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Abstract. This paper develops two accelerated Bregman Operator Splitting
(BOS) algorithms with backtracking for solving regularized large-scale linear

inverse problems, where the regularization term may not be smooth. The
first algorithm improves the rate of convergence for BOSVS [5] in terms of

the smooth component in the objective function by incorporating Nesterov’s
multi-step acceleration scheme under the assumption that the feasible set is
bounded. The second algorithm is capable of dealing with the case where the
feasible set is unbounded. Moreover, it allows more aggressive stepsize than
that in the first scheme by properly selecting the penalty parameter and jointly
updating the acceleration parameter and stepsize. Both algorithms exhibit
better practical performance than BOSVS and AADMM [21], while preserve
the same accelerated rate of convergence as that for AADMM. The numerical
results on total-variation based image reconstruction problems indicate the

effectiveness of the proposed algorithms.

1. Introduction. The main purpose of this paper is to develop accelerated Breg-
man Operator Splitting algorithms with backtracking for solving the following con-
vex composite optimization problem

(1.1) min
u∈U

{
1

2
‖Au− f‖2 + ψ(Bu)

}

,
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where U ∈ C
n is a closed convex set, A ∈ C

m×n is a matrix, f ∈ C
m is a vector,

ψ : Cd×n → < is a proper convex and Lipschitz continuous function, B : Cd×n×n →
C

d×n is a linear operator, and ‖ · ‖ is the 2-norm in Euclidean space.
The problem (1.1) has attracted much attention in recent years because of its

applications in various disciplines, such as signal and image processing [1, 2, 4, 22,
27, 28], compressive sensing [7, 12, 18], and machine learning [26, 17, 3]. In those
fields, the first term in (1.1) represents the data fidelity and the second term is a
regularization term. For instance, the total variation based image reconstruction is
often modeled by (1.1), where u = (u1, ..., un)

T is the n-vector form of the image u,
the matrix A depends on the physics of the data acquisition, f is the measurement,
and

(1.2) ψ(Bu) = α‖u‖TV = α
n∑

i=1

‖(∇u)i‖

is the discrete form of the total variation of u. In (1.2), (∇u)i is a discrete gradient
(finite differences along the coordinate directions) of u at the i-th voxel, and α is a
parameter, which balances the fidelity term and the regularization term.

There have been a large number of algorithms developed for solving problem
(1.1)(see, e.g. [5, 13, 12, 16, 23, 25, 27, 29, 30, 31, 32]). Among them, the alternating
direction method of multiplier (ADMM) [8, 9] is one of the most extensively used
techniques. By introducing an auxiliary variable w ∈ C

d×n, the problem (1.1) is
equivalent to the following constrained optimization problem:

(1.3) min
u∈U,w∈Cd×n

1

2
‖Au− f‖2 + ψ(w) subject to w = Bu.

The augmented Lagrangian function associated with (1.3) is

(1.4) L(u,w, λ) = 1

2
‖Au− f‖2 + ψ(w) + 〈λ,Bu− w〉+ ρ

2
‖Bu− w‖2.

The ADMM minimizes (1.4) by iteratively updating (u,w, λ) as follows:

(1.5)







uk+1 = argmin
u∈U

{

1

2
‖Au− f‖2 + ρ

2

∥
∥
∥
∥
Bu− wk +

λk
ρ

∥
∥
∥
∥

2
}

wk+1 = argmin
w∈Cd×n

{

ψ(w) +
ρ

2

∥
∥
∥
∥
Buk+1 − w +

λk
ρ

∥
∥
∥
∥

2
}

λk+1 = λk − ρ(wk+1 −Buk+1).

In many applications, the dimension of the matrix A could be very large and Amight
be also dense and ill-conditioned. In those cases, the high computational cost for
solving the u-subproblem hindered the applicability of ADMM. Recently, there have
been active researches on improving the theoretical and practical performance of
ADMM. One type of efforts has been focused on developing backtracking strategies
to search for larger stepsize with convergence guaranteed [4, 5, 13]. The other effort
is on improving the iteration complexity of the ADMM algorithm by incorporating
Nesterov’s multi-step acceleration schemes [15, 6, 10, 19, 11, 20, 21]. To have more
insight from those two types of efforts, below we will discuss a few closely related
works.

