The Power of “Why” and “Why Not”:
Enriching Scenario Exploration with Provenance

Tim Nelson
Brown University, USA

Daniel J. Dougherty
Worcester Polytechnic Institute, USA

ABSTRACT

Scenario-finding tools like the Alloy Analyzer are widely used in
numerous concrete domains like security, network analysis, UML
analysis, and so on. They can help to verify properties and, more
generally, aid in exploring a system’s behavior.

While scenario finders are valuable for their ability to produce
concrete examples, individual scenarios only give insight into what
is possible, leaving the user to make their own conclusions about
what might be necessary. This paper enriches scenario finding by
allowing users to ask “why?” and “why not?” questions about the
examples they are given. We show how to distinguish parts of an
example that cannot be consistently removed (or changed) from
those that merely reflect underconstraint in the specification. In
the former case we show how to determine which elements of the
specification and which other components of the example together
explain the presence of such facts.

This paper formalizes the act of computing provenance in scenario-
finding. We present Amalgam, an extension of the popular Alloy
scenario-finder, which implements these foundations and provides
interactive exploration of examples. We also evaluate Amalgam’s
algorithmics on a variety of both textbook and real-world examples.

CCS CONCEPTS

« Software and its engineering — Formal methods;

KEYWORDS

Model finding, formal methods, provenance, Alloy analyzer

ACM Reference format:

Tim Nelson, Natasha Danas, Daniel J. Dougherty, and Shriram Krishna-
murthi. 2017. The Power of “Why” and “Why Not”: Enriching Scenario
Exploration with Provenance. In Proceedings of 2017 11th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, Paderborn, Germany,
September 4-8, 2017 (ESEC/FSE’17), 11 pages.
https://doi.org/10.1145/3106237.3106272

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09...$15.00
https://doi.org/10.1145/3106237.3106272

Natasha Danas
Brown University, USA

Shriram Krishnamurthi
Brown University, USA

1 INTRODUCTION

Scenario-finders produce concrete examples that satisfy formal
specifications. They have been popularized by tools like Alloy [17],
which has been widely used in many domains to (e.g.) debug and un-
derstand UML diagrams [24, 25], analyze firewall configurations, se-
curity policies [23, 28], network switches [32], and web security [1],
and discover an oversight [40] in the Chord [35] distributed hash-
table protocol. Scenarios found may correspond to examples of
access requests, class diagrams, faulty protocol executions, network
topologies, theorem counterexamples, and so on. Since scenario-
finders function even in the absence of formal correctness prop-
erties, they are often used to help users understand a system by
example, discover new properties to check, or perform property-free
analyses such as semantic differencing [25, 28] of systems.

It is crucial that tools empower users to understand the scenarios
they are presented with, rather than merely show them examples
consistent with the original specification. However, currently there
is only limited tool support for helping users understand scenarios.
For example, the Alloy Analyzer provides an evaluator that allows
users to evaluate expressions in the context of the currently shown
scenario; in this way users can answer “what is true?” questions. But
users should also be able to ask the much more interesting “Why?”
and “Why not?” questions. For instance, one might ask: “Why does
my network configuration take that action on this packet?”, “Why
doesn’t this class implement an interface in this example?”, or even
“What parts of my specification prevent me from adding another
node to this binary-search tree?”.

Answering such questions is hard enough in the context of a
deterministic system where behavior generally has one cause or
chain of causes. In scenario-finding, however, “Why is this here?”
may have zero answers (i.e., nothing forces that portion of the
scenario to be present) or more than one answer (when multiple
constraints in the specification make the element necessary). More-
over, explanations will usually be contingent on what else is (and
is not) present in the example shown. Giving users answers to
such explanatory questions is therefore non-trivial, yet still vital
for enabling productive, disciplined use.

Finally, although the canonical use-cases for scenario-finding of-
ten involve human-generated specifications, many applications (e.g.,
[5, 11, 24, 25, 27-29]) compile software artifacts like UML diagrams

1

! Scenario-finding tools are also called “model-finders”. However, the word “model” is
heavily overloaded, and can mean either a specification (i.e., “model of software”) or a
scenario found via logical methods. Throughout this paper, we will always use the term
in the latter, logical sense—an interpretation of relation symbols over a set of atoms—to
formalize our notion of scenario. Although they sometimes share internal strategies,
scenario- or model-finders like Alloy are distinct from model-checkers, another class
of tool that typically focuses on verifying that a system satisfies temporal properties.

https://doi.org/10.1145/3106237.3106272
https://doi.org/10.1145/3106237.3106272

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

or firewall policies to specifications and invoke the scenario-finder
as a back-end. Since the scenarios produced are then in terms of
machine-generated translations rather than meticulous, human-
crafted specifications, Alloy bears an even greater burden to help
users understand the scenarios shown.

Contributions. In this paper, we establish novel, well-defined no-
tions of “Must this be here?” and “Why is this here?” for scenario-
finding. These ideas are realized in Amalgam?, an enhanced ver-
sion of the widely-used Alloy scenario-finder. We choose to build
atop Alloy because it is used by multiple and diverse communities,
and also due to its expressive power (all of first-order logic, along
with relational operators such as transitive closure). Amalgam’s
novel features comprise: the ability to say what is and is not neces-
sary in a scenario (i.e., cannot be changed without consequences
elsewhere); rigorous, proof-based explanations (provenance) for ne-
cessity; and disciplined, user-guided scenario alteration that enables
users to explain why elements of a scenario can be altered.

Amalgam facilitates a richer workflow than what Alloy currently
provides. We illustrate this via a worked example in Sec. 2. We then
lay out the logical foundations (Sec. 3) and algorithmics (Sec. 4) for
provenance generation before discussing Amalgam’s implementa-
tion (Sec. 5). We evaluate Amalgam (Sec. 6) and contrast it to related
work (Sec. 7) before concluding with discussion in Sec. 8.

2 WORKED EXAMPLE

To illustrate how “Why?” and “Why not?” questions arise naturally
in scenario finding, we first introduce an example adapted from an
exercise in Jackson [17]: undirected trees with node coloring:

1 abstract sig Color {}

2 one sig Red extends Color {}
3 one sig Blue extends Color {}
4+ sig Node {

5 neighbors: set Node,

6 color: one Color

7}

s fact undirected {

9 neighbors = ~neighbors —— symmetric

10 no iden & neighbors -— antireflexive

11 }

12 fact graphIsConnected ({

13 all nl: Node | all n2: Node-nl |

14 nl in n2.”"neighbors }

15 fact treeAcyclic {

16 all nl, n2: Node | nl in n2.neighbors implies
17 nl not in n2.” (neighbors-(n2->nl)) }

Lines 1-7 declare the basic types in the problem: a notion of color
(line 1; sig denotes a type declaration), and two concrete colors
(lines 2-3). The abstract keyword enforces that the Color
type is the union of its subtypes: Red and Blue. The one keyword
constrains the Red and Blue types to each contain a single, distinct
color atom. Nodes each have a set of neighbors and a single
color (forced by the prior declarations to be either Red or Blue).
Line 9 enforces symmetry, making the graph undirected; line 10
prevents self-loops. Lines 12—14 use transitive-closure (*) to force

http://cs.brown.edu/research/plt/dl/fse2017/

T. Nelson, N. Danas, D.J. Dougherty, and S. Krishnamurthi

Node$0 Node$0
color: Blue$0 color: Red$0
Node$0
color: Red$0 X
neighbors neighbors\neighbors
Node$1 Node$1 Node$2
color: Blue$0 color: Red$0 color: Blue$0

Figure 1: Three example scenarios produced by Alloy. In Alloy, A$k
denotes the k" element of the type A; here indexes range from 0 to
2. Colors are named in the same way and appear under the name of
each node. The edges show the neighbors relation.

the graph to be connected. Lines 15-17 enforce acyclicity by saying
that removing any edge disconnects its endpoints.

Alloy converts this specification to a theory of first-order logic
with transitive closure, with types as unary relations and neighbors
and color each assigned a binary relation. Running the specifica-
tion in Alloy produces a stream of models that satisfy that theory
(up to a user-specified size). Fig. 1 contains 3 (of many) example
models found up to a bound of 3 Nodes.

