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Abstract We calculate the soft function for the global event
variable 1-jettiness at next-to-next-to-leading order (NNLO)
in QCD. We focus specifically on the non-Abelian contribu-
tion, which, unlike the Abelian part, is not determined by the
next-to-leading order result. The calculation uses the known
general forms for the emission of one and two soft partons
and is performed using a sector-decomposition method that
is spelled out in detail. Results are presented in the form
of numerical fits to the 1-jettiness soft function for LHC
kinematics (as a function of the angle between the incom-
ing beams and the final-state jet) and for generic kinematics
(as a function of three independent angles). These fits rep-
resent one of the needed ingredients for NNLO calculations
that use the N-jettiness event variable to handle infrared sin-
gularities.

1 Introduction

The continued successful operation of the Large Hadron Col-
lider (LHC) has led to the accumulation of a very large
data set with which to study the Standard Model (SM) in
unprecedented detail. The ever-increasing precision of the
experimental analyses has mandated a similar increase in
the precision of the corresponding theoretical predictions.
Over the last few years a concerted effort has been made in
the theoretical community to provide predictions accurate to
next-to-next-to-leading order (NNLO) in QCD. Calculations
that include colored final-state radiation are particularly chal-
lenging. Significant progress in this direction has been made
recently, including the NNLO calculation of the production
of dijets [1,2], V + j [3-9], H + j [10-12], H + 2 j in
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the vector boson fusion process [13], single top [14-16] and
11 [17].

A critical element in the completion of a NNLO calcu-
lation is a manageable way to handle the copious infrared
(IR) singularities present in component pieces of the cal-
culation. These singularities occur in phase spaces of dif-
fering dimensionality, and cancel only when combined in
a suitably-inclusive, IR-safe observable. At NLO the most
widespread solutions use local subtraction terms [18-20]. In
these approaches one subtracts a user-defined set of counter-
terms from a given real-emission matrix element such that the
corresponding combination of matrix element plus counter-
terms is finite in all singly-unresolved IR limits. The counter-
terms are constructed in such a way as to be integrable analyt-
ically over a single unresolved parton; the integrated counter-
terms can then be combined with the virtual one-loop matrix
elements, resulting in an analytic cancellation of IR poles.
The two phase spaces are then both manifestly finite and
can be integrated separately using Monte Carlo integration
techniques.

The construction of a similar subtraction scheme at NNLO
accuracy is a considerably more daunting task. This is primar-
ily due to the presence of one extra unresolved parton with
respect to NLO, yielding multiple overlapping singularities.
Despite its difficulty, a number of subtraction schemes have
been developed and successfully applied to several LHC pro-
cesses [21-25].

Alternatives to local subtraction schemes are possible.
One such method, based on a more global approach, is phase-
space slicing [26]. These methods are simple to implement at
NNLO, particularly if the corresponding NLO process with
one extra parton in the final state is already known. In slic-
ing methods a global parameter is used to divide the phase
space into (at least) two regions. At NNLO the two regions
correspond to the region which includes all of the doubly-
unresolved emissions, and a region which has at most one
singly-unresolved parton. The IR structure in the latter region
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is clearly akin to that obtained in a standard NLO calculation,
and hence this region is amenable to calculation using exist-
ing NLO technology. The success of the method therefore
relies on the ability to calculate the region which contains
doubly-unresolved partons. To this end, factorization theo-
rems are used to calculate the cross section systematically in
this region. The first slicing method applied at NNLO [27]
used the transverse momentum of the final state, g7, as a slic-
ing parameter, and the Collins—Soper—Sterman factorization
theorem [28] to compute the cross section in the region of
small g7. As such, this method is applicable to final states
in which there is no gr associated with colored radiation,
i.e. the production of color-singlet final states. A recently-
developed method [29,30] uses the N-jettiness event-shape
variable 7 [31] rather than g7, and a factorization theorem
from Soft-Collinear Effective Field theory (SCET) [32-36].
The theorem states that the cross section in the region of small
Ty can be obtained from the following convolution [31,37]

N
o (Iy <713“‘)=/B®B®S®H®]_[Ji+(9(7,\°,“‘).
i=1

(1

Here B represents the beam function, which describes initial-
state collinear radiation, and J the jet function, which
describes final-state collinear radiation. For these two func-
tions, expansions accurate to (’)(ozsz) can be found in Refs. [38,
39] and Refs. [40,41] respectively. The term H denotes the
hard function, which is process-specific and finite. Finally, S
represents the soft function, which is the main focus of this
paper. The soft function is defined as the process-independent
soft limit of QCD amplitudes. Of the process-independent
pieces of the factorization theorem, it is by far the most com-
plicated. For color-singlet production processes (which for
the LHC correspond to zero jets in the final state), the soft
function is reasonably simple and analytic expressions are
known [42-44]. When three colored partons are present (1-jet
final states for LHC kinematics), the soft function is consid-
erably more intricate. The calculation of the 1-jettiness soft
function at NLO was presented in Ref. [45]. In Ref. [46],
the NNLO O-jettiness soft function for one massive colored
particle production was computed.

A method to compute the 1-jettiness soft function numer-
ically to NNLO accuracy was presented in Ref. [42] and the
results of this calculation have since been used to compute
several V 4 j processes at NNLO [6,7]. However, at present,
there is no publicly-available computation of the 1-jettiness
soft function presented in a form that can be implemented
in an independent Monte Carlo code. The main focus of
Ref. [42] is to provide a methodology of computing the soft
function numerically. Specific results are only presented for
the gg — ¢ configuration, and only in graphical form. Since
the gg — g and gqg — g configurations are absent, and due
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to the nature of the result presented, it is currently impossible
to implement the 1-jettiness soft function at NNLO directly
from the literature. The primary aim of our paper is to pro-
vide this information via an independent calculation of the
1-jettiness soft function.

Our paper proceeds as follows. In Sect. 2 we provide a
general overview of the calculation. We introduce the N-
jettiness variable 7y and present our parametrization of the
phase space. In Sect. 3 we present the formulae for soft parton
emission at NLO and NNLO taken from the literature, paying
particular attention to their color structures. In Sect. 4 we
validate the method by computing the NLO soft function for
the 1-jettiness case and compare the results against known
analytic formulae. In Sect. 5 we discuss our calculation for
the NNLO 0- and 1-jettiness soft functions in detail. In Sect.
6 we present the obtained results and compare them against
the known results in the literature. We draw our conclusions
in Sect. 7.

2 Setup of the calculation
2.1 N-jettiness variable Ty

For a parton scattering event the N-jettiness variable 7y [31]
is defined as

2pi - qm
T = 3 min {220, @

where the subscript N refers to the number of final-state
jets in the scattering event for Born-level kinematics. The
momenta p; are the momenta of the initial-state colored
partons and final-state jets at Born level. For color-singlet
production at the LHC, N = 0 and i € {l,2}, while for
LHC processes with one jet in the final state N = 1 and
i € {1,2,3}. The quantities P; are dimensionful normal-
ization factors that represent the hardness of the momenta
pi. The g,, denote the momenta of final-state radiation. For
single-emission processes (NLO real corrections or NNLO
real-virtual corrections) m = 1, while for double-emission
processes (NNLO double-real corrections) the sum runs over
two terms, m € {1, 2}. For the calculation of the soft function
the eikonal directions are given. By defining dimensionless
versions of the massless momenta p; through p; = p;/P;
and choosing P; = 2E;, where E; is the energy of the par-
ton, we can rewrite 7y as

TN = Zmini {2[31 . qm} . (3)

In units where i = ¢ = 1, 7y therefore has the units of mass.
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2.2 Sudakov decomposition

A convenient way of parametrizing the momenta appearing in
the phase-space integrals that enter the calculation of the soft
function is to use a Sudakov decomposition of the momenta
in terms of two of the momenta p; that appear in Eq. (3). We
first define a shorthand notation for the quantity that appears
in Eq. (3), namely the projection of a vector g along the
direction of p;,

q" =2px-q. “

The parton momentum ¢* can then be expanded as

Al AL
. D: 2
qﬂij_l+ql_]+qil;l’ (@)
Yij Yij
where y;; = 2p; - pj and g;;1 is transverse to the plane
spanned by p; and p ;. The Sudakov expansion for py, which
is not one of the Sudakov base vectors, is
A Y jk ~p Yik A
A e I N R (6)
Yij T Vij
We can calculate ¢¥, the projection of ¢ on a non-Sudakov
base vector, and obtain
FIRLLIN M

) ¥

¢“=2-p=4q —21gij L1l prl cos dgr, (7)
where ¢, is the angle in the transverse plane between ¢ and
Pk, and

. YikYjk q'q’
pr =2k g2 1T ®)
Yij Yij

The ratio of the projection along a non-Sudakov direction k
to the projection along a Sudakov direction i or j is given by,

k
. . PTEH—
q—i=M+x,'iﬂ—2 —”ylzkyjk COS gk
q Yij Yij Yij
= Ajik(Xji, Pgi)s 9
k
. . vy
q_ Jik —}—Xiijk - —”yl;(yjk oS gk
q’  ij Vij Yii
= Ajjk(Xij, Ggi), (10)

where x;; = g' /g’ . For the case of hadronic collisions where
two of the directions, p; and p», are those of the beams we
have,

.1 L1
pr=7501,0,0.41, pr=(1,0,0,-1), (1)

so that yjp = 1.

