
Identification of Hidden Markov Models Using
Spectral Learning with Likelihood Maximization

Robert Mattila, Cristian R. Rojas, Vikram Krishnamurthy and Bo Wahlberg

Abstract— In this paper, we consider identifying a hidden
Markov model (HMM) with the purpose of providing esti-
mates of joint and conditional (posterior) probabilities over
observation sequences. The standard procedure, i.e., the Baum-
Welch/expectation-maximization algorithm, has recently been
challenged by methods of moments. Such methods employ
low-order moments to provide parameter estimates and come
with several benefits, e.g., consistency and low computational
cost. This paper focuses on a particular method that identifies
an observable representation of an HMM. We aim to reduce
the gap in statistical efficiency that results from restricting to
only low-order moments in the training data. In particular,
we propose improving the initial estimates by approximately
maximizing the associated likelihood function as a second step
in the estimation procedure. The maximization is performed
by employing a second order optimization procedure. We
demonstrate an improved statistical performance using the
proposed algorithm in numerical simulations.

I. INTRODUCTION

Numerous applications in signal processing and control
rely on the hidden Markov model (HMM): computational
biology and genomic sequence analysis [1], [2], automatic
speech recognition [3], social network analysis [4], financial
modeling [5], etc. At its core, the HMM is a stochastic
model where discrete observations are made independently
conditioned on a discrete latent state that evolves over
time according to Markovian dynamics. For the purpose
of control and filtering, the model is usually built from
data, i.e., identified, since first principles modelling can be
prohibitively laborious.

The most widely used identification procedures for HMMs
employ maximum likelihood (ML) techniques. They are
commonly based on iterative hill-climbing algorithms such
as the expectation-maximization (EM, [6]) algorithm, or
Newton based methods. However, due to the non-convexity
of the likelihood function and the local-search nature of these
algorithms, they are prone to converge to local minima.

Recently, several method of moments estimators (see, e.g.,
[7] for an introduction in the general setting) have been
proposed for HMMs [8]–[15]. These estimators first compute
empirical estimates of low-order moments given an HMM
observation sequence. They then use (inverted) relations
between these moments and the system parameters to provide
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parameter estimates. Benefits of these methods over local
search procedures (e.g., EM) include lower computational
cost, and that they sometimes are amenable to statistical
guarantees in terms of consistency and finite-sample bounds.

However, method of moments algorithms that consider
only lower order moments suffer from a loss of statistical
efficiency. Essentially, only short substrings of the full data
sequence are considered in the estimation procedure, and
hence, a lot of the information available in correlations is
lost.

In this paper, we focus on a popular method proposed
in [8]: the spectral learning (SL) algorithm. SL identifies
an observation operator representation (OOR, [16]) of the
HMM, which allows computation of filtering and prediction
quantities related to observations. SL is computationally very
efficient – only one pass over the data is required to obtain
moment estimates, and the ensuing moment-matching is
solved using simple linear algebra routines. The main aim of
this paper is to reduce the aforementioned gap in statistical
efficiency for SL. We propose a method of improving the
estimated model by considering the statistics of the full
data as a second step – allowing for extraction of more
information.

In particular, we use the initial OOR resulting from SL
to approximately compute the likelihood with respect to
the observed data. This gives us a proxy to the likelihood
function. Similar to the sensitivity equations of the HMM
filter, that can be used to compute the gradient and Hessian
of the likelihood in the standard parametrization (see, e.g.,
[4], [17]), we obtain the gradient and Hessian of the approx-
imate likelihood. These allow us to employ a second order
optimization procedure, inspired by the indirect prediction-
error method [18], used in linear system identification, to
improve the estimates.

In summary, the main contributions of this paper are:
• an identification method of incorporating the statistics

of the full observation sequence as a second step in SL,
hence exploiting more of the information available in
the data and increasing the statistical performance;

• a demonstration of the performance of the proposed
method in numerical simulations.

The outline of the rest of the paper is as follows. We
first provide a brief overview of related work in Section I-A.
Section II then details the necessary notation, the background
related to HMMs and the OOR formulation, as well as the
problem setup. The proposed method is given in Section III.
The following section, Section IV, discusses limitations and
practical considerations of the algorithm. Section V presents



several numerical evaluations of the proposed procedure. The
paper is concluded with a brief discussion in Section VI.

