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ABSTRACT
Scenario-finding tools like the Alloy Analyzer are widely used in

numerous concrete domains like security, network analysis, UML

analysis, and so on. They can help to verify properties and, more

generally, aid in exploring a system’s behavior.

While scenario finders are valuable for their ability to produce

concrete examples, individual scenarios only give insight into what

is possible, leaving the user to make their own conclusions about

what might be necessary. This paper enriches scenario finding by

allowing users to ask “why?” and “why not?” questions about the

examples they are given. We show how to distinguish parts of an

example that cannot be consistently removed (or changed) from

those that merely reflect underconstraint in the specification. In

the former case we show how to determine which elements of the

specification and which other components of the example together

explain the presence of such facts.

This paper formalizes the act of computing provenance in scenario-

finding. We present Amalgam, an extension of the popular Alloy

scenario-finder, which implements these foundations and provides

interactive exploration of examples. We also evaluate Amalgam’s

algorithmics on a variety of both textbook and real-world examples.
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1 INTRODUCTION
Scenario-finders produce concrete examples that satisfy formal

specifications. They have been popularized by tools like Alloy [17],

which has been widely used in many domains to (e.g.) debug and un-

derstand UML diagrams [24, 25], analyze firewall configurations, se-

curity policies [23, 28], network switches [32], and web security [1],

and discover an oversight [40] in the Chord [35] distributed hash-

table protocol. Scenarios found may correspond to examples of

access requests, class diagrams, faulty protocol executions, network

topologies, theorem counterexamples, and so on. Since scenario-

finders function even in the absence of formal correctness prop-

erties, they are often used to help users understand a system by

example, discover new properties to check, or perform property-free
analyses such as semantic differencing [25, 28] of systems.

It is crucial that tools empower users to understand the scenarios1

they are presented with, rather than merely show them examples

consistent with the original specification. However, currently there

is only limited tool support for helping users understand scenarios.

For example, the Alloy Analyzer provides an evaluator that allows

users to evaluate expressions in the context of the currently shown

scenario; in this way users can answer “what is true?” questions. But
users should also be able to ask the much more interesting “Why?”
and “Why not?” questions. For instance, one might ask: “Why does

my network configuration take that action on this packet?”, “Why

doesn’t this class implement an interface in this example?”, or even

“What parts of my specification prevent me from adding another

node to this binary-search tree?”.

Answering such questions is hard enough in the context of a

deterministic system where behavior generally has one cause or

chain of causes. In scenario-finding, however, “Why is this here?”

may have zero answers (i.e., nothing forces that portion of the

scenario to be present) or more than one answer (when multiple

constraints in the specification make the element necessary). More-

over, explanations will usually be contingent on what else is (and

is not) present in the example shown. Giving users answers to

such explanatory questions is therefore non-trivial, yet still vital

for enabling productive, disciplined use.

Finally, although the canonical use-cases for scenario-finding of-

ten involve human-generated specifications, many applications (e.g.,

[5, 11, 24, 25, 27–29]) compile software artifacts like UML diagrams

1
Scenario-finding tools are also called “model-finders”. However, the word “model” is

heavily overloaded, and can mean either a specification (i.e., “model of software”) or a

scenario found via logical methods. Throughout this paper, we will always use the term

in the latter, logical sense—an interpretation of relation symbols over a set of atoms—to

formalize our notion of scenario. Although they sometimes share internal strategies,

scenario- or model-finders like Alloy are distinct from model-checkers, another class
of tool that typically focuses on verifying that a system satisfies temporal properties.

https://doi.org/10.1145/3106237.3106272
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or firewall policies to specifications and invoke the scenario-finder

as a back-end. Since the scenarios produced are then in terms of

machine-generated translations rather than meticulous, human-

crafted specifications, Alloy bears an even greater burden to help

users understand the scenarios shown.

Contributions. In this paper, we establish novel, well-defined no-

tions of “Must this be here?” and “Why is this here?” for scenario-

finding. These ideas are realized in Amalgam2
, an enhanced ver-

sion of the widely-used Alloy scenario-finder. We choose to build

atop Alloy because it is used by multiple and diverse communities,

and also due to its expressive power (all of first-order logic, along

with relational operators such as transitive closure). Amalgam’s

novel features comprise: the ability to say what is and is not neces-

sary in a scenario (i.e., cannot be changed without consequences

elsewhere); rigorous, proof-based explanations (provenance) for ne-
cessity; and disciplined, user-guided scenario alteration that enables

users to explain why elements of a scenario can be altered.

Amalgam facilitates a richer workflow than what Alloy currently

provides. We illustrate this via a worked example in Sec. 2. We then

lay out the logical foundations (Sec. 3) and algorithmics (Sec. 4) for

provenance generation before discussing Amalgam’s implementa-

tion (Sec. 5). We evaluate Amalgam (Sec. 6) and contrast it to related

work (Sec. 7) before concluding with discussion in Sec. 8.

2 WORKED EXAMPLE
To illustrate how “Why?” and “Why not?” questions arise naturally

in scenario finding, we first introduce an example adapted from an

exercise in Jackson [17]: undirected trees with node coloring:

1 abstract sig Color {}

2 one sig Red extends Color {}

3 one sig Blue extends Color {}

4 sig Node {

5 neighbors: set Node,

6 color: one Color

7 }

8 fact undirected {

9 neighbors = ~neighbors -- symmetric

10 no iden & neighbors -- antireflexive

11 }

12 fact graphIsConnected {

13 all n1: Node | all n2: Node-n1 |

14 n1 in n2.^neighbors }

15 fact treeAcyclic {

16 all n1, n2: Node | n1 in n2.neighbors implies
17 n1 not in n2.^(neighbors-(n2->n1)) }

Lines 1–7 declare the basic types in the problem: a notion of color

(line 1; sig denotes a type declaration), and two concrete colors

(lines 2–3). The abstract keyword enforces that the Color
type is the union of its subtypes: Red and Blue. The one keyword

constrains theRed andBlue types to each contain a single, distinct

color atom. Nodes each have a set of neighbors and a single

color (forced by the prior declarations to be either Red or Blue).
Line 9 enforces symmetry, making the graph undirected; line 10

prevents self-loops. Lines 12–14 use transitive-closure (^) to force

2
http://cs.brown.edu/research/plt/dl/fse2017/

Figure 1: Three example scenarios produced byAlloy. InAlloy,A$k
denotes the k th element of the type A; here indexes range from 0 to
2. Colors are named in the same way and appear under the name of
each node. The edges show the neighbors relation.

the graph to be connected. Lines 15–17 enforce acyclicity by saying

that removing any edge disconnects its endpoints.