‘We note that this notation follows that of the calculation of
the NLO soft function [45]. It differs from that of Ref. [42],
in which relevant quantities are expressed in terms of pure
directions, n;. Equivalent expressions can be obtained by
making the replacement,

nj

pi — ER (12)

2.3 Measurement function

Written in terms of the projected momenta, the definition of
the N-jettiness is

Ty = ) _min; {gj,}. (13)

The minimum over i in this equation provides a natural divi-
sion of the phase space for extra emission into regions where
each projection is smallest. For the case of 1-jettiness we
will label the three hard directions as i, j and k. The single-
emission phase space is then partitioned by inserting a mea-
surement function F where,

F=F+F+F, (14)

and F; corresponds to g being closest to direction i so that,
for instance,

Fi=8(TN—qi) H(q{—q{)e(q{‘—qi)- (15)

We note that in the original calculation of the NLO soft func-
tion [45], a further hemisphere decomposition of the mea-
surement function was used to separate the divergent and
finite parts of the calculation. However, we will not pursue
that method for our NNLO calculation. We can extend the
decomposition of F to the double-emission case by writing
the measurement function as,

F=Y" Fu. (16)
a,b

where the sum runs over the nine combinations of a, b €
{i, j, k}. The notation F,;, implies that g is closest to direc-
tion a and g3 is closest to b with, for example,

Fij=24 (TN —4qi —qz’) 0 (q'{ —61{)9 (Qi‘ —61{)
X0 (615 - Q5)9 (fé‘ —q5)~ (17)

As it will be explicitly shown in Sect. 3, the integrals that we
have to evaluate in order to calculate the soft function have
an eikonal form in which there are two emitting directions i
and j. We attach the labels of the emitters as superscripts to
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the measurement functions. In this notation we can write out
the decomposition in Eq. (16) explicitly as

ij _ i) ij
FY = F + Fjj (case 1)
4 Fi’j! + F/’l’ (case 2)
+ Fl.i,{ + F]l{C + F,g + FIZ (case 3)

+Fl. (case4)  (18)

Each term corresponds to one of four cases [42], as indicated:

1. Both g and ¢» closest to the same emitting direction;

2. g1 and g closest to different emitting directions;

3. One of ¢ and g3 closest to an emitter, while the other is
closest to the non-emitting direction k;

4. Both g1 and ¢; closest to the non-emitting direction k.

In general, there is one more case where g1 and ¢ are closest
to different non-emitting directions k, [, but this is absent in
the 1-jettiness case.

2.4 Phase space — single emission

Let us start by considering the phase space for a single emis-
sion:

dd
Pt zf (271)3—1 5 (q*). (19)

Using the Sudakov variables ¢’ and g/ defined in Sect. 2.2
above, we can rewrite the integration measure as

1 . ,
dlq = o dg' dg’ d"2q;; .. (20)
t

The phase space then becomes

1
@m)d=12y;;

2 _ . .
5 dgji | [q'Z- ]%8 q'q’ 2
2g;j. | LT yij

oo 2
1 1 / S giql |*
=———— [ dq¢'d¢’ d2(y_» ,

m)d-1 4y,-j @2 Yij
(21

psV, j) = / dg' dg’ dR(4—»)

where d§2(4—») is the (d — 2)-dimensional angular measure.
Setting d = 4 — 2¢ and using the standard expression for the
angular measure after integrating over unconstrained angles
given in Eq. (A.12), we obtain

@ Springer

7¢ T'l—¢e) 1
3 _ 1—
167> I'(1 — 2¢) Yij €

i i i i1T¢ 7 2
x/dq dg’ [qqf] /Od¢>sm 0.

(22)

PsG, j) =

It is convenient to normalize the remaining angular integra-
tion so that it integrates to one using,

r'a—2e)

Fi—eor (23)

T
Ny = / do sin~> ¢ =47
0

The final expression for the single-emission phase space is
then,

L. 1 (4m)€ 1
(€] —
PTG = |:167r2 I'(l—e) ] yl-e
Yij
. , . € T do
i Jj [ - —2€
x/dqdq [qq] /0—N¢3m P.

(24)

2.5 Phase space — double emission

For the double-emission phase space we employ the same
Sudakov decomposition as the single-emission case and, fol-
lowing the same steps as above, we have

dq  dq
(27{)‘1_1 (zﬂ)d—l

! 1 o | il =
=————— [ dg! dg/ d2,9" _—
(2n)2d72 16y121 [ 1 1 (d—2) Vij

o dal
x / dg} dgf (i, [jf} : (25)

PSP, j) = 5T @D)st (g3

The integral over the transverse space for ¢ can be performed
just as in the single-emission case, with the result given in
Eq. (A.12). The integral over the transverse space for g3 is
more complicated since one of the angles cannot be inte-
grated out; the form of the integral is given in Eq. (A.10).
Combining these expressions we arrive at the final form for
the phase space,

P S G S T
PSP =51l ra—a | ()
20+ | T'(1 —€) Vij
. . . . . . 1—€
x f dqidg]dgsda] [aialqsa] ]
" dﬂ sin~%€ ¢ /ﬂ @ sin~2¢ ¢,
0 Ne o No,

s o—1-2¢
— sin B, (26)
o Ng
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where
I'(l—e)
== N,
\/_F(Q—E) #1
. T-2) ,T(F—¢
_N¢2_4”r(1—e)2_ﬁr(1—e)' @7

3 Soft function and soft radiation
3.1 Soft function

We define the unrenormalized N-jettiness soft function
S(7y) as a perturbative series in powers of the bare strong
coupling o/:

5T = 50T + [ o2 5070
+[2]50@) + 0@, (28)
2

We renormalize the coupling constant by performing the
replacement

Uy —> g Zgy. (29)

The renormalization factor is given by,

B Bo 5 11 4
za—l—[zn]2 +0@). fo=—Ca=3TkNr  (0)

with Cq = 3, T = % Nr = 5, and a5y = a,(u) at the
renormalization scale . The coefficients of the perturbation
series of the renormalized soft function S(7y) in terms of
the unrenormalized ones then read:

SO @Iy) = SO (Iw)
SO () =SV (Ty)

SO (Ty) = —’3—2 SOTx) + 5D (7). 31)

The leading-order contribution is simply S© (7y) = §(7y),
since at leading order there is no emitted radiation.

3.2 Soft radiation at NLO

We start by computing the soft function at NLO, which allows
us to illustrate the main features of the method as well. The
result for the NLO soft function is known analytically [45]
and can be used to validate our numerical evaluation. The
NLO corrections to the leading-order soft function are made
up of two different contributions: Born-type processes with
one-loop corrections (“virtual” corrections) and tree-level
processes with the emission of one additional parton (“real”

corrections). The former only contribute at 7,y = 0. Since we
are considering corrections on massless eikonal lines, there
is no dimensionful quantity to carry the dimension of the
one-loop integrals; their contribution therefore vanishes in
dimensional regularization. The only contribution at NLO is
therefore the one from real radiation.

The form of the squared amplitude representing the emis-
sion of a single soft gluon is well known. Using the same
notation that will be employed at NNLO we can write the
factorization at O(g?) as,

IMO(q. pr., ... pw)? = —g* Se n*
m
X Y Sii@) IMY (P o), (32)
i, j=1

c.f.Eq. (12) of Ref. [47]. The eikonal function S;; () is given
by

Di"Dj _ ij
2pi-)(pj-a)  4q'q’

Sij(q) = (33)

Note that here we have introduced the normal M S factor S,

eyE €
Se=\{—]) > 34
() o
where yg is the Euler—Mascheroni constant. The emission of

a soft gluon produces color correlations that are indicated in
Eq. (32) by the subscripts i and j in /\/l(l iy

0
MO (1 o) = (MO(py,
x| Ti- T I MO (py, ...

s Pm)

Factoring out the leading-order amplitude squared we thus
have a simple expression for the soft-gluon approximation,

D2 22 Yij
IMOP = —4g> s Y T, - T, ppy
i<j
1
=3 "T-T; M2, (36)

i<j
where we have limited the sum that appears in Eq. (32) to
i < j and added the consequent factor of two. Introducing

the measurement function of Eq. (14), the total result for the
soft function at NLO is then,

[ ]m ST

1
;M1 PsYF

i<j
=31 TP PSY [Fi+ F+ R
i<j
= Z T;- Tj |Mi(j1)|2{ S(l)(l ) [ lj + Fl]]
i<j
+PSD (K, i) [F,ﬁf]} (37)
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where, in the last line, we have explicitly indicated the choice
of momenta in the Sudakov decomposition in the phase-
space. The explicit expressions for the quantities in curly
bracesin Eq. (37) are givenin Egs. (15) and (24), respectively.
When we evaluate the different contributions in Eq. (37) we
will have two different cases, corresponding to Fl.” and F ,i/ .

The case F]” can be obtained by relabelling since S;;(q) is
symmetric under i < j.

3.3 Color conservation

The eikonal expressions given above are written using color-
space notation [20]. Using color conservation we have,

Z T;IM)=0. (38)
j

Thus for the case of O-jettiness (j € {I,2}) we find that
T% = T% = —T - T», whereas for the case of 1-jettiness
(j e {1,2,3})WehaveT% =—-T,-T,—T;-T3andcyclic
permutations. For the 1-jettiness case we can write,

TI-T2=—[T§—T%—T§]

2
1

T>-Ts = E[T%—Tg—Tg]
1

Ty T, = E[Tg —T? - T%]. (39)

All products T'; - T j can therefore be expressed in terms of
sums of Casimirs Tl-2 (and vice versa) with

4
T%:CFzgforizq,zj and T? =Cy=3fori=g. (40)

3.4 Soft radiation at NNLO: real-virtual

As earlier discussed, the virtual diagrams do not contribute
because of scaling arguments, so that at NNLO we are left
with the real-virtual contribution and the double-real contri-
bution (to be considered in the following two sections). Since
the real-virtual corrections involve only one real emission,
the calculation follows closely the NLO case.

The one-loop contribution to the soft-gluon current has
been given in Ref. [47]. Combining Egs. (23) and (26) of
Ref. [47], the O(g*) real-virtual contribution is,

= (goue 1) [(MOUPD 1T @ - 7" Vig 01 MO Uph) + ] = 5 2t

where S;;(g) is given in Eq. (33). The notation Z/ repre-
sents a sum over values of the indices that are distinct (for
instance for the second term this explicitly means i # j, j #
k, k # i). The calculation of 1-jettiness does not permit such
a contribution from the second term and therefore we do not
consider it further.

The real-virtual contribution is thus,

MRV ¢ 4 @M T( =€)’ +e)?

