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—— Abstract

We show that randomized communication complexity can be superlogarithmic in the partition

number of the associated communication matrix, and we obtain near-optimal randomized lower
bounds for the Clique vs. Independent Set problem. These results strengthen the deterministic
lower bounds obtained in prior work (Go66s, Pitassi, and Watson, FOCS 2015). One of our
main technical contributions states that information complexity when the cost is measured with
respect to only 1-inputs (or only O-inputs) is essentially equivalent to information complexity
with respect to all inputs.
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1 Introduction

A prior work [16] exhibited a boolean function F': X x ¥ — {0,1} whose deterministic
communication complexity is superlogarithmic in the partition number

X(F) = xo(F)+ x1(F)

where y;(F) is the least number of rectangles (sets of the form A x B where A C X, B C Y)
needed to partition the set F~1(i). In this follow-up work, we upgrade the lower-bound
results from [16] to hold against randomized protocols — here the notation €(m) hides factors
polylogarithmic in m.

» Theorem 1. There is an F with randomized communication complexity Q(log™® x(F)).
» Theorem 2. There is an F with randomized communication complexity Q(log® x1(F)).

A main technical contribution of our paper — which is key to both the proofs of Theorem 1
as well as the subsequent strengthening by [5] — informally states that the information
complexity of a function (as defined by [9]) remains essentially unchanged if the cost is

* The full version of this work is available at [14], https://eccc.weizmann.ac.il/report/2015/169/.
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measured with respect to only 1-inputs (or only 0-inputs) rather than all inputs. We say a
protocol II is e-correct if it succeeds with probability at least 1 — € on each input, and define
IC(IT) as the maximum over all input distributions of the information cost (defined later),
and define IC"(IT) similarly but with the maximum over all distributions over b-inputs (for
some b € {0,1}).

» Theorem 3. Fiz any F and b € {0,1}. For every 1/3-correct protocol I there is a 1/3-
correct protocol II' such that IC(IT') < O(ICb(H) + log(CC(II) + 2)). Moreover, CC(II') <
O(CC(M) - log(CC(I) + 2)).

In the theorem statement above, the additional lower order term involving the communication
cost appears due to technical reasons. This makes the statement slightly weaker but this
is mitigated in the aforementioned applications due to the additional fact that we can also
bound the communication cost of the new protocol.

1.1 Applications and discussion
Theorem 1

Prior to this work, no examples of F' were known with randomized communication complexity
larger than log x(F). In fact, such a separation cannot be obtained using the usual rectangle-
based lower-bound methods, as catalogued by Jain and Klauck [17]. In particular, Theorem 1
shows that randomized complexity can be polynomially larger than the partition bound [17, 19],
which is one of the most powerful general lower bound methods for randomized communication.
(Consequently, our proof of Theorem 1 has to exploit another powerful lower-bound method,
namely information complexity.) Note also that every F' has deterministic communication
complexity at least log x(F) and at most O(log? x(F)), where the latter upper bound is a
classical result of [2]. Theorem 1 shows that the upper bound cannot be improved much even
if we allow randomization.

Theorem 2

The relationship between x1(F') and the communication complexity of F' can be equivalently
formulated in the language of the Clique vs. Independent Set game, played on a graph derived
from F (Alice holds a clique, Bob holds an independent set: do they intersect?). See [34, §4]
or [21, §4.4] for the equivalence. Yannakakis [34] (extending [2]) proved that every F has
deterministic communication complexity at most O(log? x1(F)). Our Theorem 2 shows that
this upper bound is essentially tight even if we allow randomized protocols, and it implies
that there is a graph on n nodes for which Clique vs. Independent Set requires Q(log2 n)
randomized communication. (The deterministic upper bound O(log® n) holds for all graphs.)

Extension complexity. In fact, we prove Theorem 2 by showing that (the negation of)
the function F' has high approzimate nonnegative rank (a.k.a. smooth rectangle bound; see
Section 2 for definitions). One consequence in the field of extended formulations (see [34, 11]
for definitions) is that we obtain a graph G such that the polytope generated by the so-called
“clique inequalities” of G has extension complexity n®*(°8™)  (The slack matrix associated
with the clique inequalities is simply (the negation of) the Clique vs. Independent Set game.
These inequalities capture the independent set polytope of G when G is perfect — our graph

Qog™** 1) from a related

G however is not.) The previous bound in this direction was n
work [13]. Technically speaking, the lower bound from [13] was proved for nondeterministic

communication complexity, so the full result remains incomparable with Theorem 2.
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Log-rank conjecture. The famous log-rank conjecture of Lovész and Saks [30] postulates
that the deterministic communication complexity of F' is polynomially related to log rank(F).
Gavinsky and Lovett [12] have shown that the conjecture is equivalent to asking whether
the randomized communication complexity of F is polynomially bounded in logrank(F).
Here our Theorem 2 gives at least a near-quadratic separation between the randomized
communication complexity of F' and logrank(F') < log x1(F); the previous best lower bound
was Q(log™% rank(F)) due to Kushilevitz [26]. Furthermore, Troy Lee has pointed out to us
that our construction underlying Theorem 2 exhibits nearly a 4-th power separation between
the logarithms of approximate nonnegative rank and approximate rank. This gives lower
bounds for the so-called log-approzimate-rank conjecture [28, Conjecture 42], which is the
randomized analogue of the log-rank conjecture. The previous best separation was quadratic
(as witnessed by the set-disjointness problem).

