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EXTENSION COMPLEXITY OF INDEPENDENT SET POLYTOPES∗

MIKA GÖÖS† , RAHUL JAIN‡ , AND THOMAS WATSON§

Abstract. We exhibit an n-node graph whose independent set polytope requires extended
formulations of size exponential in Ω(n/ logn). Previously, no explicit examples of n-dimensional 0/1-
polytopes were known with extension complexity larger than exponential in Θ(

√
n). Our construction

is inspired by a relatively little-known connection between extended formulations and (monotone)
circuit depth.
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1. Introduction. A polytope P ⊆ R
n with many facets can sometimes admit a

concise description as the projection of a higher-dimensional polytope E ⊆ R
e with

few facets. This phenomenon is studied in the theory of “extended formulations.”
The extension complexity xc(P ) of a polytope P is defined as the minimum number
of facets in any polytope E (called an extended formulation for P ) such that

P = {x ∈ R
n : (x, y) ∈ E for some y}.

Extended formulations are useful for solving combinatorial optimization problems:
instead of optimizing a linear function over P , we can optimize it over E—this may
be more efficient since the runtime of LP solvers often depends on the number of
facets.

Fiorini et al. [12] were the first to show (using methods from communication
complexity [24, 21]) exponential extension complexity lower bounds for many explicit
polytopes of relevance to combinatorial optimization, thereby solving an old challenge
set by Yannakakis [38]. For example, their results include a 2Ω(m) lower bound for
the

(

m
2

)

-dimensional correlation/cut polytope. In another breakthrough, Rothvoß [33]

proved a much-conjectured 2Ω(m) lower bound for the
(

m
2

)

-dimensional matching poly-
tope. By now, many accessible introductions to extended formulations are available;
see, e.g., Roughgarden [34, section 5], Kaibel [22], Conforti, Cornuéjols, and Zambelli
[8], or their textbook [9, section 4.10].√

n-frontier. Both of the results quoted above—while optimal for their respective
polytopes—seem to get “stuck” at being exponential in the square root of their di-
mension. (For those graph problems, the dimension is the number of possible edges,
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but the lower bound is exponential in the number of nodes.) In fact, no explicit
n-dimensional 0/1-polytope (convex hull of a subset of {0, 1}n) was known with
extension complexity asymptotically larger than 2Θ(

√
n). The problem of proving

higher lower bounds was explicitly posed in, e.g., [37, Problem 7]. In comparison,
Rothvoß [32] showed via a counting argument that almost all n-dimensional 0/1-
polytopes have extension complexity 2Ω(n).

1.1. Our result. Our main result is to construct an explicit 0/1-polytope in
R

n of near-maximal extension complexity 2Ω(n/ logn). Moreover, the polytope can be
taken to be the independent set polytope PG of an n-node graph G, i.e., the convex
hull of (the indicator vectors of) the independent sets of G. Previously, a lower bound
of 2Ω(

√
n) was known for independent set polytopes [12].

Theorem 1.1. There is an (explicit) family of n-node graphs G with xc(PG) ≥
2Ω(n/ logn).

In fact, our graph family has bounded degree. Hence, using known reductions,
we get as a corollary quantitative improvements—from 2Ω(

√
n) to 2Ω(n/ logn)—for the

extension complexity of, for instance, 3SAT and knapsack polytopes ; see [1, 29] for
details.

We strongly conjecture that our graph family actually satisfies xc(PG) ≥ 2Ω(n),
i.e., that the log n factor in the exponent is an artifact of our proof technique. We give
concrete evidence for this by proving an optimal bound for a certain query complex-
ity analogue of Theorem 1.1. In particular, the conjectured bound xc(PG) ≥ 2Ω(n)

would follow from quantitative improvements to the known communication-to-query
simulation theorems ([17] in particular). Incidentally, this also answers a question of
Lovász et al. [26]: we obtain a maximal Ω(n) lower bound on the randomized query
complexity of a search problem with constant certificate complexity.

1.2. Our approach. Curiously enough, an analogous
√
n-frontier existed in the

seemingly unrelated field of monotone circuits: Raz and Wigderson [30] proved an
Ω(m) lower bound for the depth of any monotone circuit computing the matching
function on

(

m
2

)

input bits. This remained the largest monotone depth bound for an
explicit function until the recent work of Göös and Pitassi [18], who exhibited an n-bit
function with monotone depth Ω(n/ log n). In short, our idea is to prove an extension
complexity analogue of this latter result.

The conceptual inspiration for our construction is a relatively little-known con-
nection between Karchmer–Wigderson games [23] (which characterize circuit depth)
and extended formulations. This “KW/EF connection” (see section 2 for details) was
pointed out by Hrubeš [19] as a nonnegative analogue of a classic rank-based method
of Razborov [31]. In this work, we focus only on the monotone setting. For any
monotone f : {0, 1}n → {0, 1} we can study the convex hull of its 1-inputs, namely
the polytope

F := conv f−1(1).

The upshot of the KW/EF connection is that extension complexity lower bounds for
F follow from a certain type of strengthening of monotone depth lower bounds for f .
For example, using this connection, it turns out that Rothvoß’s result [33] implies the
result of Raz and Wigderson [30] in a simple black-box fashion (see section 2.3).

Our main technical result is to strengthen the existing monotone depth lower
bound from [18] into a lower bound for the associated polytope (though we employ
substantially different techniques than were used in that paper). The key communi-
cation search problem studied in [18] is a communication version of the well-known
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Tseitin problem (see section 3 for definitions), which has especially deep roots in proof
complexity (see, e.g., [21, section 18.7]) and has also been studied in query complex-
ity [26]. We use information complexity techniques to prove the required Ω(n/ log n)
communication lower bound for the relevant variant of the Tseitin problem; informa-
tion theoretic tools have been used in extension complexity several times [5, 4, 3]. One
relevant work is Huynh and Nordström [20] (predecessor to [18]), whose information
complexity arguments we extend in this work.

Instead of using information complexity, an alternative seemingly promising ap-
proach would be to “lift” a strong enough query complexity lower bound for Tseitin
into communication complexity. Unfortunately, this approach runs into problems due
to limitations in existing communication-to-query simulation theorems; we discuss
this in section 7.

Theorem 1.1 follows by reductions from the result for the Tseitin problem (see
section 4). Indeed, it was known that the Tseitin problem reduces to the monotone
KW game associated with an f : {0, 1}O(n) → {0, 1} that encodes (in a monotone
fashion) a certain CSP satisfiability problem. This gives us an extension complexity
lower bound for the (explicit) polytope F := conv f−1(1). As a final step, we give a
reduction from F to an independent set polytope.

1.3. Background. Let M be a nonnegative matrix. The nonnegative rank of
M , denoted by rk+(M), is the minimum r such that M can be decomposed as a sum
∑

i∈[r] Ri, where each Ri is a rank-1 nonnegative matrix.

Randomized protocols. Faenza et al. [10] observed that a nonnegative rank de-
composition can be naturally interpreted as a type of randomized protocol that com-
putes the matrix M “in expectation.” We phrase this connection precisely as follows:
log rk+(M) + Θ(1) is the minimum communication cost of a private-coin protocol
Π whose acceptance probability on each input (x, y) satisfies P[Π(x, y) accepts] =
α ·Mx,y, where α > 0 is an absolute constant of proportionality (depending on Π but
not on x, y). All communication protocols in this paper are private coin.

Slack matrices. The extension complexity of a polytope P = {x ∈ R
n : Ax ≥ b}

can be characterized in terms of the nonnegative rank of the slack matrix M = M(P )
associated with P . (We always assume P has positive dimension.) The entries of
M are indexed by (v, i), where v ∈ P is a vertex of P and i refers to the ith facet-
defining inequality Aix ≥ bi for P . We define Mv,i := Aiv − bi ≥ 0 as the distance
(slack) of the ith inequality from being tight for vertex v. Yannakakis [38] showed
that xc(P ) = rk+(M(P )).

A convenient fact for proving lower bounds on rk+(M) is that the nonnegative
rank is unaffected by the addition of columns to M that each record the slack between
vertices of P and some valid (but not necessarily facet-defining) inequality for P . For
notation, let P ⊆ Q be a polyhedral pair (P is a polytope; Q is a polytope or un-
bounded polyhedron). We define M(P ;Q) as the slack matrix whose rows correspond
to vertices of P and columns correspond to the facets of Q (hence M(P ;P ) = M(P )).
We have rk+(M(P )) ≥ rk+(M(P ) ∪M(P ;Q)) − 1 ≥ rk+(M(P ;Q)) − 1, where “∪”
denotes concatenation of columns.1 We summarize all the above in the following.

1Specifically, Farkas’s lemma implies that the slack of any valid inequality for P can be written
as a nonnegative linear combination of the slacks of the facet-defining inequalities for P , plus a
nonnegative constant [39, Proposition 1.9]. Thus if we take M(P )∪M(P ;Q) and subtract (possibly
different) nonnegative constants from each of the “new” columns M(P ;Q), we get a matrix each of
whose columns is a nonnegative linear combination of the “original” columns M(P ) and hence has
the same nonnegative rank as M(P ). Since we subtracted a nonnegative rank-1 matrix, we find that
rk+(M(P ) ∪M(P ;Q)) ≤ rk+(M(P )) + 1.
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Fact 1.2. For all polyhedral pairs P ⊆ Q, we have xc(P ) = rk+(M(P )) ≥
rk+(M(P ;Q))− 1.

2. KW/EF connection. We now describe the connection showing that EF
lower bounds follow from a certain type of strengthening of lower bounds for mono-
tone KW games (and similarly, lower bounds for monotone KW games follow from
certain strong enough EF lower bounds). This is not directly used in the proof of
Theorem 1.1, but it serves as inspiration by suggesting the approach we use in the
proof.

2.1. Definitions. Let f : {0, 1}n → {0, 1} be a monotone function. We define
KW+(f) as the deterministic communication complexity of the following monotone
KW game associated with f :

KW+-game

Input: Alice gets x ∈ f−1(1), and Bob gets y ∈ f−1(0).
Output: An index i ∈ [n] such that xi = 1 and yi = 0.

We often think of x and y as subsets of [n]. In this language, a feasible solution
for the KW+-game is an i ∈ x∩ ȳ, where ȳ := [n]ry. Given a monotone f , we denote
by F := conv f−1(1) the associated polytope. We can express the fact that any pair
(x, y) ∈ f−1(1)×f−1(0) admits at least one witness i ∈ x∩ ȳ via the following system
of linear inequalities:

(2.1) ∀y ∈ f−1(0) :
∑

i : yi=0

xi ≥ 1.

Since (2.1) is valid for all the vertices x ∈ F , it is valid for the whole polytope F . Define
Fkw ⊇ F as the polyhedron whose facets are determined by the inequalities (2.1), as
indexed by 0-inputs y. The (x, y)th entry in the slack matrix M(F ;Fkw) is then
∑

i : yi=0 xi − 1. In words, this quantity counts the number of witnesses in the KW+-
game on input (x, y) minus one.

