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Dávid Papp

E-mail: dpapp@ncsu.edu

Department of Mathematics, North Carolina State University, Raleigh, NC

27695-8205, USA

Abstract. Spatiotemporal fractionation schemes, that is, treatments delivering

different dose distributions in different fractions, can potentially lower treatment

side effects without compromising tumor control. This can be achieved by

hypofractionating parts of the tumor while delivering approximately uniformly

fractionated doses to the surrounding tissue. Plan optimization for such treatments is

based on biologically effective dose (BED); however, this leads to computationally

challenging nonconvex optimization problems. Optimization methods that are in

current use yield only locally optimal solutions, and it has hitherto been unclear

whether these plans are close to the global optimum. We present an optimization

framework to compute rigorous bounds on the maximum achievable normal tissue

BED reduction for spatiotemporal plans.

The approach is demonstrated on liver tumors, where the primary goal is to

reduce mean liver BED without compromising any other treatment objective. The

BED-based treatment plan optimization problems are formulated as quadratically

constrained quadratic programming (QCQP) problems. First, a conventional,

uniformly fractionated reference plan is computed using convex optimization. Then,

a second, nonconvex, QCQP model is solved to local optimality to compute a

spatiotemporally fractionated plan that minimizes mean liver BED, subject to the

constraints that the plan is no worse than the reference plan with respect to all other

planning goals. Finally, we derive a convex relaxation of the second model in the form

ar
X

iv
:s

ub
m

it/
20

95
61

2 
 [p

hy
si

cs
.m

ed
-p

h]
  6

 D
ec

 2
01

7



Spatiotemporal fractionation with bounds on the achievable benefit 2

of a semidefinite programming (SDP) problem, which provides a rigorous lower bound

on the lowest achievable mean liver BED.

The method is presented on 5 cases with distinct geometries. The computed

spatiotemporal plans achieve 12-35 percent mean liver BED reduction over the optimal

uniformly fractionated plans. This reduction corresponds to 79-97 percent of the gap

between the mean liver BED of the uniform reference plans and our lower bounds

on the lowest achievable mean liver BED. The results indicate that spatiotemporal

treatments can achieve substantial reductions in normal tissue dose and BED, and that

local optimization techniques provide high-quality plans that are close to realizing the

maximum potential normal tissue dose reduction.

PACS numbers: 87.55.de, 87.55.kd
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1. Introduction

Most radiotherapy treatments are fractionated, meaning that delivery of the total dose is

split into multiple treatments delivered over several days or weeks. This is motivated by

the fractionation effect : the clinical observation that radiation-induced damage to cells is

lower if the same physical dose is delivered over multiple fractions, owing to cells’ ability

to recover from sublethal radiation damage. The most widely used mathematical model

of the fractionation effect is the biologically effective dose (BED) model (Fowler 2010).

According to this model, the biologically effective dose for a treatment with N fractions,

each delivering dose d, is given by

b = Nd
(

1 +
d
α/β

)
, (1)

where α/β is a tissue-specific parameter. For a fixed total physical dose Nd, the BED is

minimized if the dose is split evenly into many fractions. This standard fractionation

regimen is desired in normal tissues. On the other hand, for a fixed total physical dose,

the BED is maximized if all dose is delivered in few fractions (called hypofractionation),

which is desired in the tumor. Considering this inherent trade-off of fractionation

decisions, it would seem ideal to simultaneously achieve hypofractionation in the tumor

while splitting the dose to normal tissues evenly into many fractions. While this may

appear unattainable at first glance, this goal can be achieved at least approximately

using spatiotemporal fractionation schemes.

1.1. Spatiotemporal fractionation schemes

Spatiotemporal fractionation schemes deliver different dose distributions in different

fractions in an attempt to minimize BED in healthy tissue and maximize BED in the

tumor by hypofractionating parts of the tumor while delivering approximately identical

doses to the surrounding tissue. The clinical rationale for spatiotemporal fractionation

to optimally exploit the fractionation effect was first proposed in the context of proton

radiotherapy (Unkelbach, Zeng & Engelsman 2013, Unkelbach & Papp 2015), where

the potential benefit comes from the fact that the dose in the entrance region of a

proton beam is largely independent of the beam’s range, which provides some flexibility

to modify the dose in the tumor without equally affecting the dose in the entrance

region. More recently it has also been shown that spatiotemporal fractionation may

provide a therapeutic advantage in arc therapy delivered with conventional photon

beams (Unkelbach 2015). In this case, arc therapy plans can be created in such a

way that each fraction delivers high single-fraction doses to complementary parts of

the target volume while creating a similar dose bath in the surrounding normal tissue.

This was demonstrated for fractionated radiosurgery treatments of large arteriovenous

malformations (Unkelbach et al. 2016).

The optimization of spatiotemporally fractionated treatments is far more

challenging than conventional IMRT/IMPT optimization. For most commonly used
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objective functions, the fluence map optimization problem in conventional IMRT

planning is a large-scale convex optimization problem that can be solved to global

optimality using well-established gradient-based (e.g., quasi-Newton) optimization

methods (Bortfeld 2006). Because spatiotemporal planning is based on BED rather

than physical dose and the fluence maps for different fractions are distinct, the

optimization models for optimal spatiotemporal fractionation are inherently nonconvex

(see Section 2.2). It is common to use heuristics and local optimization methods for

nonconvex models in RT planning, but the global optimality of the resulting plans

is rarely discussed. In a recent work, Ajdari & Ghate (2016) studied a treatment

planning problem of similar mathematical structure. They proposed a model predictive

control approach which computes a treatment plan iteratively by optimizing the dose

distributions of remaining fractions after each fraction, with the assumption that the

same dose is delivered in every fraction thereafter. This approach requires only the

solution of convex optimization problems; however, it does not promote the type of

solutions that we seek in spatiotemporal fractionation: plans that deliver high doses

to complementary parts of the tumor in distinct fractions. Furthermore, the model

predictive control approach comes with no guarantees that the computed plans are

anywhere close to globally optimal.