Theorem 3

One-sided information complexity satisfies a famous direct sum property ([6, 9]): for any
protocol IT computing ANDy o F* (i.e., the AND of k copies of F') there exists a protocol I’
computing F' with IC'(II") < O(IC*(IT) /k) (see, e.g., [5, Claim 37]). One can also formulate
a dual lemma for ORy, o F¥ in terms of IC. This is the context where our Theorem 3
relating IC and IC* (and ICO) is useful: it implies that analogous direct sum lemmas hold for
two-sided information complexity, up to low order terms. Iterating such a two-sided lemma
some constantly many times, one obtains an alternative proof for the result that every n-bit
constant-depth balanced read-once AND—OR tree with binary bottom fan-in (defining an
Alice-Bob bipartition of input bits) has randomized communication complexity Q(n); this
result was first proved in [20, 29] even for unbalanced trees.

Another application of Theorem 3 appears in the recent work [5]. They improved our
1.5-th power separation in Theorem 1 to near-quadratic (which is optimal) by iteratively
applying Theorem 3 to analyze a communication analogue of a query-complexity construction
due to Ambainis, Kokainis, and Kothari [4] (which is a variation of usual AND-OR trees).

1.2  Our techniques

The basic strategy in [16] for obtaining the deterministic versions of Theorems 1-2 was to
first obtain analogous gaps in the easier-to-understand world of query complexity, then “lift”
the results to communication complexity using a so-called simulation lemma. For getting
randomized lower bounds, two obstacles immediately present themselves: (i) The functions
studied in [16] are too easy for randomized protocols (as shown by [31]). (ii) There is no
known simulation lemma for the bounded-error randomized setting.

To handle obstacle (i), we modify the functions from [16] in a way that preserves their
low partition numbers while eliminating the structure that was exploitable by randomized
protocols. (Similar constructions have been given by [3, 1].) To handle obstacle (ii) for
Theorem 2, we actually prove a lower bound for a model that is stronger than the standard
randomized model, but for which there is a known simulation lemma [15]. This idea alone
does not handle obstacle (ii) for Theorem 1, though. For that, we start by giving a proof of the
query complexity analogue of Theorem 1, then develop a way to mimic that argument using
communication complexity, by going through information complexity (exploiting machinery
from [23] and [10]). In the process, this yields our Theorem 3 (one-sided is equivalent to
two-sided information complexity), which is of independent interest.
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Complexity Measures

We study the following communication complexity models/measures; see Figure 1. For any
complexity measure C we write coC(F') := C(—F) and 2C(F') := max{C(F'),coC(F)} for short.

P<¢: The deterministic communication complexity of F' is denoted P(F).

BPP*“: The randomized communication complexity of F is denoted BPP(F').

UP®: Recall (e.g., [27, 21]) that a cost-c nondeterministic protocol for F' corresponds
to a covering (allowing overlaps) of F~!(1) with 2¢ rectangles. A nondeterministic
protocol is unambiguous if on every l-input there is a unique accepting computation;
combinatorially, this means we have a disjoint covering (partition) of F~1(1). We define
UP“(F) == [log x1(F)]. Thus coUP“(F) = [log xo(F)], and 2UP(F) € [log x(F)] £+ 1.
WAPP: Abstractly speaking, a WAPP computation (Weak Almost- Wide PP; introduced
in [8]) is a randomized computation that accepts 1-inputs with probability in [(1 — €)a, o],
and O-inputs with probability in [0, ea], where ¢ < 1/2 is an error parameter and
a = a(n) > 0 is arbitrary.

Instantiating this for protocols, we define WAPPS®(F) as the least “cost” of a randomized
(public-coin) protocol IT that computes F' in the above sense; the “cost” of a protocol I with
parameter « is defined as the usual communication cost (number of bits communicated)
plus log(1/«). In this definition, we may assume w.l.o.g. that II is zero-communication [23]:
I is simply a probability distribution over rectangles R, and II accepts an input (z,y) iff
(z,y) € R for the randomly chosen R. Such a protocol I exchanges only 2 bits to check
the condition (x,y) € R, and the rest of the cost is coming from having a tiny a.

We note that WAPP® corresponds to the (one-sided) smooth rectangle bound of [17],
which is known to be equivalent to approximate nonnegative rank [24]. A consequence of
this equivalence is that WAPP® could alternatively be defined without charging anything
for @ > 0, as long as we restrict our protocols to be private-coin; see also [15, Theorem 9.
Also, 2WAPP is equivalent to the relazed partition bound of [23] (we elaborate on this
in Section 4.2). We remark that WAPP is not amenable to efficient amplification of
the error parameter; there can be an exponential gap between WAPPS® and WAPPS® for
different constants € and ¢, at least for partial functions [15, Theorem 6].

Define the following decision tree models/measures for a boolean function f: {0,1}™ — {0,1}:

Pd: The deterministic decision tree complexity of f is denoted P(f).

BPPY: The randomized decision tree complexity of f is denoted BPPdt( ).