A. Related work

HMM identification is by now a classical field with a
vast literature. ML estimation using the now-standard Baum-
Welch algorithm (EM applied to HMMs) is presented and
discussed in, e.g., [3], [4] and [17]. Several alternative
methods have been proposed due to its drawbacks related
to only local convergence and high computational cost.
Methods inspired by ideas from subspace identification for
linear systems (see, e.g., [19]) include [20]–[25].

Related to these, an interest for utilizing method of mo-
ments has in the past few years spread in the machine learn-
ing community. Such methods (of moments) that recover
the standard parameters (i.e., the transition and observation
matrices) of an HMM include [8, Appendix A], which has
been further generalized in [9] and [10]; and [11]–[13].

For certain tasks, learning a full representation of an HMM
is superfluous. Methods of moments have therefore also
recently been formulated to learn observable representations
(e.g., [16], [26]) of HMMs, which avoid estimating the
transition and observation matrices explicitly – see e.g., [8],
[14], [15]. In terms of increasing the statistical efficiency of
such methods, [27] and [28] consider initializing EM in the
resulting estimates. The authors of [29] reformulate SL [8]
in a generalized method of moments (GMM) framework that
allows for iterative reweighing of the estimated moments.
The distinguishing feature of our work is that we propose a
second order scheme.

II. PRELIMINARIES AND
PROBLEM FORMULATION

Element i of a vector is denoted [·]i, and the element at
row i and column j of a matrix is denoted [·]ij . Vectors
are column vectors, unless transposed. We let 1 denote the
vector of ones and ei the ith Euclidean standard-basis vector.
The operation diag(·) returns a matrix with the vector · on
the diagonal. For brevity, we sometimes shorten a sequence
y1, . . . , yk to y1:k. The Moore-Penrose matrix pseudo-inverse
is denoted †.

A. Hidden Markov models

We consider finite-state finite-observation alphabet hidden
Markov models (HMMs): {X ,Y, P,B, π0}, where X is a
discrete state-space of X states; Y is a discrete observational
alphabet of size Y ; π0 an initial distribution over X ; and,
P ∈ RX×X and B ∈ RX×Y are row-stochastic transition
and observation matrices defined, respectively, as

[P ]ij = Pr[xk+1 = j|xk = i], (1)

and
[B]ij = Pr[yk = j|xk = i]. (2)

Assuming the transition matrix P to be ergodic (i.e., aperi-
odic and irreducible), denote by π∞ its stationary distribu-
tion.

B. Problem formulation
The problem we consider is motivated by the common

situation where predicting the future value of a (non-
deterministic) quantity is of interest. Formally, we want to
solve:

Problem 1. Consider a given sequence of N observations
sampled from an HMM with unknown transition and obser-
vation matrices. For an arbitrary observation yk+1 and an
arbitrary sequence of observations y1:k, provide a method
to estimate the joint and conditional probabilities of these
sequences in the unknown HMM, i.e., estimate Pr[y1:k] and
Pr[yk+1|y1:k].

The standard approach, i.e., EM, solves the problem in two
steps. The EM algorithm alternates between i) estimating the
corresponding non-observed latent states, and ii) fitting the
HMM parameters P and B to the estimated state sequence
and the observed output sequence. An estimated model
is available once a convergence criterion is fulfilled. The
(estimated) joint probability can then be computed directly.
For the posteriors, an HMM filter can be employed to obtain
belief states over the latent variables. These can then be
propagated to obtain the sought posteriors. The next sub-
section outlines how the problem is solved using SL.

