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Abstract We calculate the soft function for the global event
variable 1-jettiness at next-to-next-to-leading order (NNLO)
in QCD. We focus specifically on the non-Abelian contribu-
tion, which, unlike the Abelian part, is not determined by the
next-to-leading order result. The calculation uses the known
general forms for the emission of one and two soft partons
and is performed using a sector-decomposition method that
is spelled out in detail. Results are presented in the form
of numerical fits to the 1-jettiness soft function for LHC
kinematics (as a function of the angle between the incom-
ing beams and the final-state jet) and for generic kinematics
(as a function of three independent angles). These fits rep-
resent one of the needed ingredients for NNLO calculations
that use the N -jettiness event variable to handle infrared sin-
gularities.

1 Introduction

The continued successful operation of the Large Hadron Col-
lider (LHC) has led to the accumulation of a very large
data set with which to study the Standard Model (SM) in
unprecedented detail. The ever-increasing precision of the
experimental analyses has mandated a similar increase in
the precision of the corresponding theoretical predictions.
Over the last few years a concerted effort has been made in
the theoretical community to provide predictions accurate to
next-to-next-to-leading order (NNLO) in QCD. Calculations
that include colored final-state radiation are particularly chal-
lenging. Significant progress in this direction has been made
recently, including the NNLO calculation of the production
of dijets [1,2], V + j [3–9], H + j [10–12], H + 2 j in
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the vector boson fusion process [13], single top [14–16] and
t t [17].

A critical element in the completion of a NNLO calcu-
lation is a manageable way to handle the copious infrared
(IR) singularities present in component pieces of the cal-
culation. These singularities occur in phase spaces of dif-
fering dimensionality, and cancel only when combined in
a suitably-inclusive, IR-safe observable. At NLO the most
widespread solutions use local subtraction terms [18–20]. In
these approaches one subtracts a user-defined set of counter-
terms from a given real-emission matrix element such that the
corresponding combination of matrix element plus counter-
terms is finite in all singly-unresolved IR limits. The counter-
terms are constructed in such a way as to be integrable analyt-
ically over a single unresolved parton; the integrated counter-
terms can then be combined with the virtual one-loop matrix
elements, resulting in an analytic cancellation of IR poles.
The two phase spaces are then both manifestly finite and
can be integrated separately using Monte Carlo integration
techniques.

The construction of a similar subtraction scheme at NNLO
accuracy is a considerably more daunting task. This is primar-
ily due to the presence of one extra unresolved parton with
respect to NLO, yielding multiple overlapping singularities.
Despite its difficulty, a number of subtraction schemes have
been developed and successfully applied to several LHC pro-
cesses [21–25].

Alternatives to local subtraction schemes are possible.
One such method, based on a more global approach, is phase-
space slicing [26]. These methods are simple to implement at
NNLO, particularly if the corresponding NLO process with
one extra parton in the final state is already known. In slic-
ing methods a global parameter is used to divide the phase
space into (at least) two regions. At NNLO the two regions
correspond to the region which includes all of the doubly-
unresolved emissions, and a region which has at most one
singly-unresolved parton. The IR structure in the latter region

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5732-1&domain=pdf
http://orcid.org/0000-0003-2507-0008
mailto:johnmc@fnal.gov
mailto:keith.ellis@durham.ac.uk
mailto:rmondini@buffalo.edu
mailto:ciaranwi@buffalo.edu


 234 Page 2 of 25 Eur. Phys. J. C   (2018) 78:234 

is clearly akin to that obtained in a standard NLO calculation,
and hence this region is amenable to calculation using exist-
ing NLO technology. The success of the method therefore
relies on the ability to calculate the region which contains
doubly-unresolved partons. To this end, factorization theo-
rems are used to calculate the cross section systematically in
this region. The first slicing method applied at NNLO [27]
used the transverse momentum of the final state, qT , as a slic-
ing parameter, and the Collins–Soper–Sterman factorization
theorem [28] to compute the cross section in the region of
small qT . As such, this method is applicable to final states
in which there is no qT associated with colored radiation,
i.e. the production of color-singlet final states. A recently-
developed method [29,30] uses the N -jettiness event-shape
variable TN [31] rather than qT , and a factorization theorem
from Soft-Collinear Effective Field theory (SCET) [32–36].
The theorem states that the cross section in the region of small
TN can be obtained from the following convolution [31,37]

σ (TN < T cut
N ) =

∫
B ⊗ B ⊗ S ⊗ H ⊗

N∏

i=1

Ji +O(T cut
N ).

(1)

Here B represents the beam function, which describes initial-
state collinear radiation, and J the jet function, which
describes final-state collinear radiation. For these two func-
tions, expansions accurate toO(α2

s ) can be found in Refs. [38,
39] and Refs. [40,41] respectively. The term H denotes the
hard function, which is process-specific and finite. Finally, S
represents the soft function, which is the main focus of this
paper. The soft function is defined as the process-independent
soft limit of QCD amplitudes. Of the process-independent
pieces of the factorization theorem, it is by far the most com-
plicated. For color-singlet production processes (which for
the LHC correspond to zero jets in the final state), the soft
function is reasonably simple and analytic expressions are
known [42–44]. When three colored partons are present (1-jet
final states for LHC kinematics), the soft function is consid-
erably more intricate. The calculation of the 1-jettiness soft
function at NLO was presented in Ref. [45]. In Ref. [46],
the NNLO 0-jettiness soft function for one massive colored
particle production was computed.

A method to compute the 1-jettiness soft function numer-
ically to NNLO accuracy was presented in Ref. [42] and the
results of this calculation have since been used to compute
several V + j processes at NNLO [6,7]. However, at present,
there is no publicly-available computation of the 1-jettiness
soft function presented in a form that can be implemented
in an independent Monte Carlo code. The main focus of
Ref. [42] is to provide a methodology of computing the soft
function numerically. Specific results are only presented for
the qg → q configuration, and only in graphical form. Since
the gg → g and qq̄ → g configurations are absent, and due

to the nature of the result presented, it is currently impossible
to implement the 1-jettiness soft function at NNLO directly
from the literature. The primary aim of our paper is to pro-
vide this information via an independent calculation of the
1-jettiness soft function.

Our paper proceeds as follows. In Sect. 2 we provide a
general overview of the calculation. We introduce the N -
jettiness variable TN and present our parametrization of the
phase space. In Sect. 3 we present the formulae for soft parton
emission at NLO and NNLO taken from the literature, paying
particular attention to their color structures. In Sect. 4 we
validate the method by computing the NLO soft function for
the 1-jettiness case and compare the results against known
analytic formulae. In Sect. 5 we discuss our calculation for
the NNLO 0- and 1-jettiness soft functions in detail. In Sect.
6 we present the obtained results and compare them against
the known results in the literature. We draw our conclusions
in Sect. 7.

2 Setup of the calculation

2.1 N -jettiness variable TN

For a parton scattering event the N -jettiness variable TN [31]
is defined as

TN =
∑

m

mini

{
2pi · qm

Pi

}
, (2)

where the subscript N refers to the number of final-state
jets in the scattering event for Born-level kinematics. The
momenta pi are the momenta of the initial-state colored
partons and final-state jets at Born level. For color-singlet
production at the LHC, N = 0 and i ∈ {1, 2}, while for
LHC processes with one jet in the final state N = 1 and
i ∈ {1, 2, 3}. The quantities Pi are dimensionful normal-
ization factors that represent the hardness of the momenta
pi . The qm denote the momenta of final-state radiation. For
single-emission processes (NLO real corrections or NNLO
real-virtual corrections) m = 1, while for double-emission
processes (NNLO double-real corrections) the sum runs over
two terms,m ∈ {1, 2}. For the calculation of the soft function
the eikonal directions are given. By defining dimensionless
versions of the massless momenta pi through p̂i = pi/Pi
and choosing Pi = 2Ei , where Ei is the energy of the par-
ton, we can rewrite TN as

TN =
∑

m

mini
{
2 p̂i · qm

}
. (3)

In units where h̄ = c = 1, TN therefore has the units of mass.
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2.2 Sudakov decomposition

A convenient way of parametrizing the momenta appearing in
the phase-space integrals that enter the calculation of the soft
function is to use a Sudakov decomposition of the momenta
in terms of two of the momenta p̂i that appear in Eq. (3). We
first define a shorthand notation for the quantity that appears
in Eq. (3), namely the projection of a vector q along the
direction of p̂i ,

qx = 2 p̂x · q. (4)

The parton momentum qµ can then be expanded as

qµ = q j p̂µi
yi j

+ qi
p̂µj
yi j

+ qµi j⊥, (5)

where yi j = 2 p̂i · p̂ j and qi j⊥ is transverse to the plane
spanned by p̂i and p̂ j . The Sudakov expansion for p̂k , which
is not one of the Sudakov base vectors, is

p̂µk = p̂µi
y jk
yi j

+ p̂µj
yik
yi j

+ p̂µk⊥. (6)

We can calculate qk , the projection of q on a non-Sudakov
base vector, and obtain

qk = 2q · p̂k = q j yik
yi j

+ qi
y jk
yi j

− 2|qi j⊥|| p̂k⊥| cos φqk, (7)

where φqk is the angle in the transverse plane between q and
p̂k , and

p̂2
k⊥ = yik y jk

yi j
, q2

i j⊥ = qiq j

yi j
. (8)

The ratio of the projection along a non-Sudakov direction k
to the projection along a Sudakov direction i or j is given by,

qk

qi
= y jk

yi j
+ x ji

yik
yi j

− 2

√
x ji yik y jk

y2
i j

cos φqk

= A ji,k(x ji ,φqk), (9)

qk

q j = yik
yi j

+ xi j
y jk
yi j

− 2

√
xi j yik y jk

y2
i j

cos φqk

= Ai j,k(xi j ,φqk), (10)

where xi j = qi/q j . For the case of hadronic collisions where
two of the directions, p̂1 and p̂2, are those of the beams we
have,

p̂1 = 1
2
(1, 0, 0,+1), p̂2 = 1

2
(1, 0, 0,−1), (11)

so that y12 = 1.

We note that this notation follows that of the calculation of
the NLO soft function [45]. It differs from that of Ref. [42],
in which relevant quantities are expressed in terms of pure
directions, ni . Equivalent expressions can be obtained by
making the replacement,

p̂i → ni
2
. (12)

2.3 Measurement function

Written in terms of the projected momenta, the definition of
the N -jettiness is

TN =
∑

m

mini {qim}. (13)

The minimum over i in this equation provides a natural divi-
sion of the phase space for extra emission into regions where
each projection is smallest. For the case of 1-jettiness we
will label the three hard directions as i , j and k. The single-
emission phase space is then partitioned by inserting a mea-
surement function F where,

F = Fi + Fj + Fk, (14)

and Fi corresponds to q1 being closest to direction i so that,
for instance,

Fi = δ
(
TN − qi1

)
θ
(
q j

1 − qi1
)

θ
(
qk1 − qi1

)
. (15)

We note that in the original calculation of the NLO soft func-
tion [45], a further hemisphere decomposition of the mea-
surement function was used to separate the divergent and
finite parts of the calculation. However, we will not pursue
that method for our NNLO calculation. We can extend the
decomposition of F to the double-emission case by writing
the measurement function as,

F =
∑

a,b

Fab, (16)

where the sum runs over the nine combinations of a, b ∈
{i, j, k}. The notation Fab implies that q1 is closest to direc-
tion a and q2 is closest to b with, for example,

Fi j = δ
(
TN − qi1 − q j

2

)
θ
(
q j

1 − qi1
)

θ
(
qk1 − qi1

)

×θ
(
qi2 − q j

2

)
θ
(
qk2 − q j

2

)
. (17)

As it will be explicitly shown in Sect. 3, the integrals that we
have to evaluate in order to calculate the soft function have
an eikonal form in which there are two emitting directions i
and j . We attach the labels of the emitters as superscripts to
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the measurement functions. In this notation we can write out
the decomposition in Eq. (16) explicitly as

Fi j = Fi j
ii + Fi j

j j (case 1)

+ Fi j
i j + Fi j

ji (case 2)

+ Fi j
ik + Fi j

jk + Fi j
ki + Fi j

k j (case 3)

+ Fi j
kk . (case 4) (18)

Each term corresponds to one of four cases [42], as indicated:

1. Both q1 and q2 closest to the same emitting direction;
2. q1 and q2 closest to different emitting directions;
3. One of q1 and q2 closest to an emitter, while the other is

closest to the non-emitting direction k;
4. Both q1 and q2 closest to the non-emitting direction k.

