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Abstract— Consider a multi-agent network comprised of risk-
averse social sensors and a controller that jointly seek to
estimate the state of a Markov chain, given noisy measurements.

The network of social sensors perform Bayesian social learn-
ing - each sensor fuses the information revealed by previous
social sensors along with its private valuation using Bayes’ rule
- to optimize a local cost function. The controller sequentially
modifies the cost function of the sensors by discriminatory
pricing (control inputs) to realize long term global objectives.

We formulate the stochastic control problem faced by the
controller as a Partially Observed Markov Decision Process
(POMDP) and derive structural results for the optimal control
policy as a function of the risk-aversion factor in the Condi-
tional Value-at-Risk (CVaR) cost function of the sensors. We
show that the optimal price sequence when the sensors are risk-
averse is a super-martingale; i.e, it decreases on average over
time.

Index Terms— Social Learning, Social Sensors, Monopoly
Pricing, Structural Results, POMDP, Controlled Fusion, Risk-
averse, CVaR

I. INTRODUCTION

Social learning is the process by which social sensors are
influenced by the behaviour of other sensors in a multi-agent
network. A social sensor is an information processing system
having the following attributes:

i.) It affects the behaviour of other sensors.
ii.) It shares quantized information (decisions/actions) and

has its own dynamics.
iii.) It has limited processing capabilities - boundedness.
iv.) It is rational - fuses all available information using

Bayes’ rule to take optimal action.
Social learning shares similarities with distributed detec-
tion [1], and distributed hypothesis testing [2]. We present a
model of Bayesian social learning with focus on controlled
information fusion using exogenous inputs to the multi-agent
network.
The contribution of this paper is two fold:

1) We study the interaction of a controller and a network
of risk-averse social sensors, using a Partially Observed
Markov Decision Process (POMDP) framework. The
nature of the interaction is such that the controller can
influence the information fusion in social sensors.

2) We obtain structural results for the optimal policy of
the controller and characterize the properties of the
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optimal (price) sequence, when the social sensors are
risk-averse.

[3] considers the interaction of a global controller and a
network of social sensors, where the risk-neutral sensors
perform social learning to estimate an underlying parameter
and to optimize a local utility function. The objective of
the controller is to detect a change in the parameter as
soon as possible by observing the actions of the sensors.
Well known inefficiencies of the standard social learning
model [4], [5] like herding (sensors choose the same action
irrespective of their private valuation) and informational
cascades (information fusion results in no improvement in
uncertainty) are shown to be the consequence of the belief
state (probability distribution on the parameter) belonging
to suitably defined regions in the belief space. Using this
characterization, structural results on the optimal policy of
the controller are derived. [6] extends the analysis to the
case where the sensors display an aversion to risk; i.e, social
sensors having risk aversion as an additional attribute. It is
shown that when the sensors are risk-averse (modeled using
CVaR), the herding behaviour is more pronounced - social
learning is absent when the sensors are sufficiently risk-
averse.

[7], [8] consider monopoly pricing in the presence of
social learning and establish various properties of the value
function and the optimal policy for the monopoly. It is shown
that using discriminatory pricing the monopoly is able to
delay the process of herding in risk-neutral social sensors, to
suit its needs. The optimal price (control) sequence is shown
to be a super-martingale. We consider monopoly pricing and
social learning under CVaR risk-measure1; see [9] for an
overview of risk measures.

CVaR is an extension of VaR that gives the total loss
given a loss event, and is a coherent risk measure; see
[10]. The value at risk (VaR) is the percentile loss namely,
VaRα(x) = min{z : Fx(z) ≥ α} for cdf Fx, and
CVaRα(x) = E{X|X > VaRα(x)}. CVaR is one of the
‘big’ developments in risk modelling in the last 15 years. In
this paper, we choose CVaR risk measure as it exhibits the
following properties: (i) It associates higher risk with higher
cost. (ii) It ensures that risk arises only from the services.
(iii) It is convex.

1A risk measure % : L → R is a mapping from the space of measurable
functions to the real line which satisfies the following properties: (i) %(0) =
0. (ii) If S1, S2 ∈ L and S1 ≤ S2 a.s then %(S1) ≤ %(S2). (iii) if a ∈ R
and S ∈ L, then %(S + a) = %(S) + a. The risk measure is coherent if in
addition % satisfies: (iv) If S1, S2 ∈ L, then %(S1+S2) ≤ %(S1)+%(S2).
(v) If a ≥ 0 and S ∈ L, then %(aS) = a%(S). The expectation operator
is a special case where subadditivity is replaced by additivity.