Alloy converts this specification to a theory of first-order logic

with transitive closure, with types as unary relations andneighbors
and color each assigned a binary relation. Running the specifica-

tion in Alloy produces a stream of models that satisfy that theory

(up to a user-specified size). Fig. 1 contains 3 (of many) example

models found up to a bound of 3 Nodes.

2.1 Challenge: Detecting Underconstraint
It is easy to accidentally omit a constraint when writing a specifica-

tion: e.g., the antireflexivity constraint on line 10. If it is left out, the

specification is satisfiable, but underconstrained: it is satisfied by

some models that contain self-loops. This error is revealed if Alloy

produces a cyclic model, but since tool parameters like SAT-solver

choice affect the order in which Alloy generates models, there is no

guarantee that a cycle will be shown even after several invocations.

This issue illustrates a weakness of purely model-based out-

put: vital information may be withheld well past the point where

most human users stop requesting new models. In contrast, by

giving additional information in the form of necessity and prove-
nance, Amalgam can reveal some bugs even if the model shown

is “correct”. Consider the leftmost model of Fig. 1. This model is a

(singleton) tree that satisfies the specification. However, without

an antireflexivity constraint, the specification permits adding an

edge from Node$0 to itself (in spite of the acyclicity constraint).

By reporting what is and is not locally necessary (Sec. 3) in the

model, Amalgam alerts the user to underconstraint, without hiding

the error in a stream of (potentially complex) models. Users can

then instruct Amalgam to augment the model with the new edge—

providing them with a counterexample to their expectation—and

then use Alloy’s evaluator to explore why existing constraints do

not suffice.

2.2 Challenge: Tracing Overconstraint
Implicit assumptions in evolving specifications can lead to errors—

as we discover if we decide to allow self-loops in our trees. To

do so, we again remove the antireflexivity constraint on line 10.

Unfortunately, this edit reveals a subtle overconstraint: self-loops
remain forbidden in models larger than 1 node.

http://cs.brown.edu/research/plt/dl/fse2017/
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The treeAcyclic constraint is the culprit. Its formulation

implicitly assumes irreflexivity, i.e., that n1 in n2.neighbors
implies that n1 and n2 must be different nodes. The fix is just

to make that assumption explicit, adding n1 != n2 to the an-

tecedent of the constraint. But if the user is only presented with

a series of models that look like valid trees (some even with self-

loops), how can they discover the fix? How will they even learn of
the error without iterating until no more models are available, re-

membering every detail of previous models seen and then mentally

synthesizing the fact that some self-loops were never shown?

In contrast, Amalgam can reveal the problem on the first model

larger than 1 node. Consider the middle, 2-node model in Fig. 1.

This is a valid tree, but neither of the self-loop edges can be added

without consequences (i.e., adding or removing additional nodes

or edges). Amalgam detects this, reporting these edges’ absence as

locally necessary. Furthermore, Amalgam can explain this necessity,

guiding the user to the appropriate fragment of the constraint.

The four-panel Fig. 2 shows how Amalgam presents provenance

as a deductive argument, highlighting four crucial steps:

(1) The first highlight is a top-level constraint that leads to the

local necessity of Node$1 having no self loop.

(2) The next highlight shows the subformula after binding

n1=n2=Node$1 (possible since atomNode$1 is aNode).
(3) The right-hand side of the implication is false under that

instantiation whether or not Node$1 has a self-loop.

(4) Finally, since the right-hand side of the implication is true,

Amalgam concludes that the left-hand side must be false:

not Node$1->Node$1 in neighbors.

2.3 Challenge: Multiple Explanations
Finally, suppose we constrain node coloring by saying that leaf

nodes ought to be colored blue and internal nodes red:

all n: Node | n.color = Blue iff lone n.neighbors

That is, the node is blue if and only if it is connected to 0 or 1 other

nodes. In Fig. 1, the middle model satisfies this constraint but the

other 2 do not. Revisiting the center model, Amalgam indicates

that it is necessary for both nodes to be blue. But why? Asking

for a provenance of Node$0’s blue color actually yields a pair of
provenances corresponding to the explanations:

• The declaration of Node said that every node has exactly

one color; we cannot remove Node$0’s color.
• The new constraint forces Node$0 to be blue since it has

no more than one neighbor.

Each of these encapsulate a way that constraints and current sce-

nario together imply (Sec. 3) that Node$0’s blue color cannot be
removed without consequences elsewhere in the scenario. Different

explanations may be useful in different situations: either reminding

the user that every node must have a color or pointing them to

the coloring constraint. For this reason, Amalgam generates sets of
provenances rather than only single explanations.

Comparison to Unsatisfiable Cores. If a specification has no mod-

els, Alloy can obtain and highlight a minimal core of the specifi-
cation that is itself unsatisfiable. This allows the user to zero in

on which constraints are mutually unsatisfiable under the current

bounds. (For more information on the uses of unsatisfiable cores

in Alloy, see Torlak, et al.’s [36] insightful work.) However, such

cores can only be found when a specification is indeed unsatisfi-
able. Amalgam’s provenance and necessity information give insight

into overconstraint even when the specification can be satisfied,

making it useful for debugging subtle errors that may eliminate

a handful of models, but not all. Moreover, Amalgam produces a

set of provenances that can be explored, each of which provides

different insight, rather than a single core. (We discuss potential

future applications of core-extraction to provenance in Sec. 8.)

3 FOUNDATIONS
We now establish foundations for provenance. Although we use

Alloy syntax throughout, our results apply to any scenario-finding

tool that uses bounded first-order logic. In this section as well as

Sec. 4, we will use the termmodel to formalize the notion of scenario

as a logical structure over a relational language. We also use theory
to formalize the specification as a set of logical formulas.

3.1 Syntax
Alloy’s surface syntax includes the usual predicate-logical operators

(quantification is sorted). To these, Alloy adds relational operators:

join (·), product (×), transitive closure (ˆ), and others (see Fig. 3 for

a full list). These operators have the usual first-order and relational

semantics, which we sketch in Fig. 3.

3.2 Model-Finding
The general model-finding problem consists of satisfiability search:

finding a model that satisfies some theory. A bounded model-finding
problem (L,T ,U,LB,UB) comprises:

(1) a language L;

(2) a theory T over the symbols in L;

(3) a finite domainU (the universe); and
(4) upper and lower-bound functions LB and UB defined

for each (n-ary) relation R ∈ L such that UB(R) ⊆ Un
,

LB(R) ⊆ Un
and LB(R) ⊆ UB(R).

A solution to such a problem is a modelM over the language L

such that (RM denotes the interpretation of R inM):

(1) M |= T ;

(2) |M| = U; and

(3) for each relation R ∈ L, LB(R) ⊆ RM ⊆ UB(R).

