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ABSTRACT

While enterprise networks follow best practices and
security measures, residential networks often lack these
protections. Home networks have constrained resources
and lack a dedicated IT staff that can secure and manage
the network and systems. At the same time, homes must
tackle the same challenges of securing heterogeneous
devices when communicating to the Internet. In this
work, we explore combining software-defined network-
ing and proxies with commodity residential Internet
routers. We evaluate a “whole home” proxy solution for
the Skype video conferencing application to determine
the viability of the approach in practice. We find that we
are able to automatically detect when a device is about
to use Skype and dynamically intercept all of the Skype
communication and route it through a proxy while not
disturbing unrelated network flows. Our approach works
across multiple operating systems, form factors, and
versions of Skype.

1. Introduction

While there are many more residential networks than
enterprise networks, most network security measures
are directed at enterprises. Residential networks have
constrained resources, in hardware, connectivity, IT
expertise, and funding, that limit the viability of most
protective measures for these networks. While some
security measures are straightforward in an enterprise
network, they can be challenging to execute across
residential networks.

One example class of applications is that of a “whole
home” proxy solution that is tailored to specific ap-
plications. Enterprises often employ proxies to detect
and block access to potentially malicious destinations or
content. By employing this protection at the perimeter,
enterprises can provide protection to many hosts at once.
This goal is shared by residential networks. In particu-

lar, residential networks have numerous heterogeneous
devices, including desktop and laptop computers, mo-
bile devices, and embedded devices (e.g televisions,
receivers, and video game consoles). Some devices,
particularly for mobile or embedded devices, may not
have options to allow users to configure proxy settings
or other advanced networking features.

Residential users have limited options for a whole
home proxy solution. Many commodity routers lack
options for setting up proxy servers or site-to-site VPN
end-points in their manufacturer-provided firmware.
Even if users replace their routers with high-end devices
or install custom after-market firmware (which can be
daunting even for technical users [14]), the controls
are too coarse grained. Many VPN setups allow the
tunneling of all network or none at all. “Split tunnel”
VPNs can allow partial rerouting of traffic, but those
tunnels are created on a per-destination basis rather than
on a per-flow basis. Finally, the complexity of managing
these VPN tunnels may be cumbersome for users.

We propose to change the network model. Rather
than require home users to become experts, we focus
on outsourcing security management to expert service
providers. We explore modifications to commodity res-
idential routers to allow them to export management to
a remote controller, using the OpenFlow protocol [18],
and a series of device proxies. Unlike traditional Open-
Flow, we will examine the payload of network traffic
and use remote cloud nodes to protect residential users.

In exploring this concept, we focus on the Skype
video conferencing application. Skype is commonly
used, with over 300 million users worldwide [2], with
support on devices ranging from computers to mobile
devices and video game consoles. Skype uses a peer-to-
peer connection between communicating parties which
can reveal the IP address of a Skype user to others,
whether they are aware of an established connection or
not [17]. Some blackmarket providers offer to denial-of-
service attack users when provided with a target Skype



username since the Skype directory service leaks the IP
addresses of connecting parties [4]. We believe Skype
is a particularly good example application because it is
known for breaking through common network barriers
(like firewalls), uses a proprietary protocol that cannot
be altered, and has complex infrastructure. Simply put,
a technique that works for Skype will likely work for
many simpler network applications.
We make the following contributions:

1) Proxies on a per-flow basis: We combine an
OpenFlow approach with proxies and a tunneling
agent on the router to proxy communication on a
per-flow basis.

2) Demonstration of a utility of an application-
specific proxy: We create an SDN controller appli-
cation, agent at the router, and proxy configuration
for Skype that demonstrates the viability of per-
flow proxies that are tailored to applications in a
residential network.

3) Evaluation of the effectiveness of the approach:
We evaluate the approach using 5 different devices
running Skype on a home network with a cloud-
based OpenFlow controller and proxy.