C. Observable operator representation (OOR) of an HMM
In comparison to EM, SL avoids identifying the transition

and observation matrices separately when solving Problem 1.
Instead, it identifies a parametrization of the HMM (roughly,
in terms of products between P and B) which can be related
to only observable quantities – removing the need to estimate
the latent state sequence. In particular, define the first, second
and third order moments of the HMM as,

[Mk
1 ]i = Pr[yk = i], (3a)

[Mk
2,1]ij = Pr[yk+1 = i, yk = j], (3b)

[Mk
3,y,1]ij = Pr[yk+2 = i, yk+1 = y, yk = j], (3c)

respectively. In the limit, as k → ∞, or in the case that
π0 = π∞, we obtain the stationary moments (that can be
directly estimated from observed data):

M1
def.
= M∞1 , M2,1

def.
= M∞2,1, M3,y,1

def.
= M∞3,y,1. (4)

It is shown in [8] that these quantities are sufficient to
estimate Pr[yk+1|y1:k] and Pr[y1:k] consistently under fairly
general assumptions on the HMM: P and B are full rank,
and π∞ > 0. In particular, it can be done as follows.
First, it is required to find a matrix U ∈ RY×X such that
the product BU is invertible.1 The following observation
operator representation (OOR) of the HMM is then defined
(recall that † denotes the Moore-Penrose pseudo-inverse) as

b1 = UTM1, (5a)

b∞ = (MT
2,1U)†M1, (5b)

By = UTM3,y,1(UTM2,1)†. (5c)

1This is usually done by taking U to be the left singular vectors of the
thin SVD of M2,1 – see [8, Lemma 2].



Note that b1 and b∞ are vectors, and {By}Yy=1 is a set
of Y matrices. In terms of this parametrization, the joint
probability of a sequence can be computed (see [8, Lemma
3]) as

Pr[y1, . . . , yk] = bT∞Byk . . .By1b1. (6)

Conditional probabilities, i.e., output posteriors, can be ob-
tained (see [8, Lemma 4]) by introducing an “internal state”

bk+1 =
Bykbk
bT∞Bykbk

, (7)

and then computing

Pr[yk|y1, . . . , yk−1] = bT∞Bykbk. (8)

The SL procedure consists of using empirical estimates of
the moments (4) to generate an estimate of the OOR (5a)-
(5c). These estimates are then used in (6), (7) and (8) to,
in turn, compute estimates P̂r[y1:k] and P̂r[yk|y1:k−1].2 The
usual assumption, to facilitate finite-sample analysis, is that
triplets of observations are sampled independently to form
moment estimates. However, in practice, the full observation
sequence is employed to estimate the moments:

[M̂3,y,1]ij =
1

N − 2

N−2∑
k=1

I{yk+2 = i, yk+1 = y, yk = j},

(9)
and similarly for M̂2,1 and M̂1. The main idea of this paper
is to exploit this by extracting more of the information
available in the observed data y1:k than just that of third
order correlations employed in the estimator (9).

III. SPECTRAL LEARNING
WITH LIKELIHOOD MAXIMIZATION

In this section, we outline the proposed method that
improves upon the solution (5a)-(5c) and (6)-(9) provided
to Problem 1 by SL.

A. Maximum likelihood estimation
In ML estimation, the unknown quantities θ parametrizing

the distribution of the data are chosen as to maximize the
likelihood of the observed data y1:N :

θ̂ML = arg max
θ∈Θ

Pr[y1, . . . , yN ; θ]
def.
= arg max

θ∈Θ
LN (θ), (10)

where Θ is the feasible parameter set. Note that this naturally
allows the statistics of the full data sequence to be exploited.
In contrast, the empirical estimator (9) of the moments
M3,y,1 utilizes the full data sequence, but effectively, only
substrings of length three. Moreover, the ML estimate θ̂ML
has many attractive statistical properties. We propose com-
bining SL with likelihood maximization in order to obtain
the advantages of both approaches.

As mentioned in the previous section, it is shown in [8]
that the joint probability of a sequence of observations can
be computed using an OOR as

Pr[y1, . . . , yk] = bT∞Byk . . .By1b1. (11)

2A normalization factor is needed in (8) when computing with the
estimated OOR. However, it is argued (in [8]) that this factor is always
close to one.

If the sequence y1:k is taken to be the observed data then
the likelihood is computed. Below, we will discuss how a
hill-climbing optimization algorithm can then be used to
maximize this expression with respect to the parameters

θ
def.
= {b1, b∞, {By}Yy=1}, (12)

subject to suitable constraints – effectively solving problem
(10) locally.