More generally, let S ⊆ X × Y × Q be any communication search problem (not
necessarily a KW+-game, even though any S can be reformulated as such [15, Lemma
2.3]). That is, Q is some set of solutions/witnesses, and on input x ∈ X to Alice and
y ∈ Y to Bob, the task is to find a solution q ∈ S(x, y) := {q ∈ Q : (x, y, q) ∈ S} (we
assume S(x, y) 6= ∅ for all (x, y)). We associate with S the following natural “number
of witnesses minus one” communication game:

(#∃−1)-game

Input: Alice gets x ∈ X , and Bob gets y ∈ Y.
Output: Accept with probability proportional to |S(x, y)| − 1.

The communication complexity of this game is simply log rk+(MS) + Θ(1), where
MS

x,y := |S(x, y)| − 1.

2.2. The connection. What Hrubeš [19, Proposition 4] observed was that an
efficient protocol for a search problem S implies an efficient protocol for the associated
(#∃−1)-game. In particular, for KW+-games,

(KW/EF) log rk+(M(F ;Fkw)) ≤ O(KW+(f)).
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The private-coin protocol for M(F ;Fkw) computes as follows. On input (x, y) ∈
f−1(1) × f−1(0) we first run the optimal deterministic protocol for the KW+-game
for f to find a particular i ∈ [n] witnessing xi = 1 and yi = 0. Then, Alice uses her
private coins to sample a j ∈ [n]r {i} uniformly at random and sends this j to Bob.
Finally, the two players check whether xj = 1 and yj = 0 accepting iff this is the case.
The acceptance probability of this protocol is proportional to the number of witnesses
minus one, and the protocol has cost KW+(f) + log n+ O(1) ≤ O(KW+(f)) (where
we assume w.l.o.g. that f depends on all of its input bits so that KW+(f) ≥ log n).

2.3. Example: Matchings. Rothvoß vs. Raz–Wigderson. Consider the mono-

tone function f : {0, 1}(m2 ) → {0, 1} that outputs 1 iff the input, interpreted as a graph
on m nodes (m even), contains a perfect matching. Then F := conv f−1(1) is the
convex hull of all graphs that contain a perfect matching; in particular, the perfect
matching polytope is a face of F . The inequalities (2.1) for f happen to include the
so-called odd set inequalities, which were exploited by Rothvoß [33] in showing that
log rk+(M(F ;Fkw)) ≥ Ω(m). Applying the (KW/EF) connection to Rothvoß’s lower
bound implies in a black-box fashion that KW+(f) ≥ Ω(m), which is the result of
Raz and Wigderson [30].

Converse to (KW/EF)? It is interesting to compare the above with the case of
bipartite perfect matchings. Consider a monotone f : {0, 1}m×m → {0, 1} that takes a
bipartite graph as input and outputs 1 iff the graph contains a perfect matching. It is
well known that F := conv f−1(1) admits a polynomial-size extended formulation [35,
Theorem 18.1]. By contrast, the lower bound KW+(f) ≥ Ω(m) from [30] continues
to hold even in the bipartite case. This example shows that the converse inequality
to (KW/EF) does not hold in general. Hence, a lower bound for the (#∃−1)-game
can be a strictly stronger result than a similar lower bound for the KW+-game.

2.4. Minterms and maxterms. A minterm x ∈ f−1(1) is a minimal 1-input in
the sense that flipping any 1-entry of x into a 0 will result in a 0-input. Analogously,
a maxterm y ∈ f−1(0) is a maximal 0-input. It is a basic fact that solving the KW+-
game for minterms/maxterms is enough to solve the search problem on any input:
Say that Alice’s input x is not a minterm. Then Alice can replace x with any minterm
x′ ⊆ x and run the protocol on x′. A witness i ∈ [n] for (x′, y) works also for (x, y).
A similar fact holds for the (#∃−1)-game: we claim that the nonnegative rank does
not change by much when restricted to minterms/maxterms. Say that Alice’s input
x is not a minterm. Then Alice can write x = x′ ∪ x′′ (disjoint union), where x′ is
a minterm. Then |x ∩ ȳ| − 1 = (|x′ ∩ ȳ| − 1) + |x′′ ∩ ȳ|, where the first term is the
(#∃−1)-game for (x′, y) and the second term has nonnegative rank at most n (consider
the protocol that samples a uniformly random i ∈ [n] and accepts iff i ∈ x′′ ∩ ȳ). A
similar argument works if Bob does not have a maxterm.

3. Tseitin problem.

3.1. Query version. Fix a connected node-labeled graph G = (V,E, `), where
the node-labeling ` ∈ Z

V
2 has odd weight, i.e.,

∑

v∈V `(v) = 1, where the addition is
modulo 2. For any edge-labeling z ∈ Z

E
2 and a node v ∈ V we write concisely z(v) :=

∑

e3v z(e) for the mod-2 sum of the edge-labels adjacent to v:

Tseitin problem: TseG

Input: Labeling z ∈ Z
E
2 of the edges.

Output: A node v ∈ V containing a parity violation z(v) 6= `(v).
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As a sanity check, we note that on each input z there must exist at least one node with
a parity violation. This follows from the fact that, since each edge has two endpoints,
the sum

∑

v z(v) is even, whereas we assumed that the sum
∑

v `(v) is odd.
Basic properties. The above argument implies more generally that the set of

violations viol(z) := {v ∈ V : z(v) 6= `(v)} is always of odd size. Conversely, for any
odd-size set S ⊆ V we can design an input z such that viol(z) = S. To see this, it
is useful to understand what happens when we flip a path in an input z. Formally,
suppose p ∈ Z

E
2 is (an indicator vector of) a path. Define zp as z with bits on the

path p flipped (note that zp = z + p ∈ Z
E
2 ; however, the notation zp will be more

convenient later). Flipping p has the effect of flipping whether each endpoint of p is a
violation. More precisely, the violated nodes in zp are related to those in z as follows:
(i) if both endpoints of p are violated in z, then the flip causes that pair of violations
to disappear; (ii) if neither endpoint of p is violated in z, then the flip introduces
a pair of new violations; (iii) if precisely one endpoint of p was violated in z, then
the flip moves a violation from one endpoint of p to the other. By applying (i)–(iii)
repeatedly in a connected graph G, we can design an input z where viol(z) equals any
prescribed odd-size set S.

If z and z′ have the same set of violations, viol(z) = viol(z′), then their difference
q := z − z′ ∈ Z

E
2 satisfies q(v) = 0 for all v ∈ V . That is, q is an eulerian subgraph

of G (for us, q need not be connected). On the other hand, for any eulerian graph
q, the inputs z and zq have the same violations. Consequently, to generate a random
input with the same set of violations as some fixed z, we need only pick a random
eulerian graph q and output zq. (Eulerian graphs form a subspace of ZE

2 , sometimes
called the cycle space of G.)

3.2. Communication version. The communication version of the Tseitin prob-
lem is obtained by composing (or lifting) TseG with a constant-size two-party gadget
g : X ×Y → {0, 1}. In the lifted problem TseG◦gn, where n := |E|, Alice gets x ∈ Xn

as input, Bob gets y ∈ Yn as input, and their goal is to find a node v ∈ V that is
violated for

z := gn(x, y) = (g(x1, y1), . . . , g(xn, yn)).

We define our gadget precisely in section 5. For now—in particular, for the reductions
presented in the next section—the only important property of our gadget is that
|X |, |Y| ≤ O(1).

3.3. Statement of result. We prove that there is a family of bounded-degree
graphs G such that the (#∃−1)-game associated with TseG ◦ gn requires Ω(n/ log n)
bits of communication. We prove our lower bound assuming only that G = (V,E)
is well connected enough as captured by the following definition (also used in [18]).
A graph G is k-routable iff there is a set of 2k + 1 nodes T ⊆ V called terminals
such that for any pairing P := {{si, ti} : i ∈ [κ]} (set of pairwise disjoint pairs) of
2κ terminals (κ ≤ k), there exist κ edge-disjoint paths (called canonical paths for P)
such that the ith path connects si to ti. Furthermore, we tacitly equip G with an
arbitrary odd-weight node-labeling.

Theorem 3.1. There is a constant-size g such that for every k-routable graph G
with n edges, the (#∃−1)-game for TseG ◦ gn requires Ω(k) bits of communication.

If we choose G to be a sufficiently strong expander graph, we may take k =
Θ(n/ log n), as shown by Frieze and Zhao [14] and Frieze [13]. Alternative explicit
constructions with k = Θ(n/ log n) exist based on bounded-degree “butterfly” graphs;
see [27, section 5] for an exposition.
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Corollary 3.2. There are a constant-size g and an explicit bounded-degree graph
G with n edges such that the (#∃−1)-game for TseG ◦ gn requires Ω(n/ log n) bits of
communication.

As a bonus, we also prove that the query complexity of the (#∃−1)-game for
TseG is Ω(n) on any expander G (see section 7).

4. Reductions. The goal of this section is to show, via reductions, that a lower
bound on the (#∃−1)-game for TseG ◦ gn (where G = (V,E) is of bounded degree
and n := |E|) translates directly into a lower bound on the extension complexity of
PK for an O(n)-node bounded-degree graph K.

4.1. Definition: Monotone CSP-SAT. We start by describing a way of rep-
resenting constraint satisfaction problems (CSPs) as a monotone function; this was
introduced in [18] and further studied by Oliveira [28, Chapter 3]. The function is
defined relative to some finite alphabet Σ and a fixed constraint topology determined
by a bipartite graph H := (L ∪ R,E). The left nodes L are thought of as vari-
ables (taking values in Σ), and the right nodes R correspond to constraints. For
a constraint c ∈ R, let var(c) ⊆ L denote the variables involved in c (i.e., neigh-
bors of c in H). Let d denote the maximum degree of a node in R. The function
Sat = SatΣ,H : {0, 1}m → {0, 1}, where m :=

∑

c∈R |Σvar(c)| ≤ |R| · |Σ|d, is now
defined as follows. An input x ∈ {0, 1}m defines a CSP instance by specifying, for
each c ∈ R, a truth table Σvar(c) → {0, 1} that records which assignments to the
variables var(c) satisfy c. In short, x is simply a concatenation of truth tables. Then
Sat(x) := 1 iff there is some global assignment L→ Σ that satisfies all the constraints
as specified by x. This is monotone: if we flip any 0 into a 1 in the truth table of a
constraint, we are only making the constraint easier to satisfy.

4.2. From Tseitin to CSP-SAT. For completeness, we present the reduction
(due to [18, section 5.1]) from the search problem TseG ◦ gn to the KW+-game for
Sat = SatX ,H : {0, 1}m → {0, 1}. Here the alphabet is X and the bipartite graph H
is defined on E(G) ∪ V (G) such that there is an edge (e, v) ∈ E(H) iff v ∈ e. Note
that m ≤ O(n) provided that |X | ≤ O(1) and that G is of bounded degree.