Organization and Main Results

Sec. II details the Bayesian social learning model for
the process of information fusion by CVaR social sensors
and the pricing protocol employed by the controller. The
controller’s long term objective is to maximize a discounted
reward function.
Sec. III formulates the stochastic control problem faced by
the controller as a Partially Observed Markov Decision Pro-
cess (POMDP) and is solved using dynamic programming.
The structure of the value function and optimal policy is
completely characterized.
Sec. IV describes the nature of the price sequence that
is input to the multi-agent network. It is shown that the
controller prices high initially and subsequently lowers the
price, i.e the price input sequence over time is a super-
martingale.

II. CVAR SOCIAL LEARNING MODEL AND CONTROLLER
OBJECTIVE

We consider the classical sequential social learning frame-
work [3], [6], [11]. The social sensors and the controller
jointly seek to estimate the underlying state of a Markov
chain to meet the desired objectives. The controller sequen-
tially chooses price inputs to the multi-agent network in
exchange for services and the sensors decide to utilize the
services depending on its quality. The decision (action) of
each sensor depends on the cost, risk factor, private valuation
and the decisions of the other sensors in the network.
Amazon Web Services (AWS), for example, provides an
on-demand cloud platform with a wide range of services
like storage, developer tools, analytics etc for client-side
applications at different prices. AWS is only partially aware
of the quality of its services, while the clients learn about it
from the experience of other clients and self-valuation.

Let x ∈ X = {1(Low), 2(High)} denote the state and P
denote the transition matrix of the Markov chain having an
initial distribution (on the quality) as π0 = (π0(i), i ∈ X ),
where π0(i) = P(x0 = i).

Each sensor acts once in a predetermined sequential or-
der indexed by k = 1, 2, · · · . The index k can also be
viewed as the discrete time instant when sensor k acts.
Each sensor k obtains noisy private valuations, yk ∈ Y =
{1(Low), 2(High)}, of the quality xk and considers this in
addition to the actions of its predecessors. The controller
does not have any information about xk ∈ X but infers it
from the information revealed by the actions of the individual
sensors, ak ∈ A = {1(Don’t Utilize), 2(Utilize)}, and
chooses the price inputs2 uk ∈ [0, 1] at each time k (or
at each sensor k).

A. CVaR Social Learning Model and Pricing Protocol

The social learning model and the pricing protocol of the
controller is as follows:

1. Sensor’s Private Observation: Social sensor k’s private
observation denoted by yk ∈ Y = {1, 2} is a noisy

2The range of prices chosen by the controller is normalized to [0, 1] for
convenience.

measurement of the true quality. It is obtained from the
observation likelihood distribution as,

Bij = P(yk = j|xk = i) (1)

The discreteness of the observation distribution captures
the boundedness or the limited processing capabilities
of the sensor.

2. Social Learning and Private Belief update: Social sen-
sor k updates its private belief by fusion of the obser-
vation yk and the prior public belief πk−1(i) = P(xk =
i|a1, . . . , ak−1) as the following Hidden Markov Model
(HMM) update

ηykk =
BykP

′πk−1
1′BykP ′πk−1

(2)

where Byk denotes the diagonal matrix having
[P(yk|xk = 1) P(yk|xk = 2))] along the diagonal
and 1 denotes the 2-dimensional vector of ones. HMM
update is a consequence of Bayes’ rule, information on
the state conditioned on the new observation.

3. Sensor’s Action: Social sensor k executes an action
ak ∈ A = {1, 2} to myopically minimize its cost. Let
c(xk, ak) denote the cost incurred if the sensor takes
action ak when the underlying state is xk.
The form of the state-action dependent cost is taken as
c(xk, ak) = uk − v(xk) (see [11] for a justification),
where v is the valuation of the services by each sensor
and uk is the price chosen by the controller at time k.
It is assumed without loss of generality that

v(xk) =

{
0 if xk = 1;
1 if xk = 2.