However, calculating the likelihood of the observed data
using relation (11) would quickly result in a numerical
underflow. As is customary, we therefore chose to work with
the log-likelihood lN (θ)

def.
= lnLN (θ) instead. In general, we

have that

lN (θ) =
N∑
k=1

ln Pr[yk|y1:k−1], (13)

by repeated conditional factorization. Each term in (13) can
be expressed using (8), so that

lN (θ) =
N∑
k=1

ln bT∞Bykbk, (14)

where the bk:s are computed recursively using (7).
In summary, we can calculate the log-likelihood lN (θ)

using the recursive procedure:

lk+1(θ) = lk(θ) + ln bT∞Bykbk,

bk+1 =
Bykbk
bT∞Bykbk

, (15)

for k = 1, . . . , N − 1, with l1(θ) = ln bT∞By1b1.

B. Likelihood improving step
We will now describe how an initial set of parameters θinit

can be improved by means of ML estimation. Assume for
now – we provide details in Section IV-B – that the gradient
and Hessian, g def.

= ∇θlN (θinit) and H
def.
= ∇2

θlN (θinit),
respectively, of the log-likelihood (14) can be computed. We
first make a second order approximation of the likelihood
function around θinit,

lN (θ) ≈ lN (θinit)

+ gT (θ − θinit) +
1

2
(θ − θinit)

TH(θ − θinit). (16)

This approximation is used sequentially as a surrogate for
lN (θ) in the Newton-Raphson method of optimization. Find-
ing a stationary point, i.e., maximizing if H is negative
definite, yields a standard Newton-Raphson update (see, e.g.,
[30]) as

θNR = θinit − [H]−1g. (17)

However, this relies on the assumption that θ is uncon-
strained, which is not the case in our setting.

Inspired by the methodology used in the indirect
prediction-error method [18], we propose that the parameters
are updated as follows. Again, the second-order approxima-
tion is used as a surrogate for lN (θ), but the constraints
θ ∈ Θ are imposed to retain the feasibility of the parameters,

max
θ

gT (θ − θinit) +
1

2
(θ − θinit)

TH(θ − θinit)



s.t. θ ∈ Θ, (18)

which reduces to the standard Newton-Raphson update (17)
for unconstrained θ. (The constant term has been dropped
since it does not influence the optimization problem.)

A challenging complication is that in terms of θ, as defined
in (12), the set Θ is difficult to specify. For example, to
guarantee that the new iterate yields valid quantities with
respect to relation (6), we have to enforce constraints of the
type

Pr[y1:k] = bT∞Byk . . .By1b1 ≥ 0, (19)

for all horizon lengths k and sequences y1:k, as well as∑
y1:k

Pr[y1:k] =
∑
y1:k

bT∞Byk . . .By1b1 = 1, (20)

for all horizon lengths k. This infinite number of constraints
is non-trivial to enforce in the optimization update (18) – in
fact, it is a well-known, and difficult, problem to ensure that
empirical OORs fulfill such constraints, see, e.g., [26], [31].

C. Re-parametrized optimization

To circumvent these difficulties, we choose as decision
variables in the optimization problem (18) the moments
of the HMM instead. Let the new parameter vector be
µ = {M3,y,1}Yy=1 (since the lower order moments can be
calculated by marginalization), and note that θ = θ(µ) since
the OOR θ is obtained using the mappings (5a)-(5c) of the
moments µ.

In this parametrization, some of the necessary constraints
are easy to formulate. First of all, we require the elements
to fulfill probability-type constraints: non-negativity,

[M3,y,1]ij ≥ 0,∀y ∈ Y,∀i, j ∈ Y, (21)

and sum-to-one,
Y∑
y=1

Y∑
i,j=1

[M3,y,1]ij = 1. (22)

Secondly, since the moments are stationary, we have (see,
e.g., [32]) that

Y∑
z=1

[M3,i,1]zj =
Y∑
z=1

[M3,j,1]iz, (23)

for all i, j ∈ Y . This means that if we marginalize out either
yk or yk+2 we get the same distribution over the remaining
two indices.