On input (x, y) to TseG ◦ gn the two players proceed as follows:
• Alice maps her x ∈ XE(G) into a CSP whose sole satisfying assignment is x.
Namely, for each constraint v ∈ V (G), the truth table X var(v) → {0, 1} is
all-0 except for a unique 1 in position x|var(v) (restriction of x to coordinates
in var(v)).

• Bob maps his y ∈ YE(G) into an unsatisfiable CSP. Namely, for each con-
straint v ∈ V (G), the truth table tv : X var(v) → {0, 1} is given by tv(x̂) := 1
iff (g(x̂e, ye))e∈var(v) ∈ {0, 1}var(v) is a partial edge-labeling of G that does
not create a parity violation on v.

Let us explain why Bob really produces a 0-input of Sat. Suppose for contradiction
that there is an x̂ ∈ XE(G) that satisfies all of Bob’s constraints: tv(x̂|var(v)) = 1 for
all v. By definition, this means that z := gn(x̂, y) is an input to TseG without any
violated nodes—a contradiction.

This reduction is parsimonious: it maps witnesses to witnesses in 1-to-1 fashion
(so the number of Tseitin violations equals the number of bit positions where Alice’s
CSP has a 1 and Bob’s CSP has a 0). Indeed, a node v is violated for TseG ◦ gn
iff Alice’s truth table for v has its unique 1 in a coordinate where Bob has a 0. In
conclusion, the (#∃−1)-game associated with (the KW+-game for) Sat is at least as
hard as the (#∃−1)-game for TseG ◦ gn.
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4.3. From CSP-SAT to independent sets. As a final step, we start with
Sat = SatΣ,H : {0, 1}m → {0, 1} and construct an m-node “conflict” graph K such
that a slack matrix of the independent set polytope PK embeds the (#∃−1)-game for
Sat (restricted to minterms). Let H := (L ∪ R,E) (as above), and define n := |R|
(above we had n = |L|, but in our case |L| = Θ(|R|) anyway).

The conflict graph K is defined as follows (this is reminiscent of a reduction
from [11]):

• The m nodes of K are in 1-to-1 correspondence with the input bits of Sat.
That is, for each constraint c ∈ R we have |Σvar(c)| many nodes in K labeled
with assignments var(c)→ Σ.

• There is an edge between any two nodes whose assignments are inconsistent
with one another. (Here φi : var(ci)→ Σ, i ∈ {1, 2}, are inconsistent iff there
is some e ∈ var(c1) ∩ var(c2) such that φ1(e) 6= φ2(e).) In particular, the
truth table of each constraint becomes a clique by definition.

(It can be seen that K has bounded degree if H has bounded left- and right-degrees,
which it does after our reduction from Tseitin for a bounded-degree G.)

The key property of this construction is the following:
The minterms of Sat are precisely the (indicator vectors of) maximal independent

sets of K.
Indeed, the minterms x ∈ Sat−1(1) correspond to CSPs with a unique satisfying

assignment φ : L→ Σ; there is a single 1-entry in each of the n truth tables (so that
|x| = n) consistent with φ. Such an x, interpreted as a subset of nodes, is independent
inK, as it only contains nodes whose labels are consistent with φ. Conversely, because
every independent set x ⊆ V (K) can only contain pairwise consistently labeled nodes,
x naturally defines a partial assignment L′ → Σ for some L′ ⊆ L. A maximal
independent set x corresponds to picking a node from each of the n constraint cliques
consistent with some total assignment φ : L → Σ. Hence x is a 1-input to Sat with
unique satisfying assignment φ.

Our goal is now to exhibit a set of valid inequalities for the independent set
polytope PK whose associated slack matrix embeds the (#∃−1)-game for Sat. Let
x ⊆ V (K) be an independent set, and let y ∈ Sat−1(0). We claim that the following
inequalities (indexed by y) are valid:

(4.1) |x ∩ y| =
∑

i : yi=1

xi ≤ n− 1.

Clearly (4.1) holds whenever |x| ≤ n − 1. Since it is impossible to have |x| ≥ n + 1,
assume that x is maximal: |x| = n. As argued above, x is a minterm of Sat. Hence
(x, y) is a valid pair of inputs to the KW+-game, and so they admit a witness: |x∩ȳ| ≥
1. Therefore |x ∩ y| = n − |x ∩ ȳ| ≤ n − 1. This shows that (4.1) is valid. The slack
matrix associated with inequalities (4.1) has entries

n− 1− |x ∩ y| = |x ∩ ȳ| − 1

for any minterm x and any y ∈ Sat−1(0). But this is just the (#∃−1)-game for Sat
with Alice’s input restricted to minterms.

4.4. Proof of Theorem 1.1. Here we simply string the above reductions to-
gether. By Corollary 3.2 there are a constant-size g and a bounded-degree G with
n edges such that the (#∃−1)-game for TseG ◦ gn requires Ω(n/ log n) bits of com-
munication. By the reduction of section 4.2 this implies an Ω(n/ log n) lower bound
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(a) (b) (c)

Fig. 1. Three ways to view our gadget g : {0, 1}3 × {0, 1}3 → {0, 1} by permuting rows and
columns. The white and gray cells represent 0- and 1-inputs, respectively. For (a), the rows and
columns are in lexicographic orders of x3x2x1 and y3y2y1.

for the (#∃− 1)-game associated with (the KW+-game for) a monotone function
Sat : {0, 1}O(n) → {0, 1}. As discussed in section 2.4, the complexity of the (#∃−1)-
game for Sat is affected only by ± log n when restricted to minterms. Thus the
minterm-restricted (#∃−1)-game for Sat still has complexity Ω(n/ log n). (Alter-
natively, one can note that the reduction from Tseitin to CSP-SAT produced only
minterms.) Hence the nonnegative rank of the matrix for that game is 2Ω(n/ logn).
By the reduction of section 4.3 there are a bounded-degree O(n)-node graph K and a
system of valid inequalities (4.1) for the independent set polytope PK such that the
slack matrix M(PK ;Q), where Q is the polyhedron with facets determined by (4.1),
embeds the matrix for the minterm-restricted (#∃−1)-game for Sat. Thus

log rk+(M(PK ;Q)) ≥ Ω(n/ log n).

By Fact 1.2 we have log xc(PK) = log rk+(M(PK)) ≥ log
(

rk+(M(PK ;Q)) − 1
)

≥
Ω(n/ log n).

5. Our gadget. We define our two-party gadget g : {0, 1}3×{0, 1}3 → {0, 1} as
follows (see Figure 1):

g(x, y) := x1 + y1 + x2y2 + x3y3 (mod 2).

We note that the smaller gadget x1 + y1 + x2y2 (mod 2) was considered in [36, 18].

5.1. Flips and windows. The most basic property of g is that it admits Alice-
and Bob-flips:

(1) Alice-flips: There is a row permutation πA : {0, 1}3 → {0, 1}3 that flips the
output of the gadget: g(πA(x), y) = ¬g(x, y) for all x, y. Namely, Alice just
flips the value of x1.

(2) Bob-flips: There is a column permutation πB : {0, 1}3 → {0, 1}3 that flips the
output of the gadget: g(x, πB(y)) = ¬g(x, y) for all x, y. Namely, Bob just
flips the value of y1.

A more interesting feature of our gadget (which we prove later and which x1+y1+
x2y2 does not possess) is that g embeds—in an especially uniform manner—certain
2×4 and 4×2 submatrices which we call “stretched And” and “stretched Nand.” For
terminology, we define a z-window where z ∈ {0, 1} as a z-monochromatic rectangle
of size 2 in the domain of g, i.e., an all-z submatrix of either horizontal shape 1 × 2
or vertical shape 2× 1. Here is an illustration of horizontally stretched And/Nand,
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which are composed of four horizontally shaped windows (for vertical stretch, the
illustration should be transposed):

And stretched And Nand stretched Nand

1

0

0 1

1

0

0 1

A stretched And/Nand embedding may use any rows and any columns of g, so, e.g.,
the window corresponding to the stretched (0, 0)-input need not appear “upper left”
in the embedding.

The key property is that each z-window w is embedded as the stretched (1, 1)-
input to a unique embedding of stretched And (if z = 1) or Nand (if z = 0) inside g.
That is, for each w we can find the following unique submatrix (illustrated again for
horizontal shapes), where we denote by w←, w →, and w↑ the (1− z)-windows corre-
sponding to the stretched (1, 0)-, (0, 0)-, and (0, 1)-inputs to the stretchedAnd/Nand:

if w is a 1-window if w is a 0-window

w
→

w
←

w
↑

w

w
→

w
←

w
↑

w

This defines three maps (“directed flips”) w 7→ w←, w 7→ w →, and w 7→ w↑, which
turn out to be shape-maintaining bijections between the set of z-windows and the set
of (1 − z)-windows. In particular, if w is a uniformly random z-window of g, then
each of w←, w →, and w↑ is a uniformly random (1− z)-window.

5.2. Checking the existence of flips. The properties of g claimed above can
be verified by directly inspecting the gadget (by hand). Luckily, this task can be eased
by exploiting symmetries.

(3) Transitive symmetry : The gadget admits a group of symmetries (permuta-
tions of its rows and columns leaving g invariant) which splits the domain of g
into two orbits, g−1(1) and g−1(0). Specifically, there is a group S ⊆ S8×S8

(here S8 is the symmetric group on eight elements) such that when (π1, π2) ∈
S acts on g, the output remains invariant: g(π1(x), π2(y)) = g(x, y) for all
x, y; and, moreover, S is transitive in the sense that for any two 1-inputs
(x, y), (x′, y′) ∈ g−1(1) (or 0-inputs) there is a symmetry (π1, π2) ∈ S such
that (π1(x), π2(y)) = (x′, y′).

To see that g really does have property (3), we visualize g as constructed from
Xor(x1, x2) := x1+x2 (mod 2) by applying the following “;” transformation twice:

M
M

M

¬M

M

x1 + y1
x1 + y1
+ x2y2

x1 + y1
+ x2y2 + x3y3

; ; ;

It is easy to see that Xor has the properties (1)–(3). We argue that if M is a boolean
matrix with the properties (1)–(3) and M ; M ′, then M ′ has the properties (1)–(3).
Suppose the entries of M are indexed by (x, y); we use (xa, yb) to index the entries
of M ′, where a, b ∈ {0, 1} are bits. If πA, πB are the Alice- and Bob-flips for M , then
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the Alice- and Bob-flips for M ′ are

xa 7→ πA(x)a,

yb 7→ πB(y)b.

