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Abstract—The software-defined networking (SDN) paradigm
promises greater control and understanding of enterprise net-
work activities, particularly for management applications that
need awareness of network-wide behavior. However, the current
focus on switch-based SDNs raises concerns about data-plane
scalability, especially when using fine-grained flows. Further,
these switch-centric approaches lack visibility into end-host and
application behaviors, which are valuable when making access
control decisions.

In recent work, we proposed a host-based SDN in which we
installed software on the end-hosts and used a centralized network
control to manage the flows. This improve scalability and provided
application information for use in network policy. However, that
approach was not compatible with OpenFlow and had provided
only conservative estimates of possible network performance.

In this work, we create a high performance host-based SDN
that is compatible with the OpenFlow protocol. Our approach,
DeepContext, provides details about the application context to
the network controller, allowing enhanced decision-making. We
evaluate the performance of DeepContext, comparing it to tra-
ditional networks and Open vSwitch deployments. We further
characterize the completeness of the data provided by the system
and the resulting benefits.
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I. INTRODUCTION

Enterprise network operators typically lack a detailed under-
standing of the traffic that flows across their devices. While
these operators may deploy middleboxes, such as intrusion
detection systems (IDSes) or firewalls, these operators remain
blind to intra-subnet traffic that traverses a switched path
without reaching the middleboxes. Even for traffic that does
traverse a middlebox, these devices can only make inferences
about the type of traffic based on packet header information
or deep packet inspection on the packet payload. While such
inferences may be correct for legitimate traffic, malicious
traffic may attempt to blend in with innocuous traffic to avoid
detection.

The software-defined networking (SDN) paradigm has the
potential to greatly enhance network understanding for network
operators. Rather than using highly aggregated, coarse-grain
rules that forward solely on destination address or prefix, the
OpenFlow protocol allows network operators to specify fine-
grain rules to direct traffic based on the standard network flow

5-tuple (IPg;¢, IPges:, Transport Protocol, Portg,.., Portges:) and
other header fields. When switches lack a rule that matches
a packet, they will consult a logically-centralized controller,
which makes a decision about the traffic and issues a set of
rules to the SDN switches to forward the packet. Unfortunately,
the memory available at physical OpenFlow switches is limited,
leading to well-documented scalability concerns when using
fine-grained flows [6], [19], [25]. As network aggregation
points, these switches see a large number of distinct flows,
but lack the capacity to maintain the detailed forwarding rules.

In our own previous work [22], called the TaylorSDN, we
eliminate the data-plane scalability concern in SDN switches
by moving the SDN agent into the communicating end-hosts
for fine-grained flows. The physical network switches can
be either traditional, non-OpenFlow switches or implement
OpenFlow with coarse-grained rules, as suggested by Curtis et
al. [6], to avoid the scalability concerns. The TaylorSDN
further addressed the lack of host context by sending appli-
cation information to the SDN controller. Unfortunately, the
TaylorSDN was not OpenFlow-compatible and relied upon its
own protocol. Further, the TaylorSDN used an on-demand data
collection approach for host context which introduced delays
in new flow processing.

Given the inherent limitations of switch-based SDNs and
our initial host-based SDN approach, we ask two research
questions: 1) How can we feasibly create a host-based SDN
that integrates with the existing OpenFlow community while
providing additional context? 2) What is the best design for
such a host-based SDN from both a performance and data
utility perspective? While the detailed context from such a
system would likely be useful for enhancing organizational
security, we focus on the performance and the utility of the
contextual data provided by the system. We consider the
integration of our system with security tools to be outside the
scope of this work.