In [29, 30], the u−subproblem of (1.5) is solved by Bregman operator splitting
(BOS) technique, i.e. linearized ADMM. It updates uk+1 of (1.5) by linearizing
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1
2‖Au− f‖2 at uk and adding a proximal term, i.e.

(1.6) uk+1 = argmin
u∈U

{

〈AT (Auk − f), u〉+ η

2
‖u− uk‖2 +

ρ

2

∥
∥
∥
∥
Bu− wk +

λk
ρ

∥
∥
∥
∥

2
}

.

It has been shown in [30] that the BOS algorithm converges to an optimal solution
of (1.1) with the constant stepsize 1/η ≤ 1/‖ATA‖. In [4], this stepsize is replaced
by the Barzilai-Borwein (BB) stepsize, i.e. η = ηBB

k , where

(1.7) ηBB
k =

‖A(uk − uk−1)‖2
‖uk − uk−1‖2

.

Their experimental results showed that the objective function value decreased much
faster by taking η = ηBB

k than η = ‖ATA‖2. However, the BB stepsize 1/ηBB
k ≥

1/‖ATA‖2 violates the convergence condition of the BOS algorithm. Thus, the
convergence of the algorithm is not guaranteed. The improvement was made in [5],
where a scheme of BOS with variable stepsize (BOSVS) was developed to improve
the performance of ADMM for solving (1.1) with guaranteed convergence. In this
work a line search strategy was presented for searching for a better stepsize. The
stepsize rule starts with a safeguarded BB stepsize and gradually increases the
nominal stepsize ηk until the termination condition is satisfied. With a good choice
of parameters in the line search conditions, more aggressive stepsize is allowed,
especially at the early iterates. The global convergence of the iterates of the BOSVS
was established in [5]. Later on, it was shown in [14] that the objective function at
the average of the BOSVS iterates converge to an optimal value with the rate of
O(1/k), where k is the number of iterations.

To improve the iteration complexity of ADMM, in [21] an accelerated ADMM
(AADMM) was developed by incorporating Nesterov’s fast gradient scheme [20].
The AADMM solves a class of convex composite optimization problems with linear
equality constraints, which includes the problem (1.3) as a special case. AADMM
improves the rate of convergence of ADMM (or BOS) in terms of the smooth com-
ponent in the objective function from O(1/k) to O(1/k2). The accelerated rate of
convergence is achieved by the aggregated iterates rather than the average of the
iterates in [14]. To improve the practical performance of AADMM, a simple back-
tracking strategy is incorporated in the algorithm. The idea of the backtracking
technique is to search for an underestimated Lipschitz constants Lk at the itera-
tion k in consideration of the dependence of the stepsize on Lk. The backtracking
procedure in [21] starts with a relatively smaller Lk, and properly selects involved
parameters to solve uk+1. If an employed line search condition is violated, then Lk

is doubled and used as the new Lk to solve uk+1. This procedure is repeated until
the utilized line search condition holds.

Motivated by the aforementioned work, we propose two accelerated Bregman
Operator Splitting (BOS) schemes with backtracking for solving the problem (1.1).
The first proposed algorithm improves the convergence rate of BOSVS in terms
of the smooth component in the objective function by incorporating Nesterov’s
multi-step acceleration scheme [20] under the assumption that the feasible set is
bounded. The second one can deal with the situation when the feasible set is
unbounded. By jointly computing the acceleration parameter and stepsize, the
monotonicity condition on the nominal stepsize required in BOSVS [5] and the
first proposed algorithm can be removed in the second algorithm. Combining with
the good choices of the penalty parameters ρ for updating u, w and λ in (1.5) (
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possibly different ρ’s in u,w, λ subproblems ), more aggressive stepsize is allowed
in the second proposed algorithm. Instead of searching the local Lipschitz constant
to satisfy the conservative line search condition in AADMM [21], the proposed
algorithms utilize the product of the acceleration parameter and a safeguarded
Barzilai-Borwen (BB) choice as the initial stepsize, then gradually increase it until
a more relaxed line search conditions than that in [21] is satisfied. The proposed
algorithms are capable of hunting for more aggressive stepsize via conducting fewer
number of line searches. Meanwhile, the proposed algorithms preserve the same
accelerated rate of convergence as that for AADMM.