Suppose S is the transitive symmetry group for M . Then the transitive symmetry
group for M ′ is generated by the following symmetries (here π0

A(x) := x and π1
A(x) :=

πA(x) and similarly for πb
B):

∀(π1, π2) ∈ S : (xa, yb) 7→ (π1(x)a, π2(y)b),

(xa, yb) 7→ (πa
A(x)a, y(1− b)),

(xa, yb) 7→ (x(1− a), πb
B(y)b).

The first family of symmetries makes each quadrant of M ′ transitive, whereas the last
two symmetries map entries between quadrants. In the second-to-last symmetry, Bob
swaps the left and right halves while Alice applies her flip to the bottom half. In the
last symmetry, Alice swaps the top and bottom halves while Bob applies his flip to
the right half. This shows that g satisfies (1)–(3).

Rather than checking that each z-window w appears as the stretched (1, 1)-input
to a unique embedding of stretched And/Nand and that the directed flips are bi-
jections, it is equivalent to check that for all ` ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} each w
appears as the stretched `-input to a unique embedding of stretched And/Nand in
g. Let us check this assuming w is a 0-window of shape 1× 2 (the other possibilities
can be checked similarly). By transitive symmetry, we may assume that w is picked
among the four 0’s of the first row of Figure 1(c) (so

(

4
2

)

choices for w). The key
observation is that the four columns corresponding to these 0’s define a submatrix of
g (left half of (c)) that contains each even Hamming weight row once and that the
other four columns (right half of (c)) also contain each even Hamming weight row
once. We consider the four cases for `:
` = (0, 0): To see that w is the stretched (0, 0)-input to a unique embedding of

stretched And, find the unique other row that has 0’s in the same
columns as w. The other two columns in the left half of (c) have 0’s
in the top row and 1’s in the other row.

` = (0, 1): To see that w is the stretched (0, 1)-input to a unique embedding of
stretched And, find the unique other row that has 1’s in the same
columns as w and 0’s in the other two columns of the left half of (c).
These other two columns have 0’s in the top row.

` = (1, 0): To see that w is the stretched (1, 0)-input to a unique embedding of
stretched And, find the unique other row that has 0’s in the same
columns as w and then find the unique pair of columns in the right
half of (c) that has 0’s in that other row. This pair of columns has 1’s
in the first row.

` = (1, 1): To see that w is the stretched (1, 1)-input to a unique embedding of
stretched Nand, find the unique other row that has 1’s in the same
columns as w and 0’s in the other two columns of the left half of (c) and
then find the unique pair of columns in the right half of (c) that has 1’s
in that other row. This pair of columns has 1’s in the first row.

6. Communication lower bound. In this section we prove Theorem 3.1, where
g is the gadget from section 5.
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6.1. High-level intuition. The high-level reason for why the (#∃−1)-game for
Tseitin (or really for any sufficiently unstructured search problem) is hard is the same
as for the (#∃−1)-game for matching [33]: A correct protocol Π dare not accept its
input before it has found at least two witnesses, lest it risk accepting with positive
probability an input with a unique witness (which would contradict correctness).
However, in an input with i witnesses, there are

(

i
2

)

pairs of witnesses for the protocol
to find. Hence one expects the acceptance probability of Π (that communicates too
few bits and never errs when i = 1) to grow at least quadratically with i rather than
linearly as required by the (#∃−1)-game.

Formalizing this quadratic increase in acceptance probability for protocols takes
some technical work given the current tools available in communication complexity.
However, the quadratic increase phenomenon for Tseitin is easier to formalize in the
query complexity setting, which we do in section 7. The reader may want to have a
look at that simpler proof first, even though the query proof is somewhat incomparable
to our approach for protocols (which revolves around k-routability).

6.2. Preliminaries.
Probability and information theory. We use standard notions from information

theory: H(X) is Shannon entropy; H(X |Y ) := Ey∼Y H(X |Y = y) is conditional
entropy; I(X ;Y ) := H(X) − H(X |Y ) = H(Y ) − H(Y |X) is mutual information;
∆(X,Y ) := maxE |P[X ∈ E]− P[Y ∈ E]| is statistical (total variation) distance. We
use upper-case letters for random variables and corresponding lower-case letters for
particular outcomes. Throughout the whole proof, all random choices are assumed to
be uniform in their respective domains unless otherwise stated.

Inputs and transcripts. Let XY be random inputs to a private-coin protocol Π.
We denote by Π = Π(X,Y ) the transcript of the protocol on input XY , and we let |Π|
be the maximum length of a transcript (i.e., the communication cost of Π). Note that
the transcript Π depends on both XY and the private coins of the players. We let
Πacc := (Π |Π accepts) denote the transcript conditioned on the protocol accepting.
For each input z ∈ Z

n
2 to the query problem TseG we can associate in a natural

way a pair of random inputs XY to the communication problem TseG ◦ gn that are
consistent with z in the sense that gn(X,Y ) = z; namely, we let XY be uniformly
distributed on

(gn)−1(z) = g−1(z1)× · · · × g−1(zn).

We write Π|z as shorthand for Π(X,Y ), where XY are drawn at random from the
above set. Note that if the protocol is correct, then conditioning on acceptance does
not change the distribution of such XY , since all inputs consistent with z have the
same acceptance probability. Thus Πacc|z can be equivalently defined by sampling a
uniformly random XY from (gn)−1(z) and then sampling a transcript conditioned on
acceptance.

Windows. As is often the case with information complexity arguments, we need to
introduce a conditioning variable W whose purpose is to make X and Y conditionally
independent. To this end, we employ windows (see section 5.1): we call a rectangle
w := w1×· · ·×wn ⊆ (gn)−1(z) a (multigadget) window of z iff each wi is a zi-window
in g (so wi ⊆ g−1(zi)). Now, to generate XY as above, we first pick W uniformly at
random among all the windows of z, and then, conditioned on an outcome W = w, we
pick XY ∈ w uniformly at random. In conclusion, XY is uniform on (gn)−1(z) (since
each row and column of g is balanced) and X and Y are conditionally independent
given W . We write Π|w := (Π(X,Y ) |W = w) for short.
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Alice-flips. Let (x, y) be an input consistent with z := gn(x, y), and let B ⊆ [n]
be any subset of coordinates of z. (B stands for “block” by analogy with the concept
of block sensitivity from query complexity.) We denote by (xB , y) the input obtained
from (x, y) by letting Alice flip the outputs of all gadgets corresponding to coordinates
in B; i.e., for every i ∈ B, Alice replaces her input xi with πA(xi), where πA is the
row permutation from section 5.1. Hence (xB , y) is an input consistent with zB . We
can also have Alice flip whole windows: wB := {(xB , y) : (x, y) ∈ w}. We henceforth
refer to such Alice-flips as just “flips.” (We could equally well have Bob be the flipper
throughout the whole proof, but we needed to make an arbitrary choice between the
players.)

Smooth protocols. Recall that if z is an input to TseG and B ⊆ E(G) is an
eulerian graph, then z and zB have the same set of violations. Consequently, any
protocol Π for the (#∃−1)-game must accept inputs (x, y) and (xB , y) with the same
probability. We note that we may assume w.l.o.g. that the transcript distribution of Π
is not sensitive to flipping eulerian graphs: if w is a window and B an eulerian graph,
then Π|w and Π|wB have the same distribution. Indeed, if Π does not satisfy this,
then we may replace it by a new “smoothed” protocol Π′ that computes as follows
on input (x, y): Alice uses her private coins to choose a uniformly random eulerian
graph B, and then the players run Π on input (xB , y). The fact that we may assume
Π is smooth is critically used later in the proof.

6.3. Proof outline. Recall the setting from section 3.3: We have a k-routable
graph with terminal nodes T . Let us assume for the sake of contradiction that Π is a
private-coin protocol of cost |Π| ≤ o(k) that accepts each input (x, y) with probability
α · (|viol(z)| − 1), where α > 0 is a constant (independent of (x, y)) and z := gn(x, y).
We call an input z (and any (x, y) consistent with z) an i-violation input if |viol(z)| = i
and all violations occur at the terminals T . We analyze the behavior of Π on i-violation
inputs with i ∈ {1, 3, 7} and show a contradiction via the following implication:

(∗) If protocol Π accepts all 1-violation (resp., 3-violation) inputs with probability
0 (resp., 2α),
then Π must mess up by accepting some 7-violation input with probability
> 6α.

Henceforth, we use o(1) to denote anonymous quantities that tend to 0 as |Π|/k tends
to 0.

The implication (∗) can be derived cleanly from two types of limitations of our
too-good-to-be-true Π. The first limitation concerns the situation where we start with
a 1-violation input z and consider 3-violation inputs zB1 and zB2 that are obtained
from z by flipping either a typical canonical path B1 or another typical canonical path
B2 that is edge-disjoint from B1 (the endpoints of Bi are terminals). The protocol
should accept both zB1 and zB2 (more precisely, any (x, y) consistent with them)
with probability 2α, but it better not accept both inputs while generating the same
transcript—otherwise we could exploit the rectangular nature of transcripts and cut-
and-paste the inputs zB1 and zB2 together and fool Π into accepting z, which would
contradict correctness. What we actually get is that the accepting transcripts for zB1

and zB2 should be near-disjoint.

1-vs-3 Lemma. Let z be any 1-violation input, and let P be any pairing of the
nonviolated terminals with canonical edge-disjoint paths B1, . . . , Bk. Let w be a ran-
dom window of z, and choose distinct i, j ∈ [k] at random. Then, with probability
≥ 1− o(1),

∆
(

Πacc|wBi ,Πacc|wBj
)

≥ 1− o(1).
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The second limitation concerns the situation where we start with a 3-violation
input z and flip a typical canonical path B to obtain a 5-violation input zB . Consider
a typical accepting transcript τ in Π|z. It is unlikely that the execution τ catches us
making the tiny local change z 7→ zB in the input, and one expects that τ continues
to appear in Π|zB with noticeable probability. (This is the usual corruption property
of large rectangles.) Formally, for windows w1 and w2, we set2 piτ := P[Π|wi = τ ] and
define

(6.1) Π|w1 overflows onto Π|w2 iff
∑

τ max(p1τ − p2τ , 0) ≤ o(α),

where the sum is over accepting transcripts τ . Intuitively, this means that for a
typical accepting transcript τ , we have p2τ ≥ (1−o(1)) ·p1τ . (The definition of overflow
makes sense for any distributions over transcripts; we will also apply it to Π|z.) For
technical reasons (which will become apparent shortly), we shall flip two canonical
paths instead of one in order to pass from 3-violation inputs to 7-violation inputs.

3-vs-7 Lemma. Let z be any 3-violation input, and let P be any pairing of the
nonviolated terminals with canonical edge-disjoint paths B1, . . . , Bk−1. Let w be a ran-
dom window of z, and choose distinct i, j ∈ [k− 1] at random. Then, with probability
≥ 1− o(1),

Π|w overflows onto Π|wBi∪Bj .