In general, there is one more case where q1 and q2 are closest
to different non-emitting directions k, l, but this is absent in
the 1-jettiness case.

2.4 Phase space – single emission

Let us start by considering the phase space for a single emis-
sion:

PS(1) =
∫

ddq
(2π)d−1 δ+(q2). (19)

Using the Sudakov variables qi and q j defined in Sect. 2.2
above, we can rewrite the integration measure as

ddq = 1
2yi j

dqi dq j dd−2qi j⊥. (20)

The phase space then becomes

PS(1)(i, j) = 1
(2π)d−1

1
2yi j

∫
dqi dq j dΩ(d−2)

×
dq2

i j⊥
2|qi j⊥|

[
q2
i j⊥
] d−3

2
δ

(
qi q j

yi j
− q2

i j⊥

)

= 1
(2π)d−1

1
4yi j

∫
dqi dq j dΩ(d−2)

[
qi q j

yi j

] d
2 −2

,

(21)

where dΩ(d−2) is the (d − 2)-dimensional angular measure.
Setting d = 4 − 2ϵ and using the standard expression for the
angular measure after integrating over unconstrained angles
given in Eq. (A.12), we obtain

PS(1)(i, j) = πϵ

16π3

)(1 − ϵ)

)(1 − 2ϵ)

1

y1−ϵ
i j

×
∫

dqi dq j
[
qiq j

]−ϵ
∫ π

0
dφ sin−2ϵ φ.

(22)

It is convenient to normalize the remaining angular integra-
tion so that it integrates to one using,

Nφ =
∫ π

0
dφ sin−2ϵ φ = 4ϵπ

)(1 − 2ϵ)

)(1 − ϵ)2 . (23)

The final expression for the single-emission phase space is
then,

PS(1)(i, j) =
[

1
16π2

(4π)ϵ

)(1 − ϵ)

]
1

y1−ϵ
i j

×
∫

dqi dq j
[
qiq j

]−ϵ
∫ π

0

dφ

Nφ
sin−2ϵ φ.

(24)

2.5 Phase space – double emission

For the double-emission phase space we employ the same
Sudakov decomposition as the single-emission case and, fol-
lowing the same steps as above, we have

PS(2)(i, j) =
∫

ddq1

(2π)d−1

ddq2

(2π)d−1 δ+(q2
1 )δ

+(q2
2 )

= 1
(2π)2d−2

1

16y2
i j

∫
dqi1 dq j

1 dΩ
(q1)
(d−2)

[
qi1q

j
1

yi j

] d
2 −2

×
∫

dqi2 dq j
2 dΩ

(q2)
(d−2)

[
qi2q

j
2

yi j

] d
2 −2

. (25)

The integral over the transverse space forq1 can be performed
just as in the single-emission case, with the result given in
Eq. (A.12). The integral over the transverse space for q2 is
more complicated since one of the angles cannot be inte-
grated out; the form of the integral is given in Eq. (A.10).
Combining these expressions we arrive at the final form for
the phase space,

PS(2)(i, j) = 1
28π4

[
(4π)ϵ

)(1 − ϵ)

]2 ( 1
yi j

)2−2ϵ

×
∫

dqi1dq
j

1 dq
i
2dq

j
2

[
qi1q

j
1q

i
2q

j
2

]−ϵ

×
∫ π

0

dφ1

Nφ1

sin−2ϵ φ1

∫ π

0

dφ2

Nφ2

sin−2ϵ φ2

×
∫ π

0

dβ
Nβ

sin−1−2ϵ β, (26)
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where

Nβ = −1
ϵ

√
π

)(1 − ϵ)

)( 1
2 − ϵ)

, Nφ1

= Nφ2 = 4ϵπ
)(1 − 2ϵ)

)(1 − ϵ)2 = √
π

)( 1
2 − ϵ)

)(1 − ϵ)
. (27)

3 Soft function and soft radiation

3.1 Soft function

We define the unrenormalized N -jettiness soft function
S̃(TN ) as a perturbative series in powers of the bare strong
coupling αs :

S̃(TN ) = S̃(0)(TN )+
[ αs

2π

]
S̃(1)(TN )

+
[ αs

2π

]2
S̃(2)(TN )+O(α3

s ). (28)

We renormalize the coupling constant by performing the
replacement

αs → αs Zα. (29)

The renormalization factor is given by,

Zα =1−
[ αs

2π

]β0

2ϵ
+O(α2

s ), β0=
11
3
CA− 4

3
TRNF (30)

with CA = 3, TR = 1
2 , NF = 5, and αs ≡ αs(µ) at the

renormalization scale µ. The coefficients of the perturbation
series of the renormalized soft function S(TN ) in terms of
the unrenormalized ones then read:

S(0)(TN ) = S̃(0)(TN )
S(1)(TN ) = S̃(1)(TN )

S(2)(TN ) = −β0

2ϵ
S̃(1)(TN )+ S̃(2)(TN ). (31)

The leading-order contribution is simply S(0)(TN ) = δ(TN ),
since at leading order there is no emitted radiation.

3.2 Soft radiation at NLO

We start by computing the soft function at NLO, which allows
us to illustrate the main features of the method as well. The
result for the NLO soft function is known analytically [45]
and can be used to validate our numerical evaluation. The
NLO corrections to the leading-order soft function are made
up of two different contributions: Born-type processes with
one-loop corrections (“virtual” corrections) and tree-level
processes with the emission of one additional parton (“real”

corrections). The former only contribute at TN = 0. Since we
are considering corrections on massless eikonal lines, there
is no dimensionful quantity to carry the dimension of the
one-loop integrals; their contribution therefore vanishes in
dimensional regularization. The only contribution at NLO is
therefore the one from real radiation.

The form of the squared amplitude representing the emis-
sion of a single soft gluon is well known. Using the same
notation that will be employed at NNLO we can write the
factorization at O(g2) as,

|M(0)(q, p1, . . . , pm)|2 ≃ −g2 Sϵ µ
2ϵ 2

×
m∑

i, j=1

Si j (q) |M(0)
(i, j)(p1, . . . , pm)|2, (32)

c.f. Eq. (12) of Ref. [47]. The eikonal functionSi j (q) is given
by

Si j (q) =
pi · p j

2(pi · q) (p j · q)
= yi j

qiq j . (33)

Note that here we have introduced the normal MS factor Sϵ ,

Sϵ =
(
eγE

4π

)ϵ

, (34)

where γE is the Euler–Mascheroni constant. The emission of
a soft gluon produces color correlations that are indicated in
Eq. (32) by the subscripts i and j in M(0)

(i, j),

|M(0)
(i, j)(p1, . . . , pm)|2 ≡ ⟨M(0)(p1, . . . , pm)

× | T i · T j |M(0)(p1, . . . , pm)⟩. (35)

Factoring out the leading-order amplitude squared we thus
have a simple expression for the soft-gluon approximation,

|M (1)|2 = −4g2µ2ϵSϵ

∑

i< j

T i · T j
yi j
qi q j

≡
∑

i< j

T i · T j |M (1)
i j |2, (36)

where we have limited the sum that appears in Eq. (32) to
i < j and added the consequent factor of two. Introducing
the measurement function of Eq. (14), the total result for the
soft function at NLO is then,
[ αs

2π

]
S̃(1) =

∑

i< j

T i · T j |M (1)
i j |2 PS(1) F

=
∑

i< j

T i · T j |M (1)
i j |2 PS(1)

[
Fi + Fj + Fk

]

=
∑

i< j

T i · T j |M (1)
i j |2

{
PS(1)(i, j)

[
Fi j
i + Fi j

j

]

+PS(1)(k, i)
[
Fi j
k

]}
, (37)
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where, in the last line, we have explicitly indicated the choice
of momenta in the Sudakov decomposition in the phase-
space. The explicit expressions for the quantities in curly
braces in Eq. (37) are given in Eqs. (15) and (24), respectively.
When we evaluate the different contributions in Eq. (37) we
will have two different cases, corresponding to Fi j

i and Fi j
k .

The case Fi j
j can be obtained by relabelling since Si j (q) is

symmetric under i ↔ j .

3.3 Color conservation

The eikonal expressions given above are written using color-
space notation [20]. Using color conservation we have,

∑

j

T j |M⟩ = 0. (38)

Thus for the case of 0-jettiness ( j ∈ {1, 2}) we find that
T2

1 = T2
2 = −T 1 · T2 , whereas for the case of 1-jettiness

( j ∈ {1, 2, 3}) we have T2
1 = −T 1 · T2 − T1 · T3 and cyclic

permutations. For the 1-jettiness case we can write,

T1 · T2 = 1
2

[
T2

3 − T2
1 − T2

2

]

T2 · T3 = 1
2

[
T2

1 − T2
2 − T2

3

]

T3 · T1 = 1
2

[
T2

2 − T2
3 − T2

1

]
. (39)

All products T i · T j can therefore be expressed in terms of
sums of Casimirs T2

i (and vice versa) with

T2
i = CF = 4

3
for i = q, q̄ and T2

i = CA = 3 for i = g. (40)

3.4 Soft radiation at NNLO: real-virtual

As earlier discussed, the virtual diagrams do not contribute
because of scaling arguments, so that at NNLO we are left
with the real-virtual contribution and the double-real contri-
bution (to be considered in the following two sections). Since
the real-virtual corrections involve only one real emission,
the calculation follows closely the NLO case.

The one-loop contribution to the soft-gluon current has
been given in Ref. [47]. Combining Eqs. (23) and (26) of
Ref. [47], the O(g4) real-virtual contribution is,

−
(
gbare µ

ϵ)4
[
⟨M(0)({p}) | J (0)µ (q) · Jµ (1)(q, ϵ) |M(0)({p}) ⟩ + c.c.

]
= g4

4π2 S2
ϵ µ4ϵ (4π)ϵ

ϵ2
)(1 − ϵ)3 )(1 + ϵ)2

)(1 − 2ϵ)

×
{
CA cos(πϵ)

∑

i, j

′ [
Si j (q)

]1+ϵ |M(0)
(i, j)({p})|

2 + 2 sin(πϵ)
∑

i, j,k

′
Ski (q)

[
Si j (q)

]ϵ (
λi j − λiq − λ jq

)
|M(0)

(k,i, j)({p})|
2
}
, (41)

where Si j (q) is given in Eq. (33). The notation
∑′ repre-

sents a sum over values of the indices that are distinct (for
instance for the second term this explicitly means i ̸= j, j ̸=
k, k ̸= i). The calculation of 1-jettiness does not permit such
a contribution from the second term and therefore we do not
consider it further.