The state-action dependent costs for x ∈ X are thus
given as:

c(xk, ak) =


[
0
0

]
if ak = 1;[

uk
uk − 1

]
if ak = 2.

The sensor chooses an action ak to minimize the CVaR
measure as

ak = argmin
a∈A

{CVaRα(c(xk, a))} (3)

= argmin
a∈A

{min
z∈R
{z +

1

α
Eyk [max{(c(xk, a)− z), 0}]}}

Here α ∈ (0, 1] reflects the degree of risk-aversion for
the sensor (the smaller α is, the more risk-averse the
sensor is). Note that when α = 1, the cost function is
the risk-neutral cost function as in [7], [8], [11]. Define

Gk := σ- algebra generated by (u1, a1, u2, a2, . . . , uk, yk)
(4)

Eyk denotes the expectation with respect to private
belief, i.e, Eyk = E[.|Gk] when the private belief is
updated after observation yk.

4. Controller Reward: We consider two possible reward
functions for the controller. The controller chooses one



of the following reward functions at k = 0 and accrues
the corresponding reward at each time k as
Case 1. Self-Interested: The controller accrues a reward

when the sensors utilize the services,

ruk = (uk − β)I(ak = 2|πk). (5)

Case 2. Altruistic: The controller accrues a reward
when the sensors act according to their valuations,

ruk = (uk − β)I(ak = yk|πk). (6)

Here I denotes the indicator function and β ∈ (0, 1) is
a fixed3 cost incurred by the controller. It could denote
the cost of service. The controller being self-interested
can be seen as profit maximizing, and being altruistic
can be seen as social welfare maximizing4.

5. Public Belief update: Sensor k’s action is shared by the
controller with the multi-agent network and the public
belief on the quality is updated according to the social
learning Bayesian filter (see [3], [6]) as follows

πk = Tπ(πk−1, ak) =
R
πk−1
ak P ′πk−1

1′Rπk−1
ak P ′πk−1

. (7)

Here, πk(i) = P(xk = i|a1, . . . , ak), R
πk−1
ak =

diag(P(ak|x = i, πk−1), i ∈ X ), where P(ak|x =
i, πk−1) =

∑
y∈Y

P(ak|y, πk−1)P(y|xk = i) and

P(ak|y, πk−1) =

{
1 if ak = argmin

a∈A
{CVaRα(c(xk, a))};

0 otherwise.

Note that πk belongs to the unit simplex

Π(2)
∆
={π ∈ R2 : π(1) +π(2) = 1, 0 ≤ π(i) ≤ 1 for i ∈ {1, 2}}

Here the expectation in CVaR measure is with respect
to the sigma-algebra Gk with yk = y. Social learning fil-
ter update is a consequence of Bayes’ rule, information
on the state conditioned on the new action.

6. Fusion Price: Let the history recorded by the con-
troller and the multi-agent network be denoted as
Hk = {π0, u1, a1, · · · , uk, ak}. The controller chooses
uk+1 = µk+1(Hk) ∈ [0, 1] for the sensor k+1 and the
protocol is repeated for all the sensors in the system.
Here µk+1 denotes the pricing policy at time k + 1.

Fig. 1 shows the CVaR social learning model.

B. Controlled Fusion Objective

The controller chooses the price inputs to the social
sensors sequentially as

uk = µk(Hk−1) ∈ [0, 1] (8)

3Note that β could be made state dependent without affecting the nature
of the results in the paper. Here it is assumed to be independent of the state
for simplicity.

4Social welfare is maximized when the controller and the sensors in the
multi-agent network take decisions considering network externalities; see
(Chapter 4, [11]). We shall see in Sec. IV that I(a = y) improves the
value of information fused by the successive sensors, thereby promoting
welfare.