We created a new host-based SDN system, which we call
the DeepContext SDN, that is designed to provide host infor-
mation to an SDN controller with minimal added latency. By
using hosts to store rules, DeepContext avoids the data-plane
scalability concerns in OpenFlow for fine-grained flows. In our
design, we leverage a popular existing OpenFlow agent, called
Open vSwitch [16], that we extend to provide host contextual



information that can aid controllers in making decisions.
In exploring this direction, we make the following contribu-
tions:

o Integration of Host Context into the OpenFlow Proto-
col: We have identified a straightforward means to include
host-context information into the existing OpenFlow pro-
tocol in a way that can support existing OpenFlow con-
trollers and applications without requiring modifications
for each.

¢« A New, OpenFlow-compatible Host-Based SDN: Our
DeepContext SDN agent provides detailed information
about the process creating new flows, including the appli-
cation’s name, executable path, associated user ID, group
ID, and even command line options. DeepContext uses a
custom module on the popular Floodlight controller [2]
to allow operators to make standard OpenFlow control
decisions that leverage the additional host context.

o Performance and Completeness Evaluation: To provide
context for the innovations in DeepContext, we compare
the system with an unmodified Open vSwitch network.
Further, we compare the DeepContext SDN with 1)
our own previous host-based SDN [22] and 2) with
ident++ [15], a reactive host querying approach. We
quantify the overheads of adding context and host-
controller communication to the network communication.

The remainder of this work is structured as follows. In
Section II, we describe related work. In Section III, we describe
extensions to the OpenFlow protocol design. In Section IV, we
introduce our DeepContext SDN approach. In Section V, we
evaluate each of the SDN approaches. We present discussion
in Section VI and conclude in Section VII.

II. RELATED WORK

We briefly describe OpenFlow, work related to fine-grained
flow scalability, and research surrounding host-context in
SDNG.

A. OpenFlow Fine-Grained Flow Scalability

OpenFlow switches maintain a local cache of rules to
forward packets. While OpenFlow allows the specification of
very fine-grain rules, the physical memory on the OpenFlow
switches is limited. In particular, Curtis et al. [6] raised
concerns that modern OpenFlow switches cannot handle the
large number of fine-grained flows that a medium-sized organi-
zation would need. To overcome this, those authors encouraged
coarse-grain rules with broad matching criteria to reduce the
switch storage requirements. Unfortunately, since these broad
rules will match multiple flows, they cannot be used to ensure
each new connection will reach the network controller. Other
work found that some switches could support only between
750 and 2,000 flows in hardware and that software tables
may be needed for additional flows [12]. Even some high-end
data center switches have a maximum of 97,000 OpenFlow
rules [9]. This capacity issue in OpenFlow switches makes
them a target for denial-of-service attacks [19].

Given these scalability concerns, Wang et al. [25] devised
a tunneling strategy in which the physical OpenFlow switches
use coarse-grained rules to divert traffic to host-based hyper-
visor virtual switches (using Open vSwitch) to provide fine-
grained flow enforcement. Unfortunately, this inflates network
paths by directing packets via hosts and adds latency. Our
proposed approach also uses a host-based SDN, but ours
runs within the host operating system itself, rather than in a
hypervisor. This allows us to provide detailed host feedback
while avoiding the need for virtualization or indirect paths.

B. Extracting Context from End-Hosts

The Ethane SDN [3] allows operators to write more detailed
network policy including entities such as end-host machines
and access points. However, Ethane, like OpenFlow, is switch-
based and lacks the end-host instrumentation needed for more
detailed specification.

The work in HoNe [8] correlates network traffic with pro-
cesses, but it is not an SDN approach and lacks centralized
coordination. Dixon et al. [7] allow network administrators to
use Virtual Machines (VMs) and Trusted Platform Modules
(TPMs) on the end-hosts to enforce network policy, but the
approach lacks the network visibility present in OpenFlow-
based SDNs. Similarly, Parno et al. [17] use end-host TPMs
to allow the hosts to attest to network state, such as the number
of packets sent, and use a set of network verifiers to query hosts
and provide time-limited authorization tokens for the hosts to
communicate. These approaches do not provide the proactive
controls of OpenFlow on a network-wide basis.