The real-virtual contribution is thus,

|M(RV )|2 = g4

2π2 µ
4ϵ S2

ϵ
(4π)ϵ

ϵ2
)(1 − ϵ)3)(1 + ϵ)2

)(1 − 2ϵ)
CA cos(πϵ)

×
∑

i< j

T i · T j

( yi j
qi q j

)1+ϵ

= g4

2π2 µ
4ϵCAS

2
ϵ
(4π)ϵ

ϵ2
)(1 − ϵ)4)(1 + ϵ)3

)(1 − 2ϵ)2)(1 + 2ϵ)

×
∑

i< j

T i · T j

( yi j
qi q j

)1+ϵ

= 2
( αs

2π

)2
µ4ϵ

[
16π2 )(1 − ϵ)

(4π)ϵ

]
CA

ϵ2 BRV
)(1 − 2ϵ)

)(1 − ϵ)2

×
∑

i< j

T i · T j

( yi j
qi q j

)1+ϵ

≡
∑

i< j

T i · T j |M(RV )
i j |2, (42)

where we have used

cos(πϵ) = )(1 − ϵ))(1 + ϵ)

)(1 − 2ϵ))(1 + 2ϵ)
(43)

and extracted an overall factor

BRV = e2γE ϵ)(1 − ϵ)5)(1 + ϵ)3

)(1 − 2ϵ)3)(1 + 2ϵ)

= 1 − 2π2

3
ϵ2 − 14ζ3

3
ϵ3 + π4

15
ϵ4 + O

(
ϵ5
)
. (44)

We have also identified a factor (shown in square brackets in
the third line of Eq. (42)) that will be naturally cancelled by
a corresponding one in the phase space, c.f. Eq. (24).

Finally, we note that the method for calculating this con-
tribution will be very similar to the one used for the NLO
soft function, after the replacement of the integrand factor
yi j/qiq j by [yi j/qiq j ]1+ϵ . For the real-virtual contribution
to the NNLO soft function we therefore have
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[ αs

2π

]2
S̃(2,RV ) =

∑

i< j

T i · T j |M (RV )
i j |2

{
PS(1)(i, j)

×
[
Fi j
i + Fi j

j

]
+ PS(1)(k, i)

[
Fi j
k

]}
.

(45)

3.5 Soft radiation at NNLO: qq emission

Turning now to the double-real emission, we first consider the
radiation of a soft qq̄ pair. The factorization of QCD ampli-
tudes in the double-soft limit has been given in Refs. [48,49].
From Eq. (95) of Ref. [49] we have,

|M(0)(p1, . . . , pm, q1, q2)|2

= g4µ4ϵ S2
ϵ TR ⟨M|

⎛

⎝
m∑

i, j=1

Ii j T i · T j

⎞

⎠ |M⟩. (46)

Using the color identities of Eq. (39), we can rewrite the
result for the matrix element as,

|M(0)(p1, . . . , pm, q1, q2)|2

= −TR ⟨M|

⎛

⎝
∑

i< j

Ui j T i · T j

⎞

⎠ |M⟩, (47)

where the quark eikonal result always appears in the special
combination [42]

Ui j = g4µ4ϵS2
ϵ

[
Ii i + I j j − 2Ii j

]
. (48)

From Eq. (96) of Ref. [49] the soft quark pair production
result for Ii j is

Ii j =
(pi .q1 p j .q2 + p j .q1 pi .q2 − pi .p j q1.q2)

(q1.q2)2 pi .(q1 + q2) p j .(q1 + q2)
. (49)

Inserting this result into Eq. (48), the result for quark pair
emission can be written in terms of two functions

Ui j = g4µ4ϵS2
ϵ

[
J I
i j + J I I

i j

]
, (50)

where

J I
i j = −2

(pi .q1 p j .q2 − p j .q1 pi .q2)
2

(q1.q2)2 [pi .(q1 + q2)]2 [p j .(q1 + q2)]2
, (51)

J I I
i j = 2

pi .p j

q1.q2 pi .(q1 + q2) p j .(q1 + q2)
. (52)

Using Eq. (47), we see that the contribution to the soft func-
tion due to the emission of NF flavors of light quarks is given
by,

[ αs

2π

]2
S̃(2)qq = −TR NF

∑

i< j

T i · T j Ui j PS(2) Fi j , (53)

where Fi j is the measurement function, Eq. (18).

3.6 Soft radiation at NNLO: gg emission

The case of two-gluon emission gives rise to both Abelian and
non-Abelian contributions. The Abelian two-gluon matrix
element squared is given by the product of two single-gluon
currents weighted by a factor of 1

2 . The integrations over
the two emitted momenta factorize, so that the Abelian two-
gluon emission result is determined by the NLO result, and
we will not consider it further.

The result for non-Abelian soft radiation has been given
in Eq. (108) of Ref. [49] and is proportional to

|M(0)(p1, . . . , pm, q1, q2)|2 = −g4µ4ϵ S2
ϵ CA

×⟨M|

⎛

⎝
m∑

i, j=1

Si j (q1, q2) T i · T j

⎞

⎠ |M⟩. (54)

The two-gluon soft function is given in Eq. (109) of Ref. [49],

Si j (q1, q2) = [1 − ϵ] (pi .q1 p j .q2 + pi .q2 p j .q1)

(q1.q2)2 pi .(q1 + q2) p j .(q1 + q2)

− (pi .p j )
2

2 pi .q1 p j .q2 pi .q2 p j .q1

[
2 − (pi .q1 p j .q2 + pi .q2 p j .q1)

pi .(q1 + q2) p j .(q1 + q2)

]

+ pi .p j

2 q1.q2

[
2

pi .q1 p j .q2
+ 2

p j .q1 pi .q2
− 1

pi .(q1 + q2) p j .(q1 + q2)

×
(

4 + (pi .q1 p j .q2 + pi .q2 p j .q1)
2

pi .q1 p j .q2 pi .q2 p j .q1

)]
. (55)

Using color conservation, Eq. (39), it is clear that we only
require the combination,

Ti j = g4µ4ϵS2
ϵ

[
Si i + S j j − 2Si j

]
. (56)

This result can further be decomposed as [42],

Ti j = g4µ4ϵS2
ϵ

[
(1 − ϵ)J I

i j + 2J I I
i j + J I I I

i j

]
(57)

where J I
i j ,J

I I
i j are given in Eqs. (51) and (52) and

J I I I
i j =

(
pi .q1 p j .q2 + p j .q1 pi .q2

pi .(q1 + q2) p j .(q1 + q2)
− 2
)
S(s.o.)(p1, p2)

(58)

S(s.o.)(pi , p j ) =
pi .p j

q1.q2

(
1

pi .q1 p j .q2
+ 1

p j .q1 pi .q2

)

− (pi .p j )
2

pi .q1 pi .q2 p j .q1 p j .q2
. (59)
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Thus the final result for this contribution to the soft function
is

[ αs

2π

]2
S̃(2)gg = CA

∑

i< j

T i · T j Ti j PS(2) S f Fi j (60)

where S f = 1/2 is the statistical factor for the two final-state
gluons, and Fi j is the measurement function, Eq. (18).

4 Soft function at NLO

In this section we will make the contributions shown in
Eq. (37) explicit and then assemble the complete NLO soft
function.

4.1 Phase-space sector Fi j
i

To evaluate this contribution we first perform the change of
variables,

qi = TN ξ, q j = TN ξ/xi j . (61)

The measurement function defined in Eq. (15) then becomes,

Fi = δ(TN (1 − ξ)) θ(TN (1/xi j − 1)) θ(q j (Ai j,k(xi j ,φqk) − xi j )

= 1
TN

δ(1 − ξ)θ(1 − xi j ) θ(Ai j,k(xi j ,φqk) − xi j ) (62)

Parameterizing the phase space given in Eq. (24) using the
same set of variables, Eq. (61), and combining the two gives,

PS(1)(i, j)Fi j
i = 1

16π2

(4π)ϵ

)(1 − ϵ)
TN 1−2ϵ 1

y1−ϵ
i j

×
∫

dξ ξ1−2ϵ

∫ 1

0
dxi j x−2+ϵ

i j

× 1
Nφ

∫ π

0
dφqk sin−2ϵ φqk

×δ(1 − ξ) θ(Ai j,k(xi j ,φqk) − xi j ) (63)

The matrix element from Eq. (36) can be written as,

|M (1)
i j |2 = −4g2 µ2ϵSϵ

yi j
qiq j = −4g2 µ2ϵSϵ

yi j
TN 2ξ2

xi j

(64)

This contribution to the NLO soft function is then,

|M (1)
i j |2PS(1)(i, j)Fi j

i = −
[ αs

2π

] eγE ϵ

)(1 − ϵ)

2
TN

[ TN
µ

√yi j

]−2ϵ

×
∫ 1

0
dxi j x−1+ϵ

i j

× 1
Nφ

∫ π

0
dφqk sin−2ϵ φqk

×θ(Ai j,k(xi j ,φqk) − xi j ) (65)

4.2 Phase-space sector Fi j
k

For this contribution we use the change of variables,

qk = TN ξ, qi = TN ξ/xki , (66)

and note that the projection that enters the matrix element
(q j ) can be related to these through q j = qi Aki, j (xki ,φq j ).
The combination of measurement function and phase space
is trivially related to the expression in Eq. (63) by cyclic
permutation of the labels i, j and k. The matrix element is,

|M (1)
i j |2 = −4g2 µ2ϵSϵ

yi j
qiq j

= −4g2 µ2ϵSϵ
yi j

TN 2ξ2

x2
ki

Aki, j (xki ,φq j )
(67)

which yields the expression for this contribution,

|M (1)
i j |2PS(1)(k, i)Fi j

k

= −
[ αs

2π

] eγE ϵ

)(1 − ϵ)

2
TN

[ TN
µ

√yi j

]−2ϵ ( yi j
yki

)1−ϵ

×
∫ 1

0
dxki xϵ

ki × 1
Nφ

∫ π

0
dφq j

× sin−2ϵ φq j

Aki, j (xki ,φq j )
θ(Aki, j (xki ,φq j ) − xki ). (68)

4.3 0-jettiness

The NLO soft function for 0-jettiness is straightforward to
compute analytically and we need not resort to the numerical
methods that we will employ throughout the rest of this paper.
A short description of this calculation is given in Appendix
E for completeness.

4.4 1-jettiness

In the 1-jettiness case, the calculation of the soft function at
NLO is more involved since one of the θ -functions depends
on an angle and therefore we have to resort to numerical
integrations. In the 1-jettiness case we can have three dif-
ferent leading-order configurations, gg → g, qq̄ → g, and
qg → q, where the configuration determines the color fac-
tors that appear in Eq. (36) through the relations presented
in Sect. 3.3. For the LHC kinematics we define p̂1 and p̂2 as
the directions of the initial-state partons, as in Eq. (11), and
p̂3 as the direction of the final-state parton.

The soft function is given by Eq. (37), where each of
the contributions is evaluated using either Eqs. (65) or (68).
The integrals are evaluated using the sector decomposition
approach [23,50,51]. The term x−1+ϵ

i j in Eq. (65) is expanded
in terms of delta and plus distributions by means of the
relation
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x−1−kϵ = −δ(x)
k ϵ

+
∞∑

n=0

(−k ϵ)n

n!
[ lnn(x)

x

]

+
(69)

where, given a sufficiently-smooth function f (x), the plus
distributions are defined as

∫ 1

0
dx
[ lnn(x)

x

]

+
f (x) =

∫ 1

0
dx

lnn(x)
x

[
f (x) − f (0)

]
.