Fig. 1: CVaR Social Learning model. The social sensor k receives
the public belief πk−1 from all its predecessors. yk denotes the
private valuation of the quality and uk denotes the price charged
by the controller for the services. The decision ak is shared by the
controller and the updated public belief πk+1 is received by the
successive sensors.

where Hk = {π0, u1, a1, · · · , uk−1, ak−1}. Since Hk is
increasing with time k, to implement a controller, it is
useful to obtain a sufficient statistic that does not grow in
dimension. The public belief πk−1 computed via the social
learning filter (7) forms a sufficient statistic for Hk and5 (8)
can be written as

uk = µk(πk−1). (9)

The optimal pricing policy µ∗ is the stationary policy that
maximizes the cumulative discounted reward

Jµ(π) = Eµ{
∞∑
k=1

ρkruk |π0 = π}. (10)

Here uk = µ(πk−1) and ρ ∈ [0, 1) denotes the economic
discount factor indicating the degree of impatience of the
controller. In (10), the controller seeks to find the optimal
policy µ∗ such that

Jµ∗(π0) = supµ∈µJµ(π0). (11)

The stochastic control problem faced by the controller was
formulated as a partially observed Markov decision process
(POMDP) with dynamics (7) and objective (11), and is
solved using dynamic programming.

III. STRUCTURE OF OPTIMAL PRICING POLICY

In this section, we characterize the nature of the optimal
pricing policy for (10). It is shown that due to the structure
of the social learning filter in (7), the choice of price inputs
reduces from a continuum to a finite number at every belief.

Assumptions:
(A1) The observation distribution Bxy = P(y|x) is TP2(total

positive of order 2), i.e, the determinant of the matrix
B is non-negative; see [12].

(A2) The transition probability matrix P is TP2.

Lemma 1 ( [12]). Let ηy denote the private belief update (2)
with a public prior belief π. Under (A1), ηy is increasing6

in y, i.e, ηy=1(1) > ηy=2(1).
5The rewards are a function of the price and the state (see Lemma 8

and Lemma 9), and hence restriction to Markov policies is without loss of
generality.

6π2 ≥ π1 if the determinant∣∣∣∣π1(1) π1(2)
π2(1) π2(2)

∣∣∣∣ ≥ 0



Theorem 2 ( [12]). Let the instantaneous rewards be non-
decreasing in π. Under (A1) and (A2), the value function
V (π) with finite number of actions at every belief, is mono-
tone and convex.

The proof of monotonicity involves using the assumption
that the instantaneous reward is increasing in π to establish
that the function Q(π, u) is increasing in π by inductive
arguments. The proof of convexity follows by establishing
the convexity of the instantaneous rewards with respect to π.

The optimal policy µ∗ and the value function V (π) for
the POMDP satisfy the Bellman’s dynamic programming
equation

Q(π, u) = ru + ρ
∑
a∈A

V (Tπ(π, a))σ(π, a),

µ∗(π) = argmax
u∈[0,1]

Q(π, u),

V (π) = max
u∈[0,1]

Q(π, u), Jµ∗(π0) = V (π0). (12)

Theorem 3. Given a risk-aversion factor α ∈ (0, 1], let
uH(π) = 1− ηy=2(1)

α and uL(π) = 1− ηy=1(1)
α denote two

possible prices at the belief π. Under (A1) and (A2), the Q
function (12) can be simplified for the rewards (5) and (6)
as
Case 1.) Self-Interested:

Q(π, u) =


(u− β) + ρV (P ′π) if u ∈ [0, uL(π)];
(u− β)× 1′By=2π
+ρEV (π) if u ∈ (uL(π), uH(π)];
0 otherwise.

and V (π) = maxQ(π, u), where V (π) ≥ 0.
Case 2.) Altruistic:

Q(π, u) =

{
(u− β) + ρEV (π) if u ∈ (uL(π), uH(π)];
0 otherwise.

and V (π) = maxQ(π, u), where V (π) ≥ 0.

Here,

EV (π) = 1′Bπy=1P
′π× V (ηy=1) + 1′Bπy=2P

′π× V (ηy=2).

The prices uH(π) and uL(π) are such that sensors utilize
the services when y = 2 and y = {1, 2} respectively. The
proof of Theorem 3 will be given in the appendix. Theorem 3
represents the Q function (12) over a price input range [0, 1]
for rewards (5) and (6) respectively, in three and two regions.
The following corollaries highlight why such partitions are
useful.

Corollary 4. Let the controller reward be given by (5). At
every public belief π ∈ Π(2), it is sufficient to choose one of
the three prices {uL(π), uH(π), uH(π) + ε} for any ε > 0.

Corollary 5. Let the controller reward be given by (6). At
every public belief π ∈ Π(2), it is sufficient to choose one
of the two prices {uH(π), uH(π) + ε} for any ε > 0.