II. Related Work

Our approach is related to work in detecting if a network
flow is associated with the Skype protocol, to measures
that influence Skype privacy, and to work in residential
network innovation using software-defined networking
techniques. We now describe each of these areas.

A. Distinguishing Skype Network Traffic

Skype has a complex peer-to-peer (P2P) infrastruc-
ture with supernodes (which are used for routing),
ordinary nodes (such as end-user machines), and a login
server [7]. Many researchers have tried to characterize
and understand how the underlying Skype protocols
work [7], [21], while others have focused on detecting
Skype traffic in networks [8], [9], [19].

Since we do not decode Skype’s proprietary protocol
in this work, we must simply detect and proxy all
messages associated with the Skype program to ensure
the user’s real IP address is not leaked. SkyTracer [26]
has a similar goal of detecting Skype traffic at the
flow-level. SkyTracer uses a mixture of flow tuple and
byte-level packet characteristics to identify Skype traffic
within the first few packets. While such approaches may
work well for identifying ongoing or new Skype calls,
we must be able to detect Skype activity before the
associated network traffic leaves the network. We must
proxy all communication to Skype servers, supernodes,
and ordinary nodes to hide the user’s IP address.
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B. IP Address Privacy in Skype

Since Skype uses a P2P connection to directly estab-
lish a connection between communicating hosts, each
host naturally learns the IP address of its communicating
counterpart during a call. However, Le Blond et al. [17]
describe a method to passively obtain the IP addresses
of thousands of Skype users without alerting the user.
They further describe linking a user’s IP address to other
Internet activity such as BitTorrent traffic. While Le
Blond proposes infrastructure changes, their approach
does not completely address the issue. The Skype client
(SC) application could simply only allow added contacts
to establish direct connections; however, this is only en-
abled on the iPhone and not any of the other devices we
tested. The Xbox One likewise only allows immediate
contacts to connect, but it does so without determining
whether a connection is direct or not. These features
could easily be undermined with a social engineering
attack in which the attacker is added as a contact.

In other work, Ehlert et al. [11] found that even when
manually configuring Skype to use a proxy server in the
client’s settings, Skype will still try to establish a direct
connection with the peer and will only use the proxy as
a last resort if the earlier efforts fail. As a result, users
may believe they are masking their actual IP addresses
behind a proxy only to have Skype bypass the proxy.

C. Residential Network Innovations

Feamster [12] noted that residential networks are
well-known for being insecure and hard to manage.
In a position paper, he proposed outsourcing home
network security to a third party. Yiakoumis et al. [25]
suggested “slicing” home networks to allow indepen-
dent third-parties to manage individual slices. In later
work, Yiakoumis et al. [24] took a different approach to
empower users to control the network. In that work, they
create an agent, called Skype+, to implement quality
of service for Skype. Kim et al. [15] implemented
an extension to the Project BISMark suite [23] that
enforces data caps on residential networks. Kumar et
al. [16] explored an approach where residential users
adjust their network experience by manipulating ISP-
owned OpenFlow switches and controllers.

While these prior efforts have focused on outsourcing
network management, they do not address significant
security concerns. In particular, they have not con-
sidered approaches to outsource security controls in
an incrementally deployable way, nor approaches that
allow users to be self-sufficient in doing so. In this
work, we instead focus on using SDNs to create an im-
mediately deployable solution for specific applications.
By sharing these applications and tools, we demonstrate
that experts can create and share security tools with less
technologically sophisticated users.



III. Approach: Tailored Proxying

A user may run many programs, each with their own
workflow and associated security concerns and goals. To
ensure these security goals are met, we enable security
experts to write tailored control applications to manage
the network traffic of the user’s applications. We then
create a general platform and an API that allows those
experts to run their control application across many
different types of residential networks.

Our general platform consists of four components: a
commodity residential router running custom firmware,
a cloud-based OpenFlow controller that directs the
router’s behavior, a cloud-based proxy/middlebox that
monitors traffic, and a GRE tunnel between the router
and proxy. These components are common across appli-
cations and services. To tailor the system to a particular
user program, a security expert will create a custom
application on the OpenFlow controller to manage the
features. Further, the expert may run custom software
on the proxy/middlebox to enforce these goals.