In [21], a center piece of the theoretical analysis is for the convergence rate
of AADMM in terms of the dependence on the Lipschitz constant of the smooth
objective. A simple backtracking scheme is proposed in [21] to demonstrate that
prior knowledge of the Lipschitz constant is not a definitive requirement. In this
work most of the convergence analyses is devoted to maintaining the accelerated
convergence results under aggressive stepsize strategy, which was not touched in
either [5] or [21]. The problem (1.1) is a special case of the problem of interest in
[21] which is called the unconstrained composite optimization (UCO) problem there.
The backtracking technique in [21] is designed to solve UCO with bounded primal
and dual feasible sets. In this manuscript, the proposed ABOSVS II algorithm is
able to solve (1.1) with an unbounded primal feasible set without any feasibility
residue, which was not discussed in [21]. It seems that the technical details for
studying (1.1) with unbounded primal feasible set is nontrivial comparing with the
analysis in [21]. Moreover, in this work we use a different termination criterion from
the one for AADMM in [21] to obtain the same accelerated rate of convergence. In
[21], the convergence analysis is based on the estimation of the duality gap function
for its corresponding saddle point problem. In this work, the termination criterion is
based on the error between the objective function values at the aggregated iterates
and the optimal solution. Consequently, we are able to conduct a different proof of
the accelerated rate of convergence when the feasible set is unbouned by observing
the relationship between the Lipschitz continuity of the function ψ in (1.1) and
the boundedness of its subgradients. We believe that the strategy in the proof of
the case with unbounded feasible sets provides a relatively simpler alternative of
the proof of accelerated convergence results in [21]. Our experimental results show
that the proposed algorithms outperform several state-of-the-art algorithms on total
variation based image reconstruction problems.

1.1 Outline of the paper
Our paper is organized as follows. Section 2 presents the proposed algorithms,
namely Accelerated BOSVS-I (ABOSVS-I) and Accelerated BOSVS-II (ABSOVS-
II), for solving the type of problems (1.1). Section 3 studies the convergence anal-
ysis for the proposed algorithms. Section 4 is devoted to numerical experiments
and comparisons with state-of-the-art algorithms on total-variation based image
reconstruction problems. The last section draws the conclusion for this paper.

1.2 Notation and terminologies
The Euclidean inner product of two column vectors x, y ∈ C

n is denoted by 〈x, y〉 =
xT y, where the superscript T denotes the conjugate transpose. Assume u∗ is an
optimal solution of (1.1). Define Du∗ := ‖u1 − u∗‖, Du∗,B := ‖B(u1 − u∗)‖,
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Dλ∗ := ‖λ1 − λ∗‖, DU,B := sup
u1,u2∈U

‖Bu1 − Bu2‖, DV := sup
v1,v2∈V

‖v1 − v2‖ for

any compact sets U and V . For a convex function F : Cn → <, ∂F represents the
subdifferential of F .

2. Proposed Algorithms. In this section, we present the frameworks of the
ABOSVS-I and ABOSVS-II. The first algorithm incorporates Nesterov’s multi-step
acceleration scheme to improve the rate of convergence of BOSVS under the as-
sumption that the feasible set is bounded. While the second one is capable of
dealing with the case where the feasible set is unbounded. In the second algorithm
the acceleration parameter and the stepsize are updated jointly and the penalty
parameters ρ in (1.5) are chosen differently for updating u−, w− and λ. For conve-
nience, We use ρui , ρ

w
i , and ρ

λ
i to replace ρ in those three subproblems, respectively.

For ABOSVS-I, with assumption of bounded feasible set, ρ can be chosen to be the
same constant in (1.5) without affecting the convergence rate, i.e.

(2.1) ρui = ρwi = ρλi = ρ > 0.

In the proposed algorithms, the initial choice of the nominal step ηi is a safe-
guarded BB choice:

(2.2) η0,1 ≥ ηmin and η0,i = max
{
ηmin, η

BB
i

}
for i > 1.

where ηBB
i is defined in (1.7). Now we present the scheme of ABOSVS-I in Algo-

rithm 1 under the assumption that the feasible set U is bounded.
From ABOSVS-I, we can see that if αi ≡ 1, then umd

i = ui and the aggregate
points uagi+1, w

ag
i+1, λ

ag
i+1 are exactly the iterates ui+1, wi+1, and λi+1, respectively. In

this case, ABOSVS-I becomes BOSVS with a minor modification. For ABSOVS-I,
the derivation of the accelerated convergence rate replies on the asymptotic mono-
tonicity of ηi/αi for i = 1, 2, .... Whenever ηi/αi is not monotone decreasing, ηmin

is increased by a factor τ > 1 in step 3 for i = 1, 2, .... Hence, if the monotonicity
of ηi/αi violates continuously, then ηi/αi will approach a constant, which is usually
smaller than ‖ATA‖2, after a finite number of iterations. Moreover, it should be
note that from Qi+1 = βiQi + Γi, we have