— S C
27{2M € a2 (= 2¢) A cos(e)
yij 14+€
X Z Ti . Tj ( 7 )
J
= q'q
- ilﬁe 5 (41)€ T(1 —e)*T(1 +¢)3
22t AT 2T T —26)2T (1 + 26)
Yij 1+€
X Z Ti . Tj ( 7 )
Py q'q’
2 ra-— C 'l -2
=2 (Otis) e [16712 ( 6)] fABRvg
27 @m)e | €2 (1 —e¢)?
Yij 14+€
X Z T; T ( - )
i<j aq’
RV
=y 1T MR, 42)
i<j

where we have used

cos(e) = rt—e)rl+e¢) 3)
T T =261 + 2€)

and extracted an overall factor
eHEET(1 — €)5T(1 + €)3

B =
RY = T =263 (1 + 2¢)
20 5 4G 5wty 5
=1- 5 - S+ T +0<e). (44)

We have also identified a factor (shown in square brackets in
the third line of Eq. (42)) that will be naturally cancelled by
a corresponding one in the phase space, c.f. Eq. (24).

Finally, we note that the method for calculating this con-
tribution will be very similar to the one used for the NLO
soft function, after the replacement of the integrand factor
Yij /q'q’ by [yi j /q'q71' <. For the real-virtual contribution
to the NNLO soft function we therefore have

¢4 o 4 @M T —e)3T +e)?
(1 —2e)

x {cA cos(e) 3 [S1j (@] MY ,({pHI? + 2sin(re) >S4 @) [S@]° (kij = hig — 2jq) |M§2?i’j)({p})|2}, 1)

@.j
i,J

i,jk
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RER RV .
|| 3e% =3 10151 )|2{Ps<‘><z,n
i<j
x| F7 4+ FP ]+ PsO k. ) [F,ﬁf”
(45)
3.5 Soft radiation at NNLO: gq emission

Turning now to the double-real emission, we first consider the
radiation of a soft ¢g pair. The factorization of QCD ampli-
tudes in the double-soft limit has been given in Refs. [48,49].
From Eq. (95) of Ref. [49] we have,

|M(0)(pl’ ceey pmv QI, CIZ)|2
m
=g TR (MI| DTy Ti - T; | IM). (46)
i,j=1

Using the color identities of Eq. (39), we can rewrite the
result for the matrix element as,

IMOpr, ..., pms a1, g2
=—Tp (M| Y U Ti-T; | IM), (47)
i<j

where the quark eikonal result always appears in the special
combination [42]

Uyj = g*n*S2| T + Ty — 2T, . (48)

From Eq. (96) of Ref. [49] the soft quark pair production
result for Z;; is

I (Pi-q1 Pj-92 + Pj-q1 Pi-92 — Pi-Pj q1-92)
. (q1.922 pi-(q1 +42) (91 + 42)

(49)

Inserting this result into Eq. (48), the result for quark pair
emission can be written in terms of two functions

Uy = g*u*s2| 7 + 7| (50)
where
(Pi-q1 Pj-92 — Pj-q1 Pi-q2)*
ji§ =2 ; / ’2 : 5. (D
(q1-92)* [pi-(q1 +g2)17 [pj.-(q1 + g2)]
j” —9 Pi-Dj (52)

Y q1-92 pi-(q1 +q2) pj(q1 +q2)
Using Eq. (47), we see that the contribution to the soft func-
tion due to the emission of N flavors of light quarks is given
by,

2 . ..
[;{—S] 3D — _1x Np Y T -T; Uy PSP FY,  (53)
g .

1<j

where F'/ is the measurement function, Eq. (18).

3.6 Soft radiation at NNLO: gg emission

The case of two-gluon emission gives rise to both Abelian and
non-Abelian contributions. The Abelian two-gluon matrix
element squared is given by the product of two single-gluon
currents weighted by a factor of % The integrations over
the two emitted momenta factorize, so that the Abelian two-
gluon emission result is determined by the NLO result, and
we will not consider it further.

The result for non-Abelian soft radiation has been given
in Eq. (108) of Ref. [49] and is proportional to

IMO 1, pms i, ) = —g*u* S2Ca

m
<MD Sijqr.a)Ti - Tj | IM). (54)
ij=1
The two-gluon soft function is given in Eq. (109) of Ref. [49],
(pi-q1 pj-92 + pi-q2 pj-q1)
(q1-92)? pi-(q1 + q2) pj.(q1 + q2)

_ (pi-pj)* [2_ (pi-q1 Pj-q2 + pi-q2 ij)]
2 pi-q1 Pj-92 Pi-q2 Pj-q1 pi-(q1 +q2) pj-(q1 + q2)

Sij(q1,q2) = [1 — €]

Pi-Dj [ 2 N 2 B 1
2q1.q2Lpi-q1pj-q2  pj-q1pi-g2 pi-(q1+q2) pj-(q1+q2)
) . . L2
X<4+ (pi-q1 pj-q2 + pi-q2 pj-q1) )] (55)
Pi-q1 Pj-q2 Pi-q2 Pj-q1

Using color conservation, Eq. (39), it is clear that we only
require the combination,

Ty = g*u S [ S+ 85— 28, (56)
This result can further be decomposed as [42],
Ty =g*u st - a7} + 270 + 7] (57)

where jlg, Jlgl are given in Egs. (51) and (52) and

11T _ < Pi-q1pj-92 + pj-q1pi-q2

—2) S5 (py, po)
Y pi-(q1 +q2) pj.(q1 +q2) )

(58)
(s.0.) pi-Pj 1 1
SN pi, pj) = +
q1-92 \pi-491 Pj-q92 Pj-q1 Pi-q2
)2
(Pz-Pj) (59)

Pi-q1 Pi-q2Pj-91 Pj-q2
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Thus the final result for this contribution to the soft function
is

2 . ..
[“_S] 3O —cy S 1,1, T; PS® §; FY (60)

2l 88
i<j

where Sy = 1/21is the statistical factor for the two final-state
gluons, and F"/ is the measurement function, Eq. (18).

4 Soft function at NLO

In this section we will make the contributions shown in
Eq. (37) explicit and then assemble the complete NLO soft
function.

4.1 Phase-space sector Fl.ij

To evaluate this contribution we first perform the change of
variables,

¢ =Tneg, ¢ =TnE/xij.

The measurement function defined in Eq. (15) then becomes,

(61)

Fi = 8(In(1 — &) 0(Ty(1/xij — 1) 0(q” (Aij i (xij, Pgr) — Xif)

1
= ?5(1 —&)0( — xij) 0(Aijk (xij, Pgk) — Xij) (62)
N

Parameterizing the phase space given in Eq. (24) using the
same set of variables, Eq. (61), and combining the two gives,

I @) g, 1
1672 T(1 — ) e

1
X/ d%- sl—Zé /(; dxij xi;2+e

L /Trd s —2€
XN¢ A Qg SIn" " Py
X3(1 — &) 0(Aijk(xij, pgk) — xij) (63)

The matrix element from Eq. (36) can be written as,

PsVa, HF =

M2 _ 4.2 2 Yij 422 Yij
IM;; 7" = —4g" ™ Se v 4g” 1™ Se TN2§2x”
(64)
This contribution to the NLO soft function is then,
1 L i) a, evEE 2 TN -2
L N P et A v |
2T (1 =€) Ty L /yij
1
X/ dxij xi;H_G
0
g 2e
X — d sin~
N¢ 0 ¢qk ¢qk

xO(Ajjx(Xij, Ggk) — Xij) (65)

@ Springer

4.2 Phase-space sector F ,i’

For this contribution we use the change of variables,

¢“ =Tné, q' =Tné/xu, (66)
and note that the projection that enters the matrix element
(¢”) can be related to these through ¢/ = q" A; j (xki, ¢g;)-
The combination of measurement function and phase space
is trivially related to the expression in Eq. (63) by cyclic
permutation of the labels i, j and k. The matrix element is,

1 Vii
|Ml(])|2=_4g2 IL2ES€ 2

q'q’
2 2 Yij X
= —4g” u*s l (67)
© TN2E2 Awi i (ks Gg))
which yields the expression for this contribution,
M PPSD ki) F
B I:as] eVE€ 2 [ TN :I 2€(yl~j)l—6
2rdT0(1 =€) Ty L /yij Vi
1 1 T
xf dxy; xp; X —/ doyj
0 Ny Jo
ia—2€
sin~“¢ ¢,
Y —0/(Aki, j (xkis bqj) — Xki)- (68)

X —_—
Agi,j (Xki s Pgj)
4.3 O-jettiness

The NLO soft function for 0-jettiness is straightforward to
compute analytically and we need not resort to the numerical
methods that we will employ throughout the rest of this paper.
A short description of this calculation is given in Appendix
E for completeness.

4.4 1-jettiness

In the 1-jettiness case, the calculation of the soft function at
NLO is more involved since one of the §-functions depends
on an angle and therefore we have to resort to numerical
integrations. In the 1-jettiness case we can have three dif-
ferent leading-order configurations, gg — g, ¢qq — g, and
qg — ¢q, where the configuration determines the color fac-
tors that appear in Eq. (36) through the relations presented
in Sect. 3.3. For the LHC kinematics we define p; and p; as
the directions of the initial-state partons, as in Eq. (11), and
p3 as the direction of the final-state parton.

The soft function is given by Eq. (37), where each of
the contributions is evaluated using either Egs. (65) or (68).
The integrals are evaluated using the sector decomposition
approach [23,50,51]. The term X € in Eq. (65)is expanded
in terms of delta and plus distributions by means of the
relation
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o0

Py Cha )

n! X
n=0

xflfke — _5()6)
ke

where, given a sufficiently-smooth function f(x), the plus
distributions are defined as

1 In" 1 In"
/ dx[n (x)] f(x)=/ dx = (x)[f(x)—f(O)].
0 X + 0 X
(70)

After using the expansion and expanding the integrals as
Laurent series in €, the coefficients of the series are obtained
by numerical integration. This integration is straightforward
and has been performed with a Fortran code using double
precision accuracy without, in this case, any additional cuts
for numerical safety.! The final expression for the soft func-
tion is obtained by expanding the overall factor ’2'1_1_2E in
terms of delta and plus distributions,

e8]

_k n
+ 2 S )

n=0

_3(Tw)

—1—k
Iy "= ke

where L, (Ty) = (%) . Since the expansion of the
+

term 7—171725 using Eq. (71) starts at order € "', we note that
itis necessary to compute all integrals up to O(¢). For our pur-
poses, namely the factorized cross section defined in Eq. (1),
we require only the O () part of the renormalized soft func-
tion. The result is then given as the coefficients of §(77) and
L, (1) withn =0, 1:

SD(Ty) = C_1 8(Ty) + Co Lo(Tn) + C1 L1(Ty).  (72)

We now present the numerical results for the 1-jettiness NLO
soft function. We specialize our calculation for LHC kine-
matics, where we have yj» = 1 and momentum conservation
gives y23 = 1 — y13 so that the result is a function of y;3
alone. We compute the soft function for the three channels
(gg — g.99 — g,and gg — q) with 15 different values of

Y13t

{0.01, 0.025, 0.05, 0.1, 0.175, 0.25, 0.4, 0.5, 0.6, 0.75,
0.825,0.9, 0.95, 0.975, 0.99}. (73)

For each channel we compare the coefficients of §(77),
Ly(71), and L£1(77) (denoted by C; withi = —1,0, 1 in our
notation) with the known analytic results in the literature [45].
We find excellent agreement with the known results for all

1" As an additional check of the methodology and numerical integra-
tion, all of the results in this paper have been cross-checked with two
independent codes.

channels and all coefficients, as demonstrated in Fig. 1. The
agreement is at the level of 0.2% or better.