1.2. The contribution of this paper

So far there have been no computational tools to bound the maximum achievable benefit

from spatiotemporal fractionation. Prior works (Unkelbach & Papp 2015, Unkelbach

et al. 2016) use local optimization, and it has been unclear if better optimization

algorithms may yield substantially better solutions. Our approach combines the

local optimization of the nonconvex treatment planning model for spatiotemporal

fractionation with the solution of a convex optimization problem that provides a rigorous

bound on the maximum achievable benefit from spatiotemporal fractionation. We

approach this by formulating the spatiotemporal treatment planning problem as a

nonconvex quadratically constrained quadratic programming (QCQP) problem. We

then derive a convex relaxation of the QCQP problem in the form of a semidefinite

programming (SDP) problem. The SDP relaxation provides a nontrivial lower bound; in

particular, this bound is tighter than what can be achieved by replacing each nonconvex

constraint in the QCQP model with its convex relaxation. We test our method on

two-dimensional slices of 5 liver tumors that represent a variety of patient geometries.

Comparing the quality of the locally optimal solutions against the SDP relaxation

bounds, we find that the local optimal solutions computed for these cases are indeed

nearly globally optimal. While there is no conceptual difficulty in applying the same

approach to three-dimensional cases, and in particular the local optimal solutions can

be computed using the same methods and software that we used in this paper, the SDP

relaxations of the three-dimensional cases cannot be solved in a reasonable amount of

time with available off-the-shelf software.
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1.3. Relation to prior works

Prior research has addressed the problem of optimizing fractionation decisions based

on the BED model (Mizuta, Takao, Date, Kishimoto, Sutherland, Onimaru & Shirato

2012, Unkelbach, Craft, Salari, Ramakrishnan & Bortfeld 2013, Keller et al. 2013, Gay

et al. 2013, Saberian et al. 2016, Saberian et al. 2015, Mizuta, Date, Takao, Kishimoto,

Sutherland, Onimaru & Shirato 2012). These works aim at maximizing the tumor BED

subject to BED constraints to the normal tissue. It was shown that the optimal number

of fractions depends not only on the α/β ratios of tumor and normal tissues, but also on

the dose distribution. These works, however, all assume uniform fractionation, where

the same dose distribution is delivered in all fractions, and only the number of fractions

needs to be optimized.

The novelty in the idea of spatiotemporal fractionation lies in the fact that there

is a potential advantage of delivering distinct dose distributions in different fractions,

purely motivated by the basic fractionation effect as described by the standard BED

model. There are several extensions of the BED model that describe higher order

biological effects such as incomplete repair of radiation damage between fractions,

repopulation of tumors over the course of treatment, accelerated repopulation effects,

the effect of chemotherapeutic agents, and reoxygenation of hypoxic tumors (Hall &

Giaccia 2012). It was found that some of these models give rise to more complex

fractionation schemes, i.e. varying doses per fraction (Bertuzzi et al. 2013, Bortfeld

et al. 2015, Salari et al. 2015, Wein et al. 2000, Yang & Xing 2005). However, the role

of such models to guide fractionation decisions in clinical practice has been limited.

Instead, spatiotemporal fractionation as described in this paper is purely based on the

basic fractionation effect, whose existence and clinical relevance is undoubted.

Another approach in which different dose distributions may arise in each fraction

is adaptive radiotherapy (ART) (Yan et al. 1997, Lu et al. 2008, Kim et al. 2012).

This technique uses feedback information, such as changes in the patient anatomy,

to modify the treatment plan during the course of a fractionated treatment, e.g.

replanning to compensate for tumor shrinkage in lung or head and neck cancer (Sonke

& Belderbos 2010, Wu et al. 2009). Instead, spatiotemporal fractionation shows that

there is a benefit of delivering distinct dose distributions in different fractions, even in

the absence of any changes of the patient over time.

2. Mathematical model for optimal spatiotemporal fractionation

2.1. Uniform and nonuniform fractionation using the BED model

The natural generalization of the BED model in (1) to fractionated treatments delivering

different doses in different fractions is to define the (cumulative) BED as

b =
N∑
t=1

(
dt +

d2t
(α/β)

)
, (2)
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where d1, . . . , dN are the doses delivered (in any order) in fractions 1 through N . IMRT

planning using BED can be performed analogously to conventional IMRT optimization,

using similar objective functions and constraints in the treatment planning optimization

model, but substituting BED in place of physical dose (Unkelbach & Papp 2015). We

define x1, . . . , xN to be the vectors of beamlet weights delivered in fractions 1 through

N , and V to be the set of volume elements (voxels) used for dose calculation during

the optimization. Using the cumulative BED from (2), we obtain the nonuniform

fractionation problem:

min
x,d,b

F (b)

s.t. bv =
N∑
t=1

(dvt +
d2vt

(α/β)v
) ∀ v ∈ V

Dxt = dt t = 1, . . . , N

xt ≥ 0 t = 1, . . . , N,

(3)

where D is the usual dose-influence matrix, and the objective function F represents the

desired clinical goals of target coverage, conformity, and organ sparing. Defining I as

the index set of the objectives, we write the objective function as the sum

F (b) =
∑
i∈I

wiFi(b), (4)

where each term Fi represents a single clinical objective (such as deviation from a

prescribed lower or upper bound on the minimum, maximum, or mean BED of a

structure), and each positive weight wi represents the relative importance of a clinical

goal.

BED-based optimization can also be performed analogously for conventional,

uniformly fractionated treatments. Throughout this work, we use a uniform reference

plan as a benchmark to evaluate the benefit of nonuniform fractionation. We obtain the

uniform reference plan by solving (3) with the additional constraint that x1 = · · · = xN .

Eliminating the redundant variables, the uniform reference plan is the optimal solution

of the following problem:

min
x,d,b

F (b)

s.t. bv = Ndv

(
1 +

dv
(α/β)v

)
∀ v ∈ V

Dx = d

x ≥ 0.