2.1 Challenge: Detecting Underconstraint

It is easy to accidentally omit a constraint when writing a specifica-
tion: e.g., the antireflexivity constraint on line 10. If it is left out, the
specification is satisfiable, but underconstrained: it is satisfied by
some models that contain self-loops. This error is revealed if Alloy
produces a cyclic model, but since tool parameters like SAT-solver
choice affect the order in which Alloy generates models, there is no
guarantee that a cycle will be shown even after several invocations.

This issue illustrates a weakness of purely model-based out-
put: vital information may be withheld well past the point where
most human users stop requesting new models. In contrast, by
giving additional information in the form of necessity and prove-
nance, Amalgam can reveal some bugs even if the model shown
is “correct”. Consider the leftmost model of Fig. 1. This model is a
(singleton) tree that satisfies the specification. However, without
an antireflexivity constraint, the specification permits adding an
edge from Node$0 to itself (in spite of the acyclicity constraint).
By reporting what is and is not locally necessary (Sec. 3) in the
model, Amalgam alerts the user to underconstraint, without hiding
the error in a stream of (potentially complex) models. Users can
then instruct Amalgam to augment the model with the new edge—
providing them with a counterexample to their expectation—and
then use Alloy’s evaluator to explore why existing constraints do
not suffice.

2.2 Challenge: Tracing Overconstraint

Implicit assumptions in evolving specifications can lead to errors—
as we discover if we decide to allow self-loops in our trees. To
do so, we again remove the antireflexivity constraint on line 10.
Unfortunately, this edit reveals a subtle overconstraint: self-loops
remain forbidden in models larger than 1 node.

http://cs.brown.edu/research/plt/dl/fse2017/

The Power of “Why” and “Why Not”™:
Enriching Scenario Exploration with Provenance

The treeAcyclic constraint is the culprit. Its formulation
implicitly assumes irreflexivity, i.e,, thatnl in n2.neighbors
implies that n1 and n2 must be different nodes. The fix is just
to make that assumption explicit, adding n1 != n2 to the an-
tecedent of the constraint. But if the user is only presented with
a series of models that look like valid trees (some even with self-
loops), how can they discover the fix? How will they even learn of
the error without iterating until no more models are available, re-
membering every detail of previous models seen and then mentally
synthesizing the fact that some self-loops were never shown?

In contrast, Amalgam can reveal the problem on the first model
larger than 1 node. Consider the middle, 2-node model in Fig. 1.
This is a valid tree, but neither of the self-loop edges can be added
without consequences (i.e., adding or removing additional nodes
or edges). Amalgam detects this, reporting these edges’ absence as
locally necessary. Furthermore, Amalgam can explain this necessity,
guiding the user to the appropriate fragment of the constraint.

The four-panel Fig. 2 shows how Amalgam presents provenance
as a deductive argument, highlighting four crucial steps:

(1) The first highlight is a top-level constraint that leads to the
local necessity of Node $1 having no self loop.

(2) The next highlight shows the subformula after binding
nl=n2=Nodes$1 (possible since atom Node$1isaNode).

(3) The right-hand side of the implication is false under that
instantiation whether or not Node$1 has a self-loop.

(4) Finally, since the right-hand side of the implication is true,
Amalgam concludes that the left-hand side must be false:
not Node$l->Node$l in neighbors.

2.3 Challenge: Multiple Explanations

Finally, suppose we constrain node coloring by saying that leaf
nodes ought to be colored blue and internal nodes red:

all n: Node | n.color = Blue iff lone n.neighbors

That is, the node is blue if and only if it is connected to 0 or 1 other
nodes. In Fig. 1, the middle model satisfies this constraint but the
other 2 do not. Revisiting the center model, Amalgam indicates
that it is necessary for both nodes to be blue. But why? Asking
for a provenance of Node $0’s blue color actually yields a pair of
provenances corresponding to the explanations:
e The declaration of Node said that every node has exactly
one color; we cannot remove Node $0’s color.
e The new constraint forces Node $0 to be blue since it has
no more than one neighbor.

Each of these encapsulate a way that constraints and current sce-
nario together imply (Sec. 3) that Node $0’s blue color cannot be
removed without consequences elsewhere in the scenario. Different
explanations may be useful in different situations: either reminding
the user that every node must have a color or pointing them to
the coloring constraint. For this reason, Amalgam generates sets of
provenances rather than only single explanations.

Comparison to Unsatisfiable Cores. If a specification has no mod-
els, Alloy can obtain and highlight a minimal core of the specifi-
cation that is itself unsatisfiable. This allows the user to zero in
on which constraints are mutually unsatisfiable under the current
bounds. (For more information on the uses of unsatisfiable cores

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

in Alloy, see Torlak, et al’s [36] insightful work.) However, such
cores can only be found when a specification is indeed unsatisfi-
able. Amalgam’s provenance and necessity information give insight
into overconstraint even when the specification can be satisfied,
making it useful for debugging subtle errors that may eliminate
a handful of models, but not all. Moreover, Amalgam produces a
set of provenances that can be explored, each of which provides
different insight, rather than a single core. (We discuss potential
future applications of core-extraction to provenance in Sec. 8.)

3 FOUNDATIONS

We now establish foundations for provenance. Although we use
Alloy syntax throughout, our results apply to any scenario-finding
tool that uses bounded first-order logic. In this section as well as
Sec. 4, we will use the term model to formalize the notion of scenario
as a logical structure over a relational language. We also use theory
to formalize the specification as a set of logical formulas.

3.1 Syntax

Alloy’s surface syntax includes the usual predicate-logical operators
(quantification is sorted). To these, Alloy adds relational operators:
join (-), product (x), transitive closure (*), and others (see Fig. 3 for
a full list). These operators have the usual first-order and relational
semantics, which we sketch in Fig. 3.

3.2 Model-Finding

The general model-finding problem consists of satisfiability search:
finding a model that satisfies some theory. A bounded model-finding
problem (L, 7, U, LB, UB) comprises:
(1) alanguage L;
(2) atheory 7 over the symbols in £;
(3) a finite domain U (the universe); and
(4) upper and lower-bound functions £8 and UB defined
for each (n-ary) relation R € £ such that UB(R) < U",
LB(R) € U™ and LB(R) € UB(R).
A solution to such a problem is a model M over the language £
such that (RM denotes the interpretation of R in M):
(1) M 75
(2) M| =U;and
(3) for each relation R € £, LB(R) € R™ c UB(R).

Since the bounded model-finding problem is restricted to search-
ing for models with a specific finite domain U, satisfiability and
testing truth in a model are each decidable. In fact, bounded sat-
isfiability can be checked by reducing the problem to the purely
propositional domain, with each possible tuple membership € R
(i.e., each member of the problem’s Herbrand base) being assigned
a single Boolean variable. We embrace this perspective, and will
implicitly enrich £ with a distinct constant for every element E
of U. For brevity, we abuse notation somewhat and name these
constants identically with the elements they represent. Thus, all
formulas we consider will be closed; i.e., without free variables.

Example 3.1. The undirected-tree example of Sec. 2 describes a
theory over the language (superscripts denote arity):

L= {Node(l), Color(l), Red(l), Blue(l), color(z), neighbors(z) }

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

T. Nelson, N. Danas, D.J. Dougherty, and S. Krishnamurthi

g @ ¥ &

Mew Open Relosd Save Exects Show
labstract sig Color {}
lone sig Red extends Color {}
lone sig Blue extends Color {}
sig Node {

neighbors: set Node,

color: one Color

fact undirected {
neighbors = ~neighbors -- symmetric
--no iden & neighbors - antireflexive

}
fact graphIsConnected {
all nl: Node | all n2: Node-nl |
nl in n2.”neighbors }
fact treeAcyclic {
all nl, n2: Node | nl in n2.neighbors implies
nl not in n2.”(neighbors-(n2->nl)) }

New Opan Relond Save Erecie Shom
labstract sig Color {}
lone sig Red extends Color {}
lone sig Blue extends Color {}
sig Node {

neighbors: set Node,

color: one Color

fact undirected {

neighbors = ~neighbors -- symmetric
--no iden & neighbors - antireflexive
}
fact graphIsConnected {
all nl: Node | all n2: Node-nl |

nl in n2.”neighbors
fact treeAcyclic {
all nl, n2: Node | hl'in h2.neighbors implies
nl not in n2.”(neighbors-(n2->nl)) }