UP®: A nondeterministic decision tree is a DNF formula. We think of the conjunctions
in the DNF formula as certificates — partial assignments to inputs that force the function
to be 1. The cost is the maximum number of input bits read by a certificate. A
nondeterministic decision tree is unambiguous if on every l-input there is a unique
accepting certificate. We define UPdt( f) as the least cost of an unambiguous decision tree
for f. Other works that have studied unambiguous decision trees include [33, 7, 13, 16, 25].
WAPP®™: We define WAPPY(f) as the least height of a randomized decision tree that
accepts 1-inputs with probability in [(1 — €)«, ], and 0-inputs with probability in [0, e,
where @ = a(n) > 0 is arbitrary. (Note that only the number of queries matters; we
do not charge for a being small.) Like the communication version, this measure is not
amenable to efficient amplification of the error parameter [15].

The analogue of a WAPP protocol being w.l.0.g. a distribution over rectangles is that a
WAPP? decision tree is w.l.o.g. a distribution over conjunctions. This implies that we
may characterize WAPPft( f) using conical juntas: A conical junta h is a nonnegative
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=log x = logx1
P 2UP upP
BPP 2WAPP WAPP
> information complexity = 2-sided smooth rectangle = 1-sided smooth rectangle

Figure 1 Models of computation that can be instantiated for both communication and query
complexity. Here A — B means that model B can simulate model A without any overhead.

linear combination of conjunctions. That is, h = > wcC where the sum ranges over
conjunctions C: {0,1}" — {0,1} and we > 0 for all C. Then WAPPY(f) is the least
degree (maximum width of a conjunction with positive weight in h) of a conical junta
h that e-approximates f in the sense that h(z) € [1 —¢,1] for all z € f71(1), and
h(z) € [0,€] for all z € f71(0). Other works have studied conical juntas under such
names as the (one-sided) partition bound for query complexity [17] and query complexity
in expectation [22].

3 Overview

In this section we give an outline for obtaining our main results, Theorems 1-2. For
complexity models/measures C and C’, we informally say “C-vs-C’' gap” to mean the existence
of a function whose C complexity is significantly higher than its C’ complexity. Using the
notation defined in Section 2, we can rephrase our main results as follows.

» Theorem 1 (BPP“-vs-2UP). There is an F such that BPP(F) > Q(2UP(F)'?).
» Theorem 2 (BPP“-vs-UP). There is an F such that BPP(F) > Q(UP*“(F)?).

1. Tribes-List (Section 3.1): Our starting point is to define Tribes-List, a variant of
a function introduced in [16]. Its purpose is to witness a BPP-vs-UP gap for query
complexity.

2. Composition (Section 3.2): Next, we modify Tribes-List using two types of function
composition, which we call lifting and AND-composition, to obtain candidate functions
for BPP-vs-2UP gaps in both query and communication complexity.

3. Overview of proofs (Section 3.3): With the candidate functions defined, we outline our
strategy to prove the desired communication lower bounds.

3.1 Tribes-List

The Tribes-List function TL: {0,1}" — {0, 1} is defined on n := O(k3log k) bits where k is a
parameter. We think of the input as a £ x k£ matrix M with entries M;; taking values from
the alphabet 3 := {0,1} x ([k]*~1 U {L}). Here each entry is encoded with ©(klogk) bits,
and we assume that the encoding of M;; = (m;;,pi;) € X is such that a single bit is used to
encode the value m;; € {0,1} and another bit is used to encode whether or not p;; = L. If
pij # L, then we can learn its exact value in [k]*~! by querying all the ©(klogk) bits.
Informally, we have TL(M) = 1 iff M has a unique all-(1, %) column (here * is a wildcard)
that also contains an entry with & — 1 pointers to entries of the form (0,x*) in all other

52:5

ICALP 2017



52:6

Randomized Communication vs. Partition Number

Unambiguous decision tree for TL:

Nondeterministically guess a column in- 1,1 0%

dex j € [k]. Consider the entries M;; = A

(mij,pi-j) for i € [k]: check that m;; = 1 0% | 1,1 / 0, %

for all ¢ and that p;; # L for at least one ¢ A )

(this is < 2k queries). Let i be the first row

index for which p;; # L and read the full 1,1l /

value of p;; (this is ©(klogk) queries). In- N

terpret p;; € [k] FINTY as a list of pointers, 1,p; \
describing a row index for all columns other \\
than j. For each of these k — 1 pointed-to 1,* 0, *
entries M/, check that m;;; = 0 (this is

k — 1 queries).

Figure 2 The unambiguous decision tree that defines the Tribes-List function.

columns. More formally, we define TL in Figure 2 by describing an unambiguous decision
tree of cost O(klog k) computing it.

3.2 Composition

Given a base function witnessing some complexity gap, we will establish a different but related
complexity gap by transforming the function into a more complex one via one (or both)
of the following operations involving function composition: lifting and AND-composition.
Lifting is used to go from a query complexity gap to an analogous communication complexity
gap. AND-composition is used to go from a gap with a UP upper bound to a gap with a 2UP
upper bound. To show that an operation indeed converts one gap to another gap, we need
two types of results: an observation showing how the relevant upper bounds behave under
the operation, and a more difficult lemma showing how the relevant lower bounds behave
under the operation.

Lifting

Let g: {0,1}* x {0,1}* — {0,1} be a fixed two-party function (called the gadget). We
can lift f:{0,1}™ — {0,1} via the gadget g to obtain a two-party composed function
fog™: ({0,1}")" x ({0,1}*)" — {0,1} where Alice is given x = (x1,...,2,) and Bob is
given y = (y1,...,Yn) (With each z;,y; € {0,1}*) and the goal is to compute (f o g")(z,y) =
f(g(xla yl)» ce ,g(xn, yn))

A decision tree for f generally yields a corresponding type of communication protocol for
fog™ whenever the decision tree queries the i-th bit, Alice and Bob communicate b+ 1 bits
to evaluate the corresponding bit g(z;,y;). By counting conjunctions, it can be verified that
such a connection holds for the 2UP and UP models as well:

» Observation 4. For all f: {0,1}" — {0,1}, g: {0,1}* x {0,1}* — {0,1}, and C €
{2UP,UP}, we have C<(f og™) < C¥(f)-O(b+logn).