In another work, also named HONE [21], the authors in-
troduce a system that allows a network controller to query
end-hosts to gather statistics and measurements for traffic
engineering. Our approach likewise instruments the network
functions in the kernel, similar to our approach, and supports
SDN controllers. However, our approach focuses on fine-
grained flows and provides application context to a network
controller, which is not part of HONE’s design.

As a proposed successor to the ident [11] protocol,
Naous et al. [15] describe ident++, a protocol that would
allow a remote system to query for details about the ap-
plication and other information associated with a flow. In
conjunction with OpenFlow, the ident++ protocol would
allow a controller to reactively query a host for additional
information. While that position paper does not implement
the approach or address the scalability concerns of OpenFlow
switches, it adds valuable host-based context. To enable a
direct comparison, we implement their proposed approach and
evaluate its performance as part of our work.

Additional approaches have examined how to gather more
detailed context about end-hosts, such as mouse-clicks and
keyboard presses [5] and application-specific sensors (e.g., in a
web browser [13], [27]). Such sensors could be used to increase
the information available in our approach.

Finally, in our own prior work [22], we constructed a
host-based SDN that provides host context for its network



communication. While that host-based SDN was not named,
we will refer to the system as the TaylorSDN (named after
the first author) for easier reference. The TaylorSDN used
Python scripts to communicate with an SDN controller and
used the Linux netfilter_queue library to intercept new
flows. The approach took roughly 17ms to authorize each
flow and did not use the OpenFlow standard, making its
controller incompatible with the rest of the SDN community.
The TaylorSDN demonstrated the approach’s utility for security
by evaluating how one could detect drive-by download malware
and attacks from email attachments based on the application’s
process hierarchy. In this work, we propose a new approach to
enhance performance and interoperability and then compare it
with our prior work and that of other approaches.

III. EXTENDING THE OPENFLOW PROTOCOL

The OpenFlow protocol header does not support options
capable of expressing arbitrary data. Accordingly, encoding
host and application context data into existing OpenFlow
messages in a backwards-compatible way presents a challenge.

In Figure 1, we depict the headers and structure of an
OpenFlow OF _PACKET_ IN message in the unshaded region.
This unshaded region represents the message an OpenFlow
controller receives when it must make a decision about a new
flow. Accordingly, we want to modify this message to include
additional host context. In our design, we simply append this
information to the end of the existing OpenFlow message, as
shown in the shaded region of the figure.
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Fig. 1. The DeepContext OFPT_PACKET_IN modified packet with context
appended to the trailer.

While appending the contextual information to the existing
OpenFlow message is straightforward, it provides significant
advantages. Some existing OpenFlow controllers will process
the message and send it to applications without any negative
effects. Frequently, controller applications look into the initial
headers in the encapsulated packet to make their decisions,
without examining the application’s payload. Such applications
do not examine the encapsulated packet’s payload size or con-
tent and will not notice our additional contextual information.
Thus, our approach is backwards-compatible with this type of
controller application.

Applications that wish to consult the host context can
examine the encapsulated packet’s headers to determine the

length of the packet payload and skip past it to begin processing
our payload.

A final complication is the network’s maximum transmission
unit (MTU). Appending information to an OpenFlow message
that is already at or near the boundary of the largest transmit-
table frame size may cause the packet to be too large for the
underlying media. In this case, we would need to determine the
size of the context and truncate the encapsulated packet to al-
low the context to fit. This is the same approach that OpenFlow
takes when its own header would cause the packet to exceed
the MTU. The only complication in our approach is that we
must update the header lengths of the truncated encapsulated
packet so that context-aware controller applications are able to
correctly find the appended host context.

IV. DEEPCONTEXT: DETAILED PROCESS CONTEXT

In building the DeepContext SDN, we have multiple design
goals. We want to be OpenFlow-compatible to ensure the work
appeals to the existing OpenFlow community. We further want
to achieve high performance to ensure the approach is feasible
in production networks. We want minimal modifications to the
host’s operating system, and avoid modifications to existing
applications. Finally, we want to provide useful context about
each process as it creates new flows to enable more detailed
network policy.