(5)

Figure 4 shows an example of a reference plan and a nonuniform 5-fraction

treatment of a patient harboring a large liver tumor. The reference plan (Figure 1c) was

computed by solving the BED-based treatment plan optimization model (5). Figure 1a

shows the 5 dose distributions of a nonuniformly fractionated plan. Both plans were
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computed by optimizing the same objectives described below in Section 3 to represent

identical clinical goals. The reference plan yields a conventional treatment that irradiates

the tumor to the prescribed dose in each fraction. The nonuniformly fractionated plan

delivers high single-fraction doses to parts of the tumor while delivering a similar low-

dose bath to the surrounding tissue in each fraction. The high single-fraction doses in

the tumor allow for a reduction in the total physical dose delivered (Figure 4(b)). Since

the dose to the surrounding normal tissue is approximately uniformly fractionated, this

also yields a reduction of BED in the normal tissue.

(a)

(b) (c) (d) (e)

Figure 1. Dose distributions for Case 1, a large central lesion within the liver. Also

shown are the contours of the heart, the esophagus, and the spinal cord; these organs

are not dose-limiting. (a) Physical dose distributions in each of the five fractions show

that the nonuniformly fractionated treatment hypofractionates different parts of the

tumor. (b) Total physical dose delivered throughout the nonuniformly fractionated

treatment. (c) Physical dose distribution of the uniformly fractionated reference plan.

(d) DEQ5 of the nonuniformly fractionated plan, which is the uniform plan that is

isoeffective in delivering the same BED as the nonuniformly fractionated plan. (e)

The difference between the physical dose in the uniform plan and the DEQ5 for the

nonuniform plan, or (c) minus (d). This shows that the spatiotemporal plans reduce

dose in the healthy liver and in the entrance region of the beams that expose the liver

the most. All numerical quantities shown are in [Gy].

2.2. Nonconvexity of nonuniform fractionation

It is well-known that conventional fluence map optimization is a convex optimization

problem when the clinical goals are modeled using a convex objective function F of the
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physical dose. Despite the apparent nonconvexity introduced by the quadratic equality

constraints in the uniform fractionation problem (5), this model is convex when the

physical doses d are restricted to clinically relevant values and F is a piecewise quadratic

penalty function similar to the dose-based objective functions (Unkelbach & Papp 2015).

This is the case for the objectives used in this paper. Hence, the uniform reference plan

can be computed using the gradient-based local optimization methods commonly used

in IMRT plan optimization.

The nonuniform fractionation problem (3), however, is nonconvex.‡ This

nonconvexity is an inherent characteristic of the problem that cannot be eliminated by

reformulating the model, as the following argument shows: by definition, permuting the

fractions in an optimal treatment plan leads to another optimal plan, yet the average of

these N ! treatment plans will be a plan with identical fractions, which in general will not

be optimal. Thus, gradient-based optimization methods used to solve the uniform model

can only yield locally optimal solutions for the nonuniform model. Figure 2 illustrates

this problem, showing that substantially different locally optimal spatiotemporal plans

may exist for the same case.

2.3. The constrained nonuniform model

A drawback of formulation (3)–(4) is that the optimal solution does not realize the

maximum benefit of spatiotemporal fractionation over conventional fractionation in any

given objective. Instead, the benefit is distributed among the terms of the objective

function; in other words, the benefit is realized as a combination of smaller improvements

with respect to the different clinical goals. In the liver cases we study in Section 4, the

primary gain is expected to be in lowering BED to the liver without compromising target

coverage and conformity. This suggests an alternative formulation in which we minimize

only one of the clinical objectives of (4), say F1, while constraining the solution to be

at least as good as the uniform reference plan with respect to each other objective Fi
(i ∈ I, i 6= 1).

Let b∗ be the BED distribution delivered by the uniform reference plan, which

is obtained by solving (5), and let F1 be the penalty for the mean BED in the liver

exceeding zero. We modify (3) to include the constraints that the solution must be as

good as the uniform reference plan with respect to all objectives besides F1, and we

‡ The nonconvexity of the formulation comes from the composition of the piecewise quadratic penalty

function penalizing the underdose of the target and the function defining the BED. As a general rule, the

composition of a convex nonincreasing function (such as our penalty function) with a convex quadratic

function (such as the BED) can be nonconvex, unlike the composition of a convex nondecreasing

function (such as the functions used to penalize overdose) and the BED, which is always convex.
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Figure 2. Rows (a), (b), and (c) are physical dose distributions from three additional

locally optimal 5-fraction nonuniform treatments for Case 1, which is the same clinical

liver case displayed in Figure 4. They are all locally optimal solutions of the model

(3). The first five panels of each row are the dose distributions in the five nonuniform

fractions, and the last panel on each row is the equivalent dose DEQ5 (see Section 4.2).

The solutions exhibit the same pattern: different subregions of the tumor receive a high

single-fraction dose in different fractions. Note that the emergent “partitions” in the

optimized plans are a result of the optimization. This pattern supports the rationale

that the benefit of spatiotemporal fractionation is a result of hypofractionating parts

of the tumor while maintaining a consistent low dose in the surrounding tissue. The

difference in the hypofractionated regions in each solution also demonstrates that

several qualitatively different locally optimal spatiotemporal treatments may exist for

the same case. All numerical quantities shown are in [Gy].

obtain the constrained nonuniform spatiotemporal fractionation problem:

min
x,d,b

F1(b)

s.t. Fi(b) ≤ Fi(b
∗) i ∈ I, i 6= 1

bv =
N∑
t=1

(dvt +
d2vt

(α/β)v
) ∀ v ∈ V

Dxt = dt t = 1, . . . , N

xt ≥ 0 t = 1, . . . , N.

(6)

The first set of constraints ensures that the improvement in the objective F1 is not at

the cost of sacrificing the other clinical objectives; the computed spatiotemporal plan

is either preferable or identical to the uniform reference plan with respect to every

objective.