In Fig. 2 we plot the O(e?) coefficient of the series expan-
sion in € of the soft function before the term ’Tl_l_ze has
been written out using Eq. (71). The O(€?) term does not
contribute at NLO once ’]'1_1_26 is expanded, but instead
enters the coefficient of §(7;) in the renormalization contri-
bution to the NNLO soft function, as shown in Eq. (31) and
explained in detail in the next section. Since this contribu-
tion is not available in the literature, we perform a fit of our
numerical results and present the fit here for completeness:

3
Ka(y13) = Y kgun (I (i)™ [In (1 = yi3)]". (74)

m,n=0

The coefficients k(;, ) are collected in Table 1. For the chan-
nels gg¢ — g and gg — g we set kg ) = k(u,m) (With
m # n) since these channels are symmetrical in the initial
state.

5 Soft function at NNLO

From Eq. (31) the renormalized N-jettiness soft function at
NNLO, S® (Ty), is

SA(Ty) = —f—g SV(Ty) + 5P (Ty). (75)
We have already discussed the calculation of the first term
in Eq. (75) in the previous section, so we now study the
second term in more detail. At NNLO three types of correc-
tions arise: two-loop virtual corrections, one-loop corrections
with one real gluon emission (“real-virtual’), and double-real
corrections, consisting of the emission of ¢gg and gg pairs.
In the latter case, the emission of two gluons is made up
of two diagrammatic contributions: an Abelian contribution,
i.e. two single-gluon currents, and a non-Abelian contribu-
tion, i.e. emission of a gg pair through a three-gluon vertex. In
light of this, and since the virtual two-loop corrections van-
ish in dimensional regularization, we can rewrite the term
§@ (7y) as the sum of four non-vanishing contributions:

SO (Ty) = 83 (Tw) + Sy (Tn) + 82 (Tw) + S5 (Tw)
(76)

with S ézg) (7y) indicating the non-Abelian part of the double-
real gg corrections. The Abelian term S‘;i) (7y) can be
obtained directly from the NLO soft function thanks to well-
known exponentiation theorems [52,53]. The calculation of
the real-virtual contribution S’g‘), (7y) is conceptually identi-
cal to the calculation of the NLO soft function and has been

@ Springer
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Fig. 1 Numerical results for the 1-jettiness soft function at NLO for the partonic channels gg — g,9g — g, and gg — ¢. We plot the coefficients
of £1(71), Lo(71), and §(77) as functions of y;3 € [0, 1]. The known analytic results are taken from Ref. [45]

described in Sect. 3.4. We therefore spend the remainder of
this section discussing the calculation of the double-real cor-
rections represented by S’!E,? (Ty) and S(%) (7y). The decom-
position of the relevant eikonal matrix elements into a set of
basis integrals is given in Sects. 3.5 and 3.6 for the ¢gg and
gg cases respectively. We will detail the transformations nec-
essary to render the basis integrals, obtained by combining
the double-emission phase space with the eikonal integrands,
amenable to numerical evaluation. We will provide a num-
ber of illustrative examples of integrals, leaving a complete
enumeration of all contributions to Appendix C.

@ Springer

5.1 Double-real corrections

We first identify a common overall factor that is asso-
ciated with the total angular volume, in the phase-space
parametrization of Eq. (26),
1 e I'(l-e)?
NgNg Ny, 2272 T(1 — 2¢)
_ € F(l — 6) 2 BRR
- _226712[ (47)¢ ] 52

(77)
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_40 i i i i
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Fig. 2 Numerical results for the 1-jettiness soft function at NLO for
the partonic channels gg — g, g¢ — g, and gg — ¢q. We plot the
O(€?) coefficient of the e-expansion of the soft function as a function
of y13 € [0, 1]. Included (but not visible) in the plot are the fitting
uncertainties at the 95% confidence level

where

626)/5 7.[2 8 4 s
> ——§3e +—e + O (€),

Brr= —— = 1—
RR =T =26 3 90
(78)

and S¢ is given in Eq. (34). We will always be able to triv-
ially rescale one of the angular integrals so that the range of
integration is between zero and one,

T 1
/ do sin %€ ¢ = n/ dxg sin~%¢ ¢, (79)
0 0

with ¢ = mxy, and the integral over B can be recast in similar
fashion,

T 1 1
/O dp sin™! 7B = S /O dxg x5 (1 —xp) 77,

(80)

by performing the change of variable cos 8 =
thus rewrite Eq. (26) as,

1 —2xp. We

€ BRR( 1 )2726
29+4e 4 S€2 Yij

X/dqidq{dqédqé [qiq{Q’zqé]

PSP, j) = -

1
/ dxﬂx (1 —xp)” 1—e
0

1 T J
X f dxg, sin™2¢ ¢ / ﬁ sin~2¢ ¢,
0 0o

81)

where we have written the remaining ¢, integral in a form that
anticipates the Jacobian factor that will eventually emerge
as in Eq. (79). Finally, in our eventual evaluation of the xg
integral we will replace this form with a simpler one in which
singularities can only appear at xg = 0,2

1
/0 dxg xﬂ_l_e(l —xp) " T f(xp)
1
:/O dxg [xﬁ_l_é(l—xﬂ)_e-i-xﬂ_é(l —x,s)‘l‘f]f(x,e)

:fol‘%[xﬁ(l—xﬁ)]e[f(xﬂ)+f(1—xﬁ)]. (82)

As before, we compute the integrals numerically using sector
decomposition and the plus-distribution expansion given in
Eq. (69).

As in the NLO case, the choice of the phase-space

parametrization will depend upon which case is picked out
by the measurement function. We will discuss each of the
cases described in Sect. 2.3 in turn. The combination of the
matrix elements, phase space, and measurement function for
each case will be expressed as,
FIX PSP =N 1570, (83)
where the coupling-associated factor F is defined in
Eq. (C.25). In this equation X labels the division of the
eikonal approximations, Egs. (51), (52), and (58), and a, b
the different cases. We have extracted an overall factor that
will be universal across all contributions,

T _
= (@) L
5.1.1 Case I: F/

The appropriate change of variables for this case is,

i InE i In(1-8)
q1 = Iné, 6]1] = S g5 =Ty (1-8), qﬁ = -
(85)
We then have,
/d‘hd‘hd‘thZ /dqldqldqz (q —qi)9

x(af —qi) 0 (45 ~45)0 (a5 — i)

=Ty /dsd dr >~ 5)

2 An alternative procedure [54] is to split the integration range in half,
into [0, %) and [%, 1], and then remap the second range so that all
singularities are at xg = 0. This method has been adopted in one of our
codes.
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Table 1 Non-zero coefficients _

of the numerical fit of Eq. (74) 88— & 19— 8 a8 —~ 4

g;ﬁ;iﬁgigffg k.0, —7.991 4 0.056 ~10.594 £ 0.053 ~2.168 +0.213

43— g andgg — q. k1.0) —14.163 +0.045 —11.348 4+ 0.047 —6.467 +0.196

Coefficients not shown here are  k(2.0) 1.532 +£0.016 0.350 +0.015 2.099 =+ 0.066

understood to be zero k@.0) 1.086 + 0.002 1.022 + 0.002 0.025 % 0.007
ko.1) —14.163 £ 0.045 —11.348 £ 0.047 —8.790 £ 0.190
k.2 1.532 +£0.016 0.350 +0.015 0.494 %+ 0.062
ko.3) 1.086 % 0.002 1.022 + 0.002 1.009 % 0.007

xO(Aij (s, ¢1) — $)0(A;ijx(t, $2) — 1), (86) A1 =) = (s —1)% z12(1 — z12) (90)

so that the combination of the phase space in Eq. (81) with
the measurement function F; yields,

[(Vs — V/1)2 + dz10/511?

The Jacobian associated with the transformation from z, to
A is,

Q) s o pif € 3_4¢c BRR 1 \2-2¢
PSP ] = g7 () )
€ U dziz (s—=0 1)
1 = - .
x / didsdi[(1 — §)]'7% 5—— 12 dx (Vs — VD)2 4+ 4a/st]?
0 seT€pe€
1 ] X 1 , In terms of the new variable A we have,
X/o dxp xg “(1—xp)” _6/(; dxg, sin” ¢y .2
Tdgy (Vs = VD)% + 42125t = SR CL)
x / % sin ™ $20 (A (s, $1) — ) (V5 = VD? + 40t
0
xO(Aijr(t, ¢2) — 1), (87)  sothat
where ¢1 = mxg,. In the simplest case we will be able to 1 Ty26(1 —§) (s — 1)?
perform a rescaling of ¢, as in Eq. (79). However, in general 2q1-q2 = E o (V5 — /D)2 + 405t ©3)

this is not true.

