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Abstract—Residential networks pose a unique challenge
for security since they are operated by end-users that
may not have security expertise. Residential networks are
also home to devices that may have lackluster security
protections, such as Internet of Things (IoT) devices,
which may introduce vulnerabilities. In this work, we
introduce TLSDeputy, a middlebox-based system to protect
residential networks from connections to inauthentic TLS
servers. By combining the approach with OpenFlow, a
popular software-defined networking protocol, we show
that we can effectively provide residential network-wide
protections across diverse devices with minimal perfor-
mance overheads.

I. INTRODUCTION

Residential networks pose unique challenges for the
security community. While these networks are ubiqui-
tous, they are often administered by end-users without
any training in networking or security. As a result, many
may have only minimal security safeguards. Further,
some of these users may be budget-constrained and un-
likely to purchase tools, such as enterprise middleboxes
(MBes), that may be able to increase the security of
their connected machines. Further, end-users may not
carefully follow best security practices, such as updating
device software and firmware regularly.

Residential networks may have high device diversity,
including more traditional systems such as laptops or
desktop computers, but also including Internet-enabled
televisions, video game systems, and home automation
systems. These embedded devices, sometimes called In-
ternet of Things (IoT) devices, may have vulnerabilities
that go unaddressed, either by the manufacturer or the
end-user [23], [31].

Residential routers are in a strategic place to address
the weaknesses of security in end-devices. Since the
routers are key to communication between these de-
vices and the untrusted Internet, the router can perform
filtering and validation efforts to block attacks from
exploiting devices. Unfortunately, residential routers are
often resource constrained and lack the ability to enforce
protections. However, when routers combine software-
defined networking (SDN) techniques with cloud-based
virtual machines (VMs), these routers can ensure that the

middleboxes running on cloud VMs can enforce certain
security goals [39].

While cloud-based middleboxes are useful in some
circumstances, they may introduce unacceptable network
latency or bandwidth overheads in some applications,
such as online video games. Further, cloud providers
must charge users for their network bandwidth, which in-
centivizes end-users and cloud-based security providers
to minimize the traffic sent to cloud-based VMs.

Our goal in this work is to protect residential de-
vices by ensuring the authenticity of the communication
between the devices and outside systems. Essentially,
if we can protect devices from communicating with
untrustworthy third-party systems, we can prevent de-
vices from being attacked. In several security protocols,
such as TLS (the successor to SSL), SSH, and IPSec,
the initial connection negotiation phase has the greatest
vulnerability [13], since it requires confirmation of the
other party’s authenticity. Given the prominence of TLS
in web security and online protocols, we focus on this
protocol as a concrete example and later discuss how the
approach can be applied to other protocols.

In this work, we ask three research questions: 1)
To what extent can we perform in-line TLS certificate
verification and revocation validation using cloud-based
middleboxes? 2) How can we minimize the performance
impact of cloud-proxying on long-lived network flows?
3) To what extent can SDN middleboxes provide novel
support for other important security protocols?

In performing the work, we make the following con-
tributions:

o Implementation of a Novel Cloud-Based TLS
Validator: We created a new verifier, called TLS-
Deputy, that monitors the TLS handshake process
and performs independent verification of TLS cer-
tificates and revocation checking using certificate
revocation lists (CRLs). Such revocation checks
were particularly important following the recent
HeartBleed vulnerability [17].

o Evaluation of the Cloud-Based Validator: We
verified the efficacy of the TLSDeputy across di-
verse devices and showed that it could increase
device security. In particular, we showed that the



TLSDeputy prevented smartphone web browsers,
which are known to not properly check for cer-
tificate revocations [29], from reaching untrustwor-
thy web sites. Our approach behaves similar to a
client performing full-chain TLS verification and
revocation check and can feasibly be used today.
Finally, we evaluated the tool across 40,000 top
web sites and found that it properly determined
which HTTPS servers were valid and which were
not, demonstrating its real-world viability.

e Created a Novel Communication Channel for
the Middlebox: By embracing the concept of par-
ticipatory networks [19], we created a new com-
munication channel between the OpenFlow SDN
controller and the cloud-based middlebox. In doing
so, we were able to migrate a network flow to use
a direct path from the user’s network after TLS-
Deputy confirms the TLS handshake was proper and
authentic. This addresses known limitations of MB
and controller consistency [18], [21].