3. Mathematical model for bounding the maximum achievable benefit

In this section, we formulate the convex optimization model for bounding the maximum

achievable benefit from spatiotemporal fractionation. To that end, we write problem



Spatiotemporal fractionation with bounds on the achievable benefit 10

(3)–(4) as a quadratic optimization problem with quadratic constraints. We assume that

F is a weighted sum (4) of penalty functions that penalize deviations from prescribed

BED values. Let Vi be the set of voxels involved in clinical objective i ∈ I. Each Fi
is a piecewise quadratic penalty function that penalizes either BED above a prescribed

threshold bhiv in voxels v ∈ Vi, or BED below a prescribed threshold blov in voxels v ∈ Vi,
or mean BED above a prescribed mean BED mhi

i in a structure i. Let I+, I−, and Im

be the index sets of objectives of the first, second, and third type respectively. (Thus,

the index set I in (4) is the union of the three sets I+, I−, and Im.) Letting (y)+ denote

the positive-part function max(y, 0), we express the clinical goal i ∈ I with the penalty

function

Fi(b) =



∑
v∈Vi

(bv − bhiiv)2+ if i ∈ I+,∑
v∈Vi

(bloiv − bv)2+ if i ∈ I−,(
1

|Vi|
∑
v∈Vi

bv −mhi
i

)2

+

if i ∈ Im.

(7)

The overall objective function F is the weighted sum (4).

The prescription BED values bhiiv and bloiv can be derived from clinical dose

prescriptions of fractionated treatments that employ similar physical doses per fraction

as expected to be used in the spatiotemporally fractionated treatments. Typically one

would use the same threshold bhi or blo in every voxel v of the same structure Vi,

but we opted for the above, more general, formulation to allow for distance-dependent

thresholds often used to improve the conformity of the dose distributions.

Noting that (y)+ is the smallest number z satisfying the inequalities z ≥ y and

z ≥ 0, we introduce the auxiliary optimization variables piv for i ∈ I+ and qiv for i ∈ I−,

whose values (when minimized) are equal to the quantities (bv−bhiiv)+ and (bloiv−bv)+ for

voxel v. Similarly, we introduce the variables ri for i ∈ Im for the mean-BED penalties

( 1
|Vi|
∑

v∈Vi bv −m
hi
i )+.

Finally, we eliminate the variables bv from the problem by replacing them with∑N
t=1(dvt +

d2vt
(α/β)v

). We arrive at the following quadratically constrained quadratic
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programming (QCQP) formulation of the nonuniform fractionation problem:

min
x,d,p,q,r

∑
i∈I+

∑
v∈Vi

wip
2
iv +

∑
i∈I−

∑
v∈Vi

wiq
2
iv +

∑
i∈Im

wir
2
i

s.t. piv ≥ −bhiiv +
N∑
t=1

(dvt +
d2vt

(α/β)v
) ∀i ∈ I+, ∀v ∈ Vi

piv ≥ 0 ∀i ∈ I+, ∀v ∈ Vi

qiv ≥ bloiv −
N∑
t=1

(dvt +
d2vt

(α/β)v
) ∀i ∈ I−, ∀v ∈ Vi

qiv ≥ 0 ∀i ∈ I−, ∀v ∈ Vi

ri ≥
1

|Vi|
∑
v∈Vi

(
N∑
t=1

dvt +
d2vt

(α/β)v

)
−mhi

i ∀i ∈ Im

ri ≥ 0 ∀i ∈ Im

Dxt = dt ∀t = 1, . . . , N

xt ≥ 0 ∀t = 1, . . . , N.

(8)

As the physical dose dvt is a linear function of the beamlet weights xt, the dvt
variables can also be eliminated from the formulation, and all the inequality constraints

can be seen as quadratic inequalities in the primary decision variables x1, . . . , xN . We

introduce the matrix Xt = xtx
T
t and consider each matrix element as an auxiliary

decision variable. The quadratic inequalities in (8) can then be written as linear

inequalities in xt and Xt. For instance, on the right-hand side of the first set of

inequalities we substitute

−bhiiv +
N∑
t=1

(dvt +
d2vt

(α/β)v
) =

N∑
t=1

〈(
1 xTt
xt Xt

)
,

(
− bhiiv

N
eTv D
2

DT ev
2

1
(α/β)v

DT eve
T
vD

)〉
,

where 〈A,B〉 =
∑

i,j AijBij is the component-wise (or Frobenius) inner product

of matrices, and ev is the characteristic vector with a 1 in the v-th position and

zeros elsewhere. (That is, eTvD is simply the v-th row of the D matrix.) The

resulting optimization model has a convex quadratic objective function and only linear

constraints, aside from the nonconvex quadratic equations Xt = xtx
T
t for t = 1, . . . , N .

We obtain a convex relaxation of this problem by replacing each of these equations with

the weaker convex constraint Xt − xtxTt < 0 (meaning that the difference Xt − xtxTt is

positive semidefinite). The latter constraint is indeed convex, as it is equivalent to the

linear matrix inequality
(

1 xTt
xt Xt

)
< 0.

Since in the original nonconvex model we have Xt = xtx
T
t and xt ≥ 0, it is clear

that each Xt is also component-wise nonnegative. Hence, we can add the inequalities

Xt ≥ 0 for t = 1, . . . , N to the convex relaxation. (This component-wise inequality

should not be confused with the linear matrix inequality Xt < 0.) Note that even

though the inequality Xt ≥ 0 is redundant in the original model, Xt ≥ 0 is not a
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redundant constraint in the convex relaxation; adding it to the optimization problem

tightens the bound.

A further simplification is possible. Since the relaxation is convex and symmetric

in the fractions, we can assume without loss of generality that at the optimum we have

x1 = · · · = xN and X1 = · · · = XN . Thus, we can eliminate the variables corresponding

to the different fractions and use only a single variable x and X in place of each xt and

Xt. (This shows that our convex relaxation does not distinguish between the uniformly

and nonuniformly fractionated models, although the bound does depend on the number

of fractions.)