For any model C, a result in the converse direction (giving a black-box method of
converting a communication protocol for f o g™ into a comparably efficient decision tree for
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f) is highly nontrivial and is called a simulation lemma. In this work, we use a simulation
lemma for C = WAPP:

» Lemma 5 (Simulation for WAPP [15]). For all f: {0,1}™ — {0,1} and constants 0 < € <
§ < 1/2, we have WAPPS(f) < O(WAPPE(fog™)/logn) where g: {0,1}° x {0,1}* — {0,1}
is the inner-product gadget defined as follows: b = b(n) = 100logn, and g(x;,y;) =
(x;,y;) mod 2.

AND-composition

Given f: {0,1}™ — {0,1} we can compose it with the k-bit AND function to obtain AND o
fF:({0,13")% — {0,1} defined by (ANDo f¥)(z1,...,2,) = 1iff f(z;) = 1 for all 4. Similarly,
given F: X x Y — {0,1} we can obtain AND o F*: X* x Y¥ — {0,1} defined by (AND o
FF)(z,y) = 1iff F(x;,y;) =1 for all 4.

AND-composition converts a UP upper bound into a 2UP upper bound [16]:

» Observation 6. For all f and k, we have 2UP*(AND o f¥) < k- UP®(f) + O(UPY(f)?).
Similarly, for all F and k, we have 2UP“(AND o F*) < k- UP*(F) 4+ O(UP*(F)? +logk).

The two parts of Observation 6 are analogous, so we describe the idea only in terms
of the query complexity part. Since coUPY(f) < PUt(f) < O(UPY(f)?), it suffices to have
coU Pdt(f) as the second term on the right side. The idea is to let a 1-certificate for AND o f*
be comprised of 1-certificates for each of the k copies of f, and a O-certificate for AND o f*
be comprised of a O-certificate for the first copy of f that evaluates to 0, together with
1-certificates for each of the preceding copies of f.

On the other hand, the following lemma (proven in Section 4.1) shows that randomized
query complexity goes up by a factor of k£ under AND-composition.

» Lemma 7. For all f and k, we have BPP*(f) < O(BPP*(AND o f*)/k).

We note that Lemma 7 qualitatively strengthens the tight direct sum result for randomized
query complexity in [18] since computing the outputs of all k copies of f is at least as hard
as computing the AND of the outputs. Similarly, if we could prove an analogue of Lemma 7
for communication complexity, it would qualitatively strengthen the notoriously-open tight
direct sum conjecture for randomized communication complexity.

3.3 Overview of proofs

The following diagram shows how we construct the functions used to witness our gaps.
Starting with some f, we can lift it to obtain F', or we can apply AND-composition to obtain
f*. We can obtain F* by either lifting f* or equivalently applying AND-composition to F'.

coWAPP““-ys-UP BPP<“-vs-2UP**
AND-composition
F F*
lifting lifting
%
! AND-composition f
coWAPP¥_vs-UP% BPP.vs-2UP™

52:7

ICALP 2017



52:8

Randomized Communication vs. Partition Number

Proof of Theorem 2

We start by discussing the proof of Theorem 2 as it will be used in the proof of Theorem 1.
We actually prove the following stronger version of Theorem 2 that gives a lower bound even
against coWAPP:“(F') < O(BPP“(F)):

» Theorem 2* (coWAPP“-vs-UP®). There is an F s.t. cOWAPP,,(F) > Q(UP(F)>?).

Our proof follows the same outline as in [16] and only requires us to lift the following
analogous result for query complexity (proved in the full version [14]):

» Lemma 8 (coWAPP.vs-UP"). coWAPPY .(TL) > Q(UP*(TL)?).

To derive Theorem 2*, set f := TL and F' := fog™, where g is the gadget from Lemma 5 and
n is the input length of f. Recall that UP®*(f) > n2(1). Thus by Observation 4, UP*(F) <
UPY(f) - O(logn) < O(UP¥(f)), and by Lemma 5, coWAPP{, (F) > Q(coWAPPs(f) -
logn) > Q(coWAPPgFOE)(f)). Thus coWAPP o, (F) > Q(UP(F)?).

Proof of Theorem 1

An “obvious” strategy for Theorem 1 would be again to first prove the analogous query
complexity result and then lift it to communication complexity. (This is the outline used for
the analogous result in [16].) In other words, we would follow the lower-right path in the
above diagram:

Obvious strategy

(a) Start with f witnessing a BPP®-vs-UP gap.
(b) Obtain f* witnessing a BPP%-vs-2UP gap by applying AND-composition to f.
c) Obtain F* witnessing a BPP“-vs-2UP® gap by lifting f*.
g g Y g

We have the tools to complete steps (a) and (b):
» Lemma 9 (BPP*.vs-2UP™). There is an f such that BPPU(f) > Q(2UPY(f)!9).