6.4. Deriving the contradiction. We now prove (∗) by applying the 1-vs-3
Lemma and the 3-vs-7 Lemma in a black-box fashion to find some 7-violation input
that Π accepts with too high a probability > 6α.

F = ([7], E)

1 2 3

46

5

7

Define F := ([7], E) as the Fano plane hypergraph on 7 nodes. See the figure
above. This hypergraph has 7 hyperedges, each of which is incident to 3 nodes, and
the hyperedges are pairwise uniquely intersecting. For each hyperedge e ∈ E choose
some arbitrary but fixed pairing Pe of the remaining nodes in [7]r e.

Probability space. Choose the following at random:
1. An injection of [7] into T . Denote the result by v1, . . . , v7 ∈ T .
2. A pairing P of the remaining terminals T r {v1, . . . , v7}.
3. A 7-violation input z7 with viol(z7) = {v1, . . . , v7}.
4. A window w7 of z7.

We do not make a distinction between the nodes of F and their embedding {v1, . . . , v7}
in T . In particular, we think of the hyperedges e ∈ E as triples of terminals and the
Pe as pairings of terminals. Associated with the pairing Pe ∪ P there is a canonical

2Note that the event in P[Π|wi = τ ] is to be parsed as “a sample from the distribution (Π|wi)
yields τ .”
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collection of edge-disjoint paths; let {Be
1, B

e
2} denote the two paths that connect Pe

in this collection.
Based on the above, we define 7 3-violation windows, indexed by e ∈ E:

window we := w
Be

1
∪Be

2

7 of ze := z
Be

1
∪Be

2

7 (note: viol(ze) = e).

The following claim (proved at the end of this subsection) follows directly from the
1-vs-3 Lemma and the 3-vs-7 Lemma as soon as we view our probability space from
the right perspective.

Claim 6.1. In the following list of 28 events, each occurs with probability ≥ 1 −
o(1):

• Overflow for e ∈ E: Π|we overflows onto Π|w7.
• Near-disjointness for {e, e′} ⊆ E: ∆

(

Πacc|we,Π
acc|we′

)

≥ 1− o(1).

By a union bound over all 28 events in the above list, we can fix our random
choices 1–4 to obtain a fixed 7-violation window w7 and fixed 3-violation windows we

such that

Overflow: ∀e ∈ E :
∑

τ max(peτ − p7τ , 0) ≤ o(α),(6.2)

Near-disjointness: ∀{e, e′} ⊆ E :
∑

τ min(peτ , p
e′

τ ) ≤ o(α).(6.3)

Here p7τ := P[Π|w7 = τ ], peτ := P[Π|we = τ ], and the sums are over accepting tran-
scripts; we have also rephrased the near-disjointness property using the fact that
P[Π|we accepts] = 2α.

These two properties state that typical accepting transcripts for Π|we contribute
to the acceptance probability of Π|w7, and these contributions are pairwise near-
disjoint. Hence, roughly speaking, one expects P[Π|w7 accepts] to be at least

∑

e∈E P[Π|we accepts] = 7 · 2α = 14α > 6α.

But then some 7-violation input in w7 would be accepted with probability > 6α,
which completes the proof of (∗) (and hence Theorem 3.1). Indeed, we perform this
calculation carefully as follows. We first partition the set of accepting transcripts
as

⋃

e∈E Se, where Se consists of those τ ’s for which peτ = maxe′ p
e′

τ (breaking ties
arbitrarily). Then

P[Π|w7 accepts] =
∑

τ p
7
τ

≥ ∑

e∈E, τ∈Se
min(p7τ , p

e
τ )

=
∑

e∈E, τ∈Se

(

peτ −max(peτ − p7τ , 0)
)

≥ ∑

e∈E, τ∈Se
peτ −

∑

e∈E, τ max(peτ − p7τ , 0)

≥ ∑

e∈E, τ∈Se
peτ − 7 · o(α)(via (6.2))

=
∑

e∈E, τ peτ −
∑

e∈E, e′∈Er{e}, τ∈Se′
peτ − o(α)

=
∑

e∈E, τ peτ −
∑

e∈E, e′∈Er{e}, τ∈Se′
min(peτ , p

e′

τ )− o(α)

≥ ∑

e∈E, τ peτ −
∑

e∈E, e′∈Er{e}, τ min(peτ , p
e′

τ )− o(α)

≥ ∑

e∈E, τ peτ − 7 · 6 · o(α)− o(α)(via (6.3))

=
∑

e∈E P[Π|we accepts]− o(α)

= 7 · 2α− o(α)
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Fig. 2. Illustration for the proof of Claim 6.1. Left: Paths flipped between terminals. Right:
Relationships between windows.

= (14− o(1)) · α
> 6α.

Proof of Claim 6.1. Overflow. For notational convenience, suppose e = {v1, v2, v3}
and Pe = {{v4, v7}, {v5, v6}}. An alternative way to generate a sample from our prob-
ability space is (in steps 1 and 6, we are really picking random injections) as follows:

1. Random {v1, v2, v3} ⊆ T .
2. Random 3-violation input ze subject to viol(ze) = {v1, v2, v3}.
3. Random pairing P ′ = {P1, . . . , Pk−1} of T r {v1, v2, v3} with canonical paths

B1, . . . , Bk−1.
4. Random window we of ze.
5. Random distinct i, j ∈ [k − 1].
6. Random {v4, v7} = Pi and {v5, v6} = Pj .

7. Deterministically, define z7 := z
Bi∪Bj
e and w7 := w

Bi∪Bj
e and P := P ′ r

{Pi, Pj}.
The choices made in steps 1–3 match the data that is quantified universally in the
3-vs-7 Lemma, whereas steps 4 and 5 make random choices as in the 3-vs-7 Lemma;
hence the lemma applies.

Near-disjointness. For notational convenience, suppose e = {v1, v2, v3}, e′ =
{v3, v4, v5}, Pe = {{v4, v7}, {v5, v6}}, and Pe′ = {{v1, v7}, {v2, v6}} (it does not mat-
ter for the proof how Pe and Pe′ were chosen). An alternative way to generate a
sample from our probability space is (see Figure 2) as follows:

1. Random v3 ∈ T .
2. Random 1-violation input z1 subject to viol(z1) = {v3}.
3. Random pairing P ′ = {P ′1, . . . , P ′k} of Tr{v3} with canonical pathsB′1, . . . , B

′
k.

4. Random window w1 of z1.
5. Random distinct i, j, l ∈ [k].
6. Random {v1, v2} = P ′i and {v4, v5} = P ′j and {v6, v7} = P ′l .
7. Deterministically, define

− ze := z
B′

i

1 and we := w
B′

i

1 ,

− ẑe′ := z
B′

j

1 and ŵe′ := w
B′

j

1 ,
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− P := P ′ r {Pi, Pj , Pl},
− {Be

1, B
e
2} according to the canonical paths for Pe ∪ P,

− {Be′

1 , Be′

2 } according to the canonical paths for Pe′ ∪ P,
− z7 := z

Be
1
∪Be

2

e and w7 := w
Be

1
∪Be

2

e ,

− ze′ := z
Be′

1
∪Be′

2

7 and we′ := w
Be′

1
∪Be′

2

7 .
The choices made in steps 1–3 match the data that is quantified universally in the
1-vs-3 Lemma, whereas steps 4 and 5 (excluding variable l) make random choices as
in the 1-vs-3 Lemma. Hence that lemma applies and shows that Πacc|we and Πacc|ŵe′

are near-disjoint with high probability. Finally, we note that ŵe′ and we′ differ by
the flipping of an eulerian graph, namely B′j ⊕ B′i ⊕ Be

1 ⊕ Be
2 ⊕ Be′

1 ⊕ Be′

2 (where ⊕
means symmetric difference), so Π|we′ and Π|ŵe′ have the same distribution assuming
w.l.o.g. that Π is smooth (as discussed in section 6.2). Thus Πacc|we and Πacc|we′ are
also near-disjoint with high probability.

6.5. Roadmap for the rest of the proof. We prove the 1-vs-3 Lemma in
section 6.6 and the 3-vs-7 Lemma in section 6.7. Both proofs rely on another tech-
nical lemma, the Homogeneity Lemma (stated below, proved in section 6.8), which
generalizes a lemma from (the full version of) [20, section 5]. In fact, we prove the
Homogeneity Lemma for any gadget g that is regular (as defined in section 6.8), which
our gadget is.

Homogeneity Lemma. Fix an arbitrary z ∈ {0, 1}m for some m. Let W be a
random window of z in gm, let XY be a random input in W , and let R be an arbitrary
random variable that is conditionally independent of W given XY . If I(R ;XY |W ) ≤
o(1), then at least a 1− o(1) fraction of windows w of z are such that ∆(R|w,R|z) ≤
o(1).

In the statement, R|w is shorthand for R|(W = w), and R|z denotes the marginal
distribution of R in the whole probability space, which is over uniformly random
XY ∈ (gm)−1(z). Furthermore, we mention that our proof shows that at least a
1 − o(1) fraction of xy ∈ (gm)−1(z) are such that ∆(R|xy,R|z) ≤ o(1), but for the
1-vs-3 Lemma and the 3-vs-7 Lemma we only require the property for windows.

In section 5 we defined the directed flips w←, w →, w↑ for a single-gadget window.
We now also define directed flips for multigadget windows w: if B is a subset of
coordinates, then w←B , w →B , w↑B are defined by applying the corresponding directed
flips to the coordinates in B. Then we have the following key property of our gadget.

Fact 6.2. If w is a uniformly random window of z, then each of w←B , w →B , w↑B

is marginally a uniformly random window of zB.

This concept is used in the proofs of the 1-vs-3 Lemma and the 3-vs-7 Lemma.
It turns out that the 3-vs-7 Lemma can be proved (with a small modification to our
proof) even for the simpler gadget that was used in [36, 18] (as can the Homogeneity
Lemma since that gadget is regular), but our proof of the 1-vs-3 Lemma crucially uses
Fact 6.2, which does not hold for that simpler gadget.

6.6. Proof of the 1-vs-3 Lemma. Consider a probability space with the fol-
lowing random variables: I ∈ [k], J ∈ [k]r {I}, W is a random window of zBI , XY
is a random input in W , and Πacc is the random transcript of Π on input XY condi-
tioned on acceptance. For convenience, denote B := B1∪ · · ·∪Bk and B−i := BrBi.
We have

I
(

Πacc ; (XY )B−I

∣

∣ IW
)

≤ H(Πacc | IW ) ≤ |Π| ≤ o(k),
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so by the standard direct sum property [2],

I
(

Πacc ; (XY )BJ

∣

∣ IJW
)

= 1
k−1 · Ei∼I

∑

j∈[k]r{i} I
(

Πacc ; (XY )Bj

∣

∣W, I = i
)

≤ 1
k−1 · I

(

Πacc ; (XY )B−I

∣

∣ IW
)

≤ o(1).