Since the bounded model-finding problem is restricted to search-

ing for models with a specific finite domain U, satisfiability and

testing truth in a model are each decidable. In fact, bounded sat-

isfiability can be checked by reducing the problem to the purely

propositional domain, with each possible tuple membership t ∈ R
(i.e., each member of the problem’s Herbrand base) being assigned

a single Boolean variable. We embrace this perspective, and will

implicitly enrich L with a distinct constant for every element E
of U. For brevity, we abuse notation somewhat and name these

constants identically with the elements they represent. Thus, all

formulas we consider will be closed; i.e., without free variables.

Example 3.1. The undirected-tree example of Sec. 2 describes a

theory over the language (superscripts denote arity):

L = {Node(1),Color(1),Red(1),Blue(1), color(2), neighbors(2)}
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Figure 2: Sample provenance and interaction for the 2-node model in Fig. 1 asking why Node$1 cannot have a self-loop edge. The right-hand
side of each of the four panels is a step-by-step deductive argument. The left-hand side highlights portions of the specification corresponding
to where the user is pointing in the right-hand pane. Yellow highlights (shown in panel 3) comprise the set of subformulas that force local
necessity (Sec. 3). Green highlights (shown in panels 1, 2, and 4) correspond to steps of the recursive descent algorithm we present in Sec. 4.

Syntax Meaning Syntax Meaning
ϕ ×ψ Cartesian product ϕ ·ψ relational join

ϕ ∪ψ union ϕ ∩ψ intersection

ϕ \ψ set difference ϕ++ψ overriding union

ϕ<:ψ retain rows inψ with first column in ϕ ϕ:>ψ retain rows in ϕ with last column inψ
ˆϕ transitive closure ∗ϕ reflexive transitive closure

ϕ[ψ ] inverse relational join ~ϕ relational transpose

#ϕ cardinality {t : T |α(t)} set comprehension

iden identity relation (binary) univ universe (unary)

α ∧ β conjunction α ∨ β disjunction

α ⇒ β implication α ⇐⇒ β bi-implication

α?β : γ if-then-else

¬α negation ϕ inψ relational containment

∀x : T |α(x) universal quantification ∃x : T |α(x) existential quantification

one ϕ |ϕ | = 1 lone ϕ |ϕ | ≤ 1

some ϕ |ϕ | ≥ 1 no ϕ |ϕ | = 0

Figure 3: Supported Alloy Surface Syntax. α , β , and γ denote formulas which evaluate to true or false. ϕ and ψ denote expressions which
evaluate to relations. For clarity, we distinguish between relational containment ϕ in ψ and tuple membership t ∈ ϕ , although Alloy uses
identical syntax.

Because there is exactly one of each color (one sig), Alloy com-

putes that UB(Blue) = LB(Blue) = {Blue$0} (and similarly for

red). If the specification is run for up to 3 nodes, then LB(Node) =
∅ and UB(Node) = {Node$0, Node$1, Node$2}. U is therefore

{Node$0, Node$1, Node$2, Blue$0, Red$0}. Upper bounds for the bi-
nary relations include all well-typed tuples.

Because we will always be interested in a bounded model-finding

problem, when we speak of entailment it is always restricted to

the models that respect the universe U and bounding functions

LB and UB of the current problem. We reinforce this by writing

entailment with a subscript: ⊨U .

Fix a bounded model-finding problem over L, T , andU.
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Definition 3.2 (Literal, Diagram). If R is a n-ary relation in L,

c1, ..., cn constants for elements ofU, and t = [c1, ..., cn ] then the

formulas t ∈ R and t < R are literals. The diagram of a model M,

denoted ∆(M), is the set of literals true inM.

We use the set-containment idiom for literals rather than writing

R(c1, ..., cn ) because it more closely reflects the syntax of Alloy.

3.3 Necessity and Provenance
We are interested in exploring why a given literal L must hold in

a model M in order to satisfy theory T . In this section we make

this notion of “why” precise. At one extreme L might be a logical

consequence of T . At the other extreme, L might be a “gratuitous”

fact aboutM, not contributing to makingM a model of T at all; here

it is reasonable to report that “there is no reason why” L holds. This

is already useful information to a user, of course. The interesting

case is the one in which L need not hold in all models of T , but, in

the context of the rest of the modelM, cannot be negated without

falsifying T . Our main goal is to analyze this latter situation closely.

Definition 3.3 (L-alternate, Local Necessity). Fix a literal L true in

M. The L-alternate ML ofM is the model with the same universe

asM whose diagram ∆(ML) is (∆(M) \ {L}) ∪ {¬L}.
A literal L true inM is locally necessary for T inM ifML ̸ |= T .

Note that this is a weaker condition than T -entailment. Local
necessity captures the fact that other literals in a particular model

force L to hold; it might be (and is likely that) T ⊭U L in general.

Theorem 3.4. L is locally necessary for T in M if and only if
T ∪ (∆(M) \ {L}) ⊨U L.

Proof. If L is not locally necessary for T in M, then ML is a

witness for the failure of T ∪(∆(M)\ {L}) ⊨U L. Conversely, to say
that T ∪ (∆(M) \ {L}) ⊭U L is to say that T ∪ (∆(M) \ {L}) ∪ {¬L}
has a model with universe U that respects LB and UB. The only

such model with diagram (∆(M)\ {L})∪{¬L} isML, thusML |= T ,

and so L is not locally necessary for T inM. □

We now formalize the notion of “why” via provenance.

Definition 3.5 (Provenance). A provenance for L inMwith respect

to T is a set of sentences α1, ...,αn (n ≥ 0), each true in both M
andML, such that T ∪ {α1, ...αn } ⊨U L.

The condition that each component αi holds in M binds the

notion of provenance toM, while requiring that each αi holds in
ML ensures that no αi entails L under T , so that the provenance is

non-trivial.

There is an important aspect of provenance that would be tedious

to make explicit in Definition 3.5: the way that the αi point back to

the specification T . Each αi computed by the algorithm presented

in Sec. 4 is a substitution instance of a subformula of an axiom in

T , providing links to specific places in the specification that are “to

blame” for the truth of L. In our implementation, the α formulas

are those highlighted yellow (Fig. 2).

Example 3.6. Consider the theory {∀x .R(x),∀x .(P(x) ⇒ Q(x))}
over the language with three unary relations R, P , and Q . Suppose

U = {0} and for all three relations LB(·) = ∅ and UB(·) = {0}. If

M = {P(0),Q(0),R(0)} then literalsQ(0) andR(0) have provenances:
{P(0)} and ∅ respectively. P(0) has no provenance.

The following is an easy consequence of Theorem 3.4.

Lemma 3.7. L has provenance inM with respect to T if and only
if L is locally necessary for T inM.