(70)

After using the expansion and expanding the integrals as
Laurent series in ϵ, the coefficients of the series are obtained
by numerical integration. This integration is straightforward
and has been performed with a Fortran code using double
precision accuracy without, in this case, any additional cuts
for numerical safety.1 The final expression for the soft func-
tion is obtained by expanding the overall factor T −1−2ϵ

1 in
terms of delta and plus distributions,

T −1−kϵ
N = −δ(TN )

k ϵ
+

∞∑

n=0

(−k ϵ)n

n! Ln(TN ) (71)

where Ln(TN ) =
(

lnn(TN )
TN

)

+
. Since the expansion of the

term T −1−2ϵ
1 using Eq. (71) starts at order ϵ−1, we note that

it is necessary to compute all integrals up toO(ϵ). For our pur-
poses, namely the factorized cross section defined in Eq. (1),
we require only the O(ϵ0) part of the renormalized soft func-
tion. The result is then given as the coefficients of δ(T1) and
Ln(T1) with n = 0, 1:

S(1)(TN ) = C−1 δ(TN )+ C0 L0(TN )+ C1 L1(TN ). (72)

We now present the numerical results for the 1-jettiness NLO
soft function. We specialize our calculation for LHC kine-
matics, where we have y12 = 1 and momentum conservation
gives y23 = 1 − y13 so that the result is a function of y13
alone. We compute the soft function for the three channels
(gg → g, qq̄ → g, and qg → q) with 15 different values of
y13:

{0.01, 0.025, 0.05, 0.1, 0.175, 0.25, 0.4, 0.5, 0.6, 0.75,

0.825, 0.9, 0.95, 0.975, 0.99}. (73)

For each channel we compare the coefficients of δ(T1),
L0(T1), and L1(T1) (denoted by Ci with i = −1, 0, 1 in our
notation) with the known analytic results in the literature [45].
We find excellent agreement with the known results for all

1 As an additional check of the methodology and numerical integra-
tion, all of the results in this paper have been cross-checked with two
independent codes.

channels and all coefficients, as demonstrated in Fig. 1. The
agreement is at the level of 0.2% or better.

In Fig. 2 we plot the O(ϵ2) coefficient of the series expan-
sion in ϵ of the soft function before the term T −1−2ϵ

1 has
been written out using Eq. (71). The O(ϵ2) term does not
contribute at NLO once T −1−2ϵ

1 is expanded, but instead
enters the coefficient of δ(T1) in the renormalization contri-
bution to the NNLO soft function, as shown in Eq. (31) and
explained in detail in the next section. Since this contribu-
tion is not available in the literature, we perform a fit of our
numerical results and present the fit here for completeness:

K2,fit(y13) =
3∑

m,n=0

k(m,n) [ln (y13)]m [ln (1 − y13)]n . (74)

The coefficients k(m,n) are collected in Table 1. For the chan-
nels gg → g and qq̄ → g we set k(m,n) = k(n,m) (with
m ̸= n) since these channels are symmetrical in the initial
state.

5 Soft function at NNLO

From Eq. (31) the renormalized N -jettiness soft function at
NNLO, S(2)(TN ), is

S(2)(TN ) = −β0

2ϵ
S̃(1)(TN )+ S̃(2)(TN ). (75)

We have already discussed the calculation of the first term
in Eq. (75) in the previous section, so we now study the
second term in more detail. At NNLO three types of correc-
tions arise: two-loop virtual corrections, one-loop corrections
with one real gluon emission (“real-virtual”), and double-real
corrections, consisting of the emission of qq̄ and gg pairs.
In the latter case, the emission of two gluons is made up
of two diagrammatic contributions: an Abelian contribution,
i.e. two single-gluon currents, and a non-Abelian contribu-
tion, i.e. emission of a gg pair through a three-gluon vertex. In
light of this, and since the virtual two-loop corrections van-
ish in dimensional regularization, we can rewrite the term
S̃(2)(TN ) as the sum of four non-vanishing contributions:

S̃(2)(TN ) = S̃(2)ab (TN )+ S̃(2)RV (TN )+ S̃(2)gg (TN )+ S̃(2)qq (TN )
(76)

with S̃(2)gg (TN ) indicating the non-Abelian part of the double-
real gg corrections. The Abelian term S̃(2)ab (TN ) can be
obtained directly from the NLO soft function thanks to well-
known exponentiation theorems [52,53]. The calculation of
the real-virtual contribution S̃(2)RV (TN ) is conceptually identi-
cal to the calculation of the NLO soft function and has been
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Fig. 1 Numerical results for the 1-jettiness soft function at NLO for the partonic channels gg → g, qq̄ → g, and qg → q. We plot the coefficients
of L1(T1), L0(T1), and δ(T1) as functions of y13 ∈ [0, 1]. The known analytic results are taken from Ref. [45]

described in Sect. 3.4. We therefore spend the remainder of
this section discussing the calculation of the double-real cor-
rections represented by S̃(2)gg (TN ) and S̃(2)qq (TN ). The decom-
position of the relevant eikonal matrix elements into a set of
basis integrals is given in Sects. 3.5 and 3.6 for the qq̄ and
gg cases respectively. We will detail the transformations nec-
essary to render the basis integrals, obtained by combining
the double-emission phase space with the eikonal integrands,
amenable to numerical evaluation. We will provide a num-
ber of illustrative examples of integrals, leaving a complete
enumeration of all contributions to Appendix C.

5.1 Double-real corrections

We first identify a common overall factor that is asso-
ciated with the total angular volume, in the phase-space
parametrization of Eq. (26),

1
NβNφ1 Nφ2

= − ϵ

22ϵπ2

)(1 − ϵ)2

)(1 − 2ϵ)

= − ϵ

22ϵπ2

[)(1 − ϵ)

(4π)ϵ

]2 BRR

S2
ϵ

, (77)
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Fig. 2 Numerical results for the 1-jettiness soft function at NLO for
the partonic channels gg → g, qq̄ → g, and qg → q. We plot the
O(ϵ2) coefficient of the ϵ-expansion of the soft function as a function
of y13 ∈ [0, 1]. Included (but not visible) in the plot are the fitting
uncertainties at the 95% confidence level

where

BRR = e2ϵγE

)(1 − 2ϵ)
= 1 − π2

3
ϵ2 − 8

3
ζ3ϵ

3 + π4

90
ϵ4 + O(ϵ5),

(78)

and Sϵ is given in Eq. (34). We will always be able to triv-
ially rescale one of the angular integrals so that the range of
integration is between zero and one,

∫ π

0
dφ sin−2ϵ φ = π

∫ 1

0
dxφ sin−2ϵ φ, (79)

with φ = πxφ , and the integral over β can be recast in similar
fashion,

∫ π

0
dβ sin−1−2ϵ β = 1

21+2ϵ

∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ,

(80)

by performing the change of variable cos β = 1 − 2xβ . We
thus rewrite Eq. (26) as,

PS(2)(i, j) = − ϵ

29+4ϵ π4

BRR

S2
ϵ

( 1
yi j

)2−2ϵ

×
∫

dqi1dq
j

1 dq
i
2dq

j
2

[
qi1q

j
1q

i
2q

j
2

]−ϵ

×
∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ

×
∫ 1

0
dxφ1 sin−2ϵ φ1

∫ π

0

dφ2

π
sin−2ϵ φ2,

(81)

where we have written the remaining φ2 integral in a form that
anticipates the Jacobian factor that will eventually emerge
as in Eq. (79). Finally, in our eventual evaluation of the xβ

integral we will replace this form with a simpler one in which
singularities can only appear at xβ = 0,2

∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ f (xβ)

=
∫ 1

0
dxβ

[
x−1−ϵ
β (1−xβ)

−ϵ+x−ϵ
β (1 − xβ)

−1−ϵ
]
f (xβ)

=
∫ 1

0

dxβ

xβ

[
xβ(1 − xβ)

]−ϵ[
f (xβ)+ f (1 − xβ)

]
. (82)

As before, we compute the integrals numerically using sector
decomposition and the plus-distribution expansion given in
Eq. (69).

As in the NLO case, the choice of the phase-space
parametrization will depend upon which case is picked out
by the measurement function. We will discuss each of the
cases described in Sect. 2.3 in turn. The combination of the
matrix elements, phase space, and measurement function for
each case will be expressed as,

F J X
i j PS(2) Fi j

ab ≡ Ni j I
(2),i j,X
ab , (83)

where the coupling-associated factor F is defined in
Eq. (C.25). In this equation X labels the division of the
eikonal approximations, Eqs. (51), (52), and (58), and a, b
the different cases. We have extracted an overall factor that
will be universal across all contributions,

Ni j =
( αs

2π

)2 1
TN

[ TN
µ

√yi j

]−4ϵ
. (84)

5.1.1 Case 1: Fi j
ii

The appropriate change of variables for this case is,

qi1 = TN ξ, q j
1 = TN ξ

s
, qi2 = TN (1−ξ), q j

2 = TN (1 − ξ)

t
.

(85)

We then have,
∫

dqi1dq
j

1 dq
i
2dq

j
2 Fi j

ii =
∫

dqi1dq
j

1 dq
j

2 θ
(
q j

1 − qi1
)

θ

×
(
qk1 − qi1

)
θ
(
q j

2 − qi2
)

θ
(
qk2 − qi2

)

= TN 3
∫

dξdsdt
ξ(1 − ξ)

s2t2

2 An alternative procedure [54] is to split the integration range in half,
into [0, 1

2 ) and [ 1
2 , 1], and then remap the second range so that all

singularities are at xβ = 0. This method has been adopted in one of our
codes.
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Table 1 Non-zero coefficients
of the numerical fit of Eq. (74)
for the three partonic
configurations gg → g,
qq̄ → g, and qg → q.
Coefficients not shown here are
understood to be zero

gg → g qq̄ → g qg → q

k(0,0) −7.991 ± 0.056 −10.594 ± 0.053 −2.168 ± 0.213

k(1,0) −14.163 ± 0.045 −11.348 ± 0.047 −6.467 ± 0.196

k(2,0) 1.532 ± 0.016 0.350 ± 0.015 2.099 ± 0.066

k(3,0) 1.086 ± 0.002 1.022 ± 0.002 0.025 ± 0.007

k(0,1) −14.163 ± 0.045 −11.348 ± 0.047 −8.790 ± 0.190

k(0,2) 1.532 ± 0.016 0.350 ± 0.015 0.494 ± 0.062

k(0,3) 1.086 ± 0.002 1.022 ± 0.002 1.009 ± 0.007

×θ(Ai j,k(s,φ1) − s)θ(Ai j,k(t,φ2) − t), (86)

so that the combination of the phase space in Eq. (81) with
the measurement function Fi j

ii yields,

PS(2)(i, j) Fi j
ii = − ϵ

29+4ϵπ4 TN
3−4ϵ BRR

S2
ϵ

( 1
yi j

)2−2ϵ

×
∫ 1

0
dξdsdt[ξ(1 − ξ)]1−2ϵ 1

s2−ϵ t2−ϵ

×
∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ

∫ 1

0
dxφ1 sin−2ϵ φ1

×
∫ π

0

dφ2

π
sin−2ϵ φ2θ(Ai j,k(s,φ1) − s)

×θ(Ai j,k(t,φ2) − t), (87)

where φ1 = πxφ1 . In the simplest case we will be able to
perform a rescaling of φ2 as in Eq. (79). However, in general
this is not true.

The reason for the additional complication is the pres-
ence of the factor q1 · q2 in the eikonal factors Ti j and Ui j .
Although the Sudakov decomposition is very convenient for
describing the other dot products, the expression for this one
is considerably more complicated,

2q1 · q2 = 1
yi j

TN 2ξ(1 − ξ)

st

[
(
√
s −

√
t)2 + 4z12

√
st
]
,

(88)

where z12 = 1
2 (1 − cos φ12) and φ12 is the angle between

q1 and q2. A method for handling this denominator has been
outlined in Refs. [42,55] and we follow this strategy here.
We map z12 to a new variable λ through the relation,

z12 = (
√
s − √

t)2(1 − λ)

(
√
s − √

t)2 + 4λ
√
st
,

1 − z12 = (
√
s + √

t)2λ

(
√
s − √

t)2 + 4λ
√
st
, (89)

or the inverse,

λ = (
√
s − √

t)2 (1 − z12)

(
√
s − √

t)2 + 4z12
√
st
,

λ(1 − λ) = ((s − t)2 z12(1 − z12)

[(√s − √
t)2 + 4z12

√
st]2 . (90)

The Jacobian associated with the transformation from z12 to
λ is,

dz12

dλ
= − (s − t)2

[(√s − √
t)2 + 4λ

√
st]2 . (91)

In terms of the new variable λ we have,

(
√
s −

√
t)2 + 4z12

√
st = (s − t)2

(
√
s − √

t)2 + 4λ
√
st
, (92)

so that

2q1 · q2 = 1
yi j

TN 2ξ(1 − ξ)

st
(s − t)2

(
√
s − √

t)2 + 4λ
√
st
. (93)

Further, from Eq. (89) we have that,

sin2 φ12 = 4z12(1 − z12) = 4
(s − t)2λ(1 − λ)

[(√s − √
t)2 + 4λ

√
st]2 .