Denote the set defined by these constraints as M. Then
the parameter update (18) can be relaxed into the two steps:
i) solve

max
µ

ḡT (µ− µinit) +
1

2
(µ− µinit)

T H̄(µ− µinit)

s.t. µ ∈M, (24)

where ḡ def.
= ∇µlN (θ(µinit)) and H̄

def.
= ∇2

µlN (θ(µinit)), and
ii) map the updated moments µ into an OOR using (5a)-(5c).

This is a relaxation because µ ∈ M does not imply
that θ(µ) ∈ Θ (e.g., the OOR θ(µ) might yield negative

probabilities when used in relation (6)). However, compared
to the conditions fulfilled by the initial empirical OOR
(resulting from mapping the estimator (9) using (5a)-(5c)),
it is not a relaxation. In fact, these constraints are stricter
since the empirical moment-estimates are not guaranteed to
be stationary (and hence, to lie in M) for finite data. That
the initial empirical OOR does necessarily lie in Θ will be
discussed below, in Section IV-C.

IV. PRACTICAL CONSIDERATIONS
AND LIMITATIONS

In this section, we discuss some practical considerations
and limitations of the method outlined in the previous
section.

A. Convexity

Solving a general quadratic program (QP) is known to
be a difficult problem. If the second-order term is indefinite
– in fact, a single eigenvalue is sufficient – the problem
is NP-hard [33]. On the other hand, convex QPs can be
solved efficiently. The constraints in problem (24) are clearly
convex. With regards to the cost function, it is not necessary
that the quadratic term H̄ is completely semidefinite – only
that its restriction to the feasible set is.

It is possible to make this explicit (see, e.g., [30]). Write
the equality constraints (22) and (23) as linear equations
Aµ = b, where one row of A and one row of b are simply
ones, corresponding to (22), and the other rows have alter-
nating positive and negative ones and zeros, corresponding to
(23). Then re-parametrize the problem in terms of the null-
base N of the coefficient matrix A as µ−µinit = Nα, where
α are new decision variables.

Problem (24) can then be written, with this explicit re-
striction to the feasible set, as

max
α

ḡTNα+
1

2
αTNT H̄Nα

s.t. Nα ≥ −µinit, (25)

where the inequality is interpreted elementwise. The mo-
ments are updated by taking µ = µinit +Nα, and the corre-
sponding OOR θ(µ) is obtained by computing the mappings
(5a)-(5c). With enough data, the initial empirical estimate is
expected to be in a neighbourhood of the maximum of the
likelihood, so that NT H̄N is negative definite and convex
optimization methods can be employed to solve the problem
efficiently.

B. Computing the gradient and Hessian

Problem (24) requires that the gradient and Hessian of
the log-likelihood (14) can be computed. We provide two
methods of obtaining these quantities.

1) Direct computation: It is possible to derive recursive
equations in a similar fashion as to how recursive equations
for the gradient and Hessian of the likelihood for an HMM
parametrized in the standard manner (i.e., using P and B) are
derived. This is, roughly, done by differentiating the HMM
filter, yielding the sensitivity equations – see, e.g., [4] or [17].
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Fig. 1: RMSE of the three eigenvalues of B̂ compared to those of the true transition matrix P . B̂ was computed using
spectral learning (SL); one (SL+1) and three (SL+3) subsequent iterations of the proposed method. Also shown are the errors
using EM started in the true parameters (EM).

In our setting, one would first differentiate the recursion
(15) with respect to θ and then use the chain rule to obtain
the derivatives with respect to µ. However, these expressions
quickly become tedious to implement.

2) Automatic differentiation (AD): An alternative to the
explicit calculation is AD – see, e.g., [34] for a complete
treatment. Both the accuracy and the computational com-
plexity of AD are attractive. AD can compute derivatives
of arbitrary order that are accurate to working precision.
Moreover, the computational complexity of evaluating the
gradient of a function is proportional to the complexity of
evaluating the function itself. Evaluating the recursion (15)
requires O(NX2) operations, and hence, so does acquiring
the gradient. This is comparable to one iteration of EM. AD
was used in the simulations in Section V.