-

Explaining why not: Node$l->Node$l in

Starting with the top-level constraint.
(all nl,n2:one this/Node nl in n2
then:
let nl=[Node$l]

which leads to...
then:
let n2=[Node$1]
[eliminate OR branch]
for [2-1],

which leads to...
then:
[eliminate OR branch]
for [3-11,

which leads to...
then:
[eliminate OR branch]
for [4-1],

that leads to literals...
Node$l -> Node$l in neighbors, when w

[2-1]

Node$1%h this
[3-11
Node$l in this
[4-1]

! Node$l !in N

X| not: odes$l-
Starting with the top-level constraint.

plaining why

(all nl,n2:one this/Node

then:

let nl=[Node$l]
which leads to...

then:

let n2=[Node$l]

[eliminate OR branch]

| n1 in n2

[2-1]

Node$l in this

for [2-1],
which leads to... [3-1]1
then:
[eliminate OR branch] Node$l in this,
for [3-11,
which leads to... [4-1]
then:
[eliminate OR branch] e$l !in N
for [4-1],
that leads to literals..
Node$l -> Node$l in ne s, when w

abstract sig Color {}
lone sig Red extends Color {}
lone sig Blue extends Color {}
sig Node {

neighbors: set Node,

color: one Color

fact undirected {
neighbors = ~neighbors -- symmetric
--no iden & neighbors - antireflexive

}
fact graphIsConnected {
all nl: Node | all n2: Node-nl |
nl in n2.”neighbors }
fact treeAcyclic {
all nl, n2: Node | nl in n2.neighbors implies
nl not in n2.”(neighbors-(n2->nl)) }

L B ?d "4 :*x
abstract sig Color {}
one sig Red extends Color {}
one sig Blue extends Color {}
sig Node {
neighbors: set Node,
color: one Color
+
fact undirected {
neighbors = ~neighbors -- symmetric
--no iden & neighbors - antireflexive

+
[fact graphIsConnected {
all nl: Node | all n2: Node-nl |
nl in n2.”neighbors }
[fact treeAcyclic {
all nl, n2: Node | nl in n2.neighbors implies
nl not in n2.”(neighbors-(n2->nl)) }

let nl=[Node$l]
which leads to...
then:
let n2=[Node$l]
[eliminate OR branch]
for [2-1],
which leads to...
then:
[eliminate OR branch]
for [3-1],
which leads to...
then:
[eliminate OR branch]
for [4-1],
that leads to literals. .|
Node$l -> Node$l in n

[2-1]

Node$l in this/N
[3-1]
Node$l in this/N
[4-1]

! Node$l !in Nod|

when we

Executing "Run run$l for exactly 2 Node"

let nl=[Node$l]
which leads to...
then:
let n2=[Node$l]
[eliminate OR branch]
for [2-1],
which leads to...
then:
[eliminate OR branch]
for [3-11,
which leads to...
then:
[eliminate OR branch]
for [4-1],
that leads to literals...
Node$l -> Node$l in neighbors,pwhen we

[2-1]

Node$l in this/N|
[3-11
Node$l in this/N
[4-1]

! Node$l !in Nod|

Executing "Run run$l for exactly]

lver-minicatnr,

rlini) Ritl

Figure 2: Sample provenance and interaction for the 2-node model in Fig. 1 asking why Node $1 cannot have a self-loop edge. The right-hand
side of each of the four panels is a step-by-step deductive argument. The left-hand side highlights portions of the specification corresponding
to where the user is pointing in the right-hand pane. Yellow highlights (shown in panel 3) comprise the set of subformulas that force local
necessity (Sec. 3). Green highlights (shown in panels 1, 2, and 4) correspond to steps of the recursive descent algorithm we present in Sec. 4.

Syntax Meaning Syntax Meaning
dXY Cartesian product oy relational join
pUY union dnNy intersection

P\Y
p<:y
¢
$ly]

set difference

retain rows in ¢ with first column in ¢

transitive closure
inverse relational join

Py
g:>y
*¢
~¢

overriding union
retain rows in ¢ with last column in ¢
reflexive transitive closure
relational transpose

#¢ cardinality {t:Tla(®)} set comprehension

iden identity relation (binary) univ universe (unary)
anp conjunction aVvp disjunction
a=p implication a = p bi-implication
a?fy if-then-else

—a negation piny relational containment

Vx : T|a(x) universal quantification Ax : Tla(x) existential quantification

one ¢ ¢ =1 lone ¢ l§| <1
some ¢ [g] > 1 no ¢ lp] =0

Figure 3: Supported Alloy Surface Syntax. a, 5, and y denote formulas which evaluate to true or false. ¢ and ¢ denote expressions which
evaluate to relations. For clarity, we distinguish between relational containment ¢ in i/ and tuple membership 7 € ¢, although Alloy uses

identical syntax.

Because there is exactly one of each color (one sig), Alloy com-
putes that UB(Blue) = LB(Blue) = {Blue$0} (and similarly for
red). If the specification is run for up to 3 nodes, then £LB(Node) =
0 and UB(Node) = {Node$0,Node$1,Node$2}. U is therefore
{Node$0, Node$1,Node$2, Blue$o, Red$@}. Upper bounds for the bi-
nary relations include all well-typed tuples.

Because we will always be interested in a bounded model-finding
problem, when we speak of entailment it is always restricted to
the models that respect the universe U and bounding functions
LB and UB of the current problem. We reinforce this by writing

entailment with a subscript: Fq,.

Fix a bounded model-finding problem over £, 7, and U.

The Power of “Why” and “Why Not”™:
Enriching Scenario Exploration with Provenance

Definition 3.2 (Literal, Diagram). If R is a n-ary relation in £,
c1, ..., ¢y constants for elements of U, and t = [cy, ..., ¢, | then the
formulas f € R and t ¢ R are literals. The diagram of a model M,
denoted A(M), is the set of literals true in M.

We use the set-containment idiom for literals rather than writing
R(cq, ..., cn) because it more closely reflects the syntax of Alloy.

3.3 Necessity and Provenance

We are interested in exploring why a given literal L must hold in
a model M in order to satisfy theory 7. In this section we make
this notion of “why” precise. At one extreme L might be a logical
consequence of 7. At the other extreme, L might be a “gratuitous”
fact about M, not contributing to making M a model of 7 at all; here
it is reasonable to report that “there is no reason why” L holds. This
is already useful information to a user, of course. The interesting
case is the one in which L need not hold in all models of 7, but, in
the context of the rest of the model M, cannot be negated without
falsifying 7. Our main goal is to analyze this latter situation closely.

Definition 3.3 (L-alternate, Local Necessity). Fix a literal L true in
M. The L-alternate M™ of M is the model with the same universe
as M whose diagram A(MY) is (A(M) \ {L}) U {=L}.

A literal L true in M is locally necessary for 7~ in M if M |£ 7.

Note that this is a weaker condition than 7 -entailment. Local
necessity captures the fact that other literals in a particular model
force L to hold; it might be (and is likely that) 7 ¢, L in general.

THEOREM 3.4. L is locally necessary for 7 in M if and only if
T U(AM)\ {L}) Fqs L.

Proor. If L is not locally necessary for 7~ in M, then M is a
witness for the failure of 77U (A(M) \ {L}) Fq; L. Conversely, to say
that 77U (AMM) \ {L}) #q, L is to say that 77U (AM) \ {L}) U {=L}
has a model with universe U that respects LB and UB. The only
such model with diagram (A(M) \ {L})U{=L} is ME, thus ML |= 7,
and so L is not locally necessary for 7~ in M. O

We now formalize the notion of “why” via provenance.

Definition 3.5 (Provenance). A provenance for L in M with respect
to 7 is a set of sentences a, ..., a, (n > 0), each true in both M
and ML, such that 7~ U {ai,...an} Eq L.

The condition that each component «; holds in M binds the
notion of provenance to M, while requiring that each a; holds in
ML ensures that no a; entails L under 7, so that the provenance is
non-trivial.