The reason for the additional complication is the pres-
ence of the factor q| - ¢2 in the eikonal factors 7;; and U4;;.
Although the Sudakov decomposition is very convenient for
describing the other dot products, the expression for this one
is considerably more complicated,

1 Ty?e(l —
291 -q2 = fw[(«/;— NO% +4212x/§],

yl] St
(88)

where z1, = %(1 — cos@2) and ¢ is the angle between
q1 and g>. A method for handling this denominator has been
outlined in Refs. [42,55] and we follow this strategy here.
We map z1> to a new variable X through the relation,

(V5 —v/D*(1 =)

VRGN
2
P e i (39)

(V5 — /D)2 +4rst’

or the inverse,

= Vs —v/D> (1 —z12)
(V5 — VD +4z104/s5t’

@ Springer

Further, from Eq. (89) we have that,

(s —1)2A(1 = 1)

(V5 — VD)2 +4r/s1]?
(94)

sin® g1a = 4z12(1 — z12) = 4

We observe that by means of this change of variable the
collinear singularity q; - go — 0 has been mapped to s — .
In the presence of this denominator (and associated factor
of z12) we must be careful to ensure that the relevant angles
are handled appropriately. It is convenient to perform the
integration in a rotated frame, c.f. Appendix B. Following
that logic, we replace the measure df d¢, with dB12 doi2
and, from Eq. (B.23), relate the angle ¢ to ¢1, B12, and ¢12
through,

COS ¢ = COS 1 COS P12 — sin ¢y sin @12 cos P12. (95)

The final integral in Eq. (87) then becomes,

T d 1 1
/ P2 Gin2 gy = ~ f d(cos ¢12) [sin? gyp] "2~
0 T J-1

T

2 ! _1_.
=— [ dzip[4z12(1 —z12)]72
T Jo
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(s —1)?

2 1
= — di
m fo [(V5 — VD)2 + 4r/s1]?
1

X[ 4(s — 1)2A(1 = 1) ] 1€
(V5 — /D)2 + 4a/stT?

—2e€

1
- / di [A(1— 1) 7€
0

T

|s_t|1—2€

15 = D2+ da/sr] 2

1
= 2—2€f0 dxg, [M1—21)]7¢

|S _t|1—2€

15 — D2+ dnv/si]i2e

where A = sin2(7nc¢2 /2). Thus the final form for the phase
space is,

(96)

€ 3-4¢ BRR <L)2_2€

PSOG, HFY =
@ J) Fi; 29+6e 74 N 52 \y;;

i .1
x/o dedsdi[E(1 — £)]'2 e

1 1
X / dxg, sin ¢ b1 / dxg, xﬁ_li_e (1- Xﬁlz)iliE
0 0

1 1—-2¢
B s — 1]
) /0 P O =) e o o] 2
XO(Aij k(5. $1) — $)O(Aij (2, $2) — 1), ©7)

where ¢1 = mxy,, cos Bz = 1 — 2xp,,, P12 is defined
through Eq. (94), and ¢, can be obtained from Eq. (95).

The matrix elements that must be evaluated to compute the
double-real contributions for this case are given in Appendix
C.1. They are expressed in terms of the new variables &, s,
and ¢ and to aid in the evaluation of contribution /71 they
have been further subdivided into integrals that are simpler
to compute.

To illustrate a further complication that arises for these
integrals, consider the evaluation of contribution /. Combin-
ing the phase space from Eq. (97) with the matrix element in
Eq. (C.26) we obtain,

- 1
[T gt /O dedsdr[g(1 — £)]1 7%

x (st)€|s — 1|71

1 1
x/ dxg, sin_2€¢1/ dxp x5 (1—xp) ™'~
0 0
1 2 1+2e
— /1 4r/st
X/ drgs (1 — gy LS = VD24 415
0 (514 (1 = &)s]
XO(Aijr (s, ¢1) — $)0(Aijr(t, ¢2) — 1), (98)
where Bgp is given in Eq. (78) and we have removed an over-

all factor of AVj; in the definition of 77", c.f. Eq. (83). In
order to be able to perform the integration, we have to handle

the line singularity associated with the |s — ¢|~'72¢ term.
Following Ref. [42], we do so by partitioning the integral
into two contributions by means of the identity,

1=0(s—1)+06(t —s). (99)

In the s > ¢ sector we then perform the change of variables

s=x3, t=x2(1—x3), (100)
while in the r > s sector we have
t=x2, s=x2(1—x3), (101)

such that, in general, all singularities are located at x; = 0
and x3 = 0. The only complication is that, for the integrand
\71.51 b this procedure also yields singularities at x3 = 1.
However, these are simple to handle by using a simplification
similar to the one in Eq. (82), but carried out for x3. These
transformations are sufficient to treat all of the singularities
in this case.

5.1.2 Case 2: F]

The change of variables for this case is,

Iné

; : L Tn(1—§)
g =Tné of = == 03 =Tv(1-6). ¢h = RSS2

t
(102)

In combination with the measurement function, this results
in a phase-space parametrization that is very similar to the
simplest one for case 1,

@ i € 3_4€BRR i>272€
PSEG, J) F = 29+de 4N s2 (yij
1
_ 1
X/o dédsdt[E(1 — £)]' km

1 1
x/ dxg xlgl_f (1 —x/g)_l_G/ dxg, sin~%¢ ¢,
0 0

1
% / dxg, S gy X O(Aij (5, d1) — 5)
0

X 0(Ajik(t, ¢2) — 1), (103)

where ¢ = mxy, and ¢ = mxy,. The remaining invari-
ant that enters the matrix elements (given in Appendix C.2)
becomes,
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(104)

Tn2E(l —
21 qn = TVEC s>[

sty,-j

(1 — v/30)? +4Zm/§],

where 712 = %(1 — cos ¢12) and ¢17 is obtained from, c.f.
Eq. (B.19),

COS (12 = COS ¢h1 COS (o + sin ¢1 sin ¢y cos B. (105)

This does not require any further reparametrization of the
phase space because factors of 1/¢q; - g2 do not lead to sin-
gularities as s, t — 0.

5.1.3 Case 3: F}]

This case uses the following change of variables, based on a
Sudakov expansion with respect to i and k,

T . Tl —
%E, g =Ty(1-8), ¢} = M

(106)

q} = Tné, qf =

The phase-space parametrization becomes,

€ T34 BRrr (i)z—ze
29+467T4 S€2 Vik

| .1
x/(; dedsdi[E(1 — £)]'2 =€

PSPa, k) Fl = -

1 1
x/ dxg x;l_é (1 —xﬂ)_l_e/ dxg, sin™%¢ ¢y
0 0

1
x/o dxg, sin=> $0(Aix (s, $1) —5)
X 0(Aki,j(t, ¢2) — 1),

where ¢1 = mxy, and ¢ = mwxy,. Since one of the emitting
lines is no longer one of the vectors in the Sudakov expansion,
more invariants must be defined. The remaining quantities
are,

(107)

T ,
q{—i‘gA,k,(s o). ¢l

T 1-—
il ; v -5 ——— A (&, $2)2q1 - q2

2801
L N |

EP— (108)
L

where 71 = %(1 —cos ¢12) and ¢ is again defined through
Eq. (B.19). There are no further singularities to disentangle
in this case, for which all matrix elements are specified in
Appendix C.3.

5.1.4 Case 4: F}]

We perform the Sudakov expansion with respect to base vec-
tors i and k and then the following change of variables,
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; Tn(l —
Né, C]z—TN(l &), M

(109)

gk =Tyg, ¢l =

After this transformation the phase space parametrization is,

€ 3_4¢ BRR (L)z_k

(2) . l]
PSTG, k) Fy = T 0+ 4 N sz \y
€

1
X / dedsdifE(1 — £)]
0

§2—€12—€

1 1
x/ dxp xz' =€ (1 —xﬂ)—l—G/ dxg, sin~%€ ¢
0 0

1
X/o dxg, sin"> $20(Api (s, 1) — 3)

XO(Agi,j(t, ¢2) —1). (110)

The other invariants that enter the matrix elements are,

T .
q{=i€Ak,]<s b1, qi

(1
= A0 4y 0020102

_ LT -8 =D [(V5 — Vi et

Yik

(111)
Since this denominator takes the same form as the one con-
sidered in case 1, it must be handled in a similar manner.

Explicitly we have,

PSP, k) Fl = -

€ TN3*4€BRR <L>2—26
29+6¢€ 4 Se2 Vik

1 oy 1
X/O dedsdi[E(1 — £)]'2 P

1 1
X / dxg, sin ¢ b1 / dxg, xﬂ_li_e (1- Xﬁlz)iliE
0 0

|S _ t|1—2€

(V5 = V02 + 4i/or] ¢
— $)0(As (1, ¢2) = 1), (112)

1
x/ dxg, (L1 — 1)) ~€

0
X0 (Agi,j (s, 1)

where the definitions of all the angles are taken over from
case 1.

The matrix elements for this case are given in Appendix
C.3. In the calculation of the contribution ~715 an additional
subtlety arises. Consider the evaluation of the s > ¢ sector
that appears after the partitioning of Eq. (99). Following the
change of variables in Eq. (100) we have,

L. . 26
(@] _ g2t (M) .
Yij
1
x / dedzyduslE(l — £)]12€ 360172 (1 = xp)PHe
0

1 1 1
></ dxg, sin’zeqbl/ dxp xp' ¢ (1—x,3)*1*f/ dxg, (M1 — 1)~
0 0 0
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y [(1 = VT=x3)" + 42T —x3]'
(1 — Ex3)? [E(1 — x3) Agij (x2, p1) + (1 — E) A, j (x2 (1 — x3), $2)]?
o [Aki,j (X2, §1) — Agi,j (x2(1 — x3), ¢2)1?
xzx§

XO[Aki,j(x2, ¢1) — x2] O[Agi j (x2 (1 — x3), ¢2) — x2(1 — x3)],

(113)

The penultimate line of this equation appears to indicate
that a plus-distribution expansion is required for x, and
that the x3 integration is too singular as x3 — 0 (i.e.
s — t in the original variables). However, a careful analysis
reveals that neither of these is true. Instead, these additional
denominator factors are actually regulated by the numerator,
[Aki,j (x2, ¢1) — Aki,j(xz(l — Xx3), ¢2)]2. To see that this is
the case we write out the expressions for Ay; ; explicitly and
use the relation between the angles in Eq. (95) to find,

Api,j(x2, §1) — Api,j(x2(1 — x3), ¢2)

R ZW (cosgr = VT = xscos )
ik Yik

VX2
= W[yij\/XZXS —2./5ijyjk
1

X ((1 — /1 — x3cos12) cos ¢
++/1 — x3 sin ¢; sin ¢2 cos ,312) :|

This expression makes it clear that the x, denominator factor
is harmless. Moreover, we observe that in the limit x3 — 0,

JT=2
2/

(114)

cospp > 1 — x32, sin ¢p1p —

115
o x3,  (115)

so that,

Agi,j(x2, ¢1) — Aki,j(x2(1 = x3), ¢2)

X3./X2
- Vi |:Yij\/x2
1

[1—x
—ijVjk <cos¢1 + sin ¢ cos a2 . ):| (116)

The use of this limit is essential in order to obtain the correct
subtraction of the singularity at x3 = 0.