4 ALGORITHMICS
Fix a bounded model-finding problem overL, T , andU with upper

and lower bounds for each R ∈ L. Let M |= T and L be locally

necessary for T inM. To obtain a set of provenances for L inM, it is

useful to define a desugaring function that instantiates and flattens

formulas (Sec. 4.1). We then proceed by recursively evaluating the

formulas in T inM andML, desugaring as necessary and recording

subformulas that lead to T ’s failure in ML (Sec. 4.2). Finally, to

further focus the provenance on elements of the model, we expand

each provenance generated into a literal provenance (Sec. 4.4).

4.1 Desugaring Alloy
Alloy’s syntax contains several operators that are effectively syn-

tactic sugar, and bounds enable even more simplification. When

generating provenance, it will be useful to instantiate some quan-

tifiers, relational expressions, and derived operators. To do so, we

utilize the problem’s upper and lower bounds to convert (e.g.) uni-

versally quantified formulas to a conjunction over the upper bound

of the quantified variable’s type. Since variable types need not

be basic relations, we extend the notion of upper bound to in-

clude arbitrary relational expressions. Most of these details are

routine, but Fig. 4 shows some of the more interesting cases—like

quantification—where we must explicitly depend on the bounded-
ness of the model-finding problem to perform instantiation. If a

desugaring step produces an empty conjunction or disjunction, it

means that the bounds themselves are in some way incompatible

and might need to be increased—another useful distinction that the

stream-of-models paradigm fails to make.

desugar(∀xϕ α(x)) =
⋀
{t ∈ ϕ ⇒ α(t) | t ∈ UB(ϕ)}

desugar(∃xϕ α(x)) =
⋁
{t ∈ ϕ ∧ α(t) | t ∈ UB(ϕ)}

desugar(ϕ inψ ) =
⋀
{t < ϕ ∨ t ∈ ψ | t ∈ UB(ϕ)}

desugar((a1,an ) ∈ ˆϕ)=
⋁
{
⋀
{(ai ,ai+1) ∈ ϕ | 1 ≤ i ≤ n} |

[a1, ...,an ] is a path inUB(ϕ)}
desugar(t ∈ ϕ ·ψ ) =

⋁
{t1 ∈ ϕ ∧ t2 ∈ ψ |

t1 ∈ UB(ϕ), t2 ∈ UB(ψ ), t1 · t2 = t}
when c is a constant:

desugar(ϕ < c) =
⋁
{(ϕ = n) | MIN ≤ n < c}

desugar(ϕ = c) = c ∈ ϕ

desugar(#ϕ = c) =
⋀
({t ∈ ϕ |t ∈ UB(ϕ), t ∈ ϕM ∩ ϕM

L
}∪

{t < ϕ |t ∈ UB(ϕ), t < ϕM ∪ ϕM
L
}) ⇒⋀

({t ∈ ϕ |t ∈ UB(ϕ), t ∈ ϕM, t < ϕM
L
}∪

{t < ϕ |t ∈ UB(ϕ), t < ϕM, t ∈ ϕM
L
})

Figure 4: Desugaring Alloy operators and instantiation by upper
bounds via desugar(·). Numeric operators are subject to bounds on
bitwidth; a bitwidth of 4 (e.g.) corresponds to the range −8 through
7. Cardinality (#) expressions desugar to formulas that express the
failure of the expression inML) Other operators (which we elide for
space) are either routine or proceed similarly.
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4.2 Computing Provenance
To build intuition, we first step through the concrete node-coloring

example from Sec. 2.3, where we constrain each node’s color de-

pending on its neighbors. Recall thatM (the middle model of Fig. 1)

has two nodes, Node$0 and Node$1. We focus on the fact that

Node$0 is blue: the literal L = [Node$0,Blue$0] ∈ color .
This literal is locally necessary, since the L-alternate modelML

obtained by removing this tuple from the color relation fails two

top-level constraints in T :

all n : Node | n.color = Blue iff lone n.neighbors

all n : Node | one n.color

We obtain provenance for L by computing an explanation for why L
fails inML. Since a conjunction fails if any of its subformulas fail, we

extract independent provenances from the two failing constraints.

We start with the former axiom.

Our algorithm instantiates the universal quantifier as a conjunc-

tion (maintaining the sort restriction as a guard on each conjunct).

We then discover that only the following instantiation fails inML:

Node$0 in Node implies
(Node$0.color = Blue iff lone Node$0.neighbors)

The implication fails because the guard is true (in either model)

but the consequent becomes false inML. Because the obligation to

make the consequent true is only triggered by the fact that Node$0
is a node, we add that to the provenance, then continue recursively,

explaining why the consequent fails in ML. The bi-implication

desugars to a pair of implications, with the “if” implication failing:

lone Node$0.neighbors implies Node$0.color = Blue

As before, we add the antecedent lone n.neighbors to the prove-

nance. We continue to recur until “hitting bottom” at the input

literal L. The context collected comprises a provenance P1:

Node$0 in Node
lone Node$0.neighbors

The latter axiom from T also produces a provenance. We instan-

tiate as before and desugar one according to the upper bounds,

eventually producing the following provenance P2:

Node$0 in Node
not (Node$0->Red$0 in color and

Node$0->Blue$0 not in color)

Since P1 and P2 arise from separate failing conjuncts (the top-level

constraints in T ) we present them separately.

Pointing back to T . The remark following Definition 3.5 con-

cerning the tight connection between provenance components and

axioms of T can be understood more clearly now that we see how

the provenance computation works. For each item α we add to

a provenance there is a subformula ϕ from T such that α is an

instance of ϕ true in M and in ML. By collecting these instances

verbatim we are able to track failing sub-constraints and present

them to the user. On the other hand, Sec. 4.4 explains how to break

these formulas down into literals if desired.

The Algorithm. Fig. 5 gives the recursive provenance function
Y(·), defined on sentences whose interpretation changes from true

inM to false inML. There is a function Y¬(·), for sentences false

Y(t ∈ R) ≡

{
{∅} if L = t ∈ R

undefined otherwise

Y(α1 ∧ ... ∧ αn ) ≡
⋃
{Y(αi )|M |= αi ,M

L ̸ |= αi }

Y(ρ1 ∨ ... ∨ ρn ∨ γ1 ∨ ... ∨ γm ) ≡

{{¬ρ1, ...,¬ρn } ∪ p |p ∈ (Y(γ1)
∪

× ...
∪

× Y(γm ))}

(whereM ̸ |= each ρi andM |= each γj )

Y(¬α) ≡ Y¬(α) Y(α) ≡ Y(desugar(α)) in all other cases.

Figure 5: Explanation function Y.

inM and true inML, whose definition is dual to Y(·), but omitted

here for lack of space.

If α is a literal, Y is only defined if α ≡ L (since otherwise M

andML could not differ on the interpretation of α ): the provenance
here is empty, since clearly L ⊨U L.