(94)

We observe that by means of this change of variable the
collinear singularity q1 · q2 → 0 has been mapped to s → t .
In the presence of this denominator (and associated factor
of z12) we must be careful to ensure that the relevant angles
are handled appropriately. It is convenient to perform the
integration in a rotated frame, c.f. Appendix B. Following
that logic, we replace the measure dβ dφ2 with dβ12 dφ12
and, from Eq. (B.23), relate the angle φ2 to φ1, β12, and φ12
through,

cos φ2 = cos φ1 cos φ12 − sin φ1 sin φ12 cos β12. (95)

The final integral in Eq. (87) then becomes,
∫ π

0

dφ12

π
sin−2ϵ φ12 = 1

π

∫ 1

−1
d(cos φ12) [sin2 φ12]−

1
2 −ϵ

= 2
π

∫ 1

0
dz12 [4z12(1 − z12)]−

1
2 −ϵ
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= 2
π

∫ 1

0
dλ

(s − t)2

[(√s − √
t)2 + 4λ

√
st]2

×
[

4(s − t)2λ(1 − λ)

[(√s − √
t)2 + 4λ

√
st]2

]− 1
2 −ϵ

= 2−2ϵ

π

∫ 1

0
dλ [λ(1 − λ)]−

1
2 −ϵ

× |s − t |1−2ϵ

[(√s − √
t)2 + 4λ

√
st]1−2ϵ

= 2−2ϵ

∫ 1

0
dxφ2 [λ(1 − λ)]−ϵ

× |s − t |1−2ϵ

[(√s − √
t)2 + 4λ

√
st]1−2ϵ

, (96)

where λ = sin2(πxφ2/2). Thus the final form for the phase
space is,

PS(2)(i, j) Fi j
ii = − ϵ

29+6ϵπ4 TN
3−4ϵ BRR

S2
ϵ

( 1
yi j

)2−2ϵ

×
∫ 1

0
dξdsdt[ξ(1 − ξ)]1−2ϵ 1

s2−ϵ t2−ϵ

×
∫ 1

0
dxφ1 sin−2ϵ φ1

∫ 1

0
dxβ12 x−1−ϵ

β12
(1 − xβ12)

−1−ϵ

×
∫ 1

0
dxφ2 (λ(1 − λ))−ϵ |s − t |1−2ϵ

[(√s − √
t)2 + 4λ

√
st]1−2ϵ

×θ(Ai j,k(s,φ1) − s)θ(Ai j,k(t,φ2) − t), (97)

where φ1 = πxφ1 , cos β12 = 1 − 2xβ12 , φ12 is defined
through Eq. (94), and φ2 can be obtained from Eq. (95).

The matrix elements that must be evaluated to compute the
double-real contributions for this case are given in Appendix
C.1. They are expressed in terms of the new variables ξ , s,
and t and to aid in the evaluation of contribution I I I they
have been further subdivided into integrals that are simpler
to compute.

To illustrate a further complication that arises for these
integrals, consider the evaluation of contribution I . Combin-
ing the phase space from Eq. (97) with the matrix element in
Eq. (C.26) we obtain,

I (2),i j,Ii i = BRR 2−6ϵϵ

∫ 1

0
dξdsdt[ξ(1 − ξ)]1−2ϵ

×(st)ϵ |s − t |−1−2ϵ

×
∫ 1

0
dxφ1 sin−2ϵ φ1

∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ

×
∫ 1

0
dxφ2(λ(1 − λ))−ϵ [(√s − √

t)2 + 4λ
√
st]1+2ϵ

[ξ t + (1 − ξ)s]2
×θ(Ai j,k(s,φ1) − s)θ(Ai j,k(t,φ2) − t), (98)

where BRR is given in Eq. (78) and we have removed an over-
all factor of Ni j in the definition of I (2),i j,Ii i , c.f. Eq. (83). In
order to be able to perform the integration, we have to handle

the line singularity associated with the |s − t |−1−2ϵ term.
Following Ref. [42], we do so by partitioning the integral
into two contributions by means of the identity,

1 = θ(s − t)+ θ(t − s). (99)

In the s > t sector we then perform the change of variables

s = x2, t = x2 (1 − x3), (100)

while in the t > s sector we have

t = x2, s = x2 (1 − x3), (101)

such that, in general, all singularities are located at x2 = 0
and x3 = 0. The only complication is that, for the integrand
J I I I b
i j , this procedure also yields singularities at x3 = 1.

However, these are simple to handle by using a simplification
similar to the one in Eq. (82), but carried out for x3. These
transformations are sufficient to treat all of the singularities
in this case.

5.1.2 Case 2: Fi j
i j

The change of variables for this case is,

qi1 = TN ξ, q j
1 = TN ξ

s
, q j

2 = TN (1−ξ), qi2 = TN (1 − ξ)

t
.

(102)

In combination with the measurement function, this results
in a phase-space parametrization that is very similar to the
simplest one for case 1,

PS(2)(i, j) Fi j
i j = − ϵ

29+4ϵπ4 TN
3−4ϵ BRR

S2
ϵ

( 1
yi j

)2−2ϵ

×
∫ 1

0
dξdsdt[ξ(1 − ξ)]1−2ϵ 1

s2−ϵ t2−ϵ

×
∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ

∫ 1

0
dxφ1 sin−2ϵ φ1

×
∫ 1

0
dxφ2 sin−2ϵ φ2 × θ(Ai j,k(s,φ1) − s)

× θ(A ji,k(t,φ2) − t), (103)

where φ1 = πxφ1 and φ2 = πxφ2 . The remaining invari-
ant that enters the matrix elements (given in Appendix C.2)
becomes,
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2q1 · q2 = TN 2ξ(1 − ξ)

styi j

[
(1 −

√
st)2 + 4z12

√
st
]
, (104)

where z12 = 1
2 (1 − cos φ12) and φ12 is obtained from, c.f.

Eq. (B.19),

cos φ12 = cos φ1 cos φ2 + sin φ1 sin φ2 cos β. (105)

This does not require any further reparametrization of the
phase space because factors of 1/q1 · q2 do not lead to sin-
gularities as s, t → 0.

5.1.3 Case 3: Fi j
ik

This case uses the following change of variables, based on a
Sudakov expansion with respect to i and k,

qi1 = TN ξ, qk1 = TN ξ

s
, qk2 = TN (1−ξ), qi2 = TN (1 − ξ)

t
.

(106)

The phase-space parametrization becomes,

PS(2)(i, k) Fi j
ik = − ϵ

29+4ϵπ4 TN
3−4ϵ BRR

S2
ϵ

( 1
yik

)2−2ϵ

×
∫ 1

0
dξdsdt[ξ(1 − ξ)]1−2ϵ 1

s2−ϵ t2−ϵ

×
∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ

∫ 1

0
dxφ1 sin−2ϵ φ1

×
∫ 1

0
dxφ2 sin−2ϵ φ2θ(Aik, j (s,φ1) − s)

× θ(Aki, j (t,φ2) − t), (107)

where φ1 = πxφ1 and φ2 = πxφ2 . Since one of the emitting
lines is no longer one of the vectors in the Sudakov expansion,
more invariants must be defined. The remaining quantities
are,

q j
1 = TN ξ

s
Aik, j (s,φ1), q j

2

= TN (1 − ξ)

t
Aki, j (t,φ2)2q1 · q2

= 1
yik

TN 2ξ(1 − ξ)

st

[
(1 −

√
st)2 + 4z12

√
st
]
, (108)

where z12 = 1
2 (1−cos φ12) and φ12 is again defined through

Eq. (B.19). There are no further singularities to disentangle
in this case, for which all matrix elements are specified in
Appendix C.3.

5.1.4 Case 4: Fi j
kk

We perform the Sudakov expansion with respect to base vec-
tors i and k and then the following change of variables,

qk1 = TN ξ, qi1 = TN ξ

s
, qk2 = TN (1−ξ), qi2 = TN (1 − ξ)

t
.

(109)

After this transformation the phase space parametrization is,

PS(2)(i, k) Fi j
kk = − ϵ

29+4ϵπ4 TN
3−4ϵ BRR

S2
ϵ

( 1
yik

)2−2ϵ

×
∫ 1

0
dξdsdt[ξ(1 − ξ)]1−2ϵ 1

s2−ϵ t2−ϵ

×
∫ 1

0
dxβ x−1−ϵ

β (1 − xβ)
−1−ϵ

∫ 1

0
dxφ1 sin−2ϵ φ1

×
∫ 1

0
dxφ2 sin−2ϵ φ2θ(Aki, j (s,φ1) − s)

×θ(Aki, j (t,φ2) − t). (110)

The other invariants that enter the matrix elements are,

q j
1 = TN ξ

s
Aki, j (s,φ1), q j

2

= TN (1 − ξ)

t
Aki, j (t,φ2)2q1 · q2

= 1
yik

TN 2ξ(1 − ξ)

st

[
(
√
s −

√
t)2 + 4z12

√
st
]
. (111)

Since this denominator takes the same form as the one con-
sidered in case 1, it must be handled in a similar manner.
Explicitly we have,

PS(2)(i, k) Fi j
kk = − ϵ

29+6ϵπ4 TN
3−4ϵ BRR

S2
ϵ

( 1
yik

)2−2ϵ

×
∫ 1

0
dξdsdt[ξ(1 − ξ)]1−2ϵ 1

s2−ϵ t2−ϵ

×
∫ 1

0
dxφ1 sin−2ϵ φ1

∫ 1

0
dxβ12 x−1−ϵ

β12
(1 − xβ12)

−1−ϵ

×
∫ 1

0
dxφ2 (λ(1 − λ))−ϵ |s − t |1−2ϵ

[(√s − √
t)2 + 4λ

√
st]1−2ϵ

×θ(Aki, j (s,φ1) − s)θ(Aki, j (t,φ2) − t), (112)

where the definitions of all the angles are taken over from
case 1.

The matrix elements for this case are given in Appendix
C.3. In the calculation of the contribution J I

i j an additional
subtlety arises. Consider the evaluation of the s > t sector
that appears after the partitioning of Eq. (99). Following the
change of variables in Eq. (100) we have,

I (2),i j,Ikk = BRR 2−6ϵ

(
yik
yi j

)2ϵ

ϵ

×
∫ 1

0
dξdx2dx3[ξ(1 − ξ)]1−2ϵ x2ϵ

2 x−1−2ϵ
3 (1 − x3)

2+ϵ

×
∫ 1

0
dxφ1 sin−2ϵ φ1

∫ 1

0
dxβ x−1−ϵ

β (1 − xβ )
−1−ϵ

∫ 1

0
dxφ2 (λ(1 − λ))−ϵ
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× [(1 − √
1 − x3)

2 + 4λ
√

1 − x3]1+2ϵ

(1 − ξ x3)2 [ξ(1 − x3)Aki, j (x2,φ1)+ (1 − ξ)Aki, j (x2(1 − x3),φ2)]2

× [Aki, j (x2,φ1) − Aki, j (x2(1 − x3),φ2)]2
x2x2

3

×θ[Aki, j (x2,φ1) − x2] θ[Aki, j (x2(1 − x3),φ2) − x2(1 − x3)], (113)

The penultimate line of this equation appears to indicate
that a plus-distribution expansion is required for x2 and
that the x3 integration is too singular as x3 → 0 (i.e.
s → t in the original variables). However, a careful analysis
reveals that neither of these is true. Instead, these additional
denominator factors are actually regulated by the numerator,
[Aki, j (x2,φ1) − Aki, j (x2(1 − x3),φ2)]2. To see that this is
the case we write out the expressions for Aki, j explicitly and
use the relation between the angles in Eq. (95) to find,

Aki, j (x2,φ1) − Aki, j (x2(1 − x3),φ2)

= yi j
yik

x2x3 − 2

√
x2

yi j y jk
y2
ik

(
cos φ1 −

√
1 − x3 cos φ2

)

=
√
x2

yik

[
yi j

√
x2x3 − 2

√
yi j y jk

×
(
(1 −

√
1 − x3 cos φ12) cos φ1

+
√

1 − x3 sin φ1 sin φ12 cos β12

) ]
. (114)

This expression makes it clear that the x2 denominator factor
is harmless. Moreover, we observe that in the limit x3 → 0,

cos φ12 → 1 − 1 − λ

8λ
x2

3 , sin φ12 →
√

1 − λ

2
√

λ
x3, (115)

so that,

Aki, j (x2,φ1) − Aki, j (x2(1 − x3),φ2)

→ x3
√
x2

yik

[

yi j
√
x2

−√
yi j y jk

(

cos φ1 + sin φ1 cos α12

√
1 − λ

λ

)]

(116)

The use of this limit is essential in order to obtain the correct
subtraction of the singularity at x3 = 0.