Finally, using the shorthand Cv = 1
(α/β)v

DT eve
T
vD, we arrive at the following convex

relaxation of (8):

min
x,X,p,q,r

∑
i∈I+

∑
v∈Vi

wip
2
iv +

∑
i∈I−

∑
v∈Vi

wiq
2
iv +

∑
i∈Im

wir
2
i

s.t. piv ≥ N

〈(
1 xT

x X

)
,

(
− bhiiv

N
eTv D
2

DT ev
2

Cv

)〉
∀i ∈ I+, ∀v ∈ Vi

piv ≥ 0 ∀i ∈ I+, ∀v ∈ Vi

qiv ≥ −N

〈(
1 xT

x X

)
,

(
− bloiv

N
eTv D
2

DT ev
2

Cv

)〉
∀i ∈ I−, ∀v ∈ Vi

qiv ≥ 0 ∀i ∈ I−, ∀v ∈ Vi

ri ≥
N

|Vi|
∑
v∈Vi

〈(
1 xT

x X

)
,

(
−mhii

N
eTv D
2

DT ev
2

Cv

)〉
∀i ∈ Im

ri ≥ 0 ∀i ∈ Im(
1 xT

x X

)
< 0, x ≥ 0, X ≥ 0.

(9)

The optimal objective function value of this problem is a lower bound for the global

minimum of the spatiotemporal fractionation problem (8).

Note that to obtain (9), we linearized every quadratic constraint in (8), even

though all of them were convex except for those involving qiv. It can be seen that

this way (9) yields a tighter bound than what could be obtained by simply replacing the

concave quadratic constraints with a convex relaxation and keeping the convex quadratic

constraints intact. This is because unlike the linearizations of the concave quadratics

(which are relaxations), the linearizations of the convex quadratics are tighter than the

original constraints. Our derivation of (9) shows that the convex model as a whole is

indeed a relaxation of (8) despite the fact that this cannot be seen when we compare

the models constraint by constraint.
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3.1. Bounding the maximum benefit in a given objective

The convex relaxation of the constrained nonuniform model (6) can be derived

analogously to how we obtained the relaxation (9) of the model (3). For simplicity of

notation, we assume (consistently with the application to liver tumors) that the mean

dose objective F1(b) = ( 1
|V1|
∑

v∈V1 bv−m
hi
1 )2+ is the primary objective. Then the convex

optimization model bounding the minimum value of F1(b) from below is the following:

min
x,X,p,q,r

r1

s.t.
∑
v∈Vi

p2iv ≤ Fi(b
∗) ∀i ∈ I+∑

v∈Vi

q2iv ≤ Fi(b
∗) ∀i ∈ I−

ri ≤ Fi(b
∗) ∀i ∈ Im, i 6= 1

piv ≥ N

〈(
1 xT

x X

)
,

(
− bhiiv

N
eTv D
2

DT ev
2

Cv

)〉
∀i ∈ I+, ∀v ∈ Vi

piv ≥ 0 ∀i ∈ I+, ∀v ∈ Vi

qiv ≥ −N

〈(
1 xT

x X

)
,

(
− bloiv

N
eTv D
2

DT ev
2

Cv

)〉
∀i ∈ I−, ∀v ∈ Vi

qiv ≥ 0 ∀i ∈ I−, ∀v ∈ Vi

ri ≥
N

|Vi|
∑
v∈Vi

〈(
1 xT

x X

)
,

(
−mhii

N
eTv D
2

DT ev
2

Cv

)〉
∀i ∈ Im

ri ≥ 0 ∀i ∈ Im(
1 xT

x X

)
< 0, x ≥ 0, X ≥ 0.

(10)

3.2. Solution methods

Although the optimization problems (9) and (10) are convex, their solution is not

straightforward using the gradient-based algorithms commonly used in treatment

planning optimization, such as the projected gradient descent method and its variants.

This is because computing the violation of the linear matrix inequality constraints(
1 xT
x X

)
< 0 and projecting on the set of points satisfying this inequality require an

expensive matrix factorization in each step of the method. Optimization problems

involving this type of constraints are called semidefinite programs (Vandenberghe &

Boyd 1996, Boyd & Vandenberghe 2004). They have been extensively studied in

the numerical optimization literature, and several reliable and efficient algorithms are

available for their solution.

Formally, a semidefinite program is a convex optimization problem with a linear

objective function and with constraints that are all either linear inequalities or linear
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matrix inequalities of the form A(x) < 0, where A(·) is an affine function that maps the

optimization variables x to the space of real symmetric matrices. The problems (9) and

(10) have convex quadratic objectives and constraints, rather than only linear ones, but

it can be shown that convex quadratic inequalities can be equivalently written as linear

matrix inequalities (Vandenberghe & Boyd 1996); hence their inclusion is without loss

of generality.

Large-scale semidefinite programs are routinely solved using Newton-type methods

implemented in widely available optimization software such as SeDuMi (Sturm 1999)

and MOSEK (MOSEK ApS 2017). In our experiments we used MOSEK to solve the

semidefinite programs (9) and (10).

4. Application to liver tumors

We examined the benefit of spatiotemporal fractionation on two-dimensional slices of

five clinical liver cases with distinct geometries. The first three cases feature centrally-

located lesions within the liver; Case 1 has a large lesion, Case 2 has a small lesion,

and Case 3 has two separate lesions within the liver. In each of these cases the liver is

the main dose-limiting organ. In Case 4, the tumor abuts the chest wall, and Case 5 is

a challenging geometry where both the chest wall and the bowel are dose-limiting and

need to be included in the treatment plan optimization model.