Proof. This is witnessed by f* := AND o TL* where k := UPdt(TL). By Observation 6,
2UPdt(f*) < O(k?), and by Lemmas 7-8,

BPPU(f*) > Q(k - BPPY(TL)) > Q(k - coWAPPS . (TL)) > Q(k?). <

Unfortunately, we do not know how to carry out step (c¢), because we currently lack a
simulation lemma for BPP. (We believe that such a lemma is true, and it is an interesting
open problem to prove this!) We get around this obstacle by reversing the order of steps (b)
and (c), that is, we instead follow the upper-left path in the diagram:

Modified strategy

(a’) Start with f witnessing a coWAPP-ys-UP® gap.
(b’) Obtain F witnessing a coWAPP“-vs-UP gap by lifting f.
(c’) Obtain F* witnessing a BPP“-vs-2UP“ gap by applying AND-composition to F.




M. Goos, T.S. Jayram, T. Pitassi, and T. Watson

Steps (a’) and (b’) are just Theorem 2*. For step (¢’) it would suffice to have an analogue of
Lemma 7 for communication complexity. This is open, but fortunately we have some wiggle
room since it suffices to have coWAPP, instead of BPP on the left side of Lemma 7. For this,
we can prove a communication analogue (indeed, with 2WAPP, instead of coWAPP,):

» Lemma 10. For all F, k, and constants 0 < € < 1/2, we have
2WAPPS(F) < O(BPP*(AND o F*)/k + log BPP(AND o F'¥)).

To derive Theorem 1, let F' be the function in Theorem 2*, and let F* := AND o F* where
k := UP*(F). Then F* witnesses Theorem 1: By Observation 6, 2UP“(F*) < O(k?), and
by Lemma 10, BPP“(F*) > Q(k - (2WAPP 4 (F) — O(logk))) > Q(k - (coWAPP{ . (F) —
O(log k) > O(K?).

Proof of Lemma 10

We start with the intuition for the proof of Lemma 7, which is a warmup for Lemma 10.

For brevity let f* := AND o f*. Given an input z for f, the basic idea is to plant z into a
random coordinate of f*(z1,...,2x), and plant random 1-inputs into the other coordinates,
and then run the randomized decision tree for f*. If ¢ is the query complexity of f*, the

expected number of bits of z that are queried (over a random 1-input) will be at most ¢/k.

Our new randomized decision tree will simulate this but abort after 8¢/k queries to z have
been made. If an answer is returned, we output the same value for f(z), and if no answer
is returned within this many queries, then we output 0. A simple analysis shows that we
succeed with high probability in the average-case (which is equivalent to worst-case by the
minimax theorem).

To prove Lemma 10, we would like to mimic this argument in the communication
world, using the fact that internal information complexity is sandwiched between BPP*
and 2WAPP® [23] and satisfies a sort of AND-composition analogous to Lemma 7 using
well-known properties (by planting the input into a random coordinate, and planting random
1l-inputs into the other coordinates). However there is a significant barrier to this idea “just
working”: the AND-composition property (direct sum lemma) requires a distribution over
1-inputs of F' (one-sided), while the relation to 2WAPP requires an arbitrary distribution
over inputs to F' (two-sided). To bridge this divide, we prove a new property of information
complexity: the one-sided version is essentially equivalent to the two-sided version. A key
ingredient in showing the latter is the “information odometer” of [10], which allows us to
keep track of the amount of information that has been revealed, and abort the protocol once
we have reached our limit, and argue that we can carry this out without revealing too much
extra information. We note that this one-vs-two sided information complexity lemma is the
only component of the proof of Theorem 1 that distinguishes between arbitrary rectangle
partitions (2UP?) and rectangle partitions induced by protocols (P).

Organization

The only ingredients that remain to be proved are Lemma 8 (which we prove in the full
version [14] and Lemma 7 and Lemma 10 (both of which we prove in Section 4).

4 AND-Composition Lemmas

In this section we prove Lemma 7 and Lemma 10, restated here for convenience.

52:9
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» Lemma 11. For all f and k, we have BPP*(f) < O(BPP*(AND o f*)/k).

» Lemma 12. For all F', k, and constants 0 < € < 1/2, we have

QWAPPS(F) < O(BPP(AND o F*)/k + log BPP*(AND o F*)).

4.1 AND-composition for query complexity

We now prove Lemma 7. For brevity let f* := AND o f*. Let T* be a height-¢q randomized
decision tree for f* with error 1/8. We design a height-8¢/k randomized decision tree for f
with error 1/4.

Let D be an arbitrary distribution over f~1(1). Consider the following randomized
decision tree T' that takes z € {0,1}" as input:

Pick ¢ € [k] uniformly at random and let z; = z.

For j € [k] \ {3} sample z; ~ D independently.

Run T*(z1, ..., 2;) until it has made 8¢/k queries in the i-th component.

If T* already produced an output in Step 3, output the same bit; else output 0.

Ll

Note that with probability 1 we have f*(z1,...,2x) = f(z). Let Ry denote T’s randomness
and Rp~ denote T*’s randomness. If f(z) = 0 then

]P)RT[T(Z):H < max(zhw%)e(f*)_l(o)PRT*[T*(zl,...7zk):1} < 1/8 < 1/4

Furthermore,
T*(z1,...,2k) outputs 0 or makes more
P, T(z)=0] = P ~D.i .
e, i [T(2) ] #1502~ D, A€[K], Ry Lhan 8q/k queries in the i-th component
Prp. [T (1, 24) = 0] +
< MAX(z, Lz )e(f) L)

T*(z,...,2) makes more than :|

P L .
MaxXRy €lk] [Sq/k queries in the i-th component

IN

1/8+1/8 = 1/4.