There is an important aspect of provenance that would be tedious
to make explicit in Definition 3.5: the way that the «; point back to
the specification 7. Each «; computed by the algorithm presented
in Sec. 4 is a substitution instance of a subformula of an axiom in
T, providing links to specific places in the specification that are “to
blame” for the truth of L. In our implementation, the a formulas

are those highlighted yellow (Fig. 2).

Example 3.6. Consider the theory {Vx.R(x), Vx.(P(x) = Q(x))}
over the language with three unary relations R, P, and Q. Suppose
U = {0} and for all three relations £B(-) = 0 and UB(-) = {0}.If
M = {P(0), Q(0), R(0)} then literals Q(0) and R(0) have provenances:
{P(0)} and 0 respectively. P(0) has no provenance.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

The following is an easy consequence of Theorem 3.4.

LEmMA 3.7. L has provenance in M with respect to 7 if and only
if L is locally necessary for T in M.

4 ALGORITHMICS

Fix a bounded model-finding problem over £, 7, and U with upper
and lower bounds for each R € L. Let M |= 7 and L be locally
necessary for 7~ in M. To obtain a set of provenances for L in M, it is
useful to define a desugaring function that instantiates and flattens
formulas (Sec. 4.1). We then proceed by recursively evaluating the
formulas in 7 in M and M", desugaring as necessary and recording
subformulas that lead to 7”’s failure in ML (Sec. 4.2). Finally, to
further focus the provenance on elements of the model, we expand
each provenance generated into a literal provenance (Sec. 4.4).

4.1 Desugaring Alloy

Alloy’s syntax contains several operators that are effectively syn-
tactic sugar, and bounds enable even more simplification. When
generating provenance, it will be useful to instantiate some quan-
tifiers, relational expressions, and derived operators. To do so, we
utilize the problem’s upper and lower bounds to convert (e.g.) uni-
versally quantified formulas to a conjunction over the upper bound
of the quantified variable’s type. Since variable types need not
be basic relations, we extend the notion of upper bound to in-
clude arbitrary relational expressions. Most of these details are
routine, but Fig. 4 shows some of the more interesting cases—like
quantification—where we must explicitly depend on the bounded-
ness of the model-finding problem to perform instantiation. If a
desugaring step produces an empty conjunction or disjunction, it
means that the bounds themselves are in some way incompatible
and might need to be increased—another useful distinction that the
stream-of-models paradigm fails to make.

desugar(Vx? a(x)) = AN{Ted=a®)|iecUB)}
desugar(Ix? a(x)) =\V{fepAad)|tec UB@H)}
desugar(¢ in y) =N{tgpVvtey|te UBH)}
desugar((a1, an) € "¢)= V{N{(ai,ai+1) € ¢ |1 <i < n} |
[ai, ..., an] is a path in UB(¢)}
Z\/{El €¢Af2€l//|
t1 € UB(P).t2 € UB(), 11 - 12 = 1}
when c is a constant:
desugar(¢ < c) =V{(¢=n)| MIN <n<c}
desugar(¢ = c) =ceg¢
desugar(#¢p =) = N({T € ¢|f € UB($),T € $* N ™" }U
{fe¢glicUB@.Tg g UG =
AT € §lF € UB(H), T € 94T ¢ g™ U
(T ¢ It € UB(P).T ¢ P, 7€ ¢}

desugar(t € ¢ -)

Figure 4: Desugaring Alloy operators and instantiation by upper
bounds via desugar(-). Numeric operators are subject to bounds on
bitwidth; a bitwidth of 4 (e.g.) corresponds to the range —8 through
7. Cardinality (#) expressions desugar to formulas that express the
failure of the expression in M") Other operators (which we elide for
space) are either routine or proceed similarly.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

4.2 Computing Provenance

To build intuition, we first step through the concrete node-coloring
example from Sec. 2.3, where we constrain each node’s color de-
pending on its neighbors. Recall that M (the middle model of Fig. 1)
has two nodes, Node$0 and Node $1. We focus on the fact that
Node$0 is blue: the literal L = [Node$0,B1lue$0] € color.

This literal is locally necessary, since the L-alternate model M™
obtained by removing this tuple from the color relation fails two
top-level constraints in 7

all n
all n

Node | n.color = Blue iff lone n.neighbors
Node | one n.color

We obtain provenance for L by computing an explanation for why L
fails in MY, Since a conjunction fails if any of its subformulas fail, we
extract independent provenances from the two failing constraints.
We start with the former axiom.

Our algorithm instantiates the universal quantifier as a conjunc-
tion (maintaining the sort restriction as a guard on each conjunct).
We then discover that only the following instantiation fails in M":

Node$0 in Node implies
(Node$0.color = Blue iff lone Node$0.neighbors)

The implication fails because the guard is true (in either model)
but the consequent becomes false in M™. Because the obligation to
make the consequent true is only triggered by the fact that Node $0
is a node, we add that to the provenance, then continue recursively,
explaining why the consequent fails in M. The bi-implication
desugars to a pair of implications, with the “if” implication failing:

lone Node$0.neighbors implies Node$0.color = Blue

As before, we add the antecedent 1one n.neighbors to the prove-
nance. We continue to recur until “hitting bottom” at the input
literal L. The context collected comprises a provenance Pj:
Node$0 in Node
lone Node$0.neighbors
The latter axiom from 7~ also produces a provenance. We instan-
tiate as before and desugar one according to the upper bounds,
eventually producing the following provenance Ps:
Node$0 in Node
not (Node$0->Red$0 in color and

Node$0->Blue$0 not in color)
Since P; and P; arise from separate failing conjuncts (the top-level
constraints in 7°) we present them separately.

Pointing back to 7. The remark following Definition 3.5 con-
cerning the tight connection between provenance components and
axioms of 7~ can be understood more clearly now that we see how
the provenance computation works. For each item a we add to
a provenance there is a subformula ¢ from 7 such that « is an
instance of ¢ true in M and in M". By collecting these instances
verbatim we are able to track failing sub-constraints and present
them to the user. On the other hand, Sec. 4.4 explains how to break
these formulas down into literals if desired.

The Algorithm. Fig. 5 gives the recursive provenance function
Y(-), defined on sentences whose interpretation changes from true
in M to false in M¥. There is a function Y. (-), for sentences false

T. Nelson, N. Danas, D.J. Dougherty, and S. Krishnamurthi

{0} ifL=7€cR

undefined otherwise

YteR) = {
Yar Ao A an) = U @)M = @i, M I a;)

Hp1V..VppVy1V..Vym) =

{{=p1s s mpn} Uplp € (H(11) X oo X Hym))}
(where M |£ each p; and M |= each yj)

Y(-a) = Y-(a) MYa) = Y(desugar(a)) in all other cases.

Figure 5: Explanation function Y.

in M and true in ML, whose definition is dual to Y(-), but omitted
here for lack of space.

If « is a literal, Y is only defined if @ = L (since otherwise M
and M" could not differ on the interpretation of): the provenance
here is empty, since clearly L Fq; L.

When « is a negation, we invoke Y- ().

When « is a conjunction, the failure of any conjunct causes
the overall formula to fail in M. The resulting provenance-set is
therefore the union of all explanations for each conjunct’s failure.

When « is a disjunction, local necessity means that every dis-
junct must evaluate to false in M™ and at least one must hold in
M. For intuition, view the disjunction as an implication with the
disjuncts false in M negated in the antecedent. It is these subfor-
mulas (false in both M and M; labeled p; in Fig. 5) that imply
the others (true in M and false in MY; labeled yi in Fig. 5) and
force the failure of the overall formula. Y recurs for each failing y;,
combines their provenances with union product and adds each p;
to every provenance in the resulting set. Here, the union-product
of a pair of sets of sets A = {ay,...,an} and B = {by,...,bp} is

AXB = {a; Ubj|1 <i < n,1 < j < m}. The union product operator
is similar to Cartesian product, but rather than building ordered
pairs of element sets, it combines those elements with union.

Otherwise, we perform one desugaring step and recur.

One might initially expect the dual of the conjunctive case (which
uses union) to use intersection. However, this would mean combin-
ing multiple provenances—all of which must apply—by discarding
unshared components. We therefore use union product to enforce
that some full provenance for each subformula is respected.