We instantiate this general approach with a specific
application for the Skype video conferencing applica-
tion. We now describe each of the components in the
general platform and the customizations needed to meet
Skype’s security goals.

A. Platform: Router, Controller, Proxy

We modify a consumer-grade router to support the
OpenFlow protocol by installing the OpenWrt’s [5]
firmware and enabling the Open vSwitch [20] module.
Unlike prior work, we control the router remotely
with an OpenFlow controller that is hosted at a cloud
provider. This controller has the ability to vet all of
the new connections established through the router,
including traffic within the LAN and Internet traffic. The
router establishes a connection to the controller upon
boot and requests instruction for new network flows.
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Fig. 1. Overview of how our Skype proxy approach works using
multiple cloud providers for controlling OpenFlow and proxying
traffic. Our controller uses fine-grained flow control (FGFC) and the
Skype Proxy (SkyP) module to detect Skype calls and update the
route agent to send traffic through the proxy.

We then create a cloud virtual machine that operateg
as a middlebox or proxy server. In its most basic
form, the proxy simply uses network address translation
(NAT) and forwards packets from the consumer’s router
to the requested destination and vice versa. To facilitate
communication with the proxy, the router creates a GRE
to a list of eligible proxies upon booting. When ordered
to do so by the OpenFlow controller, the router simply
uses the appropriate GRE tunnel as the destination for
selected flows, causing them to be sent via the proxy.

B. Tailored Control: The SkyP Module

While the basic platform provides a mechanism to
send arbitrary traffic via a cloud-based proxy, there must
be a module or application that indicates which traffic
should be sent to the proxy and what the proxy should
do with the traffic once it receives it. This module may
be different for each type of application protocol to
provide tailored control.

For Skype traffic, we create a custom controller ap-
plication, which we call the SkyP Module. This module
uses Skype network characteristics to detect what traffic
is likely associated with Skype and directs that traffic
via the proxy. Since Skype is a complex proprietary
protocol, we do not know which messages are used to
register the user’s IP address in the Skype directory. To
prevent the user’s real address from being leaked, our
SkyP Module must take a series of steps to determine
what traffic is Skype-related.

There are two main features the SkyP module must
consider: 1) communication with known Skype infras-
tructure or 2) direct P2P communication. We use DNS
features and IP ownership to identify and proxy the
connections to the Skype infrastructure. However, for
P2P communication, we leverage the fact that the client
initiates its P2P connections using a randomly-generated
port number that is created upon installation of the
client. Using a few approaches, we can learn the client’s
P2P source port. Once we have done so, we watch for
any peers the client contacts using the the P2P source
port and proxy all traffic to those discovered peers (since
traffic subsequent to the rendezvous may communicate
using random ports). We now describe each of these
approaches and features in detail.

1) Skype DNS Requests: When the Skype client (SC)
first starts, it initiates a series of DNS requests to
hardcoded domain names that are included as part of
the Skype executable. Some DNS host names, such
as ui.skype.com, are fixed while others, such as
dnsl3.d.skype.net, appear to be members of a
load balancing group that the SC may rotate amongst.
To create a complete list of DNS host names associated
with Skype, we examined a diverse set of devices and
operating systems as shown in Table 1.



TABLE I
LIST OF DEVICES USED IN OUR EXPERIMENTS
| Device | Operating System | SC Version |
iPhone iOS 8.4 6.1.0.210
Macbook Pro OS X 10.10.5 7.10
Dell Laptop Windows 7 7.10.0.101
Dell Laptop Ubuntu 14.04.3 4.3.0.37
Xbox One Xbox OS 6.2.13332.0 | 1.9.0.1003

For each device, we launch the SC, initiate a roughly
five second long voice call, and close the SC. We
repeated this process 20 times for each application,
flushing the device’s DNS cache. Each client was behind
a NAT device since Skype is known to exhibit different
behave when operating behind NAT [7].