Now let D be an arbitrary distribution over {0,1}" and define T w.r.t. (D|f~1(1)). We
have

]P)ZND,RT [T(Z) 74‘ f(Z)} = ZbE{O,l} ]P)ZN(D | £-1(b)), R [T(z) ;é b] . ]PZND[f(Z) — b]
< Dveqoay(1/4) - Poup[f(z) =0 = 1/4.

By the minimax theorem, there is a height-8¢/k randomized decision tree (a mixture of the
T’s) that on any input produces the wrong output with probability < 1/4.

N

4.2 Definitions

We adopt the following conventions throughout the proof of Lemma 10. We denote random
variables with upper-case letters, and we denote particular outcomes of the random variables
with the corresponding lower-case letters. All communication protocols are randomized
and mixed-coin, and we use (R, R4, Rp) to denote the public randomness, Alice’s private
randomness, and Bob’s private randomness, respectively. We say a protocol II is e-correct
for F if for all (z,y), Pr ra,rs[(z,y) = F(z,y)] > 1 —e. For a distribution D over
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inputs, we say Il is (e, D)-correct for F' if P x y)up, r.ra, s [H(X,Y) = F(X,Y)] > 1 -

The internal information cost of a protocol II with respect to (X,Y) ~ D is defined as
ICH(IT) = I(R,M; X |Y) + [(R,M;Y | X) = [(M; X |Y,R) + I(M;Y| X, R) where the
random variable M is the concatenation of all messages. We also let CC(IT) denote the
worst-case communication cost of II.

It is convenient for us to work with a measure 2WAPP“* that is defined slightly differently
from 2WAPP but is equivalent in the sense that for all F' and 0 < € < 1/2, 2WAPP(F) <
2WAPPZ™ (F') < O(2WAPP,(F)). We note that 2WAPP directly expresses the two-sided
smooth rectangle bound of [17], while 2WAPP* directly expresses the relaxed partition
bound of [23] and was the definition used in [15].

» Definition 13. We define 2WAPP{“*(F’) as the minimum of CC(II)+log(1/«) over all &« > 0
and all protocols IT with output values {0,1, L} such that for all (z,y), P[ll(z,y) # 1] < «
and P[I(z,y) = F(z,y)] > (1 —¢)a (ie., T is (1 — (1 — €)a)-correct).

We also need the distributional version of 2WAPP“*.

» Definition 14. For an input distribution D, we define 2WAPPZ, (F) as the minimum of
CC(II) + log(1/a) over all a > 0 and all protocols IT with output values {0,1, L} such that
PII(z,y) # 1] < a for all (z,y), and P[II(X,Y) = F(X,Y)] > (1 —¢)a for (X,Y) ~ D (i.e.,
ITis (1 — (1 — €)a, D)-correct).

4.3 AND-composition for communication complexity

We now outline the proof of Lemma 10. Recall that the proof of Lemma 7 involved these

steps:

(i) embedding the input into a random coordinate of a k-tuple and filling the other coordi-
nates with random 1-inputs (to cut the cost on 1-inputs by a factor k),

(ii) aborting the execution if the cost became too high (to ensure low cost also on O-inputs
while maintaining average-case correctness on 1-inputs),

(iii) using the minimax theorem to go from average-case to worst-case correctness.

We start by noting that an analogue of (i) holds for information complexity (which lower

bounds BPP®). Then as one of our main technical contributions we prove an analogue of (ii)

for information complexity. Then inbetween (ii) and (iii) we insert a step applying the known

result that information complexity upper bounds 2WAPP“* in the distributional setting.

Finally we use the analogue of (iii) for 2WAPP“*. Formally, Lemma 10 follows by stringing

together the following lemmas.

» Lemma 15. Fizany F, k, 0 < € < 1/2, and distribution D over F~1(1). For every e-correct
protocol T1 for AND o F¥ there is an e-correct protocol II' for F with ICp(I") < CC(IT) /k
and CC(IT") < CC(II).

» Lemma 16. Fiz any F, constants 0 < e < § < 1/2, and input distribution D, and let
D' := (D|F~(1)). For every (e, D)-correct protocol 11 there is a (8, D)-correct protocol I’
with ICp(IT') < O(IC pi (IT) + log(CC(IT) + 2)).

» Lemma 17. Fizx any F, constants 0 < € < § < 1/2, and input distribution D. For every
(€, D)-correct protocol II we have 2WAPPEL (F) < O(ICp(IT) 4 1).

» Lemma 18. Fiz any F and 0 < e < 1/2. Then 2WAPP™(F) < 2 4 maxp 2WAPPZ, (F).
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Lemma 15 is a standard application of the “direct sum” property of information cost.
Lemma 16 is proved in Section 4.4 and relies on [10]. Lemma 17 is due to [23, Theorem 1.1
of the ECCC version|. Lemma 18 follows from an argument in [23, Appendix A of the ECCC
version] that uses LP duality.

The moral conclusion of Lemma 16 is that “one-sided information complexity” is essentially
equivalent to “two-sided information complexity” for average-case protocols. Combining
Lemma 16 with [9, Theorem 3.5 of the ECCC version] shows that a similar equivalence
holds for worst-case protocols. More specifically, a distribution-independent definition of
information complexity for bounded-error protocols can be obtained by maximizing over
all input distributions; our corollary shows that this measure is essentially unchanged if we
maximize only over distributions over 1-inputs (or symmetrically, O-inputs).