Define H := {I, J}, and abbreviate BI ∪ BJ as BH and W[n]r(BI∪BJ ) as W−BH
. By

Markov’s inequality, with probability ≥ 1− o(1) over h ∼ H and w−Bh
∼ W−Bh

, we
have

I
(

Πacc ; (XY )BJ

∣

∣ IJWBh
, H = h,W−Bh

= w−Bh

)

≤ o(1).

Fixing such h and w−Bh
(henceforth), say h = {1, 2}, it suffices to show that with

probability ≥ 1− o(1) over a random window wBh
of zBh

, we have

∆
(

Πacc|wB1 ,Πacc|wB2

)

≥ 1− o(1)

(where w is the combination of wBh
and w−Bh

).
We rephrase the situation as follows. Consider a protocol Π∗ that interprets its

input as (xy)Bh
, uses private coins to sample random (xy)−Bh

from w−Bh
, and runs

Π on the input xy (the combination of (xy)Bh
and (xy)−Bh

). Henceforth, recycling
notation by letting z ∈ {0, 1}|Bh| refer to zBh

, (I, J) be random in {(1, 2), (2, 1)}, W
be a random window of (the new) zBI , and XY be a random input to Π∗ in W , the
situation is as follows:

Assumption: I
(

Πacc
∗ ; (XY )BJ

∣

∣ IJW
)

≤ o(1).
Want to show: For ≥ 1− o(1) fraction of windows w of z,

∆
(

Πacc
∗ |wB1 ,Πacc

∗ |wB2

)

≥ 1− o(1).

The assumption holds (with factor 2 loss in the o(1)) conditioned on either out-
come of (I, J); let us tacitly condition on the outcome (1, 2). Then

I
(

Πacc
∗ ; (XY )B2

∣

∣W
)

≤ o(1),

where W is a random window of zB1 . By Markov’s inequality, with probability
≥ 1 − o(1) over wB1

∼ WB1
we have I

(

Πacc
∗ ; (XY )B2

∣

∣WB2
,WB1

= wB1

)

≤ o(1);
call such a wB1

good. Hence, for a good wB1
, we can apply the Homogeneity Lemma

with m := |B2| and R := Πacc
∗ |(WB1

= wB1
) (note that R|(xy)B2

is the distribu-
tion of Πacc

∗ on input (XY )B1
(xy)B2

, where (XY )B1
is random in wB1

). This tells
us that for a good wB1

, with probability ≥ 1 − o(1) over wB2
∼ WB2

, we have
∆
(

Πacc
∗ |wB1

wB2
,Πacc
∗ |wB1

zB2

)

≤ o(1), where the distribution Πacc
∗ |wB1

zB2
is over

random (XY )B1
∈ wB1

and (XY )B2
∈ (gm)−1(zB2

). We summarize the above with
the following claim.

Claim 6.3. For ≥ 1− o(1) fraction of windows w of zB1 , we have

∆
(

Πacc
∗ |w,Πacc

∗ |wB1
zB2

)

≤ o(1).

Conditioning on the other outcome (I, J) = (2, 1) yields the symmetric property.

Claim 6.4. For ≥ 1− o(1) fraction of windows w of zB2 , we have

∆
(

Πacc
∗ |w,Πacc

∗ |zB1
wB2

)

≤ o(1).
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Now pick a random window w of zBh . Using Fact 6.2, wB2 and w →B2 are
both uniformly random (albeit correlated) windows of zB1 , and wB1 and w →B1 are
both uniformly random (albeit correlated) windows of zB2 . Hence, by Claim 6.3,
Claim 6.4, and a union bound, with probability ≥ 1 − o(1) over the choice of w,
the following four distances are simultaneously ≤ o(1): ∆

(

Πacc
∗ |wB2 ,Πacc

∗ |wB1
zB2

)

,

∆
(

Πacc
∗ |w →B2 ,Πacc

∗ |wB1
zB2

)

, ∆
(

Πacc
∗ |wB1 ,Πacc

∗ |zB1
wB2

)

, ∆
(

Πacc
∗ |w →B1 ,Πacc

∗ |zB1
wB2

)

.

We argue shortly that ∆
(

Πacc
∗ |w →B1 ,Πacc

∗ |w →B2

)

= 1 with probability 1; putting

everything together then shows that ∆
(

Πacc
∗ |wB1 ,Πacc

∗ |wB2

)

≥ 1− o(1), as illustrated
below. (This is equivalent to what we want to show, since sampling a window w
of zBh and taking wB1 , wB2 is equivalent to sampling a window w of z and taking
wB2 , wB1 .)

Πacc
∗ |wB1 Πacc

∗ |zB1
wB2 Πacc

∗ |w →B1

Πacc
∗ |wB2 Πacc

∗ |wB1
zB2 Πacc

∗ |w →B2

∆ ≤ o(1) ∆ ≤ o(1)

∆ ≤ o(1) ∆ ≤ o(1)

∆ = 1∆ ≥ 1− o(1)

To finish the proof, suppose for contradiction that some accepting transcript
has positive probability under both Πacc

∗ |xy and Πacc
∗ |x′y′ for some xy ∈ w →B1 and

x′y′ ∈ w →B2 . Then Π∗ would also accept xy′ with positive probability by the rectan-
gular nature of transcripts. We claim that g|Bh|(xy′) = z. To see this, consider any
coordinate c of z; suppose c ∈ B1 (the case c ∈ B2 is similar). There is an embedding

of stretched And (if zc = 0) or Nand (if zc = 1) such that w
→B1

c is the image of

(0, 0) (hence is zc-monochromatic) and w
→B2

c = wc is the image of (1, 1) (hence is

(1− zc)-monochromatic). Since (xy)c ∈ w
→B1

c and (x′y′)c ∈ wc, it follows that (xy
′)c

is in the image of (0, 1), which is zc-monochromatic. So g((xy′)c) = zc and the claim
is proved.

Since Π∗ accepts some input in (g|Bh|)−1(z) with positive probability (for the new
z), it follows that Π accepts some input in (gn)−1(z) with positive probability, for the
original z, which is a contradiction, since the original z has only one violation.

6.7. Proof of the 3-vs-7 Lemma. Assume for convenience that k− 1 is even.
Note that sampling distinct i, j ∈ [k − 1] is equivalent to sampling a permutation σ
of [k − 1] and an h ∈ [k−12 ] and setting i = σ(2h− 1), j = σ(2h).

Thus we have a probability space with random variables Σ, H, I, J corresponding
to the above, as well as the following: W is a random window of z, XY is a random
input in W , and Πacc is the random transcript of Π on input XY conditioned on
acceptance. For convenience, denote B := B1 ∪ · · · ∪ Bk−1 and Bij := Bi ∪ Bj . We
have

I
(

Πacc ; (XY )B
∣

∣W
)

≤ H(Πacc |W ) ≤ |Π| ≤ o(k),

so by the standard direct sum property [2],

I
(

Πacc ; (XY )BIJ

∣

∣WIJ
)

= I
(

Πacc ; (XY )BIJ

∣

∣WΣH
)

= 2
k−1 ·

∑

h∈[(k−1)/2] I
(

Πacc ; (XY )BIJ

∣

∣WΣ, H = h
)



260 MIKA GÖÖS, RAHUL JAIN, AND THOMAS WATSON

≤ 2
k−1 · I

(

Πacc ; (XY )B
∣

∣WΣ
)

= 2
k−1 · I

(

Πacc ; (XY )B
∣

∣W
)

≤ o(1).

Abbreviate W[n]rBij
as W−Bij

. By Markov’s inequality, with probability ≥ 1 −
o(1) over ij ∼ IJ and w−Bij

∼ W−Bij
, we have I

(

Πacc ; (XY )Bij

∣

∣WBij
,W−Bij

=

w−Bij

)

≤ o(1). Fixing such ij and w−Bij
(henceforth), it suffices to show that with

probability ≥ 1− o(1) over wBij
∼WBij

, Π|w overflows onto Π|wBij (where w is the
combination of wBij

and w−Bij
).

We rephrase the situation as follows. Consider a protocol Π∗ that interprets its
input as (xy)Bij

, uses private coins to sample random (xy)−Bij
from w−Bij

, and runs
Π on the input xy (the combination of (xy)Bij

and (xy)−Bij
). Henceforth, recycling

notation by letting z ∈ {0, 1}|Bij | refer to zBij
, letting B refer to Bij , letting W be a

random window of (the new) z, and letting XY be a random input to Π∗ in W , the
situation is as follows:

Assumption: I
(

Πacc
∗ ;XY

∣

∣W
)

≤ o(1).
Want to show: For ≥ 1− o(1) fraction of windows w of z, Π∗|w overflows onto

Π∗|wB .

Claim 6.5. For ≥ 1 − o(1) fraction of windows w of zB, Π∗|z overflows onto
Π∗|w.

We prove Claim 6.5 shortly, but first we finish the proof of the 3-vs-7 Lemma
assuming it. By the Homogeneity Lemma (with m := |B| and R := Πacc

∗ ), Claim 6.5,
and a union bound, at least a 1 − o(1) fraction of windows w of z are such that
both ∆

(

Πacc
∗ |w,Πacc

∗ |z
)

≤ o(1) and Π∗|z overflows onto Π∗|wB (since wB is a uniform
window of zB if w is a uniform window of z). We show that this implies that Π∗|w
overflows onto Π∗|wB as follows (letting pzτ , pwτ , pw

B

τ denote the probability of a
transcript τ under the distributions Π∗|z, Π∗|w, Π∗|wB , respectively, and summing
only over accepting τ ’s):

∑

τ max(pwτ −pw
B

τ , 0) ≤ ∑

τ max(pzτ−pw
B

τ , 0)+
∑

τ |pwτ −pzτ | ≤ o(α)+o(α) = o(α).

Proof of Claim 6.5. By Fact 6.2, if w is a random window of zB , then w←B , w →B ,
w↑B are each marginally uniformly random windows of z. Thus by the Homogene-
ity Lemma (with m := |B| and R := Πacc

∗ ) and a union bound, with probability
≥ 1 − o(1) over the choice of w, the following three distances are simultaneously
≤ o(1): ∆

(

Πacc
∗ |w←B ,Πacc

∗ |z
)

, ∆
(

Πacc
∗ |w →B ,Πacc

∗ |z
)

, ∆
(

Πacc
∗ |w↑B ,Πacc

∗ |z
)

. Now as-
suming this good event occurs for some particular w, we just need to show that Π∗|z
overflows onto Π∗|w.