When α is a negation, we invoke Y¬(α).
When α is a conjunction, the failure of any conjunct causes

the overall formula to fail inML. The resulting provenance-set is
therefore the union of all explanations for each conjunct’s failure.

When α is a disjunction, local necessity means that every dis-

junct must evaluate to false in ML and at least one must hold in

M. For intuition, view the disjunction as an implication with the

disjuncts false inM negated in the antecedent. It is these subfor-

mulas (false in both M and ML; labeled ρi in Fig. 5) that imply

the others (true in M and false in ML; labeled γi in Fig. 5) and

force the failure of the overall formula. Y recurs for each failing γi ,
combines their provenances with union product and adds each ρi
to every provenance in the resulting set. Here, the union-product

of a pair of sets of sets A = {a1, ...,an } and B = {b1, ...,bm } is

A
∪

×B = {ai ∪bj |1 ≤ i ≤ n, 1 ≤ j ≤ m}. The union product operator

is similar to Cartesian product, but rather than building ordered

pairs of element sets, it combines those elements with union.

Otherwise, we perform one desugaring step and recur.

Onemight initially expect the dual of the conjunctive case (which

uses union) to use intersection. However, this would mean combin-

ing multiple provenances—all of which must apply—by discarding

unshared components. We therefore use union product to enforce

that some full provenance for each subformula is respected.

Complexity. Our algorithm amounts to a tree-search of a par-

tially desugared T , testing for truth inM andML while descending.
Both time and space complexity are therefore proportional to the

size of the modelM times the size of the theory T post-desugaring.

Expanding a quantifier over ϕ (Fig. 4) produces one guarded in-

stantiation per element in the upper bound of ϕ. Thus, worst-case
quantifier-elimination is exponential in the quantifier-nesting depth

of T . Expanding transitive closure enumerates possible paths, and

so there the worst case is superexponential: the number of poten-

tial paths between a fixed source and destination in a complete

n-graph is

∑
0≤x ≤n−2

(n−2
x
)
x !. This challenge is shared by Alloy’s

model-finding engine as it passes to propositional logic and is thus

not unique to provenance generation. Moreover, in practice (Sec. 6)

these worst cases rarely manifest. This is because bounds tend to be

both separated into disjoint types and small (well under 10 atoms)
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in keeping with Jackson’s small scope hypothesis [17], which says

that small examples usually suffice.

4.3 Correctness
Fix a bounded model-finding problem for T over L,M |= T and

L ∈ ∆(M). First note that Y(σ ) is defined and returns a non-empty

result ifM |= σ butML ̸ |= σ . Thus a provenance is always produced
if L is locally necessary inM (i.e., Amalgam is complete). It remains

to show that the provenances produced are correct.

Theorem 4.1 (Correctness of Provenance-Generation). If
the algorithm of Fig. 5 produces a provenance α1, ...,αn for L with
respect to T inM then T ∪ {α1 ∧ ... ∧ αn } ⊨U L.

Proof. Proceed by induction on ordered pairs consisting of the

number of steps to fully desugar σ and the size of σ . If σ is a literal,

Y is only defined if σ ≡ L (since otherwise M and ML could not

differ on the interpretation of σ ), and clearly L ⊨U L. If σ is a

negation, the theorem holds by direct application of the inductive

hypothesis. If σ is a conjunction, then the result is the union of all

provenance sets obtained by calling Y on σ ’s subformulas. By the

inductive hypothesis we have that for each provenance P in that

union, σ ∧ P ⊨U L.
If σ is a disjunction, each disjunct must be false in ML or the

formula would not fail. Let those true inM (i.e., that become false)

be γ1, ...,γn and the others (which remain false) be ρ1, ..., ρm . Then

σ is equivalent to ¬ρ1 ∧ ...∧¬ρm ⇒ γ1 ∨ ...∨γn . By the inductive
hypothesis, each Y(γi ) produces a set of provenances Pi such that

γi ∧pi ⊨U L (pi ∈ Pi ). Thus, γ1 ∨ ... ∨γn ∧pconseq ⊨U L for each

pconseq ∈ P1
∪

×...
∪

×Pn . Thereforeσ∧¬ρ1∧...∧¬ρm∧pconseq ⊨U L.
In all other cases, σ is desugared before Y recurs and the induc-

tive hypothesis can be applied directly. □

4.4 Obtaining Literal Provenance
The provenances generated in Sec. 4.2 say which subformulas and
instantiations are responsible for L’s local necessity inM. However,

it is sometimes useful to see a provenance that focuses blame onto

just the parts of M responsible for local necessity. This reveals a

spectrum of provenance complexity: higher-level formulas can be

concise, but lower-level formulas are tied more closely to the model

being understood. A literal provenance, which contains only literals,

stands at the far end of that spectrum:

Definition 4.2 (Literal Provenance). A literal provenance for L is a

provenance α1,∧... ∧ αn ⊨U L where each αi is a literal.

To obtain a literal provenance from an arbitrary provenance

P , we convert each non-literal formula α in P to a set of literals

true in M that force α to hold. To do this, we traverse the nega-

tion normal-form of α , seeking conjunctions of literals that entail
it, desugaring as needed. This process amounts to evaluating the

formula in reverse, extracting pieces of the model responsible for

α ’s truth.
However, this process can potentially return a conjunction of

literals that contains L or ¬L, which would violate our definition

of provenance since either is false in eitherM orML. Even more,

some sentences may require contingent reasoning, with different

literals leading to truth inM versusML.

Example 4.3. Let α = ((0 ∈ P)∧ (0 ∈ Q))∨ ((0 < P)∧ (0 ∈ R))∨ s ,
M = {(0 ∈ P), (0 ∈ Q), (0 ∈ R)}, and L = (0 ∈ P). While α holds in

bothM andML, neither branch suffices on its own; both (0 ∈ Q)
and (0 ∈ R) must appear together.

To resolve this problem we search, in parallel, for a pair of con-

junctions that satisfy α in ∆(M) and in ∆(ML). If one conjunction
does not involve L it explains α ’s truth in both models since they

differ only by L. Otherwise, one must contain L and the other ¬L;
in this case we combine them and remove both L and ¬L. This is
sound since if L ∧ β ⇒ α and ¬L ∧ γ ⇒ α it holds that β ∧ γ ⇒ α .

5 IMPLEMENTATION
Amalgam is implemented as a drop-in extension to Alloy 4.2, rather

than a standalone tool. This means that Alloy users can experiment

with new features and incrementally adopt them without any dis-

ruption of their workflow. Users can access Amalgam’s extensions

via Alloy’s existing evaluator, a prompt that allows them to evaluate

expressions in the current scenario. We extend this facility to give

insight into local necessity via provenance. Users can either ask

for a broad list of what is locally necessary or browse the set of all

provenances generated for individual literals. Amalgam provides

both basic provenance display (as seen in Fig. 2) and an expert in-

terface that shows the details of every step of the recursive descent

described in Sec. 4. In both, mousing over components of a prove-

nance highlights the corresponding portions of the specification.