Complexity. Our algorithm amounts to a tree-search of a par-
tially desugared 7, testing for truth in M and M" while descending.
Both time and space complexity are therefore proportional to the
size of the model M times the size of the theory 7~ post-desugaring.
Expanding a quantifier over ¢ (Fig. 4) produces one guarded in-
stantiation per element in the upper bound of ¢. Thus, worst-case
quantifier-elimination is exponential in the quantifier-nesting depth
of 7. Expanding transitive closure enumerates possible paths, and
so there the worst case is superexponential: the number of poten-
tial paths between a fixed source and destination in a complete
n-graph is), (”;z)x!. This challenge is shared by Alloy’s

0<x<n-2
model-finding engine as it passes to propositional logic and is thus

not unique to provenance generation. Moreover, in practice (Sec. 6)
these worst cases rarely manifest. This is because bounds tend to be
both separated into disjoint types and small (well under 10 atoms)

The Power of “Why” and “Why Not”™:
Enriching Scenario Exploration with Provenance

in keeping with Jackson’s small scope hypothesis [17], which says
that small examples usually suffice.

4.3 Correctness

Fix a bounded model-finding problem for 7~ over £, M |= 7 and
L € A(M). First note that Y(o) is defined and returns a non-empty
result if M |= o but ML | . Thus a provenance is always produced
if L is locally necessary in M (i.e., Amalgam is complete). It remains
to show that the provenances produced are correct.

THEOREM 4.1 (CORRECTNESS OF PROVENANCE-GENERATION). If
the algorithm of Fig. 5 produces a provenance a1, ..., an for L with
respect to 7 inM then T U {a1 A ... Aan} Fqq L.

Proor. Proceed by induction on ordered pairs consisting of the
number of steps to fully desugar o and the size of . If o is a literal,
Y is only defined if o = L (since otherwise M and M" could not
differ on the interpretation of o), and clearly L Fq; L. If 0 is a
negation, the theorem holds by direct application of the inductive
hypothesis. If ¢ is a conjunction, then the result is the union of all
provenance sets obtained by calling Y on ¢’s subformulas. By the
inductive hypothesis we have that for each provenance P in that
union, 0 A P Fq; L.

If ¢ is a disjunction, each disjunct must be false in ML or the
formula would not fail. Let those true in M (i.e., that become false)
be y1, ..., yn and the others (which remain false) be p1, ..., pm. Then
o is equivalent to =p1 A ... A=pm = y1 V... V yn. By the inductive
hypothesis, each Y(y;) produces a set of provenances P; such that
Yi Api BFqq L (p; € P;). Thus, y1 V...V yn A pconseq Fqr L for each

Pconseq € P1>u<...>u<Pn.Therefore OA=PIA... Ampm APconseq Far L.
In all other cases, o is desugared before Y recurs and the induc-
tive hypothesis can be applied directly. O

4.4 Obtaining Literal Provenance

The provenances generated in Sec. 4.2 say which subformulas and
instantiations are responsible for L’s local necessity in M. However,
it is sometimes useful to see a provenance that focuses blame onto
just the parts of M responsible for local necessity. This reveals a
spectrum of provenance complexity: higher-level formulas can be
concise, but lower-level formulas are tied more closely to the model
being understood. A literal provenance, which contains only literals,
stands at the far end of that spectrum:

Definition 4.2 (Literal Provenance). A literal provenance for L is a
provenance aj, A... A an Fqy L where each a; is a literal.

To obtain a literal provenance from an arbitrary provenance
P, we convert each non-literal formula « in P to a set of literals
true in M that force « to hold. To do this, we traverse the nega-
tion normal-form of «, seeking conjunctions of literals that entail
it, desugaring as needed. This process amounts to evaluating the
formula in reverse, extracting pieces of the model responsible for
a’s truth.

However, this process can potentially return a conjunction of
literals that contains L or =L, which would violate our definition
of provenance since either is false in either M or ML, Even more,
some sentences may require contingent reasoning, with different
literals leading to truth in M versus M™.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Example 4.3. Leta = (0 € P)A(0 € Q))V((0 ¢ P)A(0 € R)) Vs,
M= {(0 € P),(0 € Q),(0 € R)},and L = (0 € P). While a holds in
both M and MY, neither branch suffices on its own; both (0 € Q)
and (0 € R) must appear together.

To resolve this problem we search, in parallel, for a pair of con-
junctions that satisfy o in A(M) and in A(MY). If one conjunction
does not involve L it explains &’s truth in both models since they
differ only by L. Otherwise, one must contain L and the other —L;
in this case we combine them and remove both L and —L. This is
sound since if LA f = aand =L Ay = aitholdsthat f Ay = a.

5 IMPLEMENTATION

Amalgam is implemented as a drop-in extension to Alloy 4.2, rather
than a standalone tool. This means that Alloy users can experiment
with new features and incrementally adopt them without any dis-
ruption of their workflow. Users can access Amalgam’s extensions
via Alloy’s existing evaluator, a prompt that allows them to evaluate
expressions in the current scenario. We extend this facility to give
insight into local necessity via provenance. Users can either ask
for a broad list of what is locally necessary or browse the set of all
provenances generated for individual literals. Amalgam provides
both basic provenance display (as seen in Fig. 2) and an expert in-
terface that shows the details of every step of the recursive descent
described in Sec. 4. In both, mousing over components of a prove-
nance highlights the corresponding portions of the specification.

The tool also allows users to augment scenarios by adding or
removing literals that are not locally constrained. Much like prove-
nance can be helpful in cases of over-constraint, augmentation can
be helpful if a specification is under-constrained since it allows
users to move quickly to surprising scenarios for further inves-
tigation. Our approach to augmentation is similar to other tools,
such as Aluminum [30], except that users can both add and remove
elements of a scenario. (We discuss further differences in Sec. 7.)

Amalgam supports some Alloy features that were unmentioned
in Fig. 3, such as multiplicity-constrained type declarations and total
ordering. Amalgam’s support for numerics includes counting the
cardinality of set expressions and inequalities; it does not currently
support arithmetic operations.

6 EVALUATION

We evaluate Amalgam quantitatively along five dimensions: its
performance, the number of leaf formulas (i.e., as gathered by
the algorithm in Sec. 4), the depth of the recursive descent (which
directly affects the size of the tree displayed), the character-count of
the largest highlight shown (which also affects provenance display),
and the total number of provenances generated for each literal.
For each specification, we take these measurements for each literal
permitted by the specification’s bounds—asking “Why?” for literals
that are present and “Why not?” for those that are absent. We report
results for the first two scenarios returned by the scenario-finder to
mitigate bias in scenario ordering. Fig. 6 reports these results.

Our evaluation suite consists of 22 specifications and comprises
a wide mixture of example, educational, and “real-world” speci-
fications. Address book (addr), Grandpa (grand), and geneology
(gene) are from Alloy’s example set. Grade book (grade), bad em-
ployee (bempl), and other groups (other) are Alloy translations of

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

access-control specifications used to benchmark existing scenario-
finding work [33]. Directed graph (digraph) is a non-empty (but
otherwise unconstrained) directed graph, as a baseline for compari-
son. Directed tree (dtree) constrains the graph to be a tree. Dtbug
injects a flaw in dtree’s edge injectivity constraint. The two colored,
undirected trees specifications (ctrees and ctreesb) are the origi-
nal shown in Sec. 2 and the buggy modification with irreflexivity
removed. Abc is a logic puzzle that requires hypothetical reason-
ing. Good Will Hunting (gwh) encodes a scenario-finding problem
popularized by the cinema: searching for trees where no vertex
has degree 2. Transitive-closure and garbage collection lab (tclab
and gclab, respectively) are specifications from labs exercises in an
introductory formal methods course. The first gives practice with
transitive closure; the second models reference-counting garbage
collection and reveals its flaws. The model of propositional resolu-
tion (resfm) comes from Torlak, et al. [36]. Flow reveals a bug in a
network program written in Flowlog [29], a language for program-
ming software-defined networks. Cdd1 and Cdd2 are Maoz, et al’s
translation [24] of two UML diagrams. Cddiff1 and cddiff2 are the
semantic differences of those two models (i.e., cdd1 C ¢dd2 and
cdd2 C cdd1) produced by CDDIff [25]. We also include the authen-
tication model (web) from Akhawe, et al. [1]. Together, these cover
a wide spectrum of complexity, upper bounds, and Alloy features.

