma 10, we would like to mimic this argument in the communication

world, using the fact that internal information complexity is sandwiched between BPPcc

and 2WAPPcc [23] and satisfies a sort of AND-composition analogous to Lemma 7 using

well-known properties (by planting the input into a random coordinate, and planting random

1-inputs into the other coordinates). However there is a significant barrier to this idea “just

working”: the AND-composition property (direct sum lemma) requires a distribution over

1-inputs of F (one-sided), while the relation to 2WAPPcc requires an arbitrary distribution

over inputs to F (two-sided). To bridge this divide, we prove a new property of information

complexity: the one-sided version is essentially equivalent to the two-sided version. A key

ingredient in showing the latter is the “information odometer” of [10], which allows us to

keep track of the amount of information that has been revealed, and abort the protocol once

we have reached our limit, and argue that we can carry this out without revealing too much

extra information. We note that this one-vs-two sided information complexity lemma is the

only component of the proof of Theorem 1 that distinguishes between arbitrary rectangle

partitions (2UPcc) and rectangle partitions induced by protocols (Pcc).

Organization

The only ingredients that remain to be proved are Lemma 8 (which we prove in the full

version [14] and Lemma 7 and Lemma 10 (both of which we prove in Section 4).

4 AND-Composition Lemmas

In this section we prove Lemma 7 and Lemma 10, restated here for convenience.
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I Lemma 11. For all f and k, we have BPPdt(f) ≤ O
(

BPPdt(AND ◦ fk)/k
)

.

I Lemma 12. For all F , k, and constants 0 < ε < 1/2, we have

2WAPPcc

ε (F ) ≤ O
(

BPPcc(AND ◦ F k)/k + log BPPcc(AND ◦ F k)
)

.

4.1 AND-composition for query complexity

We now prove Lemma 7. For brevity let f∗ := AND ◦ fk. Let T ∗ be a height-q randomized

decision tree for f∗ with error 1/8. We design a height-8q/k randomized decision tree for f

with error 1/4.

Let D be an arbitrary distribution over f−1(1). Consider the following randomized

decision tree T that takes z ∈ {0, 1}n as input:

1. Pick i ∈ [k] uniformly at random and let zi := z.

2. For j ∈ [k] r {i} sample zj ∼ D independently.

3. Run T ∗(z1, . . . , zk) until it has made 8q/k queries in the i-th component.

4. If T ∗ already produced an output in Step 3, output the same bit; else output 0.

Note that with probability 1 we have f∗(z1, . . . , zk) = f(z). Let RT denote T ’s randomness

and RT ∗ denote T ∗’s randomness. If f(z) = 0 then

PRT
[T (z) = 1] ≤ max(z1,...,zk)∈(f∗)−1(0) PRT ∗

[T ∗(z1, . . . , zk) = 1] ≤ 1/8 ≤ 1/4.

Furthermore,

Pz∼D, RT
[T (z) = 0] = Pz1,...,zk∼D, i∈[k], RT ∗

[

T ∗(z1, . . . , zk) outputs 0 or makes more

than 8q/k queries in the i-th component

]

≤ max(z1,...,zk)∈(f∗)−1(1)





PRT ∗ [T ∗(z1, . . . , zk) = 0] +

maxRT ∗ Pi∈[k]

[

T ∗(z1, . . . , zk) makes more than

8q/k queries in the i-th component

]





≤ 1/8 + 1/8 = 1/4.

Now let D be an arbitrary distribution over {0, 1}n and define T w.r.t. (D | f−1(1)). We

have

Pz∼D, RT
[T (z) 6= f(z)] =

∑

b∈{0,1} Pz∼(D | f−1(b)), RT
[T (z) 6= b] · Pz∼D[f(z) = b]

≤
∑

b∈{0,1}(1/4) · Pz∼D[f(z) = b] = 1/4.

By the minimax theorem, there is a height-8q/k randomized decision tree (a mixture of the

T ’s) that on any input produces the wrong output with probability ≤ 1/4.