II. BACKGROUND AND RELATED WORK

Given our emphasis on TLS as a working example, we
provide a background on the protocol and on work that
aims to improve the protocol. We then describe work for
using SDNs to outsource residential network security.

A. TLS Background

All TLS connections are preceded by a TLS hand-
shake in addition to a TCP handshake. Figure 1(a) shows
a full TLS handshake! where the server provides the
corresponding certificate chain. That certificate chain
starts with a self-signed, well-trusted root certificate.
The root certificate signs the next certificate in the
chain, attesting to that certificate’s validity. The process
continues with each certificate signing the next one until
the process concludes at the server’s own certificate.

Upon receiving the certificates from the server, the
client then verifies each certificate in the chain. After
verification, the client and server create a session key
to use for encrypting the data to be transmitted. As
a performance enhancement, Figure 1(b) shows how
future TLS connection establishment from the client
can be abbreviated by transmitting a session ID that
is cryptographically derived from a previous handshake.
Since certificate verification happens early in the com-
munication between the client and server, our approach
can ignore the remaining TLS connection once the
certificates are successfully verified.

IClients may also authenticate to the server but we exclude this case
from our discussion.

Client Server

YN.
< S¥NsACK — Client Server
Nk
<«————SYN+ACK
————ACK.
Client Hello_
Server Hello_ Client Hello
Certificate Certificates sessionlD ————>
verification Server Hello, —
-~ .
Client Key Exchange | sessionlD
<«————Finishe: ————Finished—— |
Dat Data— |
ata > Data
Data

(a) Full TLS Handshake (b) TLS Renegotiation

Fig. 1. TLS Handshake

B. TLS Research

Researchers have performed Internet-wide scans and
those of the Alexa top 1 million [I] domain names
in recent years. Holz et al. [25], [26] have performed
multiple investigations of TLS certificates to determine
characteristics such as error codes in verification, chain
length, and ciphers. Zhang er al. [40] performed scans
in response to the devastating Heartbleed [17] attack.
This attack, and the subsequent analysis, shows the
importance of a certificate revocation system. However,
few end-hosts check for the actual revocation status of
certificates a year after that attack. Liu ez al. [29] found
that, with the exception of Extended Validation (EV)
certificates, there is wide-spread failure in desktop web
browsers to check CRLs for certificate revocation lists
and no mobile platform browsers did so.

TLS is vulnerable to man-in-the-middle (MITM) at-
tacks when clients fail to properly verify certificates
or when malware has installed new root certificates.
Recent attacks have demonstrated the ease of deploy-
ing MITM attacks on some embedded devices [23].
Dacosta et al. [15] provides an efficient approach to
detecting MITM attacks by allowing domain servers to
use a previously-established, secure channel to provide
additional information to directly vouch for certificates.
Huang et al. [27] detects live MITM attacks by detecting
forged certificates through a browser Flash application.

To prevent SSL attacks such as a MITM, researchers
have used various methodologies for improving overall
security. Georgiev et al. [22] found vulnerabilities in
several security-critical applications and attributed the
problem to application developers misinterpreting SSL
library APIs. SSLint [24] was built as a static analysis
tool that will detect applications that are misusing SSL
APIs. Frankencerts [13] is a blackbox solution that
automates the vulnerability detection process in SSL
libraries by generating certificates to test for certain vul-
nerabilities. Our work is orthogonal in that TLSDeputy
detects and prevents insecure connections.

Client resource and performance limitations have led
to a number of research efforts. Server-Based Certifi-
cate Validation Protocol (SCVP) [20] is an approach



to enabling clients to delegate path construction and
certificate validation to another server. This proposed
standard has similar goals to TLSDeputy but requires
client-side support, which may not be feasible in legacy
or embedded devices. Naylor et al. [30] broadly quan-
tifies the performance costs associated with deploying
HTTPS over HTTP, which includes additional latency
and inability to effectively use caches. Zhu et al. [41]
more specifically focuses on the performance associated
with OCSP. While their work shows OCSP response
times are getting better, Liu [29]’s work shows that
CRLs are still the most popular revocation process for
all certificates (leaf and intermediate CAs). For example,
less that 50% of intermediate certificates support OCSP
as compared to 99% that support CRLs.