Finally, we note that flow, cdd1, cdd2, cddiff1, and cddiff2
are all machine-translations from software artifacts. The compilers
that implement these translations are non-trivial, so the specifica-
tions they produce call out for answers to “why?” and “why not?”
questions from the compiler developers as well as their end-users.

6.1 Performance

We measure performance by calculating the time and peak memory
required to generate all provenances for each literal by running the
Y function from Sec. 4. To put these figures in context, we compare
this to the time Alloy’s scenario-finding engine takes to produce
the first two scenarios, including the time taken to translate the
specification to propositional logic. (Provenance-generation does
not impact Alloy’s scenario-finding approach in any way, so there is
no overhead to generating scenarios in Amalgam.) To stabilize mea-
surement variance, we repeat our experiments 15 times on each of
our 22 specifications. All results were gathered on an Ubuntu 16.04
/ 2.60GHz i5-4278U CPU / 16GB RAM machine. In most cases, it
takes less memory to compute provenance than scenarios; however,
for larger examples provenance can use slightly more memory. The
worst case peak memory usage during provenance generation was
1547 MB (for flow), while the maximum during scenario generation
was 1201 MB—roughly a 29% difference.

Amalgam usually generates provenances no slower than Alloy
generates scenarios (on the order of milliseconds). Indeed, for web,
scenario-generation is more than two orders of magnitude slower
on average than provenance generation: here the complexity is in
producing a scenario, not in explaining literals. The only significant
outlier is flow, which takes on average 2.55 times longer to explain
a literal than to produce a scenario. The difference is due to flow’s
complexity and the unusually large provenance count that some
literals in flow have; we address this second point further in Sec. 6.3.

T. Nelson, N. Danas, D.J. Dougherty, and S. Krishnamurthi

6.2 Explanation Complexity

For each specification, we report three metrics as a surrogate for
comprehensibility, aggregated over all provenances produced: the
number of & formulas gathered (i.e., the number of leaves in the tree
shown), the depth of recursive descent (i.e., the depth of the tree
shown), and the character-count of the largest highlighted region.

6.2.1 Depth. In most cases, the average depth does not exceed
a dozen, resulting in a fairly succinct derivation. The tclab specifi-
cation has a maximum depth of 17 because it contains a deep tree
of predicate calls (the lab is designed to teach students to use helper
predicates), each of which contains several relational operators that
all take a desugaring step.

6.2.2 Highlighting. Since Amalgam highlights concrete source
locations in the original Alloy file, highlight size corresponds to the
original—not desugared or instantiated—Alloy specification. Amal-
gam thus produces small highlights in general; most specifications
see a maximum well under 100 characters. The largest highlight
usually corresponds to the top-level constraint in each provenance
(e.g., the largest highlighted region in Fig. 2’s provenance is shown
in step 1). Large maximum highlights, such as cddiff2’s 858, arise
when visiting large constraints in the specification and are greatly
reduced in future steps (from 858 to 71 in this particular case).
We also report the total number of characters in each specifica-
tion, through which we see that even the largest highlight is only
roughly 12% of the cddiff2 specification.

6.2.3 Leaf Count. Since new leaf formulas occur whenever
branches of a disjunction are eliminated, specifications with large
disjunctions, existential quantification with large bounds, or transitive-
closure produce high a counts. The largest leaf-counts appear in
gwh and gclab, both of which make heavy use of transitive closure
pair with relatively large upper bounds. In this case, our algorithm
produces provenances that enumerate all possible paths. However,
a conversion to literal provenance greatly reduces leaf count (from
20 to 11 on average for gwh, and from 66 to 16 in the worst case for
gclab). Further reduction is likely possible, as we do not currently
search for the smallest provenances.

In contrast, provenances for authn, flow, grand, and especially
cddiff2 blow up significantly when converted to literal form. This
is because some « formulas in these provenances depend on large
swathes of the scenario. For instance, an « that contains a univer-
sal quantifier implicitly depends on all its potential instantiations.
Situations where literal provenances are smaller therefore indicate
significant overlap in the parts of the scenario that make o formulas
true. For example, this happens in gwh because most as there are
caused by transitive closure—which desugars in a repetitive way.

Flow specifies a state transition function that is defined by a
disjunction over logic-program fragments. Each fragment causes a
set of literals to be true. Negative literals therefore have provenance
encompassing the fact that none of these program fragments apply—
which is fairly large, as Fig. 6 reports. This pattern of provenances
that comprise multiple instantiated specification fragments persists
in gene and resfm.

The Power of “Why” and “Why Not”™:
Enriching Scenario Exploration with Provenance

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Max # Prov Trees Tree Depth # Tree Leaves (Prov[LitP]) | Largest Highlight (chars) Runtime (ms)
Spec Bnd | Med l U l Max | Med l u l Max | Med l I Max Med l u l Max l Spec | Pru l M p l Pr Max l M Max
ctrees 3 1 2 4 4 4 6 2[2] 2[2] 3[5] 20 21 78 576 1 7 3 23
ctreesb | 3 11 3 3 3 51 1[2] 1[2] 3[4] 16 15 48 598 1 2 18
digraph | 4 11 1 11 4| 1[1] 1[1] 3[3] 37 22 108 1 5 2 17
addr 4 11 2 4 3 9| 2[2] 2[3] 7[8] 20 13 48 1.1k 1 9 7 31
other 3 11 4 4 4 6| 2[2] 2[2] 3[4] 15 33 79 15k 1 6 4 15
grade 3 11 3 4 3 8| 2021 2[2] 11[5] 20 21 8 2.0k 1 44 54 1.1k
abc 3 1 2 5 4 4 5| 2[3] 2[3] 2[3] 56 50 56 557 1 6 4 20
bempl | 3 11 5 4 3 71 23] 2[2] 5[8] 20 22 56 14k 1 7 4 19
dtbug 4 2 3 7 4 4 51 2[3] 3[2] 17[7] 15 14 23 17k 2 6 16 17
grand 4 2 2 5 4 4 9| 2[2]1 3[4] 12[36] 39 32 42 27k 2 11 7 60
flow 4 1 2 4 7 7 13| 3[26] 4[24] 20[45] | 242 228 300 12k | 135 53 967 285
tclab 5 1 2 9 5 7 17| 2051 5[7] 17[16] 21 23 43 19k 8 16 39 35
resfm 5 1 2 6 5 5 12 3[3] 3[5] 15[49] 105 76 105 2.1k 6 72 48 285
gene 6 3 4 13 5 5 7| 7[71 e[11] 10[26] 50 37 58 25k| 15 10 178 47
gwh 6 7 6 13 7 7 8| 6[12] =20[11] 66[19] | 120 93 129 721 | 37 26 102 97
gclab 6 2 2 11 4 4 11| 2[2] 33 66[16] 56 50 58 2.6k 210 29 26
authn 6 1 1 16 4 3 9 2[2] 2[3] 19[80] 25 30 243 19k 11 1.4k 192 31k
cddifft | 6 11 9 6 6 11| 2[4 3[5] 23[19] 16 25 42 71k | 13 41 40 127
cddiff2 | 6 11 4 5 4 14| 2[3] 2[4] 38[202] 14 24 88 71k | 11 41 45 176
dtree 7 11 2 11 6| 1[1] 1[1] 3[8] 2 5 28 649 2 9 185 36
cdd 1 10 1 1 9 5 3 11 2[3] 2[3] 24[27] 16 20 42 4.8k 28 111 130 1.5k
cdd 2 10 11 4 1 2 12| 1[1] 2[4] 21[34] 6 12 42 41k 8 32 61 81

Figure 6: Number of provenances, provenance complexity (depth, leaves, highlighting), and runtime for both Provenance (Pr) and scenario
(M) generation. For each row, Max Bnd denotes the largest bound in the specification. For provenance depth, leaves, highlighting, and count
we report median, average(u), and maximum; we give median rather than standard deviation because we do not believe the non-performance
data are normally distributed. For leaves, we report a value for standard provenance trees, and those expanded to a full literal provenance (in
[brackets]). For highlighting, we also report the total specification size (in characters) for comparison. Where numbers exceed 1000, we divide

by a thousand and add a “k” suffix.