To achieve these goals, we designed the DeepContext system
to integrate with two existing SDN systems: Open vSwitch
(OVS) and the Floodlight SDN controller. We provide a visual
depiction of the system in Figure 2. We first describe the
contextual information we acquire and why it is useful and then
describe our modifications to OVS and Floodlight to leverage
this context.

A. Context Tracking and Policy Impact

The end-host operating system must keep track of the infor-
mation associated with each process. In the Linux operating
system, this information is stored on a per-process basis in
a kernel-level data structure called the task_struct. This
data structure contains information about the user running the
process, the executable path used to run the application, the
command line options, the associated group, and even detailed
information about process ancestry and threads. We call this
task information the process’s operating context.

The process context can be valuable information for a
network controller. Network operators may wish to write policy
on a per user, group, or application basis. For example, network
operators may wish to write a policy such as “Only Alice
may connect to 1.2.3.4 on port 80 and only if she uses
/usr/bin/chrome with the ——disable-javascript
option.” Such a policy can easily exclude any user-installed
programs, unapproved browsers, and browsers with undesired
features. Since our approach will provide this additional infor-
mation when flows are elevated to the controller, the controller

Naturally, the sending host will need to validate those packet sizes upon
transmission to avoid applications being able to forge contextual information
by manipulating the length field in headers.
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Fig. 2. When a program issues a network system call (1), the DeepContext system hooks network system calls using a kernel module (2) and gathers this
information in a user-space application (3) then releases the hooks (4). Once the packet is intercepted by the Open vSwitch Kernel Module (5) and Elevated to
the Open vSwitch (OvS) Daemon (6), the daemon queries the user-space application for context (7). The OvS Daemon receives the context (8), appends it to
the trailer of the packet and sends it to the controller (9). The controller replies with the corresponding rule (10) that gets relayed to the kernel module (11).
If the controller rule allows it, the packet gets released to the network (12); else, it’s dropped.

can leverage this information when authorizing or denying a
network flow.

Our context tracking application, shown in the red ring in
Figure 2, is responsible for collecting, storing, and providing
this information upon demand. The tracker is essentially a
multithreaded user-space application that manages data stored
in an internal map data structure. To populate this data struc-
ture, we use a kernel module to hook each of the Linux
networking functions. Whenever a process calls a network
function, our special function hooks are executed in kernel
mode. We then extract relevant information from the process’s
task_struct, including the process’s PID, group ID, asso-
ciated user ID, the name of the process, and the executable path
associated with the process. We then use a net1ink socket
to transmit this information, along with the full network flow-
tuple, to our user-space context tracker for storage.

When our modified OVS needs to elevate a flow to the
controller, it queries the context tracking system via a Unix
socket. OVS provides the network flow tuple (i.e., IPsyc, IPgest,
Transport Protocol, Portg,.., Portg.s:) for the flow in question.
The the context tracker looks up the appropriate context in
its map data structure and returns it to OVS. OVS then sends
the context data and the packet to the controller machine, as
explained in the following subsection and Figure 1.

B. Modifications to Open vSwitch

While Open vSwitch (OVS) is often used in a hypervisor
between virtual machines, it can also be installed without
virtualization as a kernel module on a Linux system. In this

configuration, the OVS essentially acts as an OpenFlow agent
for a single system. However, even in this mode, OVS does
not provide any details about the host context when elevating
requests to the controller.

We extend the host-based installation of OVS, shown in
the purple ring in Figure 2, with our own functionality. In
particular, we have modified existing OVS functions to include
additional context on OFPT_PACKET_IN messages before
OVS transmits those messages to the OpenFlow controller.
The altered functions use a Unix socket to request information
from the context tracker application. Once the context tracker
responds with context, the OVS functions appends the supplied
context to the end of the OFPT_PACKET_ IN before it is trans-
mitted, as shown in Figure 1. At that point, the message is sent
to the OpenFlow controller for a decision. The OVS system
then implements any orders it receives from the controller.