6 Results

We first make a few observations regarding our numerical
integration procedure. Each contributing integral is com-
puted using VEGAS in double precision. Since many of the
integrals contain square-root singularities, we routinely per-
form remappings to remove such factors and improve the
convergence of the numerical integration,

∫ 1

0

dx√
x

f (x) = 2
∫ 1

0
du f (u2). (117)

Moreover, in order to avoid numerical instability when eval-
uating the double-real integrands extremely close to singu-
larities, we impose a tiny cut on every integration range:

∫ 1

0
dx −→

∫ 1

δ
dx . (118)

We do not observe any sensitivity of our results to reason-
able variations of δ, within Monte Carlo uncertainties, and
choose δ = 10−12 for the final results presented below. We
have additionally checked that running the code in quadru-
ple precision with a cutoff reduced to δ = 10−22 does not
alter the results. In order to provide the reader with an exam-
ple of our raw results, and a point of comparison for an
independent implementation, we present the numerical value
of all double-real integrals at a single phase-space point in
Appendix D. Each integral is typically evaluated with an
uncertainty that is far smaller than one percent, but which
can be at the percent level for a few contributions where the
absolute value is very small. This accuracy is more than suffi-
cient to obtain the NNLO soft function at the level necessary
for phenomenology.

Having described all of the necessary ingredients to per-
form the calculations, we can now present our numerical
results for the 0- and 1-jettiness soft functions at NNLO. In
particular, we focus on the non-Abelian contribution to the
soft functions. Following the notation of Sect. 5, we define
the non-Abelian part of the NNLO soft function as the sum
of four different contributions:

S(2)nab(TN , ϵ) = −β0

2ϵ
S̃(1)(TN )+ S̃(2)RV (TN )+ S̃(2)gg (TN )

+ S̃(2)qq (TN ). (119)

Each individual contribution is computed as explained in the
previous sections. After performing the sum, the non-Abelian
soft function corresponds to the O(ϵ0) contribution to the
total. This is written as

S(2)nab(TN ) = C−1 δ(TN )+ C0 L0(TN )+ C1 L1(TN )
+ C2 L2(TN )+ C3 L3(TN ), (120)

where Cn with n = −1, . . . , 3 are numerical coefficients,
functions of the invariants yi j .

6.1 0-jettiness

Although the calculation of the 1-jettiness soft function is the
focus of this paper, recomputing the 0-jettiness soft function
provides a useful check of a subset of the integrals and of the
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Fig. 3 Numerical results for the non-Abelian part of the 0-jettiness soft
function at NNLO for the partonic channel qq̄ . We plot the coefficients
of δ(T0) and Ln(T0) with n = 0, 3 as functions of y12 ∈ [0, 1]. The
analytic results are taken from Ref. [42]

assembly of the final result. In this case the result is known
analytically [42–44], which we can use to provide a robust
check of our calculation.

We choose to present our results using the color factor CF
(i.e. the partons present at leading order are a quark and an
anti-quark) and compute the coefficients Cn for 15 different
values of y12 (the only invariant in the case of 0-jettiness):

{0.01, 0.025, 0.05, 0.1, 0.175, 0.25, 0.4, 0.5, 0.6, 0.75,

0.825, 0.9, 0.95, 0.975, 0.99}. (121)

The gg channel is obtained by simply rescaling by a factor
CA/CF . A comparison of our numerical evaluation of the
NNLO soft function with the analytic results, for the values
of y12 above, is shown in Fig. 3. Apart from regions where
the soft functions are very close to zero, the numerical and
analytic results agree perfectly, at the level of a few per-mille
or better.

6.2 1-jettiness

We present the non-Abelian contribution to the 1-jettiness
soft function. As in the NLO case, we specialize our calcula-
tion for LHC kinematics. The coefficients Cn are functions
of y13 only since y12 = 1 and y23 = 1− y13. We compute the
coefficients Cn for the three different partonic configurations
(gg → g, qq̄ → g, and qg → q) and for 21 different values
of y13:

{0.00375, 0.005, 0.01, 0.015, 0.025, 0.05, 0.1, 0.175, 0.25,

0.4, 0.5, 0.6, 0.75, 0.825, 0.9, 0.95, 0.975, 0.985,

0.99, 0.995, 0.99625}. (122)

The coefficients C0–C3 are known analytically and can
be derived, for instance, from renormalization group con-
straints [30,42,45]. They therefore provide a useful check of
our calculation, particularly in the case ofC0, which receives
contributions from all the basis integrals and expansions that
must be performed for C−1. Our results are shown in Fig. 4
and indicate that, as at NLO, the numerical integration is
accurate to the per-mille level when compared with the ana-
lytic results for C0–C3.

The calculation of the endpoint contribution C−1 is the
central result of this paper. Our results for this contribution
are shown separately in Fig. 5, for each of the three con-
figurations. We have performed fits to our results using the
functional form,

C−1,fit(y13) =
3∑

m,n=0

c(m,n) [ln (y13)]m [ln (1 − y13)]n ,

(123)

and these fits are also shown in the figure. Uncertainties on
the fits are estimated at the 95% confidence level, and are
plotted in the figure (they essentially correspond to the line
thickness). The fits provide a very good description of the
endpoint coefficient and are far more efficient for subse-
quent evaluation of the soft function. The values of the fit
coefficients of Eq. (123) for the three cases are collected
in Table 2. For the channels gg → g and qq̄ → g we
set c(m,n) = c(n,m) (with m ̸= n). We have tested the fits
using randomly-generated phase-space points for compari-
son, i.e. with randomly-generated values for y13 ∈ [0, 1]
(obtained in our case using Mathematica [56]). Within their
respective MC uncertainties, every event agrees with the pre-
diction from the fits. When the MC uncertainties are small
the agreement is within 0.5%, while for points for which
the coefficients are close to zero the MC uncertainties are
significantly larger and the agreement is at the few percent
level.

To assess the overall impact of the corrections to the soft
function, in Fig. 6 we show the NLO contribution along with
the Abelian and non-Abelian pieces of the NNLO contribu-
tion. It is clear that the Abelian pieces are significantly larger
than the non-Abelian pieces over the entire phase space for
each partonic configuration. This can be readily understood
from the analytic structures of the two pieces. The δ(T1)

coefficient of the Abelian part arises from the convolution
of the NLO result with itself, and therefore it has two con-
tributing parts. Firstly, there is the “pure” δ(T1) piece, which
arises from the δ(T1) coefficient of the NLO soft function
squared. This term is comparable to the non-Abelian part
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Fig. 4 Numerical results for the non-Abelian part of the 1-jettiness soft function at NNLO for the partonic channels gg → g, qq̄ → g, and qg → q.
We plot the coefficients of δ(T1) and Ln(T1) with n = 0, 3 as functions of y13 ∈ [0, 1]. The analytic results are taken from Refs. [30,42,45]

in size. Secondly, there are mixed contributions which arise
from convolutions of the form

(Lm ⊗ Ln)(T ) ≡
∫

dT ′Lm(T ′ − T )Ln(T ′)

= Vmn
−1 δ(T )+

m+n+1∑

k=0

Vmn
k Lk(T ) (124)

where the coefficients Vmn
k can be found, for instance, in

Table 1 of Ref. [30], and are roughly O(1). After both con-
tributions are combined together the dominant part of the

total coefficient is determined by the V 01
−1C0C1 term. Such a

term is not present in the non-Abelian calculation.

6.3 Generic kinematics

Finally, we compute the non-Abelian part of the 1-jettiness
soft function at NNLO with generic kinematics, i.e. for the
case where the scattering process has three colored partons
at Born level, but where two of them do not represent the
directions of incoming beams (as is the case for LHC kine-
matics). We parametrize the three directions p̂1, p̂2, and p̂3
as
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Fig. 5 Numerical results and fitted form for the coefficient of δ(T1) in
the three partonic configurations as a function of y13 ∈ [0, 1]. Included
in the plot are the fitting uncertainties at the 95% confidence level

Table 2 Non-zero coefficients of the numerical fit of Eq. (123) for
the three partonic configurations gg → g, qq̄ → g, and qg → q.
Coefficients not shown here are understood to be zero

gg → g qq̄ → g qg → q

c(0,0) 63.187 ± 0.903 42.357 ± 0.786 39.101 ± 0.698

c(1,0) 33.599 ± 0.779 25.158 ± 0.678 13.726 ± 0.615

c(2,0) −11.056 ± 0.227 −9.100 ± 0.197 −2.737 ± 0.186

c(3,0) −2.273 ± 0.021 −2.158 ± 0.019 0.016 ± 0.018

c(0,1) 33.599 ± 0.779 25.158 ± 0.678 25.591 ± 0.602

c(0,2) −11.056 ± 0.227 −9.100 ± 0.197 −8.749 ± 0.177

c(0,3) −2.273 ± 0.021 −2.158 ± 0.019 −2.126 ± 0.017

p̂1 = 1
2
(1, 0, 0, 1)

p̂2 = 1
2
(1, 0, sin θ2, cos θ2)

p̂3 = 1
2
(1, sin φ sin θ3, cos φ sin θ3, cos θ3), (125)

with θ2, θ3 ∈ [0,π ] and φ ∈ [0, 2π ]. For the invariants yi j
(with i, j ∈ {1, 2, 3}) we therefore explicitly have

y12 = 1
2
(1 − cos θ2)

y13 = 1
2
(1 − cos θ3)

y23 = 1
2
(1 − cos φ sin θ2 sin θ3 − cos θ2 cos θ3). (126)

We observe that with this parametrization the LHC limit is
recovered by setting φ = 0 and θ2 = π . We compute the
coefficients Cn of the non-Abelian part of the soft function
for the three different partonic configurations (ggg, qq̄g, and
qgq) by choosing 200 random values for θ2, θ3, and φ. We
then perform numerical fits to our results for the coefficient

of δ(T1), C−1. The functional form of the fits is taken to
be

Cgen
−1,fit(y12, y13, y23)=

3∑

k,m,n=0

c(k,m,n) [ln (y12)]k [ln (y13)]m

× [ln (y23)]n . (127)

In order to obtain accurate fits, we retain all 64 coeffi-
cients in Eq. (127) for each partonic channel. The val-
ues of the coefficients c(k,m,n) for the three cases are col-
lected in ancillary files that we include in the arXiv submis-
sion.