6.3 Number of Explanations

We measure the number of provenances generated because—much
like a stream of scenarios—a large number of provenances may
conceal the one or two that will uniquely inform the user. For most
specifications, the numbers are promising, with most literals having
only one or two provenances even for flow, web, and the cdd group.
Some specifications have literals with many provenances. This
occurs when literals can affect the truth of many instantiations
of top-level constraints at once. Like the colored-trees example in
Sec. 2, gwh has symmetry, connectivity and acyclicity constraints.
Removing an edge violates symmetry, connectivity and possibly
the added requirement that no nodes have degree 2. Breaking (e.g.)
connectivity generates one provenance for each pair of newly dis-
connected nodes (up to 9 pairs at an upper-bound of 6 nodes). In
the case of flow, the literal with 41 provenances is that a specific
network packet exists. Much of the specification depends on that
packet, there are many reasons why it must exist (41 in fact). The
other high provenance counts in Fig. 6 occur for similar reasons.

7 RELATED WORK

Scenario finding is an active research area with a rich history. While
satisfiability is undecidable for first-order logic in general, bounded
(or “finite”) scenario-finders achieve termination by searching only
up to a bounded scenario size. MACE [26]-style scenario-finders like
Kodkod [37], Alloy’s internal engine, translate bounded problems
into propositional logic and then leverage SAT-solving technology.

Minimal and Targeted Model Finding. Aluminum [30] is a ver-
sion of Alloy that produces only minimal scenarios. These minimal
scenarios show only locally-necessary positive literals (i.e., positive
literals that have provenance). However, Aluminum provides no
provenance information at all, and thus explains neither why the
scenarios shown are minimal nor how individual literals interact
with the rest of the scenario. Such explanations are Amalgam’s
primary focus. Aluminum also allows users to augment scenarios
by making currently-false literals true, then showing the consistent
minimal scenarios that contain the original plus the added literal.
While this allows users to explore the consequences of the addi-
tion, again it focuses solely on scenario-generation and not on the
proofs intrinsic to necessity in a scenario. Amalgam incorporates
both augmentation and explanation. Moreover, Amalgam supports
reasoning about arbitrary scenarios: it can find provenances for
negative information in the scenario and find justifications that
involve positive literals, neither of which would be possible if it
enforced minimality.

The Razor [33] scenario-finder likewise produces minimal sce-
narios. By incorporating a notion of provenance into scenario-
generation, Razor is able to justify every positive literal in the
scenarios it produces. Amalgam does not limit itself only to mini-
mal scenarios, and so is able to detect and explain local necessity
of negative as well as positive literals. Razor also lacks support for
transitive closure.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

The Cryptographic Protocol Shapes Analyzer [12] (CPSA) pro-
duces examples that show when cryptographic protocol specifi-
cations violate desired properties. In contrast, Amalgam is built
atop a domain-independent scenario finder and answers “Why?”
questions—which CPSA does not consider.

Target-Oriented Model Finding [8] adds optimization targets
to bounded scenario-finding problems. The tool then minimizes
graph edit distance from targets, enabling (e.g.) maximization as
well as minimization. While powerful, this approach is still limited
to finding streams of scenarios, rather than explaining them.

Provenance for Software and Systems. There has been some prior
work on provenance for software. WhyLine [19, 20] answers a
limited set of “Why did..” and “Why didn’t..” questions about Java
program behavior. It records and then replays execution history
to reconstruct provenance for events. The Y! tool [6, 39] likewise
traces both positive and negative provenance for events in network
logs. Vermeer [34] constructs reduced causal traces that explain
assertion violations in C programs. These tools extract provenance
from runtime logs—which are not available to a scenario-finder and
have temporal structure that Alloy’s scenarios need not possess.

Fault-localization techniques based on test spectra [31], such as
Tarantula [18], use test suites to produce causal information. SAT-
TAR [14] uses Alloy specifications to synthesize test inputs to aid
localization (further illustrating the flexibility of scenario-finding).
Such tools focus on using many tests to provide insight about a
program, whereas Amalgam helps users understand how different
parts of a single scenario interact. Moreover, tools like Tarantula,
SAT-TAR, and Vermeer help explain program behavior; Amalgam
helps users understand their logical specifications and overcome
specification-specific issues like under- and over-constraint.

Sanity Checking. The need for sanity checking arises when a sys-
tem may satisfy properties for uninteresting or erroneous reasons.
Antecedent failure, or vacuity, was first investigated by Beatty and
Bryant [2] for model-checking. Vacuity can point to subtle issues
in either system or property specification, as Beer, et al. [4] discuss.

Hoskote, et al. [16] introduce the notion of coverage in model-
checking to detect when properties fail to fully exercise the system.
Kupferman [21] unifies vacuity and coverage, noting that both
can be found by mutation of the property and system respectively.
Since in scenario-finding both system and property are combined
in the specification, our perspective is similar. Beer, et al. [3] and
Chockler [7] mutate counterexample traces to find causality. Their
explanations are with respect to the property, not the system; Amal-
gam provides causality information with respect to both. These
works also focus on counterexample traces, but scenarios in Amal-
gam need not be (and often are not) temporal.

We are not the first to apply static-analysis techniques to Al-
loy specifications. Heaven and Russo [15] detect vacuity for a rich
subset of Alloy. While we likewise draw inspiration from sanity
checking, Amalgam explains why literals are present in arbitrary
scenarios, regardless of vacuity. Uzuncaova and Khurshid [38] use
slicing techniques to prioritize constraints in Alloy and thereby im-
prove performance. The goal of their work is, however, orthogonal
to ours.

T. Nelson, N. Danas, D.J. Dougherty, and S. Krishnamurthi

Ghassabani, et al. [13] explain why properties hold in a model-
checker. This is analogous to Alloy’s unsat-core highlighting fea-
ture. Amalgam focuses on the opposite situation: explaining why
portions of counterexamples are locally necessary.

One related classical technique for generating explanations is
abduction [10]. Crucially, Amalgam is based in understanding obser-
vation in a particular model, as opposed to explaining deductions.

8 DISCUSSION

Amalgam takes a first step toward enriching scenario-finding by
answering “why?” and “why not?” questions. We conclude with
discussion, qualitative experiences, and future work.

Weaknesses of Local Necessity. Amalgam’s provenances can some-
times be excessively local. For example, when working with undi-
rected trees (Sec. 2) it is easy to mistakenly use constraints that
work only in the directed case. In a directed graph, acyclicity can
be captured by no iden & “edge—i.e, that there are no identity
tuples in the transitive closure of the edge relation. However, this
rules out graphs larger than a single node when combined with
axioms for symmetry and irreflexivity. Upon seeing the one-node
example, we can ask Amalgam “why can’t another node exist?”.
However, we are then only told that the graph must be connected,
and there is no edge connecting this fresh node to the rest of the
tree. Instead, we would like a provenance for the combination of
a new node and new connecting edges—which would direct us to
the buggy constraint.

Contrasting Local Necessity and Minimality. In Aluminum [30]
and Razor [33], positive literals are present if they cannot be con-
sistently removed without adding other positive literals. Every
positive literal in a minimal scenario is thus locally necessary, but
the converse does not hold. Consider the (propositional) theory
T ={p &= gq,r} and the scenario M = {p,q,r}. M is not
minimal since {r} also satisfies 7, but each literal in M is locally
necessary: r because it is an axiom and p and ¢ because of each
other’s presence.

Future Work: User Studies. Concurrent work [9] suggests that
provenance can indeed be helpful to Alloy users; naturally, we
would like to further evaluate Amalgam’s effectiveness. To do so, we
might manufacture a satisfiable but overconstrained specification
(as in Sec. 2.2). We could then divide participants into a control
group using Alloy and an experimental group using Amalgam, and
ask them to correct the error. We might compare the time taken
before effecting a fix, but it would potentially be more interesting
to also evaluate the quality of fixes made. That is, would either
group be more prone to fixing the overconstraint while introducing
new problems? It is of course difficult to obtain large pools of Alloy
users who also possess the time and inclination to participate in
user evaluations.