By leveraging Open vSwitch to implement DeepContext,
we inherit many of its features. We can transmit the Open-
Flow packets, including the modified OF _PACKET_IN, over
encrypted channels. DeepContext can bind to any network
interface (e.g. WLAN, Ethernet), making it topology agnostic.
Furthermore, our flow tables can contain around a million flow
rules [18].

C. Controller Module Customizations

To leverage the additional context from the end-host, we
created an SDN controller module. For our solution, we
have chosen to use the Floodlight controller due to its solid
performance and common use in the community. We modified



the default Forwarding module in Floodlight, which simply im-
plements packet forwarding. We altered the module to include
code to parse the trailer information in the OFPT_PACKET_IN
message to extract the additional context we encoded in OVS.
That controller module then considers the standard network
flow-tuple and the context in making decisions using preconfig-
ured policy rules. As a proof-of-concept, our module approves
all network traffic unless the application’s absolute path begins
with /home or /tmp, in which case the policy dictates that
the flow be dropped. While just an example, other policies
could focus on other elements of context to provide particularly
detailed control.

Importantly, when the Floodlight controller sends a
OFPT_FLOW_MOD message to the end-host OVS, it authorizes
or denies the full network flow tuple. It does not specify any
of the extra host context in this message since the full flow
information is sufficient to uniquely identify the flow. As a
result, the flow state in the host’s OVS is the same as an
unmodified OVS.

V. EVALUATING HOST-BASED SDNs

We begin by evaluating the DeepContext SDN approach’s
performance in a virtual network setup and then evaluate it in
a physical LAN. We evaluate the scalability, performance, and
the completeness of the enhancements of our approach.

A. Virtual Network Experiment Setup

We performed our initial virtual network performance eval-
uation using a single VM hosting server running Ubuntu 14.04
with a 64 bit kernel and a Kernel-Based Virtual Machine
(KVM) hypervisor. That server has 16 cores, each running
at 2.8 GHz. The server has 64 GB of RAM. Each of the
VMs, excluding the network controller, runs with a single
core and 1024 MB of RAM using Ubuntu 14.04 with Linux
kernel version 3.13.0-24. The controller runs with the same
specifications, but has an additional core assigned to avoid
performance bottlenecks on the controller. In this experiment,
we pin each VM core to a specific physical core to avoid over-
provisioning.

B. Performance Evaluation of DeepContext

We evaluate DeepContext in a virtual network and compare
it to Open vSwitch and previous work that leverages appli-
cation context. We then evaluate DeepContext in a physical
LAN.

To better understand the performance of our SDN technique,
we compare it with an unmodified Open vSwitch implemen-
tation to obtain a baseline. However, OVS does not actually
gather host context that can be used for detailed-oriented deci-
sions, such as access control decisions. Accordingly, we look
at two other approaches to provide host context: ident ++ and
the TaylorSDN.

The ident++ approach [15] essentially uses traditional
OpenFlow network switches in combination with a user agent
on each system that can be queried by an SDN controller for
more details about the packet. This system requires an existing

OpenFlow network and requires the controller to queue the
packets while awaiting a response from the end-host agent.

Our own work in the TaylorSDN took a similar approach to
DeepContext, pushing the SDN agent from switches to end-
hosts and instrumenting those hosts for context. However, it
was not OpenFlow-compatible and was written in a scripting
language, which may affect performance and hinder its deploy-
ment. Rather than repeat the experiments, we directly use the
results from that work’s publication [22].