(2.3)
k∑

i=2

(βi − 1)Qi −Qk+1 = −
k∑

i=1

Γi.

where βi and the condition on Qi can be chosen jointly as long as that −
k∑

i=1

Γi is

a finite positive number.
ABOSVS-II can deal with the cases where the feasible set is either bounded or

unbounded. When the feasible set is unbounded, the penalty parameters ρui , ρ
w
i ,

and ρλi have to be chosen differently from those for bounded feasible set. More
precisely, if the feasible set U is unbounded, we choose

(2.4) ρui = ρwi =
Kηi
ηmin

and ρλi =
ηmin

Kηi
,

where K is the total number of iterations. If the feasible set U is bounded, we
choose

(2.5) ρui = ρwi =
iηi
ηmin

and ρλi =
ηmin

iηi
,
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Algorithm 1 Accelerated BOSVS I (ABOSVS-I)

Choose C ≥ 0, σ > 1, ρ > 0, τ > 1, η0,1 ≥ ηmin > 0, and u1 ∈ U . Set α1 = 1,
uag1 = u1, w

ag
1 = w1 = Bu1, λ

ag
1 = λ1 = 0, and Q1 = 0.

For i = 1, 2, . . . , k,

//Backtracking
1. Set ηi = αiη0,i, where η0,i is from (2.2). Compute

umd
i =(1− αi)u

ag
i + αiui,

ui+1 =argmin
u∈U

{

〈AT (Aumd
i − f), u〉+ ηi

2
‖u− ui‖2 +

ρui
2

∥
∥
∥
∥
Bu− wi +

λi
ρui

∥
∥
∥
∥

2
}

,

Γi =
ηi
αi

‖ui+1 − ui‖2 +
ρui
αi

‖Bui+1 − wi‖2 − ‖A(ui+1 − ui)‖2,

Qi+1 =βiQi + Γi, where 0 ≤ βi ≤ (1− 1

i
)2.

2. If Qi+1 < −C/i2, then replace η0,i by ση0,i and return to step 1.
3. Update the safeguard threshold ηmin by τηmin if ηi/αi > ηi−1/αi−1, for

i > 1.

//Updating iterates

4. Compute

uagi+1 =(1− αi)u
ag
i + αiui+1,

wi+1 =argmin
w∈Cd×n

{

ψ(w) +
ρwi
2

∥
∥
∥
∥
w −Bui+1 −

λi
ρwi

∥
∥
∥
∥

2
}

,

wag
i+1 =(1− αi)w

ag
i + αiwi+1,

λi+1 =λi − ρλi (wi+1 −Bui+1),

λagi+1 =(1− αi)λ
ag
i + αiλi+1,

αi+1 =
αi

(

−αi +
√

α2
i + 4

)

2
.

EndFor

Output (uagk+1, w
ag
k+1).

in ABOSVS-II by jointly updating the acceleration parameter and the stepsize. The
scheme of ABOSVS-II is presented in Algorithm 2.

Two remarks are in place. First, step 3 from Algorithm 1 is not required anymore
in Algorithm 2. Second, in Algorithm 2, step 2 actually can be written as

(2.6) If Qi+1 < −C, then η0,i := ση0,i, return to step 1

by setting βi = 1 for i > 1. Obviously, it also satisfies the condition we impose on

−
k∑

i=1

Γi from (2.3). Additionally, in (2.6), we can also set βi such that (1− 1/i2) ≤
βi ≤ 1.
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Algorithm 2 Accelerated BOSVS II (ABOSVS-II)

Choose C ≥ 0, σ > 1, η0,1 ≥ ηmin, u1 and w1 such that w1 = Bu1. Set α1 = 1,
uag1 = u1, w

ag
1 = w1, λ

ag
1 = λ1 = 0, and i = 1.