C. Existing TLS Security Systems

Some browsers are taking steps to improve revocation
checks. Chrome has introduced CRLSets [3] that contain
an internally maintained list of CRLs. Which CRLs are
included is not publicly known. However, the total size
is limited to 250KB. Similarly, Firefox is beginning its
own approach called OneCRL [8]. In contrast, our work
actively maintains a large CRL database that does not
need to compromise between CRL size and security.

ICSI Notary [4] is a system that passively collects cer-
tificates from participating gateways. Clients can perform
DNS queries using a hashed digest of a certificate to the
Notary. The DNS response contains information based
about the certificate based on what the participating gate-
ways have observed. The ICSI Notary’s does not provide
an enforcement mechanism but could provide another
reference point for TLSDeputy’s certificate validation.

Finally, Barracuda [2] has developed hardware to
provide an inline application firewall that will maintain
CRLs and perform OCSP checks for client certificates.
That approach only focuses on revocation (no verifica-
tion) and only for client certificates, which are rarely
observed within the residential environment.

D. Outsourcing and Residential SDN

Our past work [39] used cloud-based servers to pro-
vide an enterprise-grade proxy solution. We motivated
and evaluated our approach using the popular Skype
VoIP application by automatically detecting and proxy-
ing Skype-related traffic through an anonymizing proxy.
TLSDeputy builds upon this architecture and provides a
detailed investigation of the performance characteristics
of outsourcing security applications to a public cloud.

Other research has considered outsourcing residential
network functionality [28], [38]. Unfortunately, these
approaches require ISP support in deploying new ser-
vices within the ISP’s infrastructure. Such approaches
typically require custom virtual gateways within the

home, which do not exist in practice, and introduce
new protocols for deploying functionality. While the
ISP is well-positioned to enable such technologies, such
support remains limited in practice. We avoid requiring
support from the ISP by modifying existing commodity
home routers to support OpenFlow and leveraging public
cloud infrastructure.

APLOMB was an enterprise-focused solution to out-
sourcing network functionality to the cloud that required
a specialized network gateway [36]. APLOMB further
required DNS modifications to support redirection to
cloud MBes. Our approach only requires software mod-
ifications to existing hardware in the home. Our work
is tailored towards the residential network where for
outgoing connections a loopback approach is necessary
without proxying the connection.

III. SECURING CONNECTION ESTABLISHMENT

Our goal is to protect applications that conduct im-
portant security interactions at the beginning of a con-
nection. As part of our running example, we show
how our work supplements traditional TLS verification
and provides a practical approach to enforce certificate
revocation checks.

A. System Overview and Trusted Computing Base

Our system uses OpenFlow-enabled switches, cloud-
based controllers and middleboxes, and custom Open-
Flow agents (OFAs). In Figure 2, we show an overview
of our system with logical OpenFlow protocol commu-
nication depicted using dotted lines.
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Fig. 2. Our system uses a cloud-based OpenFlow controller and
middlebox for TLS verification and revocation. TLSDeputy relays
verification results to a controller module using a special OpenFlow
Agent (dashed line). Similarly, TLSDeputy has a module on the
controller that steers new TLS connections through its MB software.
Blue dotted lines represent logical communication using OpenFlow.

We consider all the cloud infrastructure, including
the middlebox and OpenFlow controller, along with the
residential OpenFlow router to be within our trusted
computing base.

B. Cloud-based Flow Redirection

Our approach requires that some network traffic be
inspected by MBes in the cloud. We use an OpenFlow



controller and residential routers that support OpenFlow
to redirect network flows as needed. Without a connec-
tion to an OpenFlow controller, our switch acts as a
Layer 2 learning switch and mimics the behavior of tra-
ditional residential routers. That is, all required services
for an Internet connection such as DHCP, DNS, and NAT
all function without being connected to an OpenFlow
controller. This allows us to safely fail-over in the event
the OpenFlow controller goes offline. When connected,
our OpenFlow router enforces fine-grained flow control.
Any new network connection resulting in a new network
5-tuple (IPgyc, IPg4s¢, Portg,q, Portgss, transport protocol)
will require approval from the controller. The controller
can then use packet-level information at the start of a
connection to determine how the flow should be handled
and whether or not a MB service is required.