We begin by measuring the performance characteristics of
an unmodified OVS implementation. We perform two exper-
iments. In the first experiment, we generate 1,000 new flows
sequentially using a script running on the host. This allows
us to measure the elevation latency between when a packet is
queued at the kernel and when it is placed on the wire. This
captures the flow elevation and controller decision-making time
for each of the SDN approaches. For the round-trip time (RTT),
we measure the amount of time between when the packet is
first queued and when the reset response from the responder is
received. In each network type, the responder is a traditional
network host without any SDN functionality.

In the second experiment, we evaluate the number of flows
each host can create sequentially in a given time window. We
created a program that creates as many sequential flows per
second as it can in a 300 second period. Essentially, once
the program receives the reset response from the receiver, the
program closes the socket and opens a new one. We then divide
the new flow count by the duration to obtain a base flow-per-
second rate.

TABLE I
PERFORMANCE COMPARISON OF EACH NETWORK TYPE. THE ELEVATION
LATENCY AND RTT METRICS ARE THE MEDIAN OF 1,000 TRIALS WHILE
THE NEW FLOW RATE WAS DETERMINED OVER A 5 MINUTE PERIOD.

Open
Metric vSwitch | TaylorSDN | ident++ | DeepContext
Median Elevation (ms) 1.98 16.72 4.25 2.739
Median RTT (ms) 6.25 34 10.17 7.390
New Flows/sec 103.19 274 48.19 86.80

We show the results of these experiments in Table I. The
Open vSwitch system has the best performance of the SDN
techniques, since it does not spend any time gathering host
context. The TaylorSDN is significantly worse than the Open
vSwitch approach, likely due to its Python implementation
and its polling-based approach for gathering host context. For
both the DeepContext and the ident++ approaches, we use
the same kernel modifications, Open vSwitch daemon, and
context-gathering agent. However, in the ident++ approach,
the host agent provides the entries reactively when prompted
by the controller. In essence, the ident++ gains the benefit
of DeepContext’s performance optimizations, but still performs
worse due to the extra round-trip time from the controller.

When examining the results in Table I, we see that the
host context instrumentation present in DeepContext adds 0.76
milliseconds to the median elevation time (the difference of
DeepContext’s 2.74ms elevation with the 1.98ms elevation in
Open vSwitch).



TABLE II
CPU AND MEMORY USAGE OF AN UNMODIFIED OPEN VSWITCH SYSTEM AND THE MODIFICATIONS RELATED TO THE DEEPCONTEXT COMPONENTS.

CPU RAM (of 1024 MB Total)
Component Median Mean Max Std. Dev. | Median | Mean Max Std. Dev.
Context Tracking System 1.00% 0.97% 1.30% 0.19% 0.10% | 0.10% | 0.10% 0.00%
Unmodified Open vSwitch 44.00% | 43.40% | 47.30% 4.65% 0.40% | 0.39% | 0.40% 0.01%
Open vSwitch with Context | 48.30% | 47.40% | 49.00% 3.86% 0.90% | 0.89% | 0.90% 0.01%

We next test the DeepContext system on a physical local area
network. In this experiment, we deploy DeepContext on two
VMs, each running on a separate physical VM hosting server.
Each VM machine has a 2.8 GHz processor and 1024 MB of
RAM each. Both hosts run Ubuntu 14.04 with Linux Kernel
3.13.0-24. The controller runs in a VM on a third physical
machine and has two 2.8 GHz Cores and 1024 MB of RAM.
All the VMs use a bridged network interface and connect to
our organization’s production network via a gigabit Ethernet
network switch. Table III shows the results we obtained by
generating 1,000 new flows sequentially in the same fashion
as in the virtual network experiment. The elevation time is
consistent with the virtual environment while the RTT has a
slightly higher median RTT (9ms versus 7.4ms), likely due to
the forwarding in the physical hardware’s switch and network
interface cards.