The Q function and hence the value function V (π) is
monotone from Theorem 2. The following theorem com-
pletely characterizes the optimal pricing policy when the
controller aims to maximize the reward. The proof is given
in the appendix.

Theorem 6. Let P = I , i.e, the quality is a random variable.
For every public belief π ∈ Π(2) and an ε > 0, the optimal
policy µ∗(π) = argmaxuQ(π, u) is given as
Case 1.) Self-Interested:

µ∗(π) =

 uH(π) + ε if π(2) ∈ [0, π∗(2));
uH(π) if π(2) ∈ [π∗(2), π∗∗(2));
uL(π) π(2) ∈ [π∗∗(2), 1].

(13)
for π∗(2), π∗∗(2) ∈ [0, 1].

Case 2.) Altruistic:

µ∗(π) =

{
uH(π) + ε if π(2) ∈ [0, π̂∗(2));
uH(π) if π(2) ∈ [π̂∗(2), 1].

(14)

for π̂∗(2) ∈ (0, 1).

Discussion: From Theorem 3, Corollary 4 and Corol-
lary 5, the value function in (12) can be represented as

(Self-Interested)

V (π) = max{0, (uL(π)− β) + ρV (P ′π),

(uH(π)− β)× 1′By=2π + ρEV (π)}
(Altruistic)

V (π) = max{0, (uH(π)− β) + ρEV (π)}

The key takeaway is that due to the structure of the social
learning filter, the choice of price inputs at every belief is
reduced to a finite number of values instead of the range
[0, 1]. Characterizing the optimal policy amounts to selecting
among the these price inputs as a function of the public
belief. Theorem 6 completely determines the regions in the
belief space Π(2) where it is optimal to choose a particular
price input, when P = I . Fig. 2a and Fig. 2b show the
value function and the optimal policy for two different risk-
aversion factors (α) in a simple numerical example.

Let R1, R2, R3 denote the three regions determined by
Theorem 6 where uH(π)+ε, uH(π), uL(π) respectively are
optimal. R1 is the cut-off region - the controller terminates
the services to the multi-agent network. In the Self-Interested
case, the price inputs are such that no sensor has an incentive
to utilize the services. R2 is the social learning region -
the sensors act according to their private valuations. The
price inputs are such that the sensor having a high valuation
y = 2 will utilize the services, while the sensor having
low valuation y = 1 finds it prohibitive. Since the sensors
act according to their valuation, sensor deciding at a future
instant can successfully infer the private valuation of its
predecessors; in other words, the information fusion reduces
uncertainty about the quality of the service.R3 is the herding
region - every sensor utilizes the services. The controller
chooses a low input uL(π)(< uH(π)), which prompts the
sensor with even a low valuation y = 1 to utilize the service.
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Fig. 2: Value function and optimal pricing policy of the controller

in the self-interested case. P = I , B =

[
0.7 0.3
0.3 0.7

]
, the discount

factor ρ = 0.7, andR1−[0, π∗), R2−[π∗, π∗∗), andR3−[π∗∗, 1]
are the cut-off, social learning and herding regions respectively. It
can be seen that the width of R1 increases with increased aversion
to risk. This is equivalent to saying that risk-averse sensors that
show an increased aversion to risk, choose to utilize the services
only when they are reasonably certain about the quality. So it is
profitable to the controller if it offers services only when it believes
that the quality is high.

Notice that when the controller chooses u = uL(π) (when
π(2) ∈ [π∗∗(2), 1]), the value function is V (π) = (uL(π)−β)

(1−α)
- a fixed payoff. This means the controller induces a herd
(sensors choose the same action irrespective of their private
valuation) that leads to an information cascade (information
fusion results in no improvement in uncertainty) - public
belief is frozen.

In the Altruistic case, the price inputs (two at every belief)
are chosen so as to encourage the sensors to act according
to their valuations. This implies that the controller chooses
inputs to maximize the width of the social learning region
R2. The herding region R3 is absent as u = uL(π) is
not chosen by the controller. The cut-off region indicates
the flexibility to terminate the services when the expected
valuation is less than the cost of service.

IV. PROPERTIES OF THE OPTIMAL PRICE SEQUENCE

In this section, we describe the relation between the
optimal policy (13) and (14), and the price sequence uk =
µ∗(πk).