By default, our controller performs basic Layer 2
learning to forward packets. In addition to Layer 2
learning, our controller runs a module to detect new TLS
connections (labeled TLSD) and an OFA module that
will communicate with the OpenFlow agent on the MB.
When the TLSD module detects a new TLS connection,
the TLSD module instructs the controller to send Open-
Flow FlowMods to the Open vSwitch (OVS) instance
in the cloud and to the home router. Those FlowMods
will cause the router to tunnel all incoming and outgoing
TLS packets through the cloud MB. These rules ensure
that the MB will see the bidirectional communication
between the client and TLS server.

The loopback communication path from the cloud
MB, shown in Figure 2, allows us to remove the loop
once the TLSDeputy has verified the TLS handshake.
This restores the performance benefits of direct com-
munication without the MB. If we instead proxied the
connection through the MB, we would not need the
loopback technique but would also never be able to
migrate the connection away from the MB without
breaking the end-to-end connection.

C. TLSDeputy Middlebox

Our TLSDeputy middlebox runs within a cloud VM
that is connected to an OVS instance. The TLSDeputy
monitors the TLS handshake and checks certificates and
other important information, such as the Server Name
Indicator (SNI) extensions to TLS, to ensure a secure
TLS connection. In addition to checking for certificate
revocation, TLSDeputy performs certificate verification
and other similar tasks that the end-host also performs.
We provide TLSDeputy with a trusted root certificate
store containing 180 root certificates that were extracted
from Mac OS X 10.11.3 to allow the TLSDeputy to
verify certificate chains.

The OpenFlow controller detects TLS traffic using
transport layer ports and diverts all TLS traffic to the

TLSDeputy beginning with the TCP SYN packet. The
TLSDeputy inspects the Client and Server Hello mes-
sages. First, the TLSDeputy checks to see if the TLS
request is a renegotiation or a new connection. If both
the client and server transmit a Session ID value in their
handshakes, TLSDeputy recognizes the connection is a
valid renegotiation and notifies the OpenFlow controller
via the OFA that the communication can be transmitted
directly via the residential router without further TLS-
Deputy inspection. Otherwise, TLSDeputy knows the
connection is a new negotiation and performs detailed
verification checks.

If the client uses the SNI extension and specifies a
server’s host name, for example www.example.com, in
the Client Hello message, we store that value to later
verify the host name in the server’s certificates. Next,
the server responds with a Server Hello and immediately
sends certificates, as shown in Figure 1(a). TLSDeputy
parses the server’s response and extracts each certificate
being provided. As per RFC 5246 [16], the first certifi-
cate in the chain is the destination server’s certificate.
The subsequent certificates are then ordered such that
the preceding certificate is directly certified by the next.
The chain terminates, optionally, with the self-signed
root certificate. Since TLSDeputy only trusts the root
certificates that are pre-loaded in its local store, it ignores
any self-signed root certificates.

Once the server sends the last certificate in the chain,
TLSDeputy performs its verification before allowing the
connection to continue. TLSDeputy passes the certifi-
cates and the client’s indication of the server’s host
name, if any, to the verification submodule. For our
verification, we use LibreSSL [5], which is a hardened
implementation of the popular OpenSSL library. Since
relatively few client implementations use LibreSSL cur-
rently, TLSDeputy’s use of LibreSSL provides software
diversity which may yield more robust security. We con-
vert each certificate into a corresponding X509 certificate
data structure and store each certificate. We use our root
certificates to verify each of the provided certificates.

After completing the verification, TLSDeputy removes
the flow from consideration and releases the remaining
associated packets. TLS deputy can then watch the
client’s response to the packets. If a device proceeds
with the connection when TLSDeputy found verification
issues, TLSDeputy will detect the device is improperly
verifying TLS handshakes and will break the connection.
Optionally, the software can notify the user of the issue.