We can test the validity of the generic fits by ensuring that
they correctly reproduce the dedicated LHC fits obtained in
Sect. 6.2 when choosing y12 = 1 and y23 = 1 − y13 in
Eq. (127). We therefore define the following ratio

Rfit(y13) =
Cab

−1(y13)+ Cgen
−1,fit(1, y13, 1 − y13)

Cab
−1(y13)+ C−1,fit(y13)

. (128)

In the above equation Cab
−1(y13) represents the δ(T1) coeffi-

cient of the Abelian part of the soft function (evaluated for
LHC kinematics). We have added it to the numerator and
denominator such that Rfit compares the total NNLO δ(T1)

coefficients using the two different fits. This combination
is the only one that is relevant for phenomenological appli-
cations. In addition, since C−1 vanishes for certain values
of y13, the sum of Abelian and non-Abelian pieces helps to
ensure that the ratio is not dominated by the regions in which
one of the fits is close to zero. The ratios of the two fits are
shown in the left panel of Fig. 7. By inspecting Fig. 7 we see
that for the ggg and qq̄g channels the generic fit reproduces
the dedicated LHC fit to better than 1%. On the other hand,
the qgq channel is poorly behaved in the region y13 ∼ 0.15.
This is due to the vanishing of both the Abelian and the non-
Abelian pieces in this region, which causes large sensitivity
to fitting uncertainties. Away from this region the general fit
does a good job (within 1%) at reproducing the dedicated
LHC fit.

Additionally, as in the LHC case, we can test the fits by
generating random phase-space points and comparing the
numerical results of the non-Abelian piece with the pre-
dicted values from the corresponding fits. In this case we per-
form the comparison by generating 450 phase-space points
(i.e. 450 random values for θ2, θ3, and φ) and plotting the
ratios between fit and numerical values as histograms. The
results are shown in the right panel of Fig. 7. We observe that
for all three channels the histograms are well-centered around
the value of 1. In particular, the values obtained with the fit
lie within 2% of a dedicated calculation of a configuration
for 74, 75, and 74% of the total number of random phase-
space points respectively (ggg, qq̄g, and qgq), and within
5% for 87, 88, and 88% of the phase-space points. Similarly
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Fig. 6 The NLO and NNLO contributions to the soft function, shown for a notional value of αs/(2π) = 0.05

Fig. 7 Left panel: ratio between the LHC limit of the fits of Eq. (127)
and the fits of Eq. (123) for the three partonic channels. The ratio Rfit has
been defined in Eq. (128). Right panel: ratio between predicted values

from the fits and obtained numerical results for 450 randomly-generated
phase-space points in the generic kinematics case
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to the LHC case, the agreement between fitted and numerical
values is better for points with smaller MC uncertainties and
coefficients that are not close to zero. We therefore believe
that the fits of Eq. (127), which are valid for non-LHC kine-
matics, could be successfully used, for instance, in ep and
e+e− applications.

7 Conclusions

In this paper we have presented a calculation of the next-
to-next-to leading order (NNLO) 1-jettiness soft function.
The soft function is a component part of NNLO calcula-
tions which employ slicing methods based on the N -jettiness
global event shape variable. In particular, this function is a
required piece of the calculation of differential pp → X + j
type processes at NNLO, in which X represents a color sin-
glet, for instance a single vector boson.

Our calculation bears the traditional hallmarks of NNLO
calculations in regards to its complexity in unresolved limits.
In order to deal with these issues we have employed a numeri-
cal approach which uses sector decomposition of the relevant
phase-space integrals to disentangle overlapping singulari-
ties present at this order. In order to ensure the correctness of
our results we have implemented two completely indepen-
dent computational codes, and validated them against one
another. We have further validated our results by recomput-
ing the known 0-jettiness and 1-jettiness results at NNLO
and NLO accuracy respectively. As a final validation of our
results we have checked the known analytic pieces of the
1-jettiness soft function at NNLO that can be derived from
renormalization group arguments. The primary result of our
calculation is a numerical determination of the δ(T1) end-
point contribution, which cannot be deduced from the RGE’s
alone. We have computed this contribution for LHC kine-
matics (scattering processes with two back-to-back partons
and one final-state jet at Born level) and for generic kine-
matics (three colored partons at leading order). In order to
disseminate our results we have produced polynomial fits to
the results of our numerical integration for both configura-
tions. We have additionally checked both fits using randomly-
generated phase-space points, and find excellent agreement
with our Monte Carlo output.

Our fits represent the first such results presented in the lit-
erature. A previous calculation of the 1-jettiness soft function
at NNLO for LHC kinematics has been published [42]. It does
not contain the information required to implement the results
in a standalone Monte Carlo program. We therefore believe
our calculation, and the corresponding numerical fits, will be
useful for those interested in applying jettiness-slicing and
subtraction methods to NNLO calculations where three col-
ored particles are present. Further applications of this method
are certainly possible in future, for instance to analyze a vari-

ety of global event shape definitions or to increase the number
of partonic scatters under consideration, such as in the cal-
culation of the 2-jettiness soft function at NNLO. We leave
such applications to a future study.
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Appendix A: Dimensional regularization

A d-dimensional Euclidean integral may be written as,
∫

ddκ f (κ2) =
∫

d|κ| f (κ2) |κ|d−1 sind−2 θd−1 sind−3 θd−2 . . .

× sin θ2 dθd−1dθd−2 . . . dθ2dθ1. (A.1)

The range of the angular integrals is 0 ≤ θi ≤ π except
for 0 ≤ θ1 ≤ 2π . Eq. (A.1) is best proved by induction.
Assuming that it is true for ad-dimensional integral, in (d+1)
dimensions we can write,
∫

dd+1κ =
∫

dκd+1 ddκ (A.2)

=
∫

dκd+1 d|κ| |κ|d−1 sind−2 θd−1 sind−3

×θd−2 . . . sin θ2 dθd−1dθd−2 . . . dθ2dθ1

(A.3)

The d-dimensional length, κ , can be written in terms of the
(d + 1)-dimensional length, ρ, as

κd+1 = ρ cos θd

|κ| = ρ sin θd . (A.4)

Changing variables to ρ and θd we recover the (d + 1)-
dimensional version of Eq. (A.1).

For our particular case at hand we have d → d − 2:
∫

dd−2κ = 1
2

∫
d|κ2| |κ2| (d−4)

2 dΩd−2 (A.5)
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∫
dΩd−2 =

∫
sind−4 θd−3 sind−5 θd−4 . . .

× sin θ2 dθd−3dθd−4 . . . dθ2dθ1. (A.6)

A (d − 2)-dimensional vector can be written as,

(cos θd−3n̂ϵ; sin θd−3 sin θd−4, sin θd−3 cos θd−4), (A.7)

where the components before the semi-colon are the extra-
dimensional pieces and the vectornϵ is a unit vector in the first
extra dimension. We arrive at this frame by setting θi = π/2
for i = 1, d−5. Let us choose vectors in the transverse plane
given by

q1 ⊥ = q1 ⊥(0; sin(φ1), cos(φ1))

q2 ⊥ = q2 ⊥(cos(φ2)n̂ϵ; sin(φ2) sin(β), sin(φ2) cos(β))

(A.8)

so that for q1 we have set θd−3 = π/2, θd−4 = φ1 and for q2
we set θd−3 = φ2, θd−4 = β. The integral over unconstrained
angles is,

∫ 2π

0
dθ1

∫ π

0
sind−6 θd−5 . . . sin θ2 dθd−5 . . . dθ2

= 2π
(
√

π)d−6

)( d−4
2 )

(A.9)

so that, after integrating over them, we get the following
expression

dΩd−2 = − 2ϵ

πϵ )(1 − ϵ)

∫ π

0
dφ2 sin−2ϵ φ2

∫ π

0
dβ sin−1−2ϵ β

= 2π1−ϵ

)(1 − ϵ)

∫ π

0

dφ2

Nφ
sin−2ϵ φ2

∫ π

0

dβ
Nβ

sin−1−2ϵ β,

(A.10)

where

Nβ = −1
ϵ

√
π

)(1 − ϵ)

)( 1
2 − ϵ)

,

Nφ = 4ϵπ
)(1 − 2ϵ)

)(1 − ϵ)2 = √
π

)( 1
2 − ϵ)

)(1 − ϵ)
. (A.11)

By performing the integration over β we get

dΩd−2 = 2
√

π
1

πϵ )( 1
2 − ϵ)

∫ π

0
dφ2 sin−2ϵ φ2

= 2
(4π)ϵ

)(1 − ϵ)

)(1 − 2ϵ)

∫ π

0
dφ2 sin−2ϵ φ2

= 2π1−ϵ

)(1 − ϵ)

∫ π

0

dφ2

Nφ
sin−2ϵ φ2. (A.12)

Using the standard result,

∫ π

0
dφ sind φ = √

π
)( d+1

2 )

)( d+2
2 )

, (A.13)

the total volume of angular integration is

Ωd−2 = 2π

)(1 − ϵ)πϵ
. (A.14)

Appendix B: Rotational invariance of the solid angle inte-
gral measure

Perform an angle-radius decomposition of the coordinates

x1 = r cos φ2

x2 = r sin φ2 cos β

xϵ = r sin φ2 sin β (B.15)

where xϵ is a coordinate in the transverse plane beyond the
usual two. Hence

dx1 dx2 dxϵ = r2 dr sin φ2 dφ2 dβ. (B.16)

Now perform a rotation about the ϵ-axis by an angle φ1:

x ′
1 = r(cos β sin φ1 sin φ2 + cos φ1 cos φ2 )

x ′
2 = r(cos β cos φ1 sin φ2 − sin φ1 cos φ2 )

x ′
ϵ = r(sin β sin φ2 ). (B.17)

These coordinates can also be parametrized by introducing
new angles,

x ′
1 = r cos φ12

x ′
2 = r sin φ12 cos β12

x ′
ϵ = r sin φ12 sin β12. (B.18)

Comparing the two parametrizations, we note that

cos φ12 = cos φ1 cos φ2 + cos β sin φ1 sin φ2, (B.19)

sin φ12 sin β12 = sin φ2 sin β (B.20)

Calculating the solid element, we see that

dx ′
1 dx

′
2 dx

′
3 = r2drdφ12 sin φ12 dβ12 (B.21)

≡ r2drdφ2 sin φ2 dβ, (B.22)

as can be shown by explicitly calculating the Jacobian for
the transformation. However, after the change of variables
{φ2,β} → {φ12,β12}, we must be sure to express all depen-
dence on φ2,β in terms of φ12 and β12,

cos φ2 = cos φ1 cos φ12 − sin φ1 sin φ12 cos β12. (B.23)
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Appendix C: Double-real matrix elements

Here we list the expressions for the matrix elementsJ I
i j ,J

I I
i j ,

J I I I
i j , defined in Eqs. (51), (52), and (58), that must be inte-

grated to evaluate the double-real contributions. The expres-
sions depend on the case specified by the measurement func-
tion, which determines the choice of the Sudakov directions.
For J I I I

i j it is useful to perform a further decomposition to
aid the numerical integration of these contributions, with the
division of terms depending on the case at hand. We have,

J I I I
i j = J I I I a

i j + J I I I b
i j + J I I I c

i j + J I I I d
i j , (C.24)

for cases 1 and 4, while the sum only runs over the a and b
terms for cases 2 and 3.

We note that in the eventual evaluation of these matrix
elements we must restore an overall factor,

F = g4S2
ϵµ

4ϵ . (C.25)

according to Eqs. (50) and (57).

Appendix C.1: Case 1

Using the relations in Eq. (85) and the transformation of
Eq. (92) we have,

J I
i j = −8

y2
i j

TN
4

s2t2

[s − t]2
[(√s − √

t)2 + 4λ
√
st]2

[ξ t + (1 − ξ)s]2 (C.26)

J I I
i j = 8

y2
i j

TN
4

s2t2

[s − t]2
1

ξ [1 − ξ ]
[(√s − √

t)2 + 4λ
√
st]

[ξ t + (1 − ξ)s]
(C.27)

J I I I a
i j = 8

y2
i j

TN
4

st
ξ2 (1 − ξ)2 (C.28)

J I I I b
i j = 8

y2
i j

TN
4

st (s + t)
[
2st − (s + t)

√
st(1 − 2λ)

]

ξ(1 − ξ)(ξ t + (1 − ξ)s)(s − t)2 (C.29)

J I I I c
i j = −8

y2
i j

TN
4

2st
ξ2[1 − ξ ]2

×
((t θ(s − t)+ s θ(t − s)

)
[(√s − √

t)2 + 4λ
√
st]

(s − t)2

)

(C.30)

J I I I d
i j = −8

y2
i j

TN
4

st
ξ2[1 − ξ ]2

×
( (θ(s − t) − θ(t − s)) [(√s − √

t)2 + 4λ
√
st]

(s − t)

)
. (C.31)

We note that since J I I I a
i j does not depend on λ it may be

treated using the phase-space measure in Eq. (87). All other
contributions require the use of Eq. (97) and the further par-
titioning indicated in Eq. (99).