The tool also allows users to augment scenarios by adding or

removing literals that are not locally constrained. Much like prove-

nance can be helpful in cases of over-constraint, augmentation can

be helpful if a specification is under-constrained since it allows

users to move quickly to surprising scenarios for further inves-

tigation. Our approach to augmentation is similar to other tools,

such as Aluminum [30], except that users can both add and remove

elements of a scenario. (We discuss further differences in Sec. 7.)

Amalgam supports some Alloy features that were unmentioned

in Fig. 3, such asmultiplicity-constrained type declarations and total

ordering. Amalgam’s support for numerics includes counting the

cardinality of set expressions and inequalities; it does not currently

support arithmetic operations.

6 EVALUATION
We evaluate Amalgam quantitatively along five dimensions: its

performance, the number of leaf formulas (i.e., αs gathered by

the algorithm in Sec. 4), the depth of the recursive descent (which

directly affects the size of the tree displayed), the character-count of

the largest highlight shown (which also affects provenance display),

and the total number of provenances generated for each literal.

For each specification, we take these measurements for each literal

permitted by the specification’s bounds—asking “Why?” for literals

that are present and “Why not?” for those that are absent. We report

results for the first two scenarios returned by the scenario-finder to

mitigate bias in scenario ordering. Fig. 6 reports these results.

Our evaluation suite consists of 22 specifications and comprises

a wide mixture of example, educational, and “real-world” speci-

fications. Address book (addr), Grandpa (grand), and geneology

(gene) are from Alloy’s example set. Grade book (grade), bad em-

ployee (bempl), and other groups (other) are Alloy translations of
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access-control specifications used to benchmark existing scenario-

finding work [33]. Directed graph (digraph) is a non-empty (but

otherwise unconstrained) directed graph, as a baseline for compari-

son. Directed tree (dtree) constrains the graph to be a tree. Dtbug
injects a flaw in dtree’s edge injectivity constraint. The two colored,
undirected trees specifications (ctrees and ctreesb) are the origi-
nal shown in Sec. 2 and the buggy modification with irreflexivity

removed. Abc is a logic puzzle that requires hypothetical reason-
ing. Good Will Hunting (gwh) encodes a scenario-finding problem

popularized by the cinema: searching for trees where no vertex

has degree 2. Transitive-closure and garbage collection lab (tclab
and gclab, respectively) are specifications from labs exercises in an

introductory formal methods course. The first gives practice with

transitive closure; the second models reference-counting garbage

collection and reveals its flaws. The model of propositional resolu-

tion (resfm) comes from Torlak, et al. [36]. Flow reveals a bug in a

network program written in Flowlog [29], a language for program-

ming software-defined networks. Cdd1 and Cdd2 are Maoz, et al.’s

translation [24] of two UML diagrams. Cddiff1 and cddiff2 are the
semantic differences of those two models (i.e., cdd1 ⊆ cdd2 and

cdd2 ⊆ cdd1) produced by CDDiff [25]. We also include the authen-

tication model (web) from Akhawe, et al. [1]. Together, these cover

a wide spectrum of complexity, upper bounds, and Alloy features.

Finally, we note that flow, cdd1, cdd2, cddiff1, and cddiff2
are all machine-translations from software artifacts. The compilers

that implement these translations are non-trivial, so the specifica-

tions they produce call out for answers to “why?” and “why not?”

questions from the compiler developers as well as their end-users.

6.1 Performance
Wemeasure performance by calculating the time and peak memory

required to generate all provenances for each literal by running the

Y function from Sec. 4. To put these figures in context, we compare

this to the time Alloy’s scenario-finding engine takes to produce

the first two scenarios, including the time taken to translate the

specification to propositional logic. (Provenance-generation does

not impact Alloy’s scenario-finding approach in any way, so there is

no overhead to generating scenarios in Amalgam.) To stabilize mea-

surement variance, we repeat our experiments 15 times on each of

our 22 specifications. All results were gathered on an Ubuntu 16.04

/ 2.60GHz i5-4278U CPU / 16GB RAM machine. In most cases, it

takes less memory to compute provenance than scenarios; however,

for larger examples provenance can use slightly more memory. The

worst case peak memory usage during provenance generation was

1547 MB (forflow), while the maximum during scenario generation

was 1201 MB—roughly a 29% difference.

Amalgam usually generates provenances no slower than Alloy

generates scenarios (on the order of milliseconds). Indeed, for web,
scenario-generation is more than two orders of magnitude slower

on average than provenance generation: here the complexity is in

producing a scenario, not in explaining literals. The only significant

outlier is flow, which takes on average 2.55 times longer to explain

a literal than to produce a scenario. The difference is due to flow’s

complexity and the unusually large provenance count that some

literals inflow have; we address this second point further in Sec. 6.3.

6.2 Explanation Complexity
For each specification, we report three metrics as a surrogate for

comprehensibility, aggregated over all provenances produced: the

number of α formulas gathered (i.e., the number of leaves in the tree

shown), the depth of recursive descent (i.e., the depth of the tree

shown), and the character-count of the largest highlighted region.

6.2.1 Depth. In most cases, the average depth does not exceed

a dozen, resulting in a fairly succinct derivation. The tclab specifi-

cation has a maximum depth of 17 because it contains a deep tree

of predicate calls (the lab is designed to teach students to use helper

predicates), each of which contains several relational operators that

all take a desugaring step.

6.2.2 Highlighting. Since Amalgam highlights concrete source

locations in the original Alloy file, highlight size corresponds to the

original—not desugared or instantiated—Alloy specification. Amal-

gam thus produces small highlights in general; most specifications

see a maximum well under 100 characters. The largest highlight

usually corresponds to the top-level constraint in each provenance

(e.g., the largest highlighted region in Fig. 2’s provenance is shown

in step 1). Large maximum highlights, such as cddiff2’s 858, arise
when visiting large constraints in the specification and are greatly

reduced in future steps (from 858 to 71 in this particular case).

We also report the total number of characters in each specifica-

tion, through which we see that even the largest highlight is only

roughly 12% of the cddiff2 specification.

6.2.3 Leaf Count. Since new leaf formulas occur whenever

branches of a disjunction are eliminated, specifications with large

disjunctions, existential quantificationwith large bounds, or transitive-

closure produce high α counts. The largest leaf-counts appear in

gwh and gclab, both of which make heavy use of transitive closure

pair with relatively large upper bounds. In this case, our algorithm

produces provenances that enumerate all possible paths. However,

a conversion to literal provenance greatly reduces leaf count (from

20 to 11 on average for gwh, and from 66 to 16 in the worst case for

gclab). Further reduction is likely possible, as we do not currently

search for the smallest provenances.
In contrast, provenances for authn, flow, grand, and especially

cddiff2 blow up significantly when converted to literal form. This

is because some α formulas in these provenances depend on large

swathes of the scenario. For instance, an α that contains a univer-

sal quantifier implicitly depends on all its potential instantiations.