D. CRL Enforcement

Before the TLS certification chain can be verified, we
must determine what CRL checks to perform. Due to
implementation details in both LibreSSL and OpenSSL,
there are only two options: only verify the server’s



certificate or verify the entire chain. If any certificate in
the chain lacks a CRL, we cannot perform a full chain
verification. Likewise, if the server’s certificate lacks a
CRL, no CRL verification is possible.

One of TLSDeputy’s most important functions is to
provide an approach that allow for efficient full path
CRL enforcement. Recent work [29] has shown that no
mobile browser performs revocation checks even after
the high-profile Heartbleed attack. Liu et al. speculate
that performance is likely a contributing factor given
that their Internet-wide scan found the weighted average
CRL size to be 51 KB. The size of CRL becomes more
concerning as the length of the certificate chain grows.
The average length of a valid chain has been shown
to be 2 (a single intermediate CA) [11]. TLSDeputy
addresses these concerns by proactively caching CRLs
locally rather than obtaining them on demand.

To determine which CRL to consult, we check the
CRL distribution point extension in each X509 object.
For each certificate, we retrieve all the available the
URIs distributions points? provided. Beginning with the
server’s certificate, we iteratively check for revocation
using each certificate’s indicated CRL. If we have suc-
cessfully retrieved CRLs for all certificates in the chain,
we perform a full-chain CRL check with LibreSSL.

E. Enforcing TLS Validation via Participatory OFAs

The TLSDeputy can be more efficient with assistance
from the OpenFlow controller. If the TLSDeputy can
communicate TLS verification information to the con-
troller, the controller can then allow subsequent packets
in the connection to be routed directly (if TLSDeputy
verification passed) or install a drop rule at the residential
router (if TLSDeputy verification failed). This opti-
mization is an example of the “participatory networks”
concept. Essentially, the OpenFlow controller enforces
policy in the network yet relies upon MBes to perform
detailed inspection that is not feasible at the controller.
However, traditionally, the controller and MBes cannot
share information and collaboratively enforce policy.

Others have attempted to address the problem of SDN
and MBes by modifying packets in-flight to hold addi-
tional information. For example, FlowTags [18] over-
loads the 6-bit Differentiated Services field in the IP
header of a packet to pass information between Open-
Flow switches. OpenMB [21] suggests making the inter-
nal state of a MB accessible to the controller to allow the
controller to understand what actions were taken. These
approaches are limited in the amount of information they
can share or in the amount of redesign necessary for
support. To address this problem, we embrace the notion
of participatory networking [19] whereby MBes can

2We ignore unreachable distribution points such as 1dap:// and
file://.

relay information to the controller to enable flow-level
decisions. FRESCO [37] has a similar notion of enabling
an API where MBes can send information out-of-band
to their applications. In contrast, our approach, shown
in detail in Figure 3, allows a MB to embed arbitrary
information into an OpenFlow Packetln message and
transmit that in-band to the OpenFlow controller.
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Fig. 3. Once the TLSDeputy has verified the handshake, it can
contact the controller through a custom OpenFlow agent to request the
connection be sent directly rather than diverted through the middlebox.
The controller can then send FlowMods to the residential router causing
packets to be transmitted directly rather than via a tunnel.

Although the middlebox communicates using an
OpenFlow Packetln event, the payload of that message
uses a custom payload recognizable only by our own
specific OpenFlow controller module. We configure the
controller so that the only module listening for events
from the OFA is the OFA module that we designed
for this purpose. Accordingly, we can pass any arbitrary
information to the module relating to MB state. In our
work, we pass the flow tuple when verification has
finished, the status (e.g., success or failure) and an
additional message describing the reason for failure, if
appropriate. Future work will integrate this approach
with other MB applications such as an existing IDS.

F. Obtaining and Maintaining CRLs

Ideally, our approach maintains an Internet-wide cache
of all CRLs. We move towards this goal by initially
crawling the top 1 million Alexa domains [1] and obtain-
ing the CRLs for each certificate in a given chain. The
initial scan recovered 1,608 potentially reachable CRLs
of which 1,495 were retrieved.