(See Figure 3 for a proof-by-picture.) Let pτ , p
11
τ , p10τ , p00τ , p01τ denote the proba-

bilities of a transcript τ under Π∗|z, Π∗|w, Π∗|w←B , Π∗|w →B , Π∗|w↑B , respectively.
Let γ00

τ := |pτ − p00τ |, and for ab ∈ {01, 10} let γab
τ := |p00τ − pabτ |. We claim that for

all τ , pτ − p11τ ≤ γ00
τ + γ01

τ + γ10
τ ; this will finish the proof, since then (summing only

over accepting τ ’s)
∑

τ max(pτ − p11τ , 0) ≤ ∑

τ (γ
00
τ + γ01

τ + γ10
τ ) ≤ o(α) + o(α) + o(α) = o(α),

where the second inequality is because
∑

τ γ
00
τ ,

∑

τ γ
01
τ ,

∑

τ γ
10
τ ≤ o(α) follow from

(respectively)

∆
(

Πacc
∗ |z,Πacc

∗ |w →B),∆
(

Πacc
∗ |w →B ,Πacc

∗ |w↑B
)

,∆
(

Πacc
∗ |w →B ,Πacc

∗ |w←B
)

≤ o(1).
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w
←B

w
→B

w

w
↑B

3-violation windows 7-violation window

Fig. 3. Proof of Claim 6.5 illustrated. The four windows w, w←B , w →B , w↑B are rectangles
of (x, y)’s. Each (x, y) can be further subdivided according to the private coins (rA, rB) of the players.
The protocol Π∗ partitions the extended input space of (xrA, yrB)’s into transcript rectangles—above,
we have only drawn accepting transcript rectangles (in various colors, available online only). For a
window w′, the probability P[Π∗|w′ = τ ] is simply the area (appropriately scaled) of the transcript
rectangle of τ inside w′. In the proof of Claim 6.5, the relevant case is when all of Πacc

∗ |w←B,

Πacc
∗ |w →B, Πacc

∗ |w↑B have roughly the same distribution, say D (in fact, D := Πacc
∗ |z). By the

rectangular property of transcripts, this forces Π∗|z to overflow onto Π∗|w. (Note that Πacc
∗ |w may

contain additional transcripts to those in D, since the acceptance probability is higher.)

To verify the subclaim, it suffices to show that

(6.4) p01τ · p10τ ≥ (p00τ )2 − p00τ γ01
τ − p00τ γ10

τ ,

since by the rectangular nature of transcripts we have p00τ · p11τ = p01τ · p10τ , and thus
if p00τ > 0, then

p11τ =
p01τ · p10τ

p00τ
≥ p00τ − γ01

τ − γ10
τ ≥ pτ − γ00

τ − γ01
τ − γ10

τ ,

and if p00τ = 0, then of course p11τ ≥ p00τ = pτ − γ00
τ . To see (6.4), note that for some

signs σ01
τ , σ10

τ ∈ {1,−1}, the left-hand side of (6.4) equals
(

p00τ +σ01
τ γ01

τ

)

·
(

p00τ +σ10
τ γ10

τ

)

,
which expands to

(6.5) (p00τ )2 + σ01
τ p00τ γ01

τ + σ10
τ p00τ γ10

τ + σ01
τ σ10

τ γ01
τ γ10

τ .

If σ01
τ = σ10

τ , then (6.5) is at least the right-hand side of (6.4), since the last term
of (6.5) is nonnegative. If σ01

τ 6= σ10
τ , say σ01

τ = −1 and σ10
τ = 1, then (6.5) is

at least the right-hand side of (6.4), since the sum of the last two terms in (6.5) is
p00τ γ10

τ − γ01
τ γ10

τ = p01τ γ10
τ ≥ 0.

6.8. Proof of the Homogeneity Lemma.

Definition 6.6. For a gadget g : X × Y → {0, 1} and b ∈ {0, 1}, define the
digraph Gb as follows: the nodes are the b-inputs of g, and there is an edge from xy
to x′y′ iff x = x′ or y = y′. (That is, each node has a self-loop, and all b-inputs in a
given row or column have all possible edges between them.)
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Definition 6.7. We say a gadget g : X × Y → {0, 1} is regular iff (i) |X | = |Y|
is even, (ii) each row and each column is balanced (number of 0’s equals number of
1’s), and (iii) G0 and G1 are both strongly connected.

Our gadget g is indeed regular, but we prove the lemma for any regular constant-
size g.

The first part of the proof is inspired by an approach similar to that used in [20].
We augment the probability space with the following random variables: let X ′Y ′ be
a random input in W that is conditionally independent of XY given W (note that
in each of the m coordinates independently, XY and X ′Y ′ are equal with probability
1/2), and let E ∈ ((gm)−1(z))2 be chosen randomly from {(XY,X ′Y ′), (X ′Y ′, XY )}.
We have H(R |E) = H(R |WE) ≤ H(R |W ), since R is conditionally independent
of W given E, and conditioning decreases entropy. We also have H(R |XY E) =
H(R |XY ) = H(R |XYW ), since R is conditionally independent of WE given XY .
Putting these together, we get

I(R ;XY |E) = H(R |E)−H(R |XY E) ≤ H(R |W )−H(R |XYW )

= I(R ;XY |W ) ≤ o(1).

By Markov’s inequality, with probability≥ 1−o(1) over e ∼ E, we have I(R ;XY |E =
e) ≤ o(1), in which case if e = (x(0)y(0), x(1)y(1)), then by Pinsker’s inequality,3

∆
(

R|x(0)y(0), R|x(1)y(1)
)

≤ o(1); let us use ε > 0 for the latter o(1) quantity. We
describe what the above means in graph theoretic terms.

Example of G1 for

the regular gadget

x1 + y1 + x2y2

Define the digraph Gz as follows: the nodes are the inputs in (gm)−1(z), and
there is an edge from one input to another iff there exists a window of z containing
both inputs; this includes a self-loop at each node. Note that Gz is the tensor product
Gz1 ⊗ · · · ⊗ Gzm , i.e., each node of Gz corresponds to an m-tuple of nodes from those
digraphs, and each edge of Gz corresponds to an m-tuple of edges. For convenience,
we make the dependence of the random variable E on z explicit using the notation
Ez; thus Ez is distributed over the edges of Gz. By regularity, for b ∈ {0, 1} the
distribution of Eb over the edges of Gb puts half its mass uniformly over the self-loops
and half its mass uniformly over the non-self-loops. Note that the distribution of Ez

is the product of the distributions of Ez1 , . . . , Ezm , i.e., Ez can be sampled by taking

3Specifically, if RB are jointly distributed random variables where B ∈ {0, 1} is a uniformly ran-
dom bit, and Rb denotes the distribution of R|(B = b), then I(R ;B) = D(R0 ‖R)/2+D(R1 ‖R)/2 ≥
Ω(∆(R0, R)2/2 + ∆(R1, R)2/2) ≥ Ω((∆(R0, R)/2 + ∆(R1, R)/2)2) ≥ Ω(∆(R0, R1)2), where D de-
notes KL-divergence, and the first inequality is Pinsker’s, the second is by convexity of the square
function, and the third is by the triangle inequality.
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samples (x(0,i)y(0,i), x(1,i)y(1,i)) from Ezi (independent over i ∈ [m]) and forming the
edge

(

x(0,1)y(0,1) · · ·x(0,m)y(0,m), x(1,1)y(1,1) · · ·x(1,m)y(1,m)
)

in Gz.
We say an edge (x(0)y(0), x(1)y(1)) of Gz is great iff ∆

(

R|x(0)y(0), R|x(1)y(1)
)

≤ ε.
Thus the great edges have at least 1− o(1) probability mass under Ez.

Let L be the number of non-self-loop edges in Gb (which is the same for b = 0
and b = 1).

Claim 6.8. There exists a distribution over length-2L walks on Gz such that (i)
the first and last nodes are independent and each marginally uniform, and (ii) each of
the 2L edges on the walk is marginally distributed according to Ez.

Proof. By the product structure of Gz and Ez, it suffices to prove this claim for a
bit b instead of z (as the claim for z follows by sampling m independent such walks on
the Gzi ’s and running them “in parallel”). By regularity, if we ignore the self-loops,
there exists an eulerian tour in Gb that uses all the non-self-loop edges exactly once
and pays an equal number of visits to each node. Let v0, v1, . . . , vL−1, v0 denote the
sequence of nodes visited (with repeats) on a fixed such tour. We explicitly describe
the distribution of walks vi0 , . . . , vi2L on Gb using mod-L arithmetic:

1. Independently sample i0 and ` uniformly from {0, . . . , L− 1}.
2. For j = 1, . . . , `, execute one of the following with probability 1/2 each:

2a. Use the self-loop, and then move forward (i.e., i2j−1 = i2j−2 and i2j =
i2j−1 + 1).

2b. Move forward, and then use the self-loop (i.e., i2j−1 = i2j−2 + 1 and
i2j = i2j−1).

3. For j = `+ 1, . . . , L, execute one of the following with probability 1/2 each:
3a. Use the self-loop twice (i.e., i2j = i2j−1 = i2j−2).
3b. Move forward and then backward (i.e., i2j−1 = i2j−2 + 1 and i2j =

i2j−1 − 1).
This procedure has L phases, each taking two steps of the walk. Each of the first `
phases has the effect of moving forward one node on the tour, and each of the last L−`
phases has the effect of ending up at the same node at which the phase started. Thus
i2L = i0 + ` and is hence independent of i0 and uniform over {0, . . . , L− 1} (since ` is
independent of i0 and uniform); hence also vi0 and vi2L are independent and uniform
(since the tour visits each node equally often), and so (i) is verified. Property (ii)
holds even conditioned on any ` and can be verified by a little case analysis; e.g.,
if ` > 1, then the first edge is (vi0 , vi0) with probability 1/2 and is (vi0 , vi0+1) with
probability 1/2 (this is a sample from Eb, since vi0 is a uniform node and (vi0 , vi0+1)
is a uniform non-self-loop edge).

If we sample a walk x(0)y(0), . . . , x(2L)y(2L) in Gz as in Claim 6.8, then by property
(ii) and a union bound, with probability ≥ 1−2L ·o(1) = 1−o(1), each of the edges on
the walk is great, in which case by the triangle inequality, ∆

(

R|x(0)y(0), R|x(2L)y(2L)
)

≤
2Lε. In summary, by property (i), a 1− o(1) fraction of pairs of inputs in (gm)−1(z)
are good in the sense that their conditional distributions of R are within statistical
distance 2Lε = o(1). Thus a 1− o(1) fraction of inputs xy ∈ (gm)−1(z) are such that
(xy, xy) is good for a 1 − o(1) fraction of xy ∈ (gm)−1(z), in which case (letting xy
be random in (gm)−1(z) in the following)

∆(R|xy,R) = ∆
(

R|xy,ExyR|xy
)

≤ Exy ∆
(

R|xy,R|xy
)

≤ Pxy[(xy, xy) is good] · o(1) + Pxy[(xy, xy) is not good] · 1



264 MIKA GÖÖS, RAHUL JAIN, AND THOMAS WATSON

≤ 1 · o(1) + o(1) · 1
= o(1),

where the second line is a basic general fact about statistical distance. Say xy is
typical if ∆(R|xy,R) ≤ o(1) as above. Note that in the original probability space,
XY is marginally uniform over (gm)−1(z), and thus with probability at least 1− o(1)
over sampling w ∼ W and xy ∼ XY ∈ w, xy is typical. It follows that for at least a
1− o(1) fraction of w, at least a 1− o(1) fraction of xy ∈ w are typical, in which case

∆(R|w,R) = ∆
(

Exy∈wR|xy,R
)

≤ Exy∈w ∆(R|xy,R)

≤ Pxy∈w[xy is typical] · o(1) + Pxy∈w[xy is not typical] · 1
≤ 1 · o(1) + o(1) · 1
= o(1).