6 Results

We first make a few observations regarding our numerical
integration procedure. Each contributing integral is com-
puted using VEGAS in double precision. Since many of the
integrals contain square-root singularities, we routinely per-
form remappings to remove such factors and improve the
convergence of the numerical integration,

/ld—" ()—2f1d ) (117)
()ﬁfx_ A u f(us).

Moreover, in order to avoid numerical instability when eval-
uating the double-real integrands extremely close to singu-
larities, we impose a tiny cut on every integration range:

1 1
/ dx —> / dx.
0 s

We do not observe any sensitivity of our results to reason-
able variations of §, within Monte Carlo uncertainties, and
choose 8 = 10~!2 for the final results presented below. We
have additionally checked that running the code in quadru-
ple precision with a cutoff reduced to § = 1072% does not
alter the results. In order to provide the reader with an exam-
ple of our raw results, and a point of comparison for an
independent implementation, we present the numerical value
of all double-real integrals at a single phase-space point in
Appendix D. Each integral is typically evaluated with an
uncertainty that is far smaller than one percent, but which
can be at the percent level for a few contributions where the
absolute value is very small. This accuracy is more than suffi-
cient to obtain the NNLO soft function at the level necessary
for phenomenology.

Having described all of the necessary ingredients to per-
form the calculations, we can now present our numerical
results for the 0- and 1-jettiness soft functions at NNLO. In
particular, we focus on the non-Abelian contribution to the
soft functions. Following the notation of Sect. 5, we define
the non-Abelian part of the NNLO soft function as the sum
of four different contributions:

(118)

$2, (T, © = L0 80Ty + 5 (1) + 38 Tw)

+ 847 (Tw). (119)
Each individual contribution is computed as explained in the
previous sections. After performing the sum, the non-Abelian
soft function corresponds to the O(€%) contribution to the
total. This is written as

S (Tn) = C—1 8(Ty) + Co Lo(Ty) + C1 L1(Ty)
+ Co Lo(Ty) + C3 L3(Ty), (120)
where C, with n = —1, ..., 3 are numerical coefficients,

functions of the invariants y;;.
6.1 O-jettiness
Although the calculation of the 1-jettiness soft function is the

focus of this paper, recomputing the 0-jettiness soft function
provides a useful check of a subset of the integrals and of the
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Fig. 3 Numerical results for the non-Abelian part of the 0-jettiness soft
function at NNLO for the partonic channel gg. We plot the coefficients
of §(7p) and L, (7p) with n = 0, 3 as functions of yj» € [0, 1]. The
analytic results are taken from Ref. [42]

assembly of the final result. In this case the result is known
analytically [42-44], which we can use to provide a robust
check of our calculation.

We choose to present our results using the color factor Cr
(i.e. the partons present at leading order are a quark and an
anti-quark) and compute the coefficients C, for 15 different
values of y;» (the only invariant in the case of 0-jettiness):

{0.01, 0.025, 0.05, 0.1, 0.175, 0.25, 0.4, 0.5, 0.6, 0.75,
0.825,0.9, 0.95, 0.975, 0.99}. (121)

The gg channel is obtained by simply rescaling by a factor
C4/CF. A comparison of our numerical evaluation of the
NNLO soft function with the analytic results, for the values
of y12 above, is shown in Fig. 3. Apart from regions where
the soft functions are very close to zero, the numerical and
analytic results agree perfectly, at the level of a few per-mille
or better.

6.2 1-jettiness

We present the non-Abelian contribution to the 1-jettiness
soft function. As in the NLO case, we specialize our calcula-
tion for LHC kinematics. The coefficients C,, are functions
of y13 only since yj» = 1 and y23 = 1 —y;3. We compute the
coefficients C,, for the three different partonic configurations
(gg — g,99 — g,and gg — ¢q) and for 21 different values
of yja:
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{0.00375, 0.005, 0.01, 0.015, 0.025, 0.05, 0.1, 0.175, 0.25,
0.4,0.5,0.6,0.75,0.825, 0.9, 0.95, 0.975, 0.985,

0.99, 0.995, 0.99625}. (122)
The coefficients Co—C3 are known analytically and can
be derived, for instance, from renormalization group con-
straints [30,42,45]. They therefore provide a useful check of
our calculation, particularly in the case of Cy, which receives
contributions from all the basis integrals and expansions that
must be performed for C_. Our results are shown in Fig. 4
and indicate that, as at NLO, the numerical integration is
accurate to the per-mille level when compared with the ana-
lytic results for Co—C3.

The calculation of the endpoint contribution C_; is the
central result of this paper. Our results for this contribution
are shown separately in Fig. 5, for each of the three con-
figurations. We have performed fits to our results using the
functional form,

3
Corayi3) = Y conm [In (1)1 [In (1 = y13)1",

m,n=0

(123)

and these fits are also shown in the figure. Uncertainties on
the fits are estimated at the 95% confidence level, and are
plotted in the figure (they essentially correspond to the line
thickness). The fits provide a very good description of the
endpoint coefficient and are far more efficient for subse-
quent evaluation of the soft function. The values of the fit
coefficients of Eq. (123) for the three cases are collected
in Table 2. For the channels gg — g and qg — g we
set Com,n) = Cn.m) (With m # n). We have tested the fits
using randomly-generated phase-space points for compari-
son, i.e. with randomly-generated values for y;3 € [0, 1]
(obtained in our case using Mathematica [56]). Within their
respective MC uncertainties, every event agrees with the pre-
diction from the fits. When the MC uncertainties are small
the agreement is within 0.5%, while for points for which
the coefficients are close to zero the MC uncertainties are
significantly larger and the agreement is at the few percent
level.

To assess the overall impact of the corrections to the soft
function, in Fig. 6 we show the NLO contribution along with
the Abelian and non-Abelian pieces of the NNLO contribu-
tion. It is clear that the Abelian pieces are significantly larger
than the non-Abelian pieces over the entire phase space for
each partonic configuration. This can be readily understood
from the analytic structures of the two pieces. The §(77)
coefficient of the Abelian part arises from the convolution
of the NLO result with itself, and therefore it has two con-
tributing parts. Firstly, there is the “pure” §(7}) piece, which
arises from the §(77) coefficient of the NLO soft function
squared. This term is comparable to the non-Abelian part
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Fig. 4 Numerical results for the non-Abelian part of the 1-jettiness soft function at NNLO for the partonic channels gg — g,9q — g,andgg — q.
We plot the coefficients of §(77) and £, (71) with n = 0, 3 as functions of y;3 € [0, 1]. The analytic results are taken from Refs. [30,42,45]

in size. Secondly, there are mixed contributions which arise
from convolutions of the form

(L ® L)(T) = / AT Lo (T' = T)Ln(T)

m+n+1
= VST + Y VML)
k=0

(124)

where the coefficients Vk’”" can be found, for instance, in
Table 1 of Ref. [30], and are roughly O(1). After both con-
tributions are combined together the dominant part of the

total coefficient is determined by the VE} CoCq term. Such a
term is not present in the non-Abelian calculation.

6.3 Generic kinematics

Finally, we compute the non-Abelian part of the 1-jettiness
soft function at NNLO with generic kinematics, i.e. for the
case where the scattering process has three colored partons
at Born level, but where two of them do not represent the
directions of incoming beams (as is the case for LHC kine-
matics). We parametrize the three directions py, ps, and p3
as
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Fig. 5 Numerical results and fitted form for the coefficient of §(77) in
the three partonic configurations as a function of y;3 € [0, 1]. Included
in the plot are the fitting uncertainties at the 95% confidence level

Table 2 Non-zero coefficients of the numerical fit of Eq. (123) for
the three partonic configurations gg — g, g¢ — g, and gg — q.
Coefficients not shown here are understood to be zero

88— 8 99 — & 98 —~ q
(0,0 63.187 £ 0.903 42.357 +0.786 39.101 £ 0.698
€(1,0) 33.599 +£0.779 25.158 £ 0.678 13.726 £ 0.615
€(2,0) —11.056 4+ 0.227 —9.100 £ 0.197 —2.737 £ 0.186
€@3,0) —2.273 £0.021 —2.158 £0.019 0.016 £0.018
c,1) 33.599 +£0.779 25.158 £0.678 25.591 £ 0.602
€(0,2) —11.056 £+ 0.227 —9.100 £ 0.197 —8.749 £ 0.177
€(0,3) —2.273 £0.021 —2.158 £0.019 —2.126 £ 0.017
. 1
p1= 5(1, 0,0, 1)
. 1 .
D2 = 5(1, 0, sin 0, cos 6»)
R 1 . . .
p3 = E(l,sm(p sin 83, cos ¢ sin 03, cos 63), (125)

with 65,03 € [0, 7] and ¢ € [0, 27 ]. For the invariants y;;
(with i, j € {1, 2, 3}) we therefore explicitly have

1

Y2 = 5(1 —cos )
1

Vi3 = 5(1 — cos 63)

1
Vo3 = 5(1 — 0S¢ sin 6, sin B3 — cos B, cos 03). (126)

We observe that with this parametrization the LHC limit is
recovered by setting ¢ = 0 and 6§, = w. We compute the
coefficients C,, of the non-Abelian part of the soft function
for the three different partonic configurations (ggg, ¢g g, and
qgq) by choosing 200 random values for 6;, 63, and ¢. We
then perform numerical fits to our results for the coefficient
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of §(77), C_1. The functional form of the fits is taken to
be

3
CEl a2, y13. 723)= Y Clemmy [In (y12)1 [In (13)]"

k,m,n=0

x [In (y23)]" . (127)

In order to obtain accurate fits, we retain all 64 coeffi-
cients in Eq. (127) for each partonic channel. The val-
ues of the coefficients c( ) for the three cases are col-
lected in ancillary files that we include in the arXiv submis-
sion.