Theorem 7. Let Fk be the σ-algebra generated by
(u1, a1, u2, a2, . . . , uk−1, ak−1, uk, ak), where π0 is the ini-
tial belief. The optimal price sequence uk = µ∗(πk−1) is a
super-martingale when the quality is a random variable, i.e,
P = I for any α ∈ (0, 1].

Proof. Let P = I . The public belief πk is a martingale for
P = I , i.e, E[πk+1|Fk] = πk; see [8], [11].
It can easily be verified7 that uH(π) is a concave function
and uL(π) is a convex function of π for α ∈ (0, 1].

i.) Self-Interested: For ε → 0, we have for
πk(2), πk+1(2) ∈ [0, π∗∗(2)), uk = uH(πk) and

7Note that the matrix B is TP2. It can be seen that derivative of uH(π)
is strictly decreasing and the derivative of uL(π) is strictly increasing with
respect to π(2) for any α ∈ (0, 1].

it satisfies E[uH(πk+1)|Fk] ≤ uk by Jensen’s
inequality.
We know that uL(π) ≤ uH(π) from Lemma 1. For
the case of πk(2) ∈ [π∗(2), π∗∗(2)) and πk+1(2) ∈
[π∗∗(2), 1], we have

E[uk+1|Fk] = E[uL(πk+1)|Fk] ≤ E[uH(πk+1)|Fk] ≤ uk.

Note that the belief is frozen in [π∗∗(2), 1], so
πk+1(2) ∈ [π∗(2), π∗∗(2)) and πk(2) ∈ [π∗∗(2), 1] is
irrelevant.

ii.) Altruistic: Here π∗∗(2) = 1. For ε → 0, we have for
πk(2), πk+1(2) ∈ [0, 1], uk = uH(πk) and it satisfies
E[uH(πk+1)|Fk] ≤ uk by Jensen’s inequality.

When the controller is profit maximizing or self-interested,
it initially chooses higher price inputs to encourage sensors
with higher valuation to utilize the services. Decisions at
higher prices are more informative8, which in turn results in
higher public beliefs when a = 2. Due to the concavity of
the pricing policy, higher belief causes the future price inputs
to increase. Once sufficient information about the quality is
accumulated, the controller either chooses low price inputs
to allow every sensor to utilize the services or terminates its
services to the multi-agent network.

When the controller is altruistic, it always chooses high
price inputs to encourage the sensors to act according to their
private valuations.

APPENDIX

Lemma 8. The instantaneous reward (u− β)I(a = 2|π) is
given as∑

j∈Y

∑
i∈X

(u− β)I(u ≤ 1− ηy=j(1)

α
)Bijπ(i). (15)

Lemma 9. The instantaneous reward (u− β)I(a = y|π) is
given as

(u− β) I(uL(π) < u ≤ uH(π)). (16)

The proofs follow from the structure of the social learning
filter (see Theorem 2, [6]), property of the CVaR measure
(see Lemma 6, [6]), and Bayes’ rule. It is omitted due to
lack of space.
We will prove Theorem 3 and Theorem 6 for the Self-
Interested case. The proof for the Altruistic case follows
similarly.
Proof of Theorem 3:
Consider Q(π, u) as in (10) for u ∈ [0, 1].

i.) Let u ∈ [0, uL(π)]. Recall that uL(π) = 1 − ηy=1(1)
α .

The instantaneous reward in (15) is (u − β). The

8Informativeness is in the sense of Blackwell; see [12]. For any two
observation matrices B1 and B2, B1 is more informative than B2 in the
Blackwell sense (B1 �B B2) if B2 = B1Q, for any stochastic matrix Q.
Note here that when u = uH(π), the action likelihood matrix in (7) RH =

B; and when u = uL(π), the action likelihood matrix RL =

[
1 0
1 0

]
. We

have for Q =

[
1 0
1 0

]
, RL = RHQ⇒ RH �B RL.



continuation payoff
∑
a∈A V (Tπ(π, a))σ(π, a) is given

as follows. From (7), Rπa =

[
0 1
0 1

]
.

(⇒)
∑
a∈A

V (Tπ(π, a))σ(π, a) = V (P ′π).

∴ Q(π, u) = (u− β) + ρV (P ′π). (17)

ii.) Let u ∈ (uL(π), uH(π)]. The instantaneous reward in
(15) is (u− β)× 1′By=2π. From (7), Rπa = B.