Future Work: Other Implementation Strategies. One promising
alternative to the approach in Sec. 4 leverages unsat-core extraction.
By Theorem 3.4, a literal L is locally necessary for for a specification
7 in a given scenario M if and only if 7" U (A(M) \ {L}) Fqs L.
If this entailment holds, an unsat core for its negation contains
provenance information. While cores are generally not iterable

The Power of “Why” and “Why Not”™:
Enriching Scenario Exploration with Provenance

(most solvers would in effect return only a single provenance) tools
such as CAMUS [22] escape this limitation.

We opted for recursive descent rather than an unsat-core based
approach for several reasons: it avoids potential interference with
other features of Alloy, such as symmetry-breaking; it eliminates
confounding factors in evaluation (Sec. 6) that could be caused by
altering Alloy’s scenario-finding; it allows our approach to poten-
tially apply for other tools not based on SAT-solving; and it allowed
us to record why each portion of a provenance was generated—
improving output quality and easing debugging. Nevertheless, a
core-based approach would likely be faster and thus appropriate
for applications that make heavy use of provenance.

ACKNOWLEDGMENTS

We are grateful to Daniel Jackson, Emina Torlak, and the Alloy
team. This work was partially supported by the US NSF.

REFERENCES

(1]

[10]
(1]

[12]

[15]

[16]

D. Akhawe, A. Barth, P.E. Lam, J. Mitchell, and D. Song. 2010. Towards a Formal
Foundation of Web Security. In IEEE Computer Security Foundations Symposium.
Derek L. Beatty and Randal E. Bryant. 1994. Formally Verifying a Microprocessor
Using a Simulation Methodology. In Design Automation Conference.

Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J. Trefler.
2012. Explaining counterexamples using causality. Formal Methods in System
Design 40, 1 (2012), 20-40.

Tlan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. 1997. Efficient
Detection of Vacuity in ACTL Formulas. In International Conference on Computer
Aided Verification. 279-290.

Jasmin Christian Blanchette and Tobias Nipkow. 2010. Nitpick: A Counterexam-
ple Generator for Higher-Order Logic Based on a Relational Model Finder. In
Interactive Theorem Proving.

Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
2015. Differential provenance: Better network diagnostics with reference events.
In Workshop on Hot Topics in Networks. ACM, 25.

Hana Chockler. 2016. Causality and Responsibility for Formal Verification and Be-
yond. In Workshop on Causal Reasoning for Embedded and safety-critical Systems
Technologies.

Alcino Cunha, Nuno Macedo, and Tiago Guimaraes. 2014. Target oriented
relational model finding. In International Conference on Fundamental Approaches
to Software Engineering. Springer, 17-31.

Natasha Danas, Tim Nelson, Lane Harrison, Shriram Krishnamurthi, and Daniel J.
Dougherty. 2017. User Studies of Principled Model Finder Output. In Software
Engineering and Formal Methods.

Marc Denecker and Antonis C. Kakas. 2002. Abduction in Logic Programming.
In Computational Logic: Logic Programming and Beyond.

Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular Verifi-
cation of Code with SAT. In International Symposium on Software Testing and
Analysis.

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. 2007. Searching
for Shapes in Cryptographic Protocols. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems.

Elaheh Ghassabani, Andrew Gacek, and Michael W. Whalen. 2016. Efficient
Generation of Inductive Validity Cores for Safety Properties. In Foundations of
Software Engineering.

Divya Gopinath, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid. 2012. Improv-
ing the effectiveness of spectra-based fault localization using specifications. In
Automated Software Engineering.

Will Heaven and Alessandra Russo. 2005. Enhancing the Alloy Analyzer with
Patterns of Analysis. In Workshop on Logic-based Methods in Programming Envi-
ronments.

Yatin Hoskote, Timothy Kam, Pei-Hsin Ho, and Xudong Zhao. 1999. Coverage
Estimation for Symbolic Model Checking. In Design Automation Conference.

(17

(18]

[19

[20

[21]

[22]

[23

[24

[26

[27

[28

[29]

[30]

(31]

[32

[33

[34

[36

(37]

(38]

[40

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis (second
ed.). MIT Press.

James A. Jones. 2008. Semi-Automatic Fault Localization. Ph.D. Dissertation.
Georgia Institute of Technology.

Andrew J. Ko and Brad A. Myers. 2004. Designing the WhyLine: a debugging
interface for asking questions about program behavior. In Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM, 151-158.
Andrew J. Ko and Brad A. Myers. 2009. Finding causes of program output with

the Java Whyline. In Proceedinés of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1569-1578.

Orna Kupferman. 2006. Sanity Checks in Formal Verification. In International
Conference on Concurrency Theory.

Mark H. Liffiton and Karem A. Sakallah. 2008. Algorithms for Computing
Minimal Unsatisfiable Subsets of Constraints. Journal of Automated Reasoning
40, 1 (Jan. 2008), 33.

Ferney A. Maldonado-Lopez, Jaime Chavarriaga, and Yezid Donoso. 2014. Detect-
ing Network Policy Conflicts Using Alloy. In International Conference on Abstract
State Machines, Alloy, B, and Z.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CD2Alloy: Class
Diagrams Analysis Using Alloy Revisited. In Model Driven Engineering Languages
and Systems.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CDDiff: Semantic
Differencing for Class Diagrams. In European Conference on Object Oriented
Programming.

William McCune. 2003. Mace4 Reference Manual and Guide. CoRR ¢s.SC/0310055
(2003). http://arxiv.org/abs/cs.SC/0310055

Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, and Daniel Jackson. 2011.
Unifying Execution of Imperative and Declarative Code. In International Confer-
ence on Software Engineering.

Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. 2010. The Margrave Tool for Firewall Analysis. In
USENIX Large Installation System Administration Conference.

Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krish-
namurthi. 2014. Tierless Programming and Reasoning for Software-Defined
Networks. In Networked Systems Design and Implementation.

Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. 2013. Aluminum: Principled Scenario Exploration Through
Minimality. In International Conference on Software Engineering.

M. Renieres and S. P. Reiss. 2003. Fault localization with nearest neighbor queries.
In Automated Software Engineering.

Natali Ruchansky and Davide Proserpio. 2013. A (Not) NICE Way to Verify
the OpenFlow Switch Specification: Formal Modelling of the OpenFlow Switch
Using Alloy. ACM Computer Communication Review 43, 4 (Aug. 2013), 527-528.
Salman Saghafi, Ryan Danas, and Daniel] Dougherty. 2015. Exploring Theo-
ries with a Model-Finding Assistant. In International Conference on Automated
Deduction. Springer, 434-449.

Daniel Schwartz-Narbonne, Chanseok Oh, Martin Schif, and Thomas Wies. 2015.
VERMEER: A Tool for Tracing and Explaining Faulty C Programs. In International
Conference on Software Engineering. 737-740.

Ton Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. 2003. Chord: a scalable peer-
to-peer lookup protocol for Internet applications. IEEE/ACM Transactions on
Networking 11, 1 (2003), 17-32.

Emina Torlak, Felix Sheng-Ho Chang, and Daniel Jackson. 2008. Finding Minimal
Unsatisfiable Cores of Declarative Specifications. In International Symposium on
Formal Methods (FM).

Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. 632-647.

Engin Uzuncaova and Sarfraz Khurshid. 2008. Constraint Prioritization for
Efficient Analysis of Declarative Models. In International Symposium on Formal
Methods (FM).

Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau
Loo. 2014. Diagnosing missing events in distributed systems with negative prove-
nance. In Conference on Communications Architectures, Protocols and Applications
(SIGCOMM). ACM, 383-394.

Pamela Zave. 2012. Using Lightweight Modeling to Understand Chord. ACM
Computer Communication Review 42, 2 (March 2012), 49-57.

http://arxiv.org/abs/cs.SC/0310055

	Abstract
	1 Introduction
	2 Worked Example
	2.1 Challenge: Detecting Underconstraint
	2.2 Challenge: Tracing Overconstraint
	2.3 Challenge: Multiple Explanations

	3 Foundations
	3.1 Syntax
	3.2 Model-Finding
	3.3 Necessity and Provenance

	4 Algorithmics
	4.1 Desugaring Alloy
	4.2 Computing Provenance
	4.3 Correctness
	4.4 Obtaining Literal Provenance

	5 Implementation
	6 Evaluation
	6.1 Performance
	6.2 Explanation Complexity
	6.3 Number of Explanations

	7 Related Work
	8 Discussion
	Acknowledgments
	References