Appendix C.2: Case 2

Using the relations in Eq. (102), the matrix elements are given
by,

J I
i j = −8

y2
i j

TN
4

× s2 t2 (1 − st)2

[(1 − √
st)2 + 4z12

√
st]2 [ξ t + (1 − ξ)]2 [ξ + (1 − ξ)s]2

(C.32)

J I I
i j = 8

y2
i j

TN
4

s2t2

ξ(1 − ξ)

× 1

[(1 − √
st)2 + 4z12

√
st] [ξ t + (1 − ξ)] [ξ + (1 − ξ)s]

(C.33)

J I I I a
i j = 8

y2
i j

TN
4

st
ξ2(1 − ξ)2

[
1 − 1 + st

(1 − √
st)2 + 4z12

√
st

]

(C.34)

J I I I b
i j = 4

y2
i j

TN
4

st
ξ(1 − ξ)

1 + st
[ξ + (1 − ξ)s] [ξ t + (1 − ξ)]

×
[

1 + st

(1 − √
st)2 + 4z12

√
st

− 1
]
. (C.35)

All contributions may be evaluated using the phase-space
parametrization given in Eq. (103).

Appendix C.3: Case 3

Using the relations in Eq. (106), the matrix elements are given
by,

J I
i j = −8

y2
ik

TN
4

s2 t4

[(1 − √
st)2 + 4z12

√
st]2

× [Aik, j (s,φ1) − Aki, j (t,φ2)s]2
[ξ t Aik, j (s,φ1)+ (1 − ξ)s Aki, j (t,φ2)]2 [ξ t + (1 − ξ)]2 (C.36)

J I I
i j = 8

yi j yik
TN

4
s2t3

ξ(1 − ξ) [ξ t + (1 − ξ)]

× 1

[(1 − √
st)2 + 4z12

√
st] [ξ t Aik, j (s,φ1)+ (1 − ξ)s Aki, j (t,φ2)]

(C.37)

J I I I a
i j = 8

yi j yik
TN

4
st2

ξ2(1 − ξ)2

1
Aik, j (s,φ1) Aki, j (t,φ2)

×

⎡

⎣ yi j
yik

−

(
Aik, j (s,φ1)+ s Aki, j (t,φ2)

)

((1 − √
st)2 + 4z12

√
st)

⎤

⎦ (C.38)

J I I I b
i j = 4

yi j yik
TN

4
st3

ξ(1 − ξ) (ξ t + (1 − ξ)) (ξ t Aik, j (s,φ1)+ (1 − ξ)s Aki, j (t,φ2)

×
{

1

[(1 − √
st)2 + 4z12

√
st]

[√
Aik, j (s,φ1)

Aki, j (t,φ2)
+ s

√
Aki, j (t,φ2)

Aik, j (s,φ1)

]2

− yi j
yik

(
1

Aki, j (t,φ2)
+ s

Aik, j (s,φ1)

)}
. (C.39)
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All contributions may be evaluated using the phase-space
parametrization given in Eq. (107).

Appendix C.4: Case 4

J I
i j = −8

y2
ik

TN 4
s4t4

(s − t)4

[
(Aki, j (s,φ1) − Aki, j (t,φ2)) [(

√
s − √

t)2 + 4λ
√
st]

[ξ t Aki, j (s,φ1)+ (1 − ξ)s Aki, j (t,φ2)] [ξ t + (1 − ξ)s]

]2

(C.40)

J I I
i j = 8

yi j yik
TN 4

s3t3

(s − t)2 ξ(1 − ξ)

[(√s − √
t)2 + 4λ

√
st]

[ξ t Aki, j (s,φ1)+ (1 − ξ)s Aki, j (t,φ2)][ξ t + (1 − ξ)s] (C.41)

J I I I a
i j = 8

y2
i j

TN 4
s2t2

ξ2(1 − ξ)2 Aki, j (s,φ1)Aki, j (t,φ2)
(C.42)

J I I I b
i j = −8

yi j yik
TN 4

s2t2

ξ2(1 − ξ)2

(
(
√
s − √

t)2 + 4λ
√
st
)

(s − t)2

[
1

Aki, j (s,φ1)
+ 1

Aki, j (t,φ2)

]
(C.43)

J I I I c
i j = 4

yi j yik
TN 4

s3 t3

ξ(1 − ξ)

((
√
s − √

t)2 + 4λ
√
st)

(s − t)2

[
2 + Aki, j (s,φ1)

Aki, j (t,φ2)
+ Aki, j (t,φ2)

Aki, j (s,φ1)

]

× 1(
ξ t Aki, j (s,φ1)+ (1 − ξ)s Aki, j (t,φ2)

)
(ξ t + (1 − ξ)s)

(C.44)

J I I I d
i j = −4

y2
i j

TN 4
s3t3

ξ(1 − ξ)

[
1

Aki, j (s,φ1)
+ 1

Aki, j (t,φ2)

]

× 1(
ξ t Aki, j (s,φ1)+ (1 − ξ)s Aki, j (t,φ2)

)
(ξ t + (1 − ξ)s)

. (C.45)

The contributions corresponding to J I I I a
i j and J I I I d

i j do not
depend on λ and therefore may be treated using the phase-
space measure in Eq. (110). All other contributions require
the use of both Eq. (112) and the partitioning of Eq. (99).

Appendix D: Results for double-real integrals

Results for the O(ϵ) coefficient of each of the basic integrals
entering the double-real emission calculation, at a sample
phase-space point, are given in Table 3. These coefficients are
the ones that enter the calculation of the endpoint contribution
to the NNLO soft function and may be useful to the reader
interested in reproducing the results of our calculation.

Appendix E: Analytic result for 0-jettiness at NLO

For LHC kinematics, the 0-jettiness case refers to processes
with two initial-state colored partons and no final-state jets
(plus any non-colored final-state particle). The only allowed
leading-order configurations are therefore either a pair of
gluons or a quark-antiquark pair. For the purposes of our
calculation, this means that i, j ∈ {1, 2} and that we need not
consider the phase-space sector Fi j

k . Moreover, there is no θ -
function involving an angle left in the problem. As discussed

in Sect. 3.3, color conservation means that the overall color
factor,C = −T 1 ·T2, is given by eitherC = CF for a quark-
antiquark pair orC = CA for a pair of gluons. The 0-jettiness
soft function at NLO is thus given by Eq. (37) after setting

Fi j
k → 0. The phase-space integrals can then be performed

analytically so that the soft function reads,

S̃(1) = 4C
eγE ϵ

ϵ )(1 − ϵ)

1
T0

[ T0

µ
√
y12

]−2ϵ

= 4C
1
T0

[T0

µ

]−2ϵ
[

1
ϵ
+ L12 + ϵ

( L2
12

2
− π2

12

)

+ ϵ2
( L3

12

6
− π2

12
L12 − ζ3

3

)
+O(ϵ3)

]
, (E.46)

where L12 = log y12. The result in Eq. (E.46) agrees with
Eq. (52) of Ref. [45] after taking into account the different
notation and overall normalization. By performing the expan-
sion of Eq. (71) on the result in Eq. (E.46), and keeping the
physical O(ϵ0) term, we find:

S̃(1) = C
[ (

ζ2 − L2
12

)
δ(T0)+ 4L12 L0(T0) − 8L1(T0)

]
.

(E.47)

For color-singlet production at the LHC the two initial-state
partons are back-to-back so that y12 = 1 (L12 = 0) and the
soft function simplifies to,

S̃(1) = C [ζ2 δ(T0) − 8L1(T0)] . (E.48)
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Table 3 Results for all the double-real integrals at the point y13 = 0.9
with i = 1, j = 2, and k = 3. The table shows the O(ϵ) coefficient
of each integral, I (2),i j , according to the normalization indicated in
Eq. (83). For each case CxIII (x ∈ {1, 2, 3, 4}) the result presented cor-
responds to the sum of the individual pieces according to the subdivision
shown in Sects. Appendix C.1–Appendix C.4 respectively

Case Integral Result

C1I (i, j) I (2),i j,Ii i 8.083 ± 0.001

C1II (i, j) I (2),i j,I Ii i −17.909 ± 0.004

C1IIIa (i, j) I (2),i j,I I I aii 36.374 ± 0.005

C1IIIb (i, j) I (2),i j,I I I bii −38.598 ± 0.013

C1IIIc (i, j) I (2),i j,I I I cii 98.983 ± 0.014

C1IIId (i, j) I (2),i j,I I I dii −67.556 ± 0.022

C1III (i, j) I (2),i j,I I Ii i 29.203 ± 0.029

C1I ( j, i) I (2),i j,Ij j 3.538 ± 0.002

C1II ( j, i) I (2),i j,I Ij j −10.015 ± 0.006

C1IIIa ( j, i) I (2),i j,I I I aj j 11.693 ± 0.007

C1IIIb ( j, i) I (2),i j,I I I bj j −24.216 ± 0.017

C1IIIc ( j, i) I (2),i j,I I I cj j 53.675 ± 0.027

C1IIId ( j, i) I (2),i j,I I I dj j −28.305 ± 0.077

C1III ( j, i) I (2),i j,I I Ij j 12.847 ± 0.084

C2I (i, j) I (2),i j,Ii j −3.395 ± 0.002

C2II (i, j) I (2),i j,I Ii j 9.648 ± 0.003

C2IIIa (i, j) I (2),i j,I I I ai j −13.245 ± 0.028

C2IIIb (i, j) I (2),i j,I I I bi j 19.332 ± 0.015

C2III (i, j) I (2),i j,I I Ii j 6.087 ± 0.032

C3I (i, j) I (2),i j,Iik −2.287 ± 0.002

C3II (i, j) I (2),i j,I Iik 7.213 ± 0.003

C3IIIa (i, j) I (2),i j,I I I aik −12.019 ± 0.025

C3IIIb (i, j) I (2),i j,I I I bik 13.072 ± 0.011

C3III (i, j) I (2),i j,I I Iik 1.053 ± 0.027

C3I ( j, i) I (2),i j,Ijk 2.244 ± 0.002

C3II ( j, i) I (2),i j,I Ijk −4.272 ± 0.005

C3IIIa ( j, i) I (2),i j,I I I ajk 15.539 ± 0.034

C3IIIb ( j, i) I (2),i j,I I I bjk −0.963 ± 0.016

C3III ( j, i) I (2),i j,I I Ijk 14.576 ± 0.037

C4I (i, j) I (2),i j,Ikk 8.263 ± 0.002

C4II (i, j) I (2),i j,I Ikk −27.980 ± 0.006

C4IIIa (i, j) I (2),i j,I I I akk −36.003 ± 0.005

C4IIIb (i, j) I (2),i j,I I I bkk 305.627 ± 0.035

C4IIIc (i, j) I (2),i j,I I I ckk −55.278 ± 0.012

C4IIId (i, j) I (2),i j,I I I dkk 2.965 ± 0.002

C4III (i, j) I (2),i j,I I Ikk 217.312 ± 0.037

This result agrees with the literature (c.f. Eq. (173) of
Ref. [57] and Eq. (2.23) of Ref. [58]). The more general
result of Eq. (E.47) can be used for ep or e+e− processes
with respectively one or two final-state jets.
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