» Corollary 19. Fiz any F, constants 0 < e <6 < 1/2, and b € {0,1}. Then

inf max ICp(II) < max inf O(ICp(I) + log(CC(II) + 2)).

protosols T all inpats Dimpuits protocois I

Theorem 3 follows by swapping the quantifiers on the right side of the inequality in
Corollary 19 (which only weakens the statement), and by straightforwardly accounting for
the communication cost in the proof. We can also assume the protocol II' has error < 1/3 by
a standard error reduction technique (take a majority vote of several runs of the protocol),
which does not affect information complexity except by constant factors. We do not directly
employ this worst-case version of Lemma 16, but it is used in the follow-up work [5].

4.4 One-sided information vs. two-sided information
Intuition for Lemma 16

Recall the following idea, which was implicit in the proof of Lemma 7. Suppose we have a
randomized decision tree computing some function, and we have a bound b on the expected
number of queries made over a random 1-input. Then to obtain a randomized decision tree
with a worst-case query bound, we can keep track of the number of queries made during the
execution and halt and output 0 if it exceeds, say, 8. Correctness on 0O-inputs is maintained
since we either run the original decision tree to completion and thus output 0 with high
probability, or we abort and output 0 anyway. We get average-case correctness on l-inputs
since by Markov’s inequality, with probability at least 7/8 the original decision tree uses at
most 8b queries, in which case we run it to completion and output 1 with high probability.

The high-level intuition is to mimic this idea for information complexity. We have a
protocol with a bound on the information cost w.r.t. the distribution D' over 1-inputs. The
“information odometer” of [10] allows us to “keep track of” information cost, so we can halt
and output O if it becomes too large. This will guarantee that the information cost is low
w.r.t. the input distribution D, and correctness on 0-inputs is maintained. However, there is
a complication with showing the average-case correctness on 1-inputs.

For each computation path specified by an input (z,y), an outcome of public randomness
r, and a full sequence of messages m, there is a contribution ¢, 4, such that the information
cost w.r.t. D is the expectation of ¢, ., Over a random computation path with (x,y) ~ D.

Similarly, there is a contribution ¢, ., such that the information cost w.r.t. D' is the
1

T,y,r,m
play the role of “number of queries” along a computation path in the decision tree setting, but

a crucial difference is that ¢ y.pm 7 €k rm
cost depends on the input distribution (whereas number of queries did not). To show the

expectation of ¢ over a random computation path with (x,y) ~ D!. These contributions

in general; i.e., the contribution to information
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average-case correctness on 1-inputs, we need a bound on the typical value of ¢,y ,.m, whereas
the assumption that information cost w.r.t. D' is low gives us a bound on the typical value
of ci,y,r,m‘
Thus the heart of the argument is to show that typically, cg 4 rm is not much larger
than ¢, , ... Intuitively, one might expect the difference to be at most 1, since the only
additional information that can be revealed (beyond what is revealed under D') should be
the fact that (z,y) is a 1-input (which is 1 bit of information). More precisely, we show that
for given (z,y), the expected difference depends on how balanced F is on the x row and the
y column. Then we just need to note that F' is typically reasonably balanced for both the z
row and the y column.

The formal proof of Lemma 16 is deferred to the full version [14] due to space constraints.

Acknowledgments. We thank Mark Braverman, Troy Lee, and Omri Weinstein for discus-
sions. Work done by M.G. while at IBM Research Almaden.

—— References

1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity
using cheat sheets. In Proceedings of the 48th Symposium on Theory of Computing (STOC),
pages 863-876. ACM, 2016. doi:10.1145/2897518.2897644.

2 Alfred Aho, Jeffrey Ullman, and Mihalis Yannakakis. On notions of information transfer
in VLSI circuits. In Proceedings of the 15th Symposium on Theory of Computing (STOC),
pages 133-139. ACM, 1983. doi:10.1145/800061.808742.

3 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris
Smotrovs. Separations in query complexity based on pointer functions. In Proceedings of
the 48th Symposium on Theory of Computing (STOC), pages 800-813. ACM, 2016. doi:
10.1145/2897518.2897524.

4 Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly optimal separations be-
tween communication (or query) complexity and partitions. In Proceedings of the 31st
Computational Complexity Conference (CCC), pages 4:1-4:14. Schloss Dagstuhl, 2016.
do0i:10.4230/LIPIcs.CCC.2016.4.

5 Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika G&6s, Rahul Jain, Robin
Kothari, Troy Lee, and Miklos Santha. Separations in communication complexity using
cheat sheets and information complexity. In Proceedings of the 57th Symposium on Foun-

dations of Computer Science (FOCS), pages 555-564. IEEE, 2016. doi:10.1109/F0CS.

2016.66.

6 Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702-732, 2004. doi:10.1016/j.jcss.2003.11.006.

7 Aleksandrs Belovs. Non-intersecting complexity. In Proceedings of the 32nd Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM), pages 158-165.
Springer, 2006. doi:10.1007/11611257_13.

8 Elmar Bohler, Christian Glaler, and Daniel Meister. Error-bounded probabilistic compu-
tations between MA and AM. Journal of Computer and System Sciences, 72(6):1043-1076,
2006. doi:10.1016/j.jcss.2006.05.001.