7. Query lower bound. An alternative approach for proving a lower bound for
the (#∃−1)-game for TseG ◦ gn is the following:

Step 1: Prove an appropriate query complexity lower bound for TseG.
Step 2: Use a communication-to-query simulation theorem like in [7, 17, 25].

In this section, we carry out the first step by proving an optimal Ω(n) query complexity
lower bound (in particular, this answers a question from [26]). The query lower bound
is a lot simpler to prove than our Ω(n/ log n) communication lower bound in section 6.
Unfortunately, as we discuss in section 7.3, it is not known how to perform the second
step for small-enough gadgets g.

The result of this section can be interpreted as evidence that the right bound
in Theorem 1.1 is 2Ω(n) and the right bound in Corollary 3.2 is Ω(n), and also as
motivation for further work to improve parameters for simulation theorems.

7.1. Conical juntas. The query complexity analogue of nonnegative rank de-
compositions (nonnegative combinations of nonnegative rank-1 matrices) are conical
juntas: nonnegative combinations of conjunctions of literals (input bits or their nega-
tions). We write a conical junta as h =

∑

C wCC, where wC ≥ 0 and C ranges over
all conjunctions C : {0, 1}n → {0, 1}. The degree of h is the maximum number of
literals in a conjunction C with wC > 0. Each conical junta naturally computes a
nonnegative function h : {0, 1}n → R≥0.

A randomized decision tree T of height d (probability distribution over determin-
istic decision trees of height d) can be converted into a degree-d conical junta h that
on input z ∈ {0, 1}n outputs the acceptance probability of T on input z; the conver-
sion is the same as for multilinear polynomials [6, Theorem 15]. Conversely, given a
degree-d conical junta h =

∑

C wCC, consider the randomized height-d decision tree
T that on input z ∈ {0, 1}n samples a random conjunction C with probability pro-
portional to wC and accepts iff C(z) = 1. The resulting randomized decision tree has
acceptance probability proportional to h(z). Hence, for computational tasks (such as
(#∃−1)-games), where we care only about the acceptance probability up to scaling,
randomized decision trees and conical juntas are equivalent.

We will study (#∃−1)-games in query complexity: the query complexity of the
(#∃− 1)-game for TseG is the least degree of a conical junta h that on input z
outputs h(z) = |viol(z)| − 1.

7.2. A linear lower bound.

Theorem 7.1. There is a family of n-node bounded-degree graphs G such that
the (#∃−1)-game for TseG requires query complexity Ω(n).
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Relation to [26]. An analogue of the (KW/EF) connection holds for query com-
plexity: if there is a deterministic decision tree of height d that solves the search
problem TseG, we can convert this into a degree-(d + O(1)) conical junta for the
associated (#∃−1)-game. Moreover, if we only have a randomized ε-error decision
tree for the search problem, then the connection gives us a conical junta h that ap-
proximately solves the (#∃−1)-game: h(z) ∈ (|viol(z)| − 1) · (1± ε) for all z.

Our proof below is robust enough that the Ω(n) bound holds even for conical
juntas that merely approximately solve the (#∃−1)-game. Hence we get a randomized
Ω(n) lower bound for TseG, which was conjectured in [26, p. 125]; note, however, that
the earlier work [18] already got a near-optimal Ω(n/ log n) bound. In any case, to our
knowledge, this is the first O(1)-vs-Ω(n) separation between nondeterministic query
complexity (which for TseG equals the maximum degree of G) and randomized query
complexity for search problems.

The proof. Fix an n-node bounded-degree expander G = (V,E). That is, for
any subset U ⊆ V of size |U | ≤ n/2, the number of edges leaving U is Θ(|U |). We
tacitly equip G with an arbitrary odd-weight node-labeling. Assume for the sake of
contradiction that there is a conical junta h =

∑

wCC of degree o(n) for the (#∃−1)-
game for TseG. Let C be a conjunction with wC > 0. Denote by S ⊆ E the set of
edges that C reads; hence |S| ≤ o(n). Below, we write G r S for the graph induced
on the edges E r S (deleting nodes that become isolated).

Claim 7.2. We may assume w.l.o.g. that Gr S is connected.

Proof. If GrS is not connected, we may replace C with a conjunction (actually,
a sum of them) that reads more input variables; namely, we let C read a larger set
of edges S′ ⊇ S including all edges from connected components of G r S of “small”
size ≤ n/2. When adding some small component K ⊆ E to S′ we note that, because
G is expanding, the size of K is big-O of the size of the edge boundary of K (which
is contained in S). On the other hand, every edge in S lies on the boundary of at
most two components. It follows that |S′| = O(|S|), i.e., we increased the degree of
h only by a constant factor. Now in Gr S′ we have only components of size > n/2,
but there can only be one such component.

Claim 7.3. We may assume w.l.o.g. that C witnesses at least two fixed nodes with
a parity violation (i.e., C reads all the edge labels incident to the two nodes).

Proof. Suppose for contradiction that C witnesses at most one violation. Then
we may fool C into accepting an input (and hence h into outputting a positive value
on that input) where the number of violations is 1, which is a contradiction to the
definition of the (#∃−1)-game. Indeed, let z be some input accepted by C. Then we
may modify z freely on the connected graph Gr S (by Claim 7.2) without affecting
C’s acceptance: we may eliminate pairs of violations from z by flipping paths (as
in section 3) until only one remains. (This is possible, since by definition all the
nonwitnessed violations of z remain in Gr S.)

Let µi (i odd) denote the distribution on inputs that have i violations at a random
set of i nodes and are otherwise random with this property. We may generate an input
from µi as follows:

1. Choose an i-set Ti ⊆ V of nodes at random.
2. Let z ∈ Z

E
2 be any fixed input with viol(z) = Ti.

3. Let q ∈ Z
E
2 be a random eulerian graph.

4. Output z + q.
Theorem 7.1 follows from the following lemma. Here we identify C with the set
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(subcube) of inputs it accepts and define µi(C) := Pz∼µi
[C(z) = 1].

Lemma 7.4. µ5(C) ≥ (10/3− o(1)) · µ3(C).

Indeed, consider the expected output value Ezi∼µi
[h(zi)]. This should be 2 for

i = 3, and 4 for i = 5; i.e., a factor 2 increase. However, the above lemma implies
that the output value gets multiplied by more than a factor 3, which is the final
contradiction.

Proof of Lemma 7.4. By Claim 7.3 let {v1, v2} be a pair of nodes where C wit-
nesses two violations. For i = 3, 5, let zi ∼ µi and denote by Ti the i-set of its
violations. Then

µ3(C) = P[C(z3) = 1]

= P[C(z3) = 1 and T3 ⊇ {v1, v2}]
=

(

n−2
1

)

/
(

n
3

)

· P[C(y3) = 1],(for y3 := (z3 |T3 ⊇ {v1, v2}))

µ5(C) = P[C(z5) = 1]

= P[C(z5) = 1 and T5 ⊇ {v1, v2}]
=

(

n−2
3

)

/
(

n
5

)

· P[C(y5) = 1].(for y5 := (z5 |T5 ⊇ {v1, v2}))

So their ratio is
µ5(C)

µ3(C)
=

10

3
· P[C(y5) = 1]

P[C(y3) = 1]
.

Hence the following claim concludes the proof of Lemma 7.4.

Claim 7.5. P[C(y5) = 1]/P[C(y3) = 1] ≥ 1− o(1).

Proof. We can generate y3 and y5 jointly as follows:
y3: Choose v3 ∈ V r {v1, v2} uniformly random, and let x3 be some input with

viol(x3) = {v1, v2, v3}. Output y3 := x3 + q, where q is a random eulerian
graph.

y5: Continuing from the above, choose {v4, v5} ⊆ V r {v1, v2, v3} at random. If
possible, let p be a path in GrS joining {v4, v5} (a “good” event); otherwise
let p be any path joining {v4, v5}. Output y5 := x3 + p+ q.

It suffices to prove the claim conditioned on any particular v3 (and hence also on
x3). By Claim 7.2 we have P[“good” | v3] = P

[

v4, v5 ∈ G r S
∣

∣ v3
]

≥ 1 − o(1), since
|S| ≤ o(n). If the “good” event occurs, then C cannot distinguish between y3 = x3+q
and y5 = x3 + p+ q so that P[C(y3) = 1 | v3] = P

[

C(y5) = 1
∣

∣ “good”, v3
]

. The claim
follows as

P[C(y5) = 1 | v3] ≥ P
[

C(y5) = 1 and “good”
∣

∣ v3
]

= P
[

C(y5) = 1
∣

∣ “good”, v3
]

· P[“good” | v3]
= P[C(y3) = 1 | v3] · P[“good” | v3]
≥ P[C(y3) = 1 | v3] · (1− o(1)).

7.3. Limitations of existing simulation theorems. The main result of [17] is
a simulation of randomized protocols (or nonnegative rank decompositions) by conical
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juntas: a cost-d protocol for a lifted problem F ◦ gn can be simulated by a degree-
O(d) conical junta (approximately) computing F . While F here is arbitrary, the result
unfortunately assumes that g := IPb is a logarithmic-size, b := Θ(log n), inner-product
function IPb : {0, 1}b × {0, 1}b → {0, 1} given by IPb(x, y) := 〈x, y〉 mod 2.

Plugging b-bit gadgets into the reductions of section 4 would blow up the number
of input bits of CSP-SAT exponentially in b. This is not only an artifact of our
particular reduction! Consider more generally any reduction from a communication
search problem S ◦gn to a KW+-game for a monotone f : {0, 1}m → {0, 1}. Since the
KW+-game has nondeterministic communication complexity logm (number of bits
the players must nondeterministically guess to find a witness), the reduction would
imply c ≤ logm, where c is the nondeterministic communication complexity of S ◦gn.
If merely computing g requires b bits of nondeterministic communication, then clearly
c ≥ b so that m ≥ 2b. For b = Θ(log n), as required by [17], the number of input bits
m becomes polynomially larger than the bound Ω(n) we proved above, and hence the
lower bound is weak as a function of m.

A major open problem is to develop simulation theorems for gadget size b = O(1).
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