4.1. Experimental setup

4.1.1. The BED prescription and α/β ratios. Five-fraction treatments were planned for

all cases. To derive the upper and lower BED thresholds bhi and blo, typical prescription

doses and normal tissue constraints for 5-fraction liver SBRT were converted into BED

values using an α/β ratio of 10 in the tumor and 4 in all normal tissues. For example, the

prescription lower bounds blo for the GTV and PTV were chosen to be 100 Gy and 72

Gy, respectively, which correspond to 50 Gy and 40 Gy of physical dose delivered in 5

fractions assuming uniform fractionation. The complete list of objectives and constrains

is as follows:

• A BED of 100 Gy is prescribed to the GTV.

• A BED of 72 Gy is prescribed to the PTV.

• BED exceeding 115.5 Gy BED in the GTV is penalized.

• BED exceeding 100 Gy BED in the PTV is penalized.

• The plan is to be conformal: a linear BED falloff is aimed for in a 3cm margin

around the PTV.

• The mean BED in the liver excluding the GTV is minimized.

• In Cases 4 and 5, BED exceeding 96.2 Gy in the chest wall is penalized. (This

corresponds to 35 Gy physical dose in 5 fractions.)

• In Case 5, BED exceeding 75 Gy in the affected sections of the GI tract is penalized.
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Each of these objectives is implemented via a penalty function shown in Equation (7).

4.1.2. Computing the uniformly fractionated reference plan. The BED-based fluence

map optimization problem (5) was solved to obtain optimal beamlet weights for the

5-fraction uniform reference plan, which is a high-quality plan that delivers the same

dose distribution in each of its fractions. Dose-influence matrices were calculated for 21

equispaced coplanar beams using the Quadrant Infinite Beam (QIB) dose calculation

algorithm implemented in CERR version 5.2 (Deasy et al. 2003). These 21-beam

IMRT plans represent the quality achievable by high-quality arc therapy plans (Papp &

Unkelbach 2014). In this work, we limited the computations to two-dimensional slices of

the patient voxels and optimized beamlet weights for a single row of the 1x1 cm beamlet

grid. As discussed in Section 2.2, although the uniform plan optimization problem is

defined using a combination of convex and nonconvex constraints, when the beamlet

weights x and physical doses d are restricted to clinically relevant values, the problem

is convex, and the global optimal solution can be computed using local optimization

algorithms (Unkelbach & Papp 2015). In our experiments, the optimization of the

reference plans was performed with Matlab using the L-BFGS-B solver (Zhu et al. 2011).

The runtimes to find the (globally) optimal solutions were less than 10 seconds on a

standard desktop computer for all of the cases.

4.1.3. Computing the spatiotemporally fractionated plans. After computing the

uniform reference plan, we computed nonuniformly fractionated treatment plans in

which the beamlet weights and corresponding dose distributions are not the same in

each of the five fractions. As described in Section 2.3, we solve (6) to minimize the

mean BED in the liver, subject to the constraints that the solution must be at least as

good as the uniform reference plan computed in Section 4.1.2 with respect to all other

objectives. A perturbation of the fluence maps of the uniform reference plan was used as

an initial solution for the optimization.§ These nonconvex problems were solved to local

optimality using Matlab’s built-in optimizer fmincon (MathWorks 2016), which utilizes

an interior-point algorithm to find local solutions to a constrained nonlinear program.

Runtimes for computing a locally optimal solution of (6) ranged from 15 minutes to 4

hours.

4.2. Results

Figures 4 and 3 show a graphical comparison of the uniform reference plan with locally

optimal nonuniformly fractionated solutions for Cases 1 and 2; the graphical results for

the remaining three cases can be found in the supplement. Table 1 summarizes the

computed bounds and benefits observed in all five cases. In each case, the nonuniform

§ Beamlet weights were multiplied by independent random factors drawn uniformly from the interval

[0, 2]. The quality of the computed local optimal solutions did not appear to be sensitive to the specific

way the plans were perturbed.
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Case description
Mean liver BED [Gy] Gap Sparing

conventional spatiotemporal reduction lower bnd. closed factor

1 Large central lesion 84.54 75.87 12.75% 73.38 77.69% 0.6663

2 Small lesion 26.14 19.47 34.26% 18.58 88.23% 0.3830

3 Two small lesions 59.54 50.24 18.51% 48.03 80.80% 0.5879

4 Lesion abutting ch. wall 47.51 38.65 22.92% 37.65 89.86% 0.5289

5 Lesion abutting GI tract 88.67 77.38 14.59% 77.02 96.91% 0.7028

Table 1. Summary of mean liver BED reductions from spatiotemporal fractionation,

lower bounds for mean liver BED, and sparing factors for each of the five cases. The

“gap closed” values provide a measure of how close the local optimal solutions are to

achieving the lower bound on the mean liver BED; see Eq. (11) for the definition. The

sparing factor is a value that determines the dependence of the optimal fractionation

schedule of a fixed dose distribution on the patient geometry (see Section 4.2.2).

The remarkable benefit seen in Case 2 agrees with the fact that the sparing factor

is substantially lower in this case than in the other cases.

plan is constrained to maintain the same target coverage as the uniform reference plan,

yet the mean liver BED in the nonuniform plans is substantially lower than in the

uniform plans (see Table 1). Case 1 displays the smallest reduction in the mean liver

BED with an approximately 13% improvement, and Case 2 has the largest reduction of

approximately 34% in the mean liver BED. Note that these improvements are achieved

without sacrificing any other clinical objective, as by definition, the spatiotemporal

plans computed by solving (6) are at least as good as the uniform reference plan with

respect to every objective. In particular, the spatiotemporal plans are as conformal as

the corresponding uniform reference plans.

The effectiveness of a spatiotemporal treatment can be quantified by its equivalent

dose DEQ5, defined via

BED =
5∑
t=1

(
dt +

d2t
α/β

)
= DEQ5 +

(DEQ5)2/5
α/β

,

which yields

DEQ5 = 5

−α/β

2
+

√√√√(α/β

2

)2

+
α/β

5

5∑
t=1

(
dt +

d2t
α/β

) .