Situations where literal provenances are smaller therefore indicate

significant overlap in the parts of the scenario that make α formulas

true. For example, this happens in gwh because most αs there are
caused by transitive closure—which desugars in a repetitive way.

Flow specifies a state transition function that is defined by a

disjunction over logic-program fragments. Each fragment causes a

set of literals to be true. Negative literals therefore have provenance

encompassing the fact that none of these program fragments apply—

which is fairly large, as Fig. 6 reports. This pattern of provenances

that comprise multiple instantiated specification fragments persists

in gene and resfm.
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Max # Prov Trees Tree Depth # Tree Leaves (Prov[LitP]) Largest Highlight (chars) Runtime (ms)

Spec Bnd Med µ Max Med µ Max Med µ Max Med µ Max Spec Pr µ M µ Pr Max MMax

ctrees 3 1 2 4 4 4 6 2[2] 2[2] 3[5] 20 21 78 576 1 7 3 23

ctreesb 3 1 1 3 3 3 5 1[2] 1[2] 3[4] 16 15 48 598 1 6 2 18

digraph 4 1 1 1 1 1 4 1[1] 1[1] 3[3] 3 7 22 108 1 5 2 17

addr 4 1 1 2 4 3 9 2[2] 2[3] 7[8] 20 13 48 1.1k 1 9 7 31

other 3 1 1 4 4 4 6 2[2] 2[2] 3[4] 15 33 79 1.5k 1 6 4 15

grade 3 1 1 3 4 3 8 2[2] 2[2] 11[5] 20 21 85 2.0k 1 44 54 1.1k

abc 3 1 2 5 4 4 5 2[3] 2[3] 2[3] 56 50 56 557 1 6 4 20

bempl 3 1 1 5 4 3 7 2[3] 2[2] 5[8] 20 22 56 1.4k 1 7 4 19

dtbug 4 2 3 7 4 4 5 2[3] 3[2] 17[7] 15 14 23 1.7k 2 6 16 17

grand 4 2 2 5 4 4 9 2[2] 3[4] 12[36] 39 32 42 2.7k 2 11 7 60

flow 4 1 2 41 7 7 13 3[26] 4[24] 20[45] 242 228 300 12k 135 53 967 285

tclab 5 1 2 9 5 7 17 2[5] 5[7] 17[16] 21 23 43 1.9k 8 16 39 35

resfm 5 1 2 6 5 5 12 3[3] 3[5] 15[49] 105 76 105 2.1k 6 72 48 285

gene 6 3 4 13 5 5 7 7[7] 6[11] 10[26] 50 37 58 2.5k 15 10 178 47

gwh 6 7 6 13 7 7 8 6[12] 20[11] 66[19] 129 93 129 721 37 26 102 97

gclab 6 2 2 11 4 4 11 2[2] 3[3] 66[16] 56 50 58 2.6k 2 10 29 26

authn 6 1 1 16 4 3 9 2[2] 2[3] 19[80] 25 30 243 19k 11 1.4k 192 31k

cddiff1 6 1 1 9 6 6 11 2[4] 3[5] 23[19] 16 25 42 7.1k 13 41 40 127

cddiff2 6 1 1 4 5 4 14 2[3] 2[4] 38[202] 14 24 858 7.1k 11 41 45 176

dtree 7 1 1 2 1 1 6 1[1] 1[1] 3[8] 2 5 28 649 2 9 185 36

cdd 1 10 1 1 9 5 3 11 2[3] 2[3] 24[27] 16 20 42 4.8k 28 111 130 1.5k

cdd 2 10 1 1 4 1 2 12 1[1] 2[4] 21[34] 6 12 42 4.1k 8 32 61 81

Figure 6: Number of provenances, provenance complexity (depth, leaves, highlighting), and runtime for both Provenance (Pr) and scenario
(M) generation. For each row, Max Bnd denotes the largest bound in the specification. For provenance depth, leaves, highlighting, and count
we report median, average(µ), and maximum; we give median rather than standard deviation because we do not believe the non-performance
data are normally distributed. For leaves, we report a value for standard provenance trees, and those expanded to a full literal provenance (in
[brackets]). For highlighting, we also report the total specification size (in characters) for comparison. Where numbers exceed 1000, we divide
by a thousand and add a “k” suffix.

6.3 Number of Explanations
We measure the number of provenances generated because—much

like a stream of scenarios—a large number of provenances may

conceal the one or two that will uniquely inform the user. For most

specifications, the numbers are promising, with most literals having

only one or two provenances even forflow,web, and the cdd group.

Some specifications have literals with many provenances. This

occurs when literals can affect the truth of many instantiations

of top-level constraints at once. Like the colored-trees example in

Sec. 2, gwh has symmetry, connectivity and acyclicity constraints.

Removing an edge violates symmetry, connectivity and possibly

the added requirement that no nodes have degree 2. Breaking (e.g.)

connectivity generates one provenance for each pair of newly dis-

connected nodes (up to 9 pairs at an upper-bound of 6 nodes). In

the case of flow, the literal with 41 provenances is that a specific

network packet exists. Much of the specification depends on that

packet, there are many reasons why it must exist (41 in fact). The

other high provenance counts in Fig. 6 occur for similar reasons.

7 RELATEDWORK
Scenario finding is an active research area with a rich history. While

satisfiability is undecidable for first-order logic in general, bounded

(or “finite”) scenario-finders achieve termination by searching only

up to a bounded scenario size. MACE [26]-style scenario-finders like

Kodkod [37], Alloy’s internal engine, translate bounded problems

into propositional logic and then leverage SAT-solving technology.

Minimal and Targeted Model Finding. Aluminum [30] is a ver-

sion of Alloy that produces only minimal scenarios. These minimal

scenarios show only locally-necessary positive literals (i.e., positive

literals that have provenance). However, Aluminum provides no

provenance information at all, and thus explains neither why the

scenarios shown are minimal nor how individual literals interact

with the rest of the scenario. Such explanations are Amalgam’s

primary focus. Aluminum also allows users to augment scenarios

by making currently-false literals true, then showing the consistent

minimal scenarios that contain the original plus the added literal.

While this allows users to explore the consequences of the addi-

tion, again it focuses solely on scenario-generation and not on the

proofs intrinsic to necessity in a scenario. Amalgam incorporates

both augmentation and explanation. Moreover, Amalgam supports

reasoning about arbitrary scenarios: it can find provenances for

negative information in the scenario and find justifications that

involve positive literals, neither of which would be possible if it

enforced minimality.