TABLE III
EVALUATION OF DEEPCONTEXT IN A PHYSICAL LAN. ALL METRICS ARE
IN MILLISECONDS AND ARE THE MEDIANS OF 1,000 TRIALS.
Context Retrieval Time | Elevation | Median RTT
0.468 2.259 8.901

Finally, we did a quick confirmation test with two types of
applications: a daemon that periodically probes the network,
the avahi—-daemon which uses Multicast DNS, and that of
a user-initiated web application, wget. The controller could
easily confirm the application responsible for each type of
message based on the context. In the case of wget, the
controller could link the application’s DNS request with its
HTTP interaction with the web server.

C. Understanding the Performance of the DeepContext System

To characterize the performance of the DeepContext com-
ponents, we track the resource usage for the processes that
run on the end-host, such as the modified Open vSwitch
daemon and the context tracking system. Using the same
testing environment described in Section V-A, we use a script
to continuously generate traffic. We monitor the resulting flows
per second and the resources used via the top command.

In Table II, we show the CPU and memory requirements of
the components. We can see that much of the CPU usage is
associated with the Open vSwitch component, as shown with
the unmodified Open vSwitch results. The additional context
processing adds roughly 4.3% CPU usage. The RAM is also
low for both, amounting to less than 1% of the memory of the
system. That memory usage is roughly divided between the
Open vSwitch process and our tracking of context.

Even in this stress test scenario, we use less than half
the CPU at the end-host. We ultimately stored 85,135 flows,
which greatly exceeds the number of flows most end-hosts
simultaneously manage. In that scenario, the memory usage
was still less than 1% of the 1024MB RAM available. In
normal daily usage, we do not expect a noticeable performance
impact in typical client system usage.

D. Impact of Context Processing at the Controller

While OpenFlow controller scalability is its own separate
topic of research, we are primarily concerned with whether
our processing of host context in a controller application
significantly affects the controller’s scalability. To measure this
impact, we use cbench [20] tool to measure the number of re-
sponses per second the controller can handle. In using cbench
on a single client, we vary number of simulated switches
and measure the response time. We compared the Floodlight
controller running our DeepContext module to a Floodlight
controller running the unmodified Forwarding module, which
does not need to consult host context for its decisions.

In Table IV, we show our results. We find that our controller
module generates 5, 455.38 response per second as a maximum
average, which occurs when 50 switches are simulated. In
comparison, the unmodified Forwarding module can handle
6,692.82 responses per second in the same scenario. In general,
the DeepContext module’s flows per second range from 77%
to 88% of the unmodified Forwarding module’s rate in each
scenario. This may be acceptable in some networks. However,
in busy networks, additional controllers may need to be pro-
visioned to compensate for the additional processing at the
controller.

TABLE IV
FLOW RATE OF THE DEEPCONTEXT SYSTEM COMPARED TO AN
UNMODIFIED FORWARDING CONTROLLER APPLICATION

cbench DeepContext Controller Forwarding Controller
# of Switches | Avg. flows/s | Std. Dev. | Avg. flows/s | Std. Dev.
1 1,450.12 429.66 1,728.93 516.57
2 2,189.75 739.56 2,812.86 634.07
4 3,536.06 842.05 4,213.70 942.02
8 4,773.87 1,034.28 5,405.35 1,137.86
16 5,230.06 1,338.50 6,264.34 1,160.08
32 5,213.97 1,699.68 6,352.14 1,886.39
50 5,455.38 1,439.98 6,692.82 1,684.47

E. Completeness Assessment of DeepContext

In this section we evaluate how comprehensive DeepCon-
text’s contextual benefits are. We do so by examine two classes



of attacks that the context may aid in detecting: malicious
software running from the user’s home directory and software
that attempts to inject commands into vulnerable applications.

We begin by focusing on applications running from user
directories. Network oriented code running from user-writeable
directories is often suspicious [26] since most applications
are installed in administrator-controlled directories, such as
/usr/binor /usr/local/bin. We evaluate our system’s
ability to detect and block such applications by installing a
rule that denies access to any application whose absolute path
begins with /home. We then create a program that issues
a request to an HTTP server. The SDN agent elevates the
request to the controller, the controller application observes
the application’s path and applies the policy to drop all packets
from that application. The controller sends the drop rule and
our program is indeed denied network access.