From these trials, we created a list of 32 host
names that appeared to be related to Skype. Of the
32 host, 6 had distinct patterns that could be gener-
alized into a regular expression. For example, there
are 18 different host names that match the pattern
dsn[0-17] .d.skype.net [21], allowing us to eas-
ily construct a regular expression to match the hosts.
We combine our empirically discovered addresses with
important host names discovered in prior work [21].

We configured the SkyP module to monitor DNS
requests for these host names. Since the SkyP mod-
ule can receive all packets elevated to the OpenFlow
controller, including DNS packets, it can analyze these
requests and their responses. Each time a client initiates
a DNS request, OpenFlow controller sends a copy of the
DNS response to the SkyP module. The SkyP module
searches the DNS response for replies containing any
of these known host names. If an entry is found, the
module extracts the all of the IP addresses and directs
the router to send all traffic to those IP addresses via
the proxy.

2) Skype’s Use of NAT-PMP: When the SC is first
installed, it randomly generates a port number that it
will use when it later attempts to create P2P con-
nections [7]. To facilitate communication even through
NAT middleboxes, the SC uses the NAT Port Mapping
Protocol (NAT-PMP) [10] to request that certain ports
be mapped to the SC via the NAT device’s public
IP address. By simply monitoring for these NAT-PMP
requests, which are elevated to the SkyP module, we
can learn what port the SC uses for P2P connections
and subsequently direct any traffic originating from the
host using that port to be sent via the proxy. Since
other unrelated applications could also initiate NAT-
PMP requests, we only learn ports from NAT-PMP if
they are within a delta of 4 seconds of a SC-related
DNS request. This approach was effective for each of
the devices in Table I across 80 call sessions, excluding
the Xbox One (which does not use NAT-PMP).
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3) Skype’s Interactions with Supernodes: Since some

devices, such as the Xbox One, do not use NAT-PMP,
we use another SC characteristic to learn the SC’s
P2P port. When started, the SC makes multiple con-
nections to supernodes. The first such connection uses
the SC’s dedicated port. Accordingly, by knowing the
identity of all supernodes, or features associated with
those supernodes, we can watch for any connections
to those supernodes to learn the SC’s P2P port. Prior
work found that connections to supernode IP addresses
typically use the port range 40001-40047 [21]. Further,
all supernodes are now operated by Microsoft [1] [3],
so we can examine whether the destination IP address
belongs to Microsoft-owned IP space to determine if the
connection is to a supernode.

IV. Implementation

We implement our approach using a consumer-grade
router and elevating flows to a remote OpenFlow con-
troller on a server in a cloud data center. We flash a TP-
LINK TL-WR1043ND v2 router with a custom build of
the OpenWrt (Chaos Calmer 15.05) image. To enable
OpenFlow support, we selected the kernel-level Open
vSwitch package.

To ensure continued operation in the event of con-
nectivity issues when reaching the cloud controller, we
ran NAT, a recursive DNS resolver, and DHCP services
locally along with OpenFlow. We had to create a virtual
interface to act as an intermediary between the router’s
WAN interface and the router’s internal LAN. To enable
NAT functionality, we created static rules in iptables
for masquerading. We did not have to make any special
changes for the DHCP or DNS services. When used
for production, we will conceal these complex routing
configurations by including them inside the firmware.

We then created two cloud virtual machines (VMs) to
host the OpenFlow controller and anonymizing proxy.
Each VM was an Ubuntu 14.04 Linux server micro-
VM instance in the Amazon EC2 compute cloud and
was eligible for Amazon’s free tier. Each VM has a
single 2.5 GHz core with 1 GByte of RAM and uses
a dynamic global IP address. We ran a script to install
and launch the POX OpenFlow controller with our own
fine-grain flow control and SkyP modules.