C. Approximate likelihood

In practice, empirical estimates are used of the HMM
moments and, in turn, the OOR parametrization θ. This
results in a few subtleties. The likelihood calculation (14)
builds on the relation (6), which is valid when θ corresponds
to an HMM. However, with empirical estimates, we have that

b̂T∞B̂yN . . . B̂y1 b̂1 = P̂r[y1, . . . , yN ]

≈ Pr[y1, . . . , yN ]

= bT∞ByN . . .By1b1. (26)

This means that the recursive procedure (15) does not nec-
essarily calculate a log-likelihood. In particular, P̂r[y1:N ] is
not even guaranteed to be non-negative. The first immediate
consequence of this is that trying to compute the logarithm
in (15) might fail. Secondly, the optimization update (18)
will try to maximize the left hand side of (26), which is an
approximation of the likelihood function.

However, since the empirical moment estimates (9) will
converge to the true moments (under suitable assumptions on
the HMM) and, in turn, the estimates of the OOR parameters
to their true values (by the continuous mapping theorem), we
expect both of these issues to disappear as more data is made
available. That HMMs estimated with method of moments
using finite data can yield negative probability estimates is a
known problem. Several workarounds have been proposed:

truncation [26], projecting the estimates back to the feasible
set using exterior point methods [31], etc. A full analysis
of these issues and convergence is beyond the scope of this
paper.

V. NUMERICAL EVALUATION

In this section we evaluate the performance of the pro-
posed procedure on numerical examples using the following
measures of accuracy. Firstly, the OOR parametrization θ
enables estimation of posteriors over observations using (7)
and (8). We define the prediction accuracy as the root-mean-
squared-error (RMSE) of the output posterior vector (over
yk given y1:k−1) compared to that of a standard HMM filter
running with the true parameters.

Secondly, it can be shown [8, Lemma 3] that the OOR
satisfies By = (BU)TPT diag(Bey)(BU)−T , so that

B def.
=

Y∑
y=1

By = (BU)TPT (BU)−T . (27)

In other words, B is a similarly transformed version of
the transition matrix P . Hence, a second natural choice of
accuracy is the RMSEs of the eigenvalues of B̂ compared to
those of P .

A. Simulations

Consider a fixed HMM with X = Y = 3. This
system has 12 unknown parameters (in the standard HMM
parametrization). Fig. 1 presents the RMSEs, for increasing
data lengths, of the three eigenvalues of B̂ compared to those
of the true transition matrix averaged over 100 realizations.
Also plotted are the RMSEs of the estimated eigenvalues of
P using EM started in the true parameters. The matrix B̂
was computed using spectral learning (SL); followed by one
(SL+1) and three (SL+3) subsequent iterations of the proposed
algorithm.

It can be seen from Fig. 1 (by the distances between
the EM and SL+1 curves) that the statistical efficiency of
the estimates is increased by one iteration of the proposed
method. For smaller data sizes, there is a small gain in
performing a few subsequent iterations – due to the quadratic
approximation being worse when the initial estimate is



further from the maximum. By the Perron-Frobenius the-
orem, the largest eigenvalue (λ3) of P is placed in 1. The
stationarity assumption in the proposed method enforces this,
whereas it is apparent from Fig. 1 that SL estimates it.

Next, we consider randomly generated HMMs. In Fig. 2,
the full distribution of the output posterior errors for fixed
data sizes Ntrain = 25 000 and 50 000 are plotted for
400 realizations with SL on the horizontal axis, and three
iterations of the proposed method on the vertical axis. The
dashed line shows the locii of points for which both methods
give equal RMSE. The calculated likelihood was positive in
374 and 383, respectively, out of the 400 realizations. A
majority of the points fall on the side corresponding to the
proposed method having a better prediction accuracy. The
points falling on the other side of the bisection can in part
be explained by, as discussed in Section IV-C, that for finite
data, we are only approximately maximizing the likelihood.

VI. CONCLUSIONS

This paper has considered identification of HMMs for the
purpose of providing estimates of joint and posterior prob-
abilities over observation sequences. A recently proposed
method of moments from the machine learning community
was extended by, as a second step, combining it with
likelihood maximization to increase the statistical efficiency.
In particular, since only substrings of length three (of the
observed data) were used in the training procedure, some
of the information available in correlations was lost. It was
shown in simulations that a small number of maximization
steps of a quadratic approximation of the likelihood was
sufficient to get close to the performance of ML in terms
of statistical accuracy.
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