We can test the validity of the generic fits by ensuring that
they correctly reproduce the dedicated LHC fits obtained in
Sect. 6.2 when choosing y12 = 1 and y3 = 1 — yj3 in
Eq. (127). We therefore define the following ratio

C™ (y13) + CE (1 y13. 1 = y13)
C*™ (113) + C—1.it(y13) '

Rt(y13) = (128)

In the above equation C ibl (y13) represents the §(77) coeffi-
cient of the Abelian part of the soft function (evaluated for
LHC kinematics). We have added it to the numerator and
denominator such that Rg compares the total NNLO §(7;)
coefficients using the two different fits. This combination
is the only one that is relevant for phenomenological appli-
cations. In addition, since C_ vanishes for certain values
of yi3, the sum of Abelian and non-Abelian pieces helps to
ensure that the ratio is not dominated by the regions in which
one of the fits is close to zero. The ratios of the two fits are
shown in the left panel of Fig. 7. By inspecting Fig. 7 we see
that for the ggg and gq g channels the generic fit reproduces
the dedicated LHC fit to better than 1%. On the other hand,
the ggq channel is poorly behaved in the region yj3 ~ 0.15.
This is due to the vanishing of both the Abelian and the non-
Abelian pieces in this region, which causes large sensitivity
to fitting uncertainties. Away from this region the general fit
does a good job (within 1%) at reproducing the dedicated
LHC fit.

Additionally, as in the LHC case, we can test the fits by
generating random phase-space points and comparing the
numerical results of the non-Abelian piece with the pre-
dicted values from the corresponding fits. In this case we per-
form the comparison by generating 450 phase-space points
(i.e. 450 random values for 6;, 63, and ¢) and plotting the
ratios between fit and numerical values as histograms. The
results are shown in the right panel of Fig. 7. We observe that
for all three channels the histograms are well-centered around
the value of 1. In particular, the values obtained with the fit
lie within 2% of a dedicated calculation of a configuration
for 74, 75, and 74% of the total number of random phase-
space points respectively (ggg, ¢gg, and ggq), and within
5% for 87, 88, and 88% of the phase-space points. Similarly
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Fig. 7 Left panel: ratio between the LHC limit of the fits of Eq. (127)
and the fits of Eq. (123) for the three partonic channels. The ratio Ry has
been defined in Eq. (128). Right panel: ratio between predicted values

from the fits and obtained numerical results for 450 randomly-generated
phase-space points in the generic kinematics case
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to the LHC case, the agreement between fitted and numerical
values is better for points with smaller MC uncertainties and
coefficients that are not close to zero. We therefore believe
that the fits of Eq. (127), which are valid for non-LHC kine-
matics, could be successfully used, for instance, in ep and
e*e™ applications.

7 Conclusions

In this paper we have presented a calculation of the next-
to-next-to leading order (NNLO) 1-jettiness soft function.
The soft function is a component part of NNLO calcula-
tions which employ slicing methods based on the N-jettiness
global event shape variable. In particular, this function is a
required piece of the calculation of differential pp — X + j
type processes at NNLO, in which X represents a color sin-
glet, for instance a single vector boson.

Our calculation bears the traditional hallmarks of NNLO
calculations in regards to its complexity in unresolved limits.
In order to deal with these issues we have employed a numeri-
cal approach which uses sector decomposition of the relevant
phase-space integrals to disentangle overlapping singulari-
ties present at this order. In order to ensure the correctness of
our results we have implemented two completely indepen-
dent computational codes, and validated them against one
another. We have further validated our results by recomput-
ing the known O-jettiness and 1-jettiness results at NNLO
and NLO accuracy respectively. As a final validation of our
results we have checked the known analytic pieces of the
1-jettiness soft function at NNLO that can be derived from
renormalization group arguments. The primary result of our
calculation is a numerical determination of the §(7;) end-
point contribution, which cannot be deduced from the RGE’s
alone. We have computed this contribution for LHC kine-
matics (scattering processes with two back-to-back partons
and one final-state jet at Born level) and for generic kine-
matics (three colored partons at leading order). In order to
disseminate our results we have produced polynomial fits to
the results of our numerical integration for both configura-
tions. We have additionally checked both fits using randomly-
generated phase-space points, and find excellent agreement
with our Monte Carlo output.

Our fits represent the first such results presented in the lit-
erature. A previous calculation of the 1-jettiness soft function
atNNLO for LHC kinematics has been published [42]. It does
not contain the information required to implement the results
in a standalone Monte Carlo program. We therefore believe
our calculation, and the corresponding numerical fits, will be
useful for those interested in applying jettiness-slicing and
subtraction methods to NNLO calculations where three col-
ored particles are present. Further applications of this method
are certainly possible in future, for instance to analyze a vari-
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ety of global event shape definitions or to increase the number
of partonic scatters under consideration, such as in the cal-
culation of the 2-jettiness soft function at NNLO. We leave
such applications to a future study.
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Appendix A: Dimensional regularization
A d-dimensional Euclidean integral may be written as,

/ddx f? = /d|/<| F &) e sin? 20, sinf 36,5 . ..

X sinf d6y;_1dBi—> ...d6rd6;. (A.1)

The range of the angular integrals is 0 < 6; < m except
for 0 < 0; < 2m. Eq. (A.1) is best proved by induction.
Assuming that it is true for a d-dimensional integral, in (d+1)
dimensions we can write,

/ it =/ digi1 dk

=/ dicgy1 dlx| |k sin? 2 64— sin? 3

XOq_2...8in60r dBy_1d6i_» ...dOrd6O;
(A.3)

(A2)

The d-dimensional length, «, can be written in terms of the
(d + 1)-dimensional length, p, as

Kd+1 = p COS by

|k] = psinb,. (A.4)

Changing variables to p and 6; we recover the (d + 1)-
dimensional version of Eq. (A.1).
For our particular case at hand we have d — d — 2:

1 _
/dHK = E/d|,c2| 1S d 2y o (A5)
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/‘d.Qd,Q = f sind™* O3 sin? ™3 Og—4 ...

x sin6, dby_3d6y_4 ...d6Ld0O,. (A.6)
A (d — 2)-dimensional vector can be written as,
(cos Oy _3n¢; sinfy_38in6y_4, sinBy_3 cosOy_4), (A7)

where the components before the semi-colon are the extra-
dimensional pieces and the vector n¢ is a unit vector in the first
extra dimension. We arrive at this frame by setting 6; = /2
fori = 1,d —5. Letus choose vectors in the transverse plane
given by

q11L = q11(0; sin(¢y), cos(¢1))

q21 = g2 1(cos(@2)iic; sin(¢2) sin(B), sin(¢2) cos(B))
(A.8)

so that for g; we have set0;_3 = /2,044 = ¢1 and for ¢»
wesetly_3 = ¢2,04—4 = B. Theintegral over unconstrained
angles is,

2 Ed
f do, / sin?~0 Og—s5...8in0y dby_s5...d6>
0 0

d—6
L WD

vV=©7 A.
resh (A9

so that, after integrating over them, we get the following
expression

Ay » = _276/” den sin~2¢ ¢2/H dBsin~1"%p
B € F(l — E) 0 0

_ 2gl—€ ﬂd(j)z
T T(-e Jo Ny

T d
sin~—2€ ¢2/ —'B sin~1-2¢ B,
0o Ng

(A.10)
where
1 'ad—e
Ng = ——J/m————,
el i
(1 —2e¢) I'(3—e)
N, = 4¢ = . A.ll
=TT — e ﬁl"(l—e) (A-1D)
By performing the integration over  we get
1 g . —2€
d.Qd_z = Zﬁ—l d¢2 Sin ¢2
7cl(3 —¢€) Jo
2 T'l—e) [T . o
= — | 4a €
Gm) T —2¢) Jy %25 42
2 1—€ T d
il 492 Gin=2¢ g, (A.12)

TTA-60Jy Ny

Using the standard result,

fﬂ d¢ sindgb:ﬁr(‘%) (A.13)

0 re)

the total volume of angular integration is

242 = 2—7[ (A.14)
r'a—e)mne

Appendix B: Rotational invariance of the solid angle inte-
gral measure

Perform an angle-radius decomposition of the coordinates

X1 = r cos ¢
Xy = rsin ¢, cos

Xe = rsin¢y sin B (B.15)

where x. is a coordinate in the transverse plane beyond the
usual two. Hence

dxidxydxe = r? dr sin¢o dgs dB. (B.16)

Now perform a rotation about the e-axis by an angle ¢;:

xj = r(cos B sin¢; sin¢s + cos ¢y cos ¢z )
xh = r(cos B cos ¢y sin ¢y — sin¢; cos @)

x. =r(sinf singy). (B.17)

These coordinates can also be parametrized by introducing
new angles,

x; = rcos iz

x5 = rsin ¢z cos B2

x, = rsin ¢ sin B2. (B.18)

Comparing the two parametrizations, we note that

COS (12 = COS ¢ COS o + cos B sin ¢y sin ¢y, (B.19)

sin @12 sin B2 = sin ¢ sin B (B.20)

Calculating the solid element, we see that

dx| dxb dxy = r’drdey sin ¢12 dBi2 (B.21)
= r2drd¢» sin ¢, dp, (B.22)

as can be shown by explicitly calculating the Jacobian for
the transformation. However, after the change of variables
{#2, B} — {@12, P12}, we must be sure to express all depen-
dence on ¢, B in terms of ¢, and B2,

COS (pp = COS ¢p1 COS 12 — sin ¢ sin ¢ cos Bia. (B.23)
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Appendix C: Double-real matrix elements

Here we list the expressions for the matrix elements Jlg , jlﬁl ,
jl.i.’ I defined in Eqgs. (51), (52), and (58), that must be inte-
grated to evaluate the double-real contributions. The expres-
sions depend on the case specified by the measurement func-
tion, which determines the choice of the Sudakov directions.
For jlgl I'it is useful to perform a further decomposition to
aid the numerical integration of these contributions, with the

division of terms depending on the case at hand. We have,

u7i§ll =u7l'§lla+u7l'5'11b+x71‘§[[c+x7l‘511d7 (C24)

for cases 1 and 4, while the sum only runs over the a and b
terms for cases 2 and 3.