The DEQ5 is the cumulative dose distribution of a uniformly fractionated 5-fraction

treatment that achieves the same BED as the given spatiotemporal treatment. (Note

the difference between DEQ5 and the also commonly used equieffective dose, EQX,

which is the total physical dose that needs to be delivered in a uniform treatment with

a dose per fraction of X Gy to achieve the same BED.) Using DEQ5 has the advantage

that the spatiotemporal plan can be directly compared to the physical dose distribution

of the uniform reference plan. The comparison is shown in panels (c)–(e) of Figures 4
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and 3 for Cases 1 and 2, and in the Supplement for the remaining cases. By computing

the difference between the two plans, we observe that the nonuniformly fractionated

plans maintain the same tumor BED as the uniformly fractionated plans while reducing

the mean dose and BED in healthy liver tissue. The same can also be demonstrated

by comparing the DVH curves of the physical dose and DEQ5 of the two plans. For

Case 1, these curves are included in the Supplement (Figure 7). The DVH curves show

that there is substantial dose reduction in the liver (both the DEQ5 and physical dose

curves shift to the left), and that this is a consequence of lower physical dose (but nearly

identical DEQ5) delivered to the tumor.

(a)

(b) (c) (d) (e)

Figure 3. Dose distributions for Case 2, a small lesion within the liver. (a) Physical

dose distributions in a 5-fraction nonuniformly fractionated treatment. Although the

tumor is small, the spatiotemporal plan still hypofractionates different subregions of

the target. (b) Total physical dose delivered by the five nonuniform fractions. (c)

Physical dose distribution of the uniform reference plan. (d) DEQ5 of the nonuniformly

fractionated plan. As in Case 1, the nonuniformly fractionated plan provides similar

target coverage as the uniform reference plan, with a more conformal dose distribution.

(e) The plot of (c) minus (d) shows that the majority of the BED reduction is in the

healthy liver and in the entrance regions of the beams exposing the liver the most. All

numerical quantities shown are in [Gy].

4.2.1. Bounds on the maximum achievable liver BED reduction. Because the

nonuniform fractionation problem is nonconvex, the nonuniformly fractionated solutions

presented in this paper are only certified to be locally optimal. To gauge the quality of
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these solutions, for each case we computed a lower bound on the minimum liver BED,

as described in Section 3.1. These lower bounds, also shown in Table 1, are close to

the mean liver BED values achieved by the locally optimal nonuniformly fractionated

solutions. For example, in Case 1, spatiotemporal fractionation reduced the mean liver

BED to 75.9 Gy, which is a reduction of 8.7 Gy from the uniform reference plan. The

lower bound from the SDP relaxation is 73.4 Gy, which means that no treatment plan

can achieve a reduction of more than 11.2 Gy from the uniform reference plan. It is

important to note that the value of 73.4 Gy is only a lower bound, and we are not able

to guarantee the existence of a nonuniformly fractionated solution that achieves this

value. The mean liver BED value for the true globally optimal plan may be anywhere

between 75.9 and 73.4 Gy.

We compared the mean liver BED reduction in the locally optimal nonuniformly

fractionated plan with our bound on the maximum possible reduction by computing the

fraction of the gap between the mean liver BED in the uniform reference plan and the

lower bound from the SDP relaxation that the nonuniformly fractionated plan closes.

Formally, if mref and msp are the mean liver BEDs achieved by the uniform reference

plan and the locally optimal spatiotemporal plan, respectively, and mSDP is the lower

bound obtained from the SDP relaxation, then the fraction of the gap closed by the

spatiotemporal plan is the ratio
mref −msp

mref −mSDP

. (11)

In particular, a ratio of 100% is the best possible value, which is attained if the

spatiotemporal plan matches the SDP lower bound, and 0% is the worst possible

value, attained when the uniform plan cannot be improved upon using spatiotemporal

fractionation. Note that this ratio being close to 100% does not only speak directly

for the quality of the spatiotemporal plan; it also demonstrates the sharpness of the

lower bound. For example, in Case 1, the nonuniform plan’s reduction of 8.7 Gy is 78%

of the upper bound on the maximum possible BED reduction, which is 11.2 Gy. The

nonuniformly fractionated plans closed 78-97% of the gap between the mean liver BED

of the uniform reference plan and our lower bound on the lowest achievable mean liver

BED.

4.2.2. The optimal number of fractions. In order to fairly evaluate the benefit that

comes from spatiotemporal fractionation, we need to consider the gain to be had from

changing the fractionation schedule without altering the physical dose distribution. In

particular, some cases might already benefit from hypofractionation alone, in which

case the improvement we see in the spatiotemporal plans could be a combination of

the benefit of allowing for greater hypofractionation in the tumor and the benefit of

allowing for different dose distributions in different fractions. We computed the optimal

uniformly fractionated treatment plans with up to five fractions by solving the uniform

model (5) for N = 1, . . . , 5. In all of the cases, the five-fraction uniform plans had the

lowest mean liver BED among all computed uniform plans. Hence, Table 1 compares the
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5-fraction spatiotemporal plans against the best uniform plans with up to five fractions.

This agrees with previous work on the dependence of optimal fractionation

schedules on the patient geometry and dose distribution. When the goal is to minimize

the mean dose to a single dose-limiting parallel organ such as the liver, the optimal

fractionation schedule is a function of the effective sparing factor δ̄ which was introduced

independently by Unkelbach, Craft, Salari, Ramakrishnan & Bortfeld (2013) and Keller

et al. (2013). It was shown that if δ̄ >
(α/β)N
(α/β)T

= 0.4, then increasing the number

of fractions is optimal, and if δ̄ < 0.4, then lowering the number of fractions is

optimal. In Case 2, the effective sparing factor is approximately 0.4, while in the

remaining four cases, the sparing factor is well above 0.4. This provides an explanation

for the observation that the benefit of spatiotemporal fractionation was largest for

Case 2; the treatment quality of a uniformly fractionated 5-fraction treatment and

a single-fraction treatment is approximately equal. Therefore, achieving a benefit

through spatiotemporal fractionation relies to a lesser extent on achieving near-uniform

fractionation in the normal liver.