Our ideal goal is to maintain a complete list of
all CRLs used on the Internet. As a result, anytime
TLSDeputy encounters a certificate with a CRL not in
the database we add the URI to a list of monitored CRLs
and immediately begin retrieving it in the background.
However, to avoid performance issues, we do not wait to
check the CRL for the chain causing the first retrieval.
Instead, we will enforce such revocation checks on the
next connection that uses the CRL. For example, Apple’s



Messages application regularly performs background
TLS connections that have several CRLs that were not
originally in our database. On the first connection, we
will not be able to enforce the CRL, but we will be able
to do so on the next connection. As we build our CRL
database, we retrieve all CRLs every 12 hours, which
is more frequent than the majority of the CRL validity
lengths in the certificates we found.

IV. IMPLEMENTATION

To implement the TLSDeputy, we use custom router
firmware on TP-LINK Archer C7 routers. We installed
OpenWrt [10] and added the Open vSwitch [32] package
for OpenFlow support. We used the POX [7] controller
running on Amazon EC2 micro-instance VMs to manage
the router. For tunneling, we used GRE tunnels as sup-
ported by OVS. This allowed better systematic tunneling
control than our past work, which required a routing
agent to direct flows over a Linux GRE tunnel [39].
When the controller detects a new TLS flow, the TLSD
module uses these GRE tunnels for directing the TLS
handshake through the TLDeputy middlebox.

Our TLSDeputy is a C++ application leveraging the
LibreSSL [5] implementation for certificate verification.
We implemented our own certificate stripping and pars-
ing functionality. The CRL retrieval and maintenance
code were written as scripts. We ran the TLSDeputy MB
and controller in separate EC2 micro-instances.

Our OFA application is a custom OpenFlow 1.0
compliant agent that communicates over an OpenFlow
connection to the controller and uses a local TCP socket
to receive verification information from the TLSDeputy.

A. Managing MTU Restrictions

Since we are using built-in tunneling support from
OVS, we must account for the overhead in bytes associ-
ated with GRE tunneling packets starting from Layer
2. The Maximum Transmission Unit (MTU) between
networks is typically 1500 bytes. Without accounting
for the GRE overhead, our packets could be dropped by
intermediate routers before reaching the tunnel endpoint.
One possibility for addressing this issue is to using IP
fragmentation to split the packet and have it reassembled
at the MB. IP fragmentation is typically avoided when
ever possible due to performance concerns. Instead,
we use the MB to set the Maximum Segment Size
(MSS) to 1400 bytes in the TCP handshake of both the
source and the destination. By reducing the MSS in the
SYN/SYN+ACK packets, both end-points of the connec-
tion will reduce the payload of packets transmitted and
thus avoid fragmentation altogether.

V. TLSDEPUTY EVALUATION

We evaluate TLSDeputy’s security effectiveness using
two IoT devices, smartphone web browsers, and web

browsers on traditional laptop/desktop operating sys-
tems. We then compare the performance of TLSDeputy
against traditional certificate verification and revocation
from a residential network.

A. Experimental Setup

For our security evaluation, we use multiple security
testing software packages and our own certificate author-
ity. Many IoT devices are hardcoded to communication
with specific servers or domains. Accordingly, we use
mitmproxy [14] and SSLsplit [34] to determine if
these non-browser applications and devices properly
verify TLS certificates and detect forgeries. We monitor
network traffic from such devices to determine if the
device performed revocation checking via OCSP or
CRL retrievals. We created a self-signed root CA and a
TLS chain consisting of a single intermediate certificate
authority. Using the intermediate CA, we signed a leaf
certificate for a publicly accessible web server. Our leaf
certificate’s revocation status was obtainable only via
a CRL. After generating the web server’s certificate,
we immediately revoked it and updated the CRL ac-
cordingly. However, the web server was configured to
continue using the revoked certificate.

The two IoT devices we use in testing are a Foscam
IP camera, which is used for home surveillance, and a
Belkin WeMo power outlet that can be turned on or off
through a smartphone application.