4.2 Definitions

We adopt the following conventions throughout the proof of Lemma 10. We denote random

variables with upper-case letters, and we denote particular outcomes of the random variables

with the corresponding lower-case letters. All communication protocols are randomized

and mixed-coin, and we use (R, RA, RB) to denote the public randomness, Alice’s private

randomness, and Bob’s private randomness, respectively. We say a protocol Π is ε-correct

for F if for all (x, y), PR,RA,RB
[Π(x, y) = F (x, y)] ≥ 1 − ε. For a distribution D over
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inputs, we say Π is (ε, D)-correct for F if P(X,Y )∼D, R,RA,RB
[Π(X, Y ) = F (X, Y )] ≥ 1 − ε.

The internal information cost of a protocol Π with respect to (X, Y ) ∼ D is defined as

ICD(Π) := I(R, M ; X | Y ) + I(R, M ; Y | X) = I(M ; X | Y, R) + I(M ; Y | X, R) where the

random variable M is the concatenation of all messages. We also let CC(Π) denote the

worst-case communication cost of Π.

It is convenient for us to work with a measure 2WAPPcc∗ that is defined slightly differently

from 2WAPPcc but is equivalent in the sense that for all F and 0 < ε < 1/2, 2WAPPcc

ε (F ) ≤

2WAPPcc∗
ε (F ) ≤ O(2WAPPcc

ε/2(F )). We note that 2WAPPcc directly expresses the two-sided

smooth rectangle bound of [17], while 2WAPPcc∗ directly expresses the relaxed partition

bound of [23] and was the definition used in [15].

I Definition 13. We define 2WAPPcc∗
ε (F ) as the minimum of CC(Π)+log(1/α) over all α > 0

and all protocols Π with output values {0, 1, ⊥} such that for all (x, y), P[Π(x, y) 6= ⊥] ≤ α

and P[Π(x, y) = F (x, y)] ≥ (1 − ε)α (i.e., Π is (1 − (1 − ε)α)-correct).

We also need the distributional version of 2WAPPcc∗.

I Definition 14. For an input distribution D, we define 2WAPPcc∗
ε,D(F ) as the minimum of

CC(Π) + log(1/α) over all α > 0 and all protocols Π with output values {0, 1, ⊥} such that

P[Π(x, y) 6= ⊥] ≤ α for all (x, y), and P[Π(X, Y ) = F (X, Y )] ≥ (1 − ε)α for (X, Y ) ∼ D (i.e.,

Π is (1 − (1 − ε)α, D)-correct).

4.3 AND-composition for communication complexity

We now outline the proof of Lemma 10. Recall that the proof of Lemma 7 involved these

steps:

(i) embedding the input into a random coordinate of a k-tuple and filling the other coordi-

nates with random 1-inputs (to cut the cost on 1-inputs by a factor k),

(ii) aborting the execution if the cost became too high (to ensure low cost also on 0-inputs

while maintaining average-case correctness on 1-inputs),

(iii) using the minimax theorem to go from average-case to worst-case correctness.

We start by noting that an analogue of (i) holds for information complexity (which lower

bounds BPPcc). Then as one of our main technical contributions we prove an analogue of (ii)

for information complexity. Then inbetween (ii) and (iii) we insert a step applying the known

result that information complexity upper bounds 2WAPPcc∗ in the distributional setting.

Finally we use the analogue of (iii) for 2WAPPcc∗. Formally, Lemma 10 follows by stringing

together the following lemmas.

I Lemma 15. Fix any F , k, 0 < ε < 1/2, and distribution D over F −1(1). For every ε-correct

protocol Π for AND ◦ F k there is an ε-correct protocol Π′ for F with ICD(Π′) ≤ CC(Π)/k

and CC(Π′) ≤ CC(Π).

I Lemma 16. Fix any F , constants 0 < ε < δ < 1/2, and input distribution D, and let

D1 := (D | F −1(1)). For every (ε, D)-correct protocol Π there is a (δ, D)-correct protocol Π′

with ICD(Π′) ≤ O
(

ICD1(Π) + log(CC(Π) + 2)
)

.

I Lemma 17. Fix any F , constants 0 < ε < δ < 1/2, and input distribution D. For every

(ε, D)-correct protocol Π we have 2WAPPcc∗
δ,D(F ) ≤ O(ICD(Π) + 1).

I Lemma 18. Fix any F and 0 < ε < 1/2. Then 2WAPPcc∗
ε (F ) ≤ 2 + maxD 2WAPPcc∗

ε,D(F ).
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Lemma 15 is a standard application of the “direct sum” property of information cost.