9 Mark Braverman. Interactive information complexity. SIAM Journal on Computing,
44(6):1698-1739, 2015. doi:10.1137/130938517.

10 Mark Braverman and Omri Weinstein. An interactive information odometer and appli-
cations. In Proceedings of the 47th Symposium on Theory of Computing (STOC), pages
341-350. ACM, 2015. doi:10.1145/2746539.2746548.

52:13

ICALP 2017



52:14

Randomized Communication vs. Partition Number

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf.
Exponential lower bounds for polytopes in combinatorial optimization. Journal of the ACM,
62(2):17:1-17:23, 2015. doi:10.1145/2716307.

Dmitry Gavinsky and Shachar Lovett. En Route to the Log-Rank Conjecture: New Re-
ductions and Equivalent Formulations. In Proceedings of the 41st International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 514-524. Springer, 2014.
doi:10.1007/978-3-662-43948-7_43.

Mika Go&6s. Lower bounds for clique vs. independent set. In Proceedings of the 56th
Symposium on Foundations of Computer Science (FOCS), pages 1066-1076. IEEE, 2015.
doi:10.1109/F0CS.2015.69.

Mika G66s, T.S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communica-
tion vs. partition number. Technical Report TR15-169, Electronic Colloquium on Compu-
tational Complexity (ECCC), 2015. URL: https://eccc.weizmann.ac.il/report/2015/
169/.

Mika Go06s, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835-1869, 2016.
doi:10.1137/15M103145X.

Mika G66s, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. parti-
tion number. In Proceedings of the 56th Symposium on Foundations of Computer Science
(FOCS), pages 1077-1088. IEEE, 2015. doi:10.1109/F0CS.2015.70.

Rahul Jain and Hartmut Klauck. The partition bound for classical communication com-
plexity and query complexity. In Proceedings of the 25th Conference on Computational
Complexity (CCC), pages 247-258. IEEE, 2010. doi:10.1109/CCC.2010.31.

Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for determin-
istic and randomized decision tree complexity. Information Processing Letters, 110(20):893—
897, 2010. doi:10.1016/j.1ipl.2010.07.020.

Rahul Jain, Troy Lee, and Nisheeth Vishnoi. A quadratically tight partition bound for
classical communication complexity and query complexity. Technical report, arXiv, 2014.
arXiv:1401.4512.

T.S. Jayram, Swastik Kopparty, and Prasad Raghavendra. On the communication complex-
ity of read-once ACY formulae. In Proceedings of the 24th Conference on Computational
Complexity (CCC), pages 329-340. IEEE, 2009. doi:10.1109/CCC.2009.39.

Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algo-
rithms and Combinatorics. Springer, 2012.

Jedrzej Kaniewski, Troy Lee, and Ronald de Wolf. Query complexity in expectation. In Pro-
ceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), pages 761-772. Springer, 2015. doi:10.1007/978-3-662-47672-7_62.

Tordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao.
Lower bounds on information complexity via zero-communication protocols and applica-
tions. SIAM Journal on Computing, 44(5):1550-1572, 2015. doi:10.1137/130928273.
Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Approximate nonnegative
rank is equivalent to the smooth rectangle bound. In Proceedings of the 41st International
Collogquium on Automata, Languages, and Programming (ICALP), pages 701-712. Springer,
2014. doi:10.1007/978-3-662-43948-7_58.

Robin Kothari, David Racicot-Desloges, and Miklos Santha. Separating decision tree com-
plexity from subcube partition complexity. In Proceedings of the 19th International Work-
shop on Randomization and Computation (RANDOM), pages 915-930. Schloss Dagstuhl,
2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.915.

Eyal Kushilevitz. Unpublished. Cited in [32], 1994.



M

27

28

29

30

31

32

33

34

. Goos, T.S. Jayram, T. Pitassi, and T. Watson

Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Founda-
tions and Trends in Theoretical Computer Science, 3(4):263-399, 2007. doi:10.1561/
0400000040.

Nikos Leonardos and Michael Saks. Lower bounds on the randomized communication
complexity of read-once functions. Computational Complexity, 19(2):153-181, 2010. doi:
10.1007/s00037-010-0292-2.

Léaszl6 Lovasz and Michael Saks. Lattices, M6bius functions and communication complexity.
In Proceedings of the 29th Symposium on Foundations of Computer Science (FOCS), pages
81-90. IEEE, 1988. doi:10.1109/SFCS.1988.21924.

Sagnik Mukhopadhyay and Swagato Sanyal. Towards better separation between determinis-
tic and randomized query complexity. In Proceedings of 35th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 206-220. Schloss
Dagstuhl, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.206.

Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combinatorica,
15(4):557-565, 1995. doi:10.1007/BF01192527.

Petr Savicky. On determinism versus unambiguous nondeterminism for decision trees. Tech-
nical Report TR02-009, Electronic Colloquium on Computational Complexity (ECCC),
2002. URL: http://eccc.hpi-web.de/report/2002/009/.

Mihalis Yannakakis. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3):441-466, 1991. doi:10.1016/
0022-0000(91)90024-Y.

52:15

ICALP 2017



	Introduction
	Applications and discussion
	Our techniques

	Complexity Measures
	Overview
	Tribes-List
	Composition
	Overview of proofs

	AND-Composition Lemmas
	AND-composition for query complexity
	Definitions
	AND-composition for communication complexity
	One-sided information vs. two-sided information