(⇒)
∑
a∈A

V (Tπ(π, a))σ(π, a) = EV (π).

∴ Q(π, u) = (u− β)× 1′By=2π + ρEV (π). (18)

iii.) Let u ∈ (uH(π), 1]. This implies that u > 1− ηy=2(1)
α .

The instantaneous reward in (15) is 0. From (7), Rπa =[
1 0
1 0

]
. Since P(a = 1) = 1, the controller doesn’t

accrue any profit by offering services. Therefore the
instantaneous and continuation payoff is 0.

(⇒)Q(π, u) = 0. (19)

The result follows from (17), (18) and (19).
Proof of Theorem 6:

Define the following:

δ∗ = min{π(2)| ηy=1(2) ≥ 1− α},
γ∗ = {π|(uH(π)− β)× 1′By=2π + ρEV (π) = 0},

π∗(2) = max{δ∗, γ∗},
π∗∗(2) = {π(2)|(uL(π)− β) + ρV (π) =

(uH(π)− β)× 1′By=2π + ρEV (π)}.

i.) Consider π(2) ∈ [0, π∗(2)). We will show that
{max Q(π, u) = 0}.
Let V (0) denote the value at π =

[
1
0

]
. As π(2) → 0,

we have EV (0)→ V (0) and uH(0) = uL(0)→ 1− 1
α .

Assume on the contrary V (π) = (uL(π)−β) +ρV (π).
As π(2) → 0, V (0) =

(1− 1
α−β)

(1−ρ) . Since α ∈ (0, 1],
1
α ≥ 1 and V (0) < 0. From Theorem 3, V (π) ≥ 0.
Contradiction.
Similarly if V (π) = (uH(π)−β)×1′By=2π+ρEV (π),
we have V (0) < 0. Therefore, V (0) = 0 and we have
Q(0, uH(0)) < 0 and Q(0, uL(0)) < 0.
From the convexity of the value function, EV (π) ≥
V (π). Since Q(π, uH(π)) < 0 for π(2) = [0, π∗(2)),
by definition of π∗(2), we have

(uH(π)− β)× 1′By=2π + ρEV (π) < 0

V (π) ≥ 0→ EV (π) ≥ 0 by Jensen’s Inequality.

∴ (uH(π)− β) < 0.

(uH(π)− β) < 0→ (uL(π)− β) < 0 from Lemma 1.

If on the contrary V (π) = (uL(π)− β) + ρV (π), then
V (π) < 0; a contradiction.

∴ Q(π, uL(π)) < 0 for all π(2) = [0, π∗(2)].

⇒ V (π) = 0 for all π(2) = [0, π∗(2)].

ii.) π∗∗(2) = {π(2)|Q(π, uH(π) = Q(π, uL(π)))}. We
will show that for π(2) ∈ (π∗∗(2), 1], Q(π, uL(π))) >
Q(π, uH(π))) > 0.
Assume Q(π, uH(π)) > Q(π, uL(π)) on the contrary.
Consider π(2) → 1. Let V (1) and b(= 1′By=2π) ∈

[0, 1] denote the values at π =

[
0
1

]
. We have

uH(1) = uL(1)→ 1 and EV (1)→ V (1)

⇒ (1− β)× b+ ρEV (1) > (1− β) + ρV (1)

⇒ b > 1, a contradiction as β > 0.

⇒ Q(π, uL(π)) > Q(π, uH(π)).

From Theorem 3, V (π) ≥ 0 and therefore, EV (π) ≥ 0.

For π(2) ∈ [π∗∗(2), 1], (uH(π)− β)× 1′By=2P
′π > 0

(⇒)Q(π, uH(π)) > 0.

iii.) Since π∗∗(2) = {π(2)|Q(π, uH(π) = Q(π, uL(π)))}
and Q(π, uL(π)) < 0 for all π(2) = [0, π∗(2)] , from
part (ii) we have

Q(π, uH(π))) > Q(π, uL(π))) for all π(2) ∈ [π∗(2), π∗∗(2)).

Note that Q(π, uH(π))) > 0 for all π(2) ∈
[π∗(2), π∗∗(2)) by definition of π∗(2) and the fact that
Q(π, u) ↑ π (Theorem 2).
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