Lemma 16 is proved in Section 4.4 and relies on [10]. Lemma 17 is due to [23, Theorem 1.1

of the ECCC version]. Lemma 18 follows from an argument in [23, Appendix A of the ECCC

version] that uses LP duality.

The moral conclusion of Lemma 16 is that “one-sided information complexity” is essentially

equivalent to “two-sided information complexity” for average-case protocols. Combining

Lemma 16 with [9, Theorem 3.5 of the ECCC version] shows that a similar equivalence

holds for worst-case protocols. More specifically, a distribution-independent definition of

information complexity for bounded-error protocols can be obtained by maximizing over

all input distributions; our corollary shows that this measure is essentially unchanged if we

maximize only over distributions over 1-inputs (or symmetrically, 0-inputs).

I Corollary 19. Fix any F , constants 0 < ε < δ < 1/2, and b ∈ {0, 1}. Then

inf
δ-correct

protocols Π

max
D over

all inputs

ICD(Π) ≤ max
D over
b-inputs

inf
ε-correct

protocols Π

O
(

ICD(Π) + log(CC(Π) + 2)
)

.

Theorem 3 follows by swapping the quantifiers on the right side of the inequality in

Corollary 19 (which only weakens the statement), and by straightforwardly accounting for

the communication cost in the proof. We can also assume the protocol Π′ has error ≤ 1/3 by

a standard error reduction technique (take a majority vote of several runs of the protocol),

which does not affect information complexity except by constant factors. We do not directly

employ this worst-case version of Lemma 16, but it is used in the follow-up work [5].

4.4 One-sided information vs. two-sided information

Intuition for Lemma 16

Recall the following idea, which was implicit in the proof of Lemma 7. Suppose we have a

randomized decision tree computing some function, and we have a bound b on the expected

number of queries made over a random 1-input. Then to obtain a randomized decision tree

with a worst-case query bound, we can keep track of the number of queries made during the

execution and halt and output 0 if it exceeds, say, 8b. Correctness on 0-inputs is maintained

since we either run the original decision tree to completion and thus output 0 with high

probability, or we abort and output 0 anyway. We get average-case correctness on 1-inputs

since by Markov’s inequality, with probability at least 7/8 the original decision tree uses at

most 8b queries, in which case we run it to completion and output 1 with high probability.

The high-level intuition is to mimic this idea for information complexity. We have a

protocol with a bound on the information cost w.r.t. the distribution D1 over 1-inputs. The

“information odometer” of [10] allows us to “keep track of” information cost, so we can halt

and output 0 if it becomes too large. This will guarantee that the information cost is low

w.r.t. the input distribution D, and correctness on 0-inputs is maintained. However, there is

a complication with showing the average-case correctness on 1-inputs.

For each computation path specified by an input (x, y), an outcome of public randomness

r, and a full sequence of messages m, there is a contribution cx,y,r,m such that the information

cost w.r.t. D is the expectation of cx,y,r,m over a random computation path with (x, y) ∼ D.

Similarly, there is a contribution c1
x,y,r,m such that the information cost w.r.t. D1 is the

expectation of c1
x,y,r,m over a random computation path with (x, y) ∼ D1. These contributions

play the role of “number of queries” along a computation path in the decision tree setting, but

a crucial difference is that cx,y,r,m 6= c1
x,y,r,m in general; i.e., the contribution to information

cost depends on the input distribution (whereas number of queries did not). To show the
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average-case correctness on 1-inputs, we need a bound on the typical value of cx,y,r,m, whereas

the assumption that information cost w.r.t. D1 is low gives us a bound on the typical value

of c1
x,y,r,m.

Thus the heart of the argument is to show that typically, cx,y,r,m is not much larger

than c1
x,y,r,m. Intuitively, one might expect the difference to be at most 1, since the only

additional information that can be revealed (beyond what is revealed under D1) should be

the fact that (x, y) is a 1-input (which is 1 bit of information). More precisely, we show that

for given (x, y), the expected difference depends on how balanced F is on the x row and the

y column. Then we just need to note that F is typically reasonably balanced for both the x

row and the y column.

The formal proof of Lemma 16 is deferred to the full version [14] due to space constraints.
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