The anonymizing proxy is configured to implement a
source NAT using iptables. With this configuration,
the proxy automatically translates and forwards traffic
to and from the GRE tunnel connected to the home
router. It only performs network-layer translations, so
the Skype P2P port will be exposed in network com-
munication. We did not explore performing port address
translation at the proxy.
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Fig. 2. The above diagram shows the decision-making process in the SkyP module for proxying traffic.

V. Evaluating SkyP

We evaluated our approach by performing Skype voice
calls and verifying functionality using third-party Skype
IP address lookup applications, such as Skype Re-
solver [4], and via Wireshark captures. The specific
devices and software versions are listed in Table I.

A. Evaluation Setup

Our evaluation setup is shown in Figure 3. We
position the client using our whole home proxy in a
residential network behind NAT. In our evaluation, the
call initiator and responder are already contacts.
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Fig. 3. Our evaluation setup for testing SkyP on different devices.

For each device except the Xbox One, we performed
the following steps. First, the SC using SkyP (Host; in
Figure 3) attempted a voice call to Host,. After estab-
lishing the call, Host; sent a chat message, transmitted
an image file 3 MBytes in size and ended the call after
approximately 2 minutes. We then had Host, attempt a
voice call to Host; to ensure the proper IP address was
used to establish the P2P connection through the proxy.
Since the Xbox One’s version of Skype does include
chat or file transfer, we only tested VoIP calls on it.

B. Verification

We verified our approach works in two ways. First,
we used an online third-party tool, Skype Resolver [4],

to ensure the only IP address associated with our
username was the IP address of the proxy. Because
hosts can be associated with multiple IP addresses at
once, such as a mobile device and an office computer,
we waited until no IP addresses were cached.

We performed packet captures at each host to verify
correct proxying. For each device being tested, we
verified each packet capture individually to ensure our
IP address was never leaked to Host,. We observed
that all VoIP call, chat, and file transmission traffic
established connections to Host, using our cloud proxy
or were transmitted via an anonymizing supernode (for
chat and file transmission). The Skype Resolver only
learned the proxied IP address; it was never able to
detect the real IP address of the proxied user.

VI. Discussion and Future Work

Performance and security are two important consider-
ations for deploying systems that leverage SDN and
the cloud. Existing research focuses on the OpenFlow
protocol and relevant performance considerations such
as the controller placement problem [13]. In our experi-
mentation, there was no noticeable delay in call setup or
call quality. Other research has considered performance
of proxies and proxies within the cloud [6]. OpenFlow
controller security [22] is also an important area of
research that lies outside the scope of our work.

In evaluating our Skype setup, we found an inter-
esting edge case. When the two communicating par-
ties are not already contacts in the Skype system, a
direct connection can occur if the adversary uses an
unrestricted publicly routable address. In this case, the
adversary sends a request through the Skype supernode
to the internal host. That request causes the internal
host to directly connect to the adversary. This particular
workflow bypasses DNS, NAT-PMP, and supernodes
and thus we do not proxy the connection correctly.



This approach, of requesting the other party to initiate
the connection, is particularly useful for Skype to bypass
NAT. Since one of the machines uses a publicly routable
address, it can act as a server to have the other machine
connect. By sending a request to this effect via the
Skype supernode, the machines establish a connection.

Since the Skype protocol is encrypted, we cannot
detect the IP address for these new requests and simply
proxy all connections to that IP address. However, the
connection request packet appears to use a packet size
in the range of [329-339] bytes. As a workaround, we
add a function not shown in Figure 2 to proxy any new
network flows that occur within 200 milliseconds of
these requests. As such, the requirement of peers being
pre-existing contacts is no longer necessary.

VII. Conclusion

We proposed an approach that uses network function
virtualization to enable a “whole home” proxy for
residential networks. Using a cloud-based controller and
proxy, we are able to control traffic on a per-flow
basis that is immediately deployable. Using Skype as a
motivating example, we found that even a complicated
proprietary protocol can be singled out and selectively
proxied. In doing so, we have highlighted the potential
and discussed other applications for application-specific
cloud-based proxies in residential networks.
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