For i = 1, 2, . . . , k,

//Backtracking
1. Set ηi = αiη0,i, where η0,i is from (2.2). Solve αi from

1
αi−1ηi−1

= 1−αi

αiηi

for i > 1. Update ρui , ρ
w
i and ρλi by (2.4) or (2.5). Compute

umd
i = (1− αi)u

ag
i + αiui.

ui+1 = argmin
u∈U

{

〈AT (Aumd
i − f), u〉+ ηi

2
‖u− ui‖

2
2 +

ρui
2
‖Bu− wi +

λi

ρu
i
‖2
}

.

2. If
i∑

j=1

Γj < −C,

where Γj := ‖uj+1 − uj‖2 + ρu
j

ηj
‖Buj+1 − wj‖2 − αj

ηj
‖A(uj+1 − uj)‖2,

then η0,i := ση0,i, return to step 1.

//Updating iterates

3. Compute the iterates uagi+1, wi+1, w
ag
i+1, λi+1, λ

ag
i+1 from step 4 in Algorithm

1.

EndFor

Output (uagk+1, w
ag
k+1).

3. Convergence analysis. In this section, we focus on proving the convergence
properties of the proposed algorithms. We start with two lemmas describing prop-
erties regarding the line search scheme in Algorithms 1 and 2. Lemma 1 below
shows that the safeguard stepsize threshold ηmin in step 3 of ABOSVS-I will stop
increasing after a finite number of iteration.

Lemma 3.1. The replacement of ηmin by τηmin in step 3 of ABOSVS-I can occur

in at most a finite number of iterations, denoted by N0.

Proof. See Lemma 3.2 (II) of [5].

Lemma 3.2. In steps 2 and 3 of Algorithm 1 and step 2 of Algorithm 2 , the

number of line search, denoted by l, is less than or equal to dlogσ( ||A
TA||

ηmin
)e, where

dxe is the smallest integer greater than or equal to x for any x ∈ <.
Proof. The proof for Algorithm 1 can be obtained by a a similar argument, we only
give the proof for Algorithm 2. By step 2 of Algorithm 2 (see also the remark on
(2.6)), the line search stops when Qi+1 ≥ −C. Noting (2.3) (with βi = 1 for i > 1)
and the definition of Γj in Algorithm 2, the condition Qi+1 ≥ −C is equivalent to

Qi + ‖ui+1 − ui‖2 +
ρui
ηi

‖Bui+1 − wi+1‖2 −
αi

ηi
‖A(ui+1 − ui)‖2 ≥ −C.

After rearranging terms, the above relation can be reformulated to

ηi(C +Qi) + ηi‖ui+1 − ui‖2 + ρui ‖Bui+1 − wi+1‖2 − αi‖A(ui+1 − ui)‖2 ≥ 0,

or the equivalent form

ηi ≥
αi‖A(ui+1 − ui)‖2

‖ui+1 − ui‖2
− ρui ‖Bui+1 − wi+1‖2

‖ui+1 − ui‖2
− ηi(C +Qi)

‖ui+1 − ui‖2
.
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Noting the two negative terms at the right hand side of the above line search

stopping criterion, we observe that it is satisfied when ηi ≥ αi‖A(ui+1−ui)‖2

‖ui+1−ui‖2 . By the

definition of ηi, such condition is satisfied after l rounds of line search, as long as

σl ≤ ‖A(ui+1 − ui)‖2
η0,i‖ui+1 − ui‖2

.

Noting that ‖A(ui+1 − ui)‖2 ≤ ‖ATA‖‖ui+1 − ui‖2 and that η0,i ≥ ηmin, we have

l ≤ dlogσ(‖A
TA‖

ηmin
)e.

The following lemma plays a primary role for the convergence analysis of the
proposed Algorithms. Since we have ρwi = ρui for both proposed algorithms, in the
following proof ρwi is replaced by ρui for the purpose of a unified analysis. Through-
out this section, we use notations uei = ui − u and we

i = wi − w for i ≥ 1. For
convenience, we denote 1

2‖Au− f‖2 by H(u).