Our second class of attacks is one in which the attacker
tries to execute an unauthorized command based on how a
vulnerable application works. As an example, the popular
image manipulation library ImageMagick was vulnerable to
a command injection attack [4], [14]. An attacker could create
a special MVG file that would manipulate ImageMagick into
executing arbitrary commands via a system shell. Attackers
could manipulate programs using ImageMagick to download
and execute malware.

In our experiment, we focus on our context tracking sys-
tem’s ability to obtain the parent process associated with any
network-using application. For a GUI-less server, we created
a controller policy that blocked applications unless the parent
process was init (which spawns daemons) or the bash shell,
which is used used by SSH or local console users. Using our
own application that is vulnerable to command injection, we
inject the wget command to get an image file. The SDN
agent again elevated the network request to the controller. The
controller applied its policy about process ancestry and denied
the request. The SDN agent then dropped the traffic, rendering
wget unable to download the image file.

While these two examples are relatively simple policies, they
highlight the power of the system. A broad class of attacks can
be thwarted with simple policies. Unlike with firewall rules
or policies that use ports, organizations can create whitelist
policies for specific legitimate applications in our approach
by specifying paths without being concerned about creating
openings for malicious applications.

VI. DISCUSSION

In this work, we have focused on the contextual benefits,
performance, and data-plane scalability of the SDN agents
associated with an OpenFlow network. We have addressed the
inherent scalability issues of physical OpenFlow switches by
moving the SDN component into the end-host, allowing more
rules per host. In doing so, we have moved from a switch-based
SDN that can only store a few thousand flow rules in its flow
table [18] and can manage roughly 100 new flows/second [1]
overall to a host-based system in which each host can store

roughly I million rules in its flow table [18] and can manage
roughly 87 new flows/second on each host.

The contextual benifits and performance of OpenFlow con-
trollers is being actively investigated by other researchers in
the field [10], [24]. Scalable controllers [6] and distributed
controllers [23] are both possible mechanisms to ensure that
network controllers can keep up with the demands of the
devices on the network. This is particularly important for
controller applications that must perform additional processing,
such as examining host context for decision making. While
essential, we consider such work to be orthogonal to our own.

Host-based SDNs have limited influence over physical
switches and the ports they use for forwarding traffic. Enter-
prise networks, unlike data center networks, often have star
topologies with limited forwarding options. Future work may
explore tunneling or encapsulation options, like MPLS, to
enable more powerful traffic engineering.

The use of a host-based SDN necessarily requires changes
at each of the end-hosts. Our paper shows how to do so in
the Linux operating system. Other popular operating systems,
both for traditional operating systems and for mobile OSes,
would additionally require instrumentation to ensure coverage
of all the end-user systems at an organization. In proprietary
operating systems, the kernel-based functionality may need to
be implemented as a kernel driver. Further, for large organi-
zations, automated software distribution tools may help install
the software organization-wide.

A final concern focuses on network policy. While the host-
based SDN approaches can provide detailed context for net-
work operators, these operators would need to specify policy
that leverages these features to make decisions. The approach
for enhancing network policy may be organization-specific.
However, future work may explore the potential for a suite
of template best practice policies for organizations.

VII. CONCLUSION

In this work, we introduced a new host-based SDN ap-
proach, called DeepContext, and compared it with existing
approaches to enhance SDNs with host context. We found that
the DeepContext system offers the best performance of the
host context systems with only modest performance overheads
as compared to the Open vSwitch system. Further, we found
the DeepContext system provides each of the context building
properties we analyzed.

Our work has found that proactively providing context on
flow elevation requests can yield valuable management insights
and performance benefits while providing compatibility with
the existing OpenFlow community and tools.
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