The Razor [33] scenario-finder likewise produces minimal sce-

narios. By incorporating a notion of provenance into scenario-

generation, Razor is able to justify every positive literal in the

scenarios it produces. Amalgam does not limit itself only to mini-

mal scenarios, and so is able to detect and explain local necessity

of negative as well as positive literals. Razor also lacks support for

transitive closure.
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The Cryptographic Protocol Shapes Analyzer [12] (CPSA) pro-

duces examples that show when cryptographic protocol specifi-

cations violate desired properties. In contrast, Amalgam is built

atop a domain-independent scenario finder and answers “Why?”

questions—which CPSA does not consider.

Target-Oriented Model Finding [8] adds optimization targets

to bounded scenario-finding problems. The tool then minimizes

graph edit distance from targets, enabling (e.g.) maximization as

well as minimization. While powerful, this approach is still limited

to finding streams of scenarios, rather than explaining them.

Provenance for Software and Systems. There has been some prior

work on provenance for software. WhyLine [19, 20] answers a

limited set of “Why did...” and “Why didn’t...” questions about Java

program behavior. It records and then replays execution history

to reconstruct provenance for events. The Y! tool [6, 39] likewise

traces both positive and negative provenance for events in network

logs. Vermeer [34] constructs reduced causal traces that explain

assertion violations in C programs. These tools extract provenance

from runtime logs—which are not available to a scenario-finder and

have temporal structure that Alloy’s scenarios need not possess.

Fault-localization techniques based on test spectra [31], such as

Tarantula [18], use test suites to produce causal information. SAT-

TAR [14] uses Alloy specifications to synthesize test inputs to aid

localization (further illustrating the flexibility of scenario-finding).

Such tools focus on using many tests to provide insight about a

program, whereas Amalgam helps users understand how different

parts of a single scenario interact. Moreover, tools like Tarantula,

SAT-TAR, and Vermeer help explain program behavior; Amalgam

helps users understand their logical specifications and overcome

specification-specific issues like under- and over-constraint.

Sanity Checking. The need for sanity checking arises when a sys-

tem may satisfy properties for uninteresting or erroneous reasons.

Antecedent failure, or vacuity, was first investigated by Beatty and

Bryant [2] for model-checking. Vacuity can point to subtle issues

in either system or property specification, as Beer, et al. [4] discuss.

Hoskote, et al. [16] introduce the notion of coverage in model-

checking to detect when properties fail to fully exercise the system.

Kupferman [21] unifies vacuity and coverage, noting that both

can be found by mutation of the property and system respectively.

Since in scenario-finding both system and property are combined

in the specification, our perspective is similar. Beer, et al. [3] and

Chockler [7] mutate counterexample traces to find causality. Their
explanations are with respect to the property, not the system; Amal-

gam provides causality information with respect to both. These

works also focus on counterexample traces, but scenarios in Amal-

gam need not be (and often are not) temporal.

We are not the first to apply static-analysis techniques to Al-

loy specifications. Heaven and Russo [15] detect vacuity for a rich

subset of Alloy. While we likewise draw inspiration from sanity

checking, Amalgam explains why literals are present in arbitrary

scenarios, regardless of vacuity. Uzuncaova and Khurshid [38] use

slicing techniques to prioritize constraints in Alloy and thereby im-

prove performance. The goal of their work is, however, orthogonal

to ours.

Ghassabani, et al. [13] explain why properties hold in a model-

checker. This is analogous to Alloy’s unsat-core highlighting fea-

ture. Amalgam focuses on the opposite situation: explaining why

portions of counterexamples are locally necessary.

One related classical technique for generating explanations is

abduction [10]. Crucially, Amalgam is based in understanding obser-

vation in a particular model, as opposed to explaining deductions.

8 DISCUSSION
Amalgam takes a first step toward enriching scenario-finding by

answering “why?” and “why not?” questions. We conclude with

discussion, qualitative experiences, and future work.

Weaknesses of Local Necessity. Amalgam’s provenances can some-

times be excessively local. For example, when working with undi-

rected trees (Sec. 2) it is easy to mistakenly use constraints that

work only in the directed case. In a directed graph, acyclicity can

be captured by no iden & ^edge—i.e., that there are no identity

tuples in the transitive closure of the edge relation. However, this

rules out graphs larger than a single node when combined with

axioms for symmetry and irreflexivity. Upon seeing the one-node

example, we can ask Amalgam “why can’t another node exist?”.

However, we are then only told that the graph must be connected,

and there is no edge connecting this fresh node to the rest of the

tree. Instead, we would like a provenance for the combination of

a new node and new connecting edges—which would direct us to

the buggy constraint.

Contrasting Local Necessity and Minimality. In Aluminum [30]

and Razor [33], positive literals are present if they cannot be con-

sistently removed without adding other positive literals. Every

positive literal in a minimal scenario is thus locally necessary, but

the converse does not hold. Consider the (propositional) theory

T = {p ⇐⇒ q, r } and the scenario M = {p,q, r }. M is not

minimal since {r } also satisfies T , but each literal inM is locally

necessary: r because it is an axiom and p and q because of each

other’s presence.

Future Work: User Studies. Concurrent work [9] suggests that

provenance can indeed be helpful to Alloy users; naturally, we

would like to further evaluate Amalgam’s effectiveness. To do so, we

might manufacture a satisfiable but overconstrained specification

(as in Sec. 2.2). We could then divide participants into a control

group using Alloy and an experimental group using Amalgam, and

ask them to correct the error. We might compare the time taken

before effecting a fix, but it would potentially be more interesting

to also evaluate the quality of fixes made. That is, would either

group be more prone to fixing the overconstraint while introducing

new problems? It is of course difficult to obtain large pools of Alloy

users who also possess the time and inclination to participate in

user evaluations.

Future Work: Other Implementation Strategies. One promising

alternative to the approach in Sec. 4 leverages unsat-core extraction.

By Theorem 3.4, a literal L is locally necessary for for a specification
T in a given scenario M if and only if T ∪ (∆(M) \ {L}) ⊨U L.
If this entailment holds, an unsat core for its negation contains

provenance information. While cores are generally not iterable
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(most solvers would in effect return only a single provenance) tools

such as CAMUS [22] escape this limitation.

We opted for recursive descent rather than an unsat-core based

approach for several reasons: it avoids potential interference with

other features of Alloy, such as symmetry-breaking; it eliminates

confounding factors in evaluation (Sec. 6) that could be caused by

altering Alloy’s scenario-finding; it allows our approach to poten-

tially apply for other tools not based on SAT-solving; and it allowed

us to record why each portion of a provenance was generated—

improving output quality and easing debugging. Nevertheless, a

core-based approach would likely be faster and thus appropriate

for applications that make heavy use of provenance.
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