B. Security Effectiveness

Our security evaluation focuses on IoT, mobile de-
vices, and desktop browsers that operate within the home
network. We compare how TLSDeputy operates in com-
parison to the software embedded on two IoT devices,
both of which have known security vulnerabilities [6],
[9]. We also perform tests using mobile devices using
several major browser platforms. The results of security
evaluation are shown in Table III-F.

We first describe the IoT device results. Unsurpris-
ingly, neither the Focam or WeMo performed any type
of revocation. WeMo has a reported verification vul-
nerability that a certificate store is not stored locally
on the device. In our testing, we did not find that our
device was vulnerable to MITM attacks. However, we
did find the Foscam was vulnerable to such MITM
attacks. Foscam’s configuration allows users to setup
notifications of motion detection with images through
an email. During configuration, the user must provide a
mail server configuration, including a domain name and
port, and if authentication is required, a username and
password as well. Mail servers such as Gmail require
a TLS connection for sending and receiving email. Our
research found that the Foscam is indeed vulnerable to a
MITM attack on the communication between the camera



TABLE I
EVALUATION OF TLSDEPUTY ON IOT AND MOBILE PLATFORMS WITH A REVOKED LEAF CERTIFICATE

[ Device Type | Device [ Device Verification | TLSDeputy Verification ][ Device Revocation | TLSDeputy Revocation |
I [ Foscam [ X [ v i X [ v |
oT

| WeMo | v | v i X | v |
Safari v v X v
iPhone  Chrome v v X v
Firefox v v X v
Default v v X v
Mobile Android  Chrome v v X v
Firefox v v X v
Safari v v X v
Mac OS X Chrome v v X v
Firefox v v X v
Linux Chrome v v X v
Desktop Firefox v v X v
1IE v v v v
Windows Chrome v v v v
Firefox v v X v

and the Gmail mail servers, which can expose a user’s
Gmail username and password. We found none of the
listed CVE’s for Foscam [6] discuss TLS vulnerabilities
and conclude this was previously undocumented. Fortu-
nately, our TLSDeputy system is able to detect and block
this MITM attack without requiring software updates to
the Foscam or support from the manufacturer®. Without
TLSDeputy, it would be very difficult to determine if a
MITM attack was occurring on any IoT device.

During our evaluation, we expected that mobile
browsers would perform proper verification. Indeed,
without installing our root certificate on the mobile de-
vice, all browsers detected the certificate was untrusted,
stopped the connection, and notified the user. After
these tests, we installed our root certificate on all each
device in order to have the browsers trust the certificate
chain and then attempt a new TLS connection. After
establishing the connection, none of the mobile browsers
we tested performed revocation checks on our server’s
certificate, which corroborates recent research [29]. In
contrast to Liu’s work, we found that the newest version
of Safari (v9) did not properly check our CRL for
revocation. Their tests covered through v8. Additionally,
we found that Chrome v49 did properly check the
revocation status. Liu et al. [29] found that Chrome
v44 only performed this check for Extended Validation
(EV) certificates, which our certificate was not. Chrome
may have recently updated its revocation process. Again,
TLSDeputy uses its cached CRL to block connections
for each browser as shown in Table III-F, protecting
even devices and applications that fail to perform the
appropriate verification or revocation checks.

C. Performance Results

Our performance experiments present two different
comparisons. We first consider the end-to-end perfor-
mance of using TLSDeputy versus traditional end-host

3Prior to publishing this work, we contacted both manufacturers and
disclosed these vulnerabilities and suggested remediation approaches.

verification when only considering the leaf certificate
for revocation. Our other performance experiment com-
pares TLSDeputy to full path revocation checks using
CRLs. The results were obtained from a residential cable
network in Massachusetts with Amazon EC2 instances
hosted in the North Virginia data center.

1) TLS Verification and Revocation Overhead: Virtu-
ally no desktop or mobile browser performs full chain
verification using CRL or OCSP. Given the frequency
of browsers only checking leaf certificates, we perform
head-to-head performance measurements over 40,000
random domains using OCSP and CRLs to performing
revocation checks on leaf certificates. We then performed
connections using TLSDeputy to the same domains.