We note that in the eventual evaluation of these matrix
elements we must restore an overall factor,

F = g stue. (C.25)
according to Egs. (50) and (57).
Appendix C.1: Case 1

Using the relations in Eq. (85) and the transformation of
Eq. (92) we have,

2 2,2 2 2
; Yij s (s = VD + dnst]
1= _ 2
i STN4 [s —11* [+ 1 —8)s)? (€20
i _g Vi S 1S = VDRt 4
YU Tyt s — P el -8 (514 (1 - 6)s]
(C.27)
2
Illa Yij st
ila — e — 2
»711 8 TN4 52 (1-— 5)2 (C 8)
2
i g Yij st(s+1)[2s1 — (s + D)/s1(1 = 23] (C.29)

vt EA=8)Er+ 1 =8)s)(s —1)?

}’,2, 2st

Tyt E2[1 — &1

X((tG(s—t)—l—s 0t —s)) [(f—ﬁ)2+4x\/s7])

Illc _
RER

(s —1)?2
(C.30)
2
mid _ g Yi St
N 8TN4 21 — £
N 2
X<(9(s 1 —6( szz T«[{ Vi) +4M/;’]), (C.31)

We note that since JJI T4 does not depend on A it may be
treated using the phase-space measure in Eq. (87). All other
contributions require the use of Eq. (97) and the further par-
titioning indicated in Eq. (99).

@ Springer

Appendix C.2: Case 2

Using the relations in Eq. (102), the matrix elements are given
by,

2

v

I tj
jij =" Tv*

s212 (1 —s1)?

A= V50 + 4z /5P G+ =P [E+A-8)s)?

(C.32)
2 2.2
Yii st
AI'I =8 2
Ty =8 -
1
) (A — /502 +4zip/st] [Et + (1 — E) [E + (1 — &)s]
(C.33)
gllla _g yizj st |:1_ 1+ st ]
U U Tyt E2(1 - 6)2 (1 — /s1)2 +4z104/5t
(C.34)
glb _ 4 yl‘zj st 1+ st
oo T EA =) [E (= E)s][Er + (1 —&)]
1+ st
v (€39

All contributions may be evaluated using the phase-space
parametrization given in Eq. (103).

Appendix C.3: Case 3

Using the relations in Eq. (106), the matrix elements are given
by,

V2 5
TJh=—8 ik
Y Tt (= Vs0)? + dz12/st]?

[Aix,j (s, §1) — Axij (1, §2)s]?

C.36
. [E1 Ak j (s, p1) + (1 — §)sApi j (1, p2))? [E1 + (1 — &) ( )
’ 2.3
11 _ g Yij ik s°r
i Tyt §(1—§) [Er+ (1 —-8)]
1
* [(1 — V/s1)2 4+ dz12/st] [Et A, j (s, @1) + (1 — E)sAgi, j (., $2)]
(C.37)
glita _ g YiiVik st 1
Y Tt 21— 8)2 Au (s, d1) Awij(t, ¢2)
[ (Aso0 + st ) ©38)
Yik (1 = V/s1)2 4+ 4z12+/s0)
j]”b _ YijYik st3
Y Tnt EL—8) (Et+ (1 — &) (EtAig (s, 1) + (1 — E)sAgi j (t, $2)
2
X{ 1 Aik.j (s, ¢1) 4 Agi j(t, ¢2)
[(1 = V/s1)? + 4z12+/51] Ak j (1, ¢2) Aik,j (s, 1)
SRUy(— ‘ )} C.39
i (Aki,j(1»¢2) T el (€39
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All contributions may be evaluated using the phase-space
parametrization given in Eq. (107).

Appendix C.4: Case 4

in Sect. 3.3, color conservation means that the overall color
factor, C = —T1-T»,is given by either C = C for a quark-
antiquark pair or C = C 4 for a pair of gluons. The O-jettiness
soft function at NLO is thus given by Eq. (37) after setting

g1 _g Y _s* [ (Aki,j (5, $1) = Api,j (1, $2)) [(V5 = V/D)* + i/t
i I (s = OF LIE1 A (5, @) + (1= §)sAki (1, §2)] [ + (1 = §)s]

2
} (C.40)

gl — g Yij ik 5313 [(V/s — V1) + 41/s1] 4
Y Tt (s =060 = &) [EtAki,j (s, 1) + (1 — E)sAgi j (1, p)1[E1 + (1 — &)s]
11 y'zi s’
Illa _ @ ~1 C.42
Ji Tt E2(1 — §)% Api j (s, 9D Ai,j (£, $2) (C42)
Vi 242 — VD? + 40st) 1 1
11y _ _g ik s ((J5 [ ] C.43
i Tyt §2(1—§)? (s —1)? Ak j (s, ¢1) * Ak j(t, ¢2) (€49
glile _ YijYik 53 13 (Vs — «/;)2 + 4A4/st) [2+ Api,j (s, ¢1) Aki,j(t,¢2):|
Y Tyt £ —§) (s —1)? Apij (&, $2) Ak j(s, é1)
X ! (C.44)
(§1Aki j (s, 1) + (1 — §)s Ak, j (1, $2)) (1 + (1 — §)s)
2 3.3
111d yij st 1 1 ]
111d _ _y
i Ty E( —§) I:Aki,j(s7¢l) * Apij(t, $2)
! (C.45)

- (§1Aki j(s, 1) + (1 = §)s Ak j (1, $2)) (61 + (1 = §)s)

The contributions corresponding to Jlgl la and jljl 1d 4o not
depend on A and therefore may be treated using the phase-
space measure in Eq. (110). All other contributions require
the use of both Eq. (112) and the partitioning of Eq. (99).

Appendix D: Results for double-real integrals

Results for the O(¢) coefficient of each of the basic integrals
entering the double-real emission calculation, at a sample
phase-space point, are given in Table 3. These coefficients are
the ones that enter the calculation of the endpoint contribution
to the NNLO soft function and may be useful to the reader
interested in reproducing the results of our calculation.

Appendix E: Analytic result for 0-jettiness at NLO

For LHC kinematics, the O-jettiness case refers to processes
with two initial-state colored partons and no final-state jets
(plus any non-colored final-state particle). The only allowed
leading-order configurations are therefore either a pair of
gluons or a quark-antiquark pair. For the purposes of our
calculation, this means thati, j € {1, 2} and that we need not
consider the phase-space sector F, ,i’ . Moreover, there is no 8-
function involving an angle left in the problem. As discussed

F,fj — 0. The phase-space integrals can then be performed
analytically so that the soft function reads,

S0 g 1 [ T ]—26
el(1—€) To Lnyi2
1 r7o7-2¢[ 1 L?, x?
:40—[—] 4L S T
Tolp |:e+ ]2+€( 2 12)

3 2
+ 62<% LA %) + 0(63):|, (E.46)
where L1> = log yi2. The result in Eq. (E.46) agrees with
Eq. (52) of Ref. [45] after taking into account the different
notation and overall normalization. By performing the expan-
sion of Eq. (71) on the result in Eq. (E.46), and keeping the
physical O(e®) term, we find:

$U = c[ (22— L3,) 8(T0) +4L12 Lo(T) — 8 mm}.
(E.47)
For color-singlet production at the LHC the two initial-state

partons are back-to-back so that yjo = 1 (L1 = 0) and the
soft function simplifies to,

SW = Cl528(To) — 8 L1(To)]. (E.48)
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Table 3 Results for all the double-real integrals at the point yj3 = 0.9
withi = 1, j = 2, and k = 3. The table shows the O(¢) coefficient
of each integral, / @.ij according to the normalization indicated in
Eq. (83). For each case CxIII (x € {1, 2, 3, 4}) the result presented cor-
responds to the sum of the individual pieces according to the subdivision
shown in Sects. Appendix C.1-Appendix C.4 respectively

Case Integral Result

CII G, j) [t 8.083 & 0.001
CIII G, j) P ~17.909 + 0.004
Clllla G, j) Pt 36.374 % 0.005
CIIb (i, ) [P —38.598 £ 0.013
CIIIe G, ) [ttt 98.983 £ 0.014
CITId (i, j) i —67.556 + 0.022
CII (i, j) P 29.203 =+ 0.029
CII(j, i) 1;.]2,)"'“ 3.538 + 0.002
CIII (j, i) 1]?]2.>~"f-1’ —10.015 % 0.006
ClllIa (j, i) e 11.693 4 0.007
CIIIIb (j, i) e —24.216 +£0.017
ClIIIc (f, i) I e 53.675 £ 0.027
CIIId (j, ) e —28.305 £ 0.077
CIIII (j, i) 1;.]2,)"'“” 12.847 + 0.084
C21 (i, j) 1{/.2>~"f-1 —3.395 £ 0.002
C211 (i, j) Al 9.648 + 0.003
C21a (i, ) p e —13.245 +0.028
C21IIb (i, /) 1 19.332 £ 0.015
C2111 (i, j) 1}1.2)”'“ ” 6.087 & 0.032
C31 i, j) 1 ~2.287 £ 0.002
C311 i, ) 12 7.213 £ 0.003
C31lla (i, j) e ~12.019 £ 0.025
C31IIb (i, ) Qe 13.072 £ 0.011
C31II (G, j) AR 1.053 £ 0.027
C31(j, i) 13! 2.244 + 0.002
C311 (J, ) 1}?’”” ! —4.272 4+ 0.005
C3MIa (j, i) Iﬁ)"“”“ 15.539 & 0.034
C3IIIb (J, i) 1;§>~"f~””’ —0.963 £ 0.016
C31IL (j, i) 1t 14.576 + 0.037
C41 (i, j) ! 8.263 + 0.002
C4IL (i, j) 1! —27.980 + 0.006
C4llla (i, j) AR ~36.003 & 0.005
CATIb (i, j) e 305.627 + 0.035
C4lllc @, j) e —55.278 £0.012
CAIIId (i, ) e 2.965 = 0.002
C41I1 (i, j) AR 217.312 4+ 0.037

@ Springer

This result agrees with the literature (c.f. Eq. (173) of
Ref. [57] and Eq. (2.23) of Ref. [58]). The more general
result of Eq. (E.47) can be used for ep or eTe™ processes
with respectively one or two final-state jets.
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