5. Discussion

Results. The results indicate that spatiotemporal treatments can achieve substantial

reductions in both BED and physical dose to the liver and other normal tissue. The

approximately 15-20% mean liver BED reduction is consistent with the benefit of

spatiotemporal fractionation observed in previous work for brain lesions (Unkelbach

et al. 2016). Our work further shows that local optimization techniques provide high-

quality plans that are close to realizing the maximum potential normal tissue dose

reduction.

The results in this paper are limited to the optimization of treatment plans for two-

dimensional slices of clinical liver cases in order to demonstrate the concepts introduced

in the paper, but in a practical setting the computations would have to be carried

out for the entire patient. There is no additional difficulty in computing locally optimal

nonuniform solutions for three-dimensional cases with the same algorithms that we used

in our study (Unkelbach et al. 2016). Therefore, the main challenge in extending this

study to three-dimensional cases is the computational complexity of solving the SDP

relaxations in Section 3. In the nonuniform fractionation optimization problem there is

at least one variable for each beamlet in the fluence maps and at least one constraint

for every voxel associated with a quadratic penalty function. In the SDP relaxation,

with the introduction of the matrix variables X, the number of variables is roughly

squared. SDP problems of this size cannot be solved for three-dimensional cases in

a reasonable amount of time with the available off-the-shelf software. Even with the

two-dimensional case, the solver took up to 7 hours to solve the SDP relaxation. It

is an interesting direction for future research to devise customized algorithms for the

solution of these large-scale SDP problems that arise for the three-dimensional cases.

For now, the results obtained for the two-dimensional slices suggest that the locally
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optimal solutions computed for the nonuniform fractionation problem are close to global

optimality.

Static-beam IMRT versus VMAT. As mentioned in Section 4, the treatment plans

in this work have a higher number of beams than a conventional IMRT plan to

approximate a VMAT plan, where we expect nonuniform fractionation to display the

most benefit. The nonuniformly fractionated plans that are most effective in lowering

BED and total physical dose are those in which the tumor is hypofractionated while

the surrounding tissue is fractionated. In other words, these plans deliver a high single-

fraction dose to parts of the tumor during each fraction and a consistent lower dose to

the liver and other healthy tissue throughout all of the fractions. VMAT treatments

are particularly suitable for delivering such a nonuniformly fractionated plan, thanks to

their characteristic low-dose bath delivered to the healthy tissue.

Uncertainty. Further research is needed to investigate the impact of various sources

of uncertainty on spatiotemporally fractionated treatments. We anticipate that the

effect of small changes in the radiobiological parameters is negligible, as they only

slightly affect what fractionated treatments are isoeffective. Interfractional patient

motion and soft tissue deformation is a greater concern for spatiotemporal treatments

in which each fraction delivers precariously aligned dose distributions with sharp dose

gradients in the interior of the target structure. Future research will consider including

additional safeguards such as bounds on the dose gradients as well as stochastic and

robust optimization methods to explicitly incorporate uncertainty into the planning.

We also note that spatiotemporal fractionation can be applied to treatments with fewer

distinct fractions that are delivered a number of times each; for example, a 15-fraction

scheme can be designed (entirely analogously to our plans) that consist of only 3

distinct fractions that are delivered 5 times each. The repeated delivery of identical

fractions may mitigate somewhat the effects of random interfraction motion. Finally,

other technologies, currently under development, may also make the safe delivery of

spatiotemporal liver SBRT treatments feasible in the future. These include MLC and

couch tracking, and image-guided radiotherapy using an MR-linac.
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Supplementary Figures

(a)

(b) (c) (d) (e)

Figure 4. Nonuniformly-fractionated dose distributions for Case 3, which contains

two lesions within the liver. (a) Physical dose distributions in each of the five fractions

show that the nonuniformly fractionated treatment hypofractionates different parts of

the tumor. (b) Total physical dose delivered throughout the nonuniformly fractionated

treatment. (c) Physical dose distribution of the uniformly fractionated reference plan.

(d) DEQ5 of the nonuniformly fractionated plan, which is the uniform plan that is

isoeffective in delivering the same BED as the nonuniformly fractionated plan. (e)

The difference between the physical dose in the uniform plan and the DEQ5 for

the nonuniform plan, or (c) minus (d). This shows that the benefit of nonuniform

fractionation is mostly in reduced dose in the healthy liver and in the entrance region

of the those beams that expose the liver the most. All numerical quantities shown are

in [Gy].
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(a)

(b) (c) (d) (e)

Figure 5. Dose distributions for Case 4, a lesion is abutting the chest wall. (a)

Physical dose distributions for each fraction of a nonuniformly fractionated treatment.

(b) Total physical dose delivered by the five nonuniform fractions. (c) Physical dose

distribution of the uniform reference plan. (d) DEQ5 of the nonuniformly fractionated

plan. (e) Plot of (c) minus (d). All numerical quantities shown are in [Gy].
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(a)

(b) (c) (d) (e)

Figure 6. Dose distributions for Case 5, a lesion abutting the GI tract. (a)

Physical dose distributions for each fraction of a nonuniformly fractionated treatment.

(b) Total physical dose delivered by the five nonuniform fractions. (c) Physical

dose distribution of the uniformly fractionated reference plan. (d) DEQ5 of the

nonuniformly fractionated plan. (e) Plot of (c) minus (d). All numerical quantities

shown are in [Gy].
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Figure 7. Dose-volume histogram for (a) total physical dose and (b) DEQ5 for various

structures in Case 1. The dotted lines are the values from the uniformly fractionated

reference plan and the solid lines are from the spatiotemporal plan. These curves

indicate that the spatiotemporal plan achieves an overall reduction in physical dose,

as observed by the lines shifted to the left in (a). Additionally, in (b) we note that the

spatiotemporal plan maintains DEQ5 in the tumor while reducing dose to the healthy

liver tissue.
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