For OCSP and CRL leaf certificate revocation check-
ing, we first performed a TLS handshake with only veri-
fication (i.e., not checking for revocation). Upon verifica-
tion, we obtained the leaf certificate’s OCSP URL and
each of the certificates provided during the handshake
to check the leaf certificate’s revocation status. We then
added the time to perform the OCSP check to the TLS
handshake time. Similarly, we obtained the CRL dis-
tribution point from the TLS handshake and performed
a file retrieval on the CRL. The time taken to retrieve
the CRL file was added to the base TLS handshake
time. Lastly, we initiated a new TLS handshake with
TLSDeputy enabled, but allowed TLSDeputy to also
perform revocation checks on intermediate certificates.
The results are presented in Figure 4 and shows that
TLSDeputy adds roughly 0.5 seconds to the median of
an TLS handshake.

2) Full Chain Revocation Overhead: Only 48.5% of
intermediate certificates (which excludes leaf certificates
CRL) offer OCSP for revocation checking [29]. This low
number of OCSP responders means that the majority of
full path revocation checks require CRLs. To better un-
derstand the impacts of full chain revocation checks, we
perform an additional experiment using 10,000 random
domains which have two or more CRLs in the chain.
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Fig. 4. Leaf certificate verification comparison between CRL, OCSP,
and TLSDeputy over 40k random domains.

Similar to our previous experiment, we first initiate a
TLS handshake and then retrieve each CRL in the path
while accumulating the total time for the connection and
each CRL retrieval. The results of this experiment on
shown in Figure 5 and show the overhead associated with
full chain revocation checks using CRLs is comparable
to TLSDeputy’s performance.
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Fig. 5. Complete chain verification using CRLs.

3) Viability in Practice: In performing the verification
across 40,000 domains, we found that TLSDeputy was
viable in practice and was able to determine which TLS
connections were valid and which were not.

D. Evaluation Summary

Our approach is able to protect vulnerable devices,
including IoT devices, from connecting to servers with
invalid certificates. Further, we are able to protect many
IoT, mobile, and desktop devices that do not properly
check for certificate revocation. The performance costs
for doing so are comparable to a full chain CRL verifi-
cation at the client. Essentially, our middlebox strategy

is able to provide whole network protections for a
residential network at roughly the same cost of doing
the appropriate verifications at each end device.

VI. DISCUSSION

While we have focused on TLS in this paper, the
same approach is viable for other security protocols such
as SSH and IPSec. In particular, SSH’s leap-of-faith
security approach, in which a user may accept a public
key for a server without verifying it, has recognized
security risks [12]. We can eliminate the need for a
leap-of-faith by combining the use of DNSSEC and
the SSHFP resource record [35]. Our middlebox could
intercept DNS responses, cryptographically verify the
SSHFP records using DNSSEC, and store the destination
IP address and SSH fingerprint for each server in a
temporary database. For any SSH connections to known
IP addresses, the middlebox would then verify the public
key matched. With our tool, an organization could con-
figure DNSSEC and SSHFP records to ensure any clients
using our approach would be protected from SSH man-
in-the-middle attacks during the first SSH connection.

We can protect [PSec authenticity in a manner sim-
ilar to SSH. Using DNSSEC and the KEY resource
record [33], the middlebox can perform the appropriate
verification to ensure the IPSec server’s authenticity.

From a cost perspective, our development and evalua-
tion cost approximately $20 per month for cloud hosting.
The costs included two always-on VMs, network traffic
transmission, and disk storage, with the majority of the
cost associated with the VM uptime. Given our mini-
mal CPU and memory overheads, multiple residential
networks could easily share these VMs. Practically, a
third-party security provider could run cloud-based VMs
to provide TLSDeputy services to large numbers of
residential users and achieve economies of scale.

VII. CONCLUSION

In this work, we present TLSDeputy, a system that
allows residential networks to ensure they only connect
to properly verified TLS servers. We have shown the
approach offers valuable security protections for IoT,
mobile, and desktop devices and that the performance is
comparable to correct client-side verification measures.
Finally, using a set of 40,000 servers, we have demon-
strated the approach is capable of verifying connections
to top TLS destinations and can immediately be deployed
to residential networks.
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