Lemma 3.3. For all u ∈ U and all w ∈ C
d×n, the iterates {(uagi , wag

i )}i≥1 generated

by Algorithms 1 and 2 satisfy

(3.1)

[H(uagi+1) + ψ(wag
i+1)−H(u)− ψ(w)]

− (1− αi)[(H(uagi ) + ψ(wag
i )−H(u)− ψ(w))]

≤αi

{

ηi
2
(‖uei‖2 − ‖uei+1‖2)−

1

2
(ρui ‖wi −Bui+1‖2

+ ηi‖ui+1 − ui‖2 − αi‖A(ui+1 − ui)‖2)

+
ρui
2
(‖we

i ‖2 − ‖we
i+1‖2) +

1

2ρλi
(‖λi‖2 − ‖λi+1‖2)

− ρui − ρλi
2

‖wi+1 −Bui+1‖2 + ρui 〈wi −Bui+1, w −Bu〉

− 〈λi, w −Bu〉
}

.

Proof. Since H is differentiable, we have

(3.2) H(uagi+1) = H(umd
i ) +

∫ 1

0

< ∇H(umd
i + τ(uagi+1 − umd

i )), uagi+1 − umd
i > dτ.

Inverse Problems and Imaging Volume 11, No. 6 (2017), X–XX
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Applying the definition of H(u) and uagi+1 to the above equation, and observing the

relationship uagi+1 − umd
i = αi(ui+1 − ui), we have

H(uagi+1) = H(umd
i ) +

∫ 1

0

〈ATA(umd
i + τ(uagi+1 − umd

i ))−AT f, uagi+1 − umd
i 〉dτ

= H(umd
i ) +

∫ 1

0

〈AT (Aumd
i − f), uagi+1 − umd

i 〉dτ

+

∫ 1

0

τ‖A(uagi+1 − umd
i )‖2dτ

= H(umd
i ) + 〈∇H(umd

i ), uagi+1 − umd
i 〉+ 1

2
‖A(uagi+1 − umd

i )‖2

= H(umd
i ) + (1− αi)〈∇H(umd

i ), uagi − umd
i 〉

+ αi〈∇H(umd
i ), ui+1 − umd

i 〉+ α2
i

2
‖A(ui+1 − ui)‖2

= (1− αi)(H(umd
i ) + 〈∇H(umd

i ), uagi − umd
i 〉) + αi(H(umd

i )

+ 〈∇H(umd
i ), ui+1 − umd

i 〉) + α2
i

2
‖A(ui+1 − ui)‖2.

(3.3)

Here by the convexity of H(u) and (3.3), we have

H(uagi+1) = (1− αi)(H(umd
i ) + 〈∇H(umd

i ), uagi − umd
i 〉)

+ αi(H(umd
i ) + 〈∇H(umd

i ), u− umd
i 〉)

+ αi〈∇H(umd
i ), ui+1 − u〉+ α2

i

2
‖A(ui+1 − ui)‖2

≤ (1− αi)H(uagi ) + αiH(u)

+ αi〈∇H(umd
i ), ui+1 − u〉+ α2

i

2
‖A(ui+1 − ui)‖2, ∀u ∈ U.

(3.4)

By (3.4) and the convexity of ψ, we can calculate the following difference.

(3.5)

[H(uagi+1) + ψ(wag
i+1)−H(u)− ψ(w)]

− (1− αi)[(H(uagi ) + ψ(wag
i )−H(u)− ψ(w))]

=(H(uagi+1) + ψ(wag
i+1)−H(u)− ψ(w))

− (1− αi)(H(uagi ) + ψ(wag
i )−H(u)− ψ(w))

=(H(uagi+1)− (1− αi)H(uagi )− αiH(u))

+ (ψ(wag
i+1)− (1− αi)ψ(w

ag
i )− αiψ(w))

≤αi

{

〈∇H(umd
i ), uei+1〉+

αi

2
‖A(ui+1 − ui)‖2

+ (ψ(wi+1)− ψ(w))
}

≤αi

{

〈∇H(umd
i ), uei+1〉+

αi

2
‖A(ui+1 − ui)‖2 + 〈si+1, w

e
i+1〉

}

.

where si+1 ∈ ∂ψ(wi+1). On the other hand, by the first-order optimality conditions
for the sequence (ui+1, wi+1, λi+1) generated by Algorithm 1 and 2, for all u ∈ U
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and w ∈ C
d×n, we have

(3.6)







〈∇H(umd
i ), uei+1〉+ ηi〈ui+1 − ui, u

e
i+1〉

+ ρui 〈Bui+1 − wi + (ρui )
−1λi, Bu

e
i+1〉 ≤ 0

〈si+1, w
e
i+1〉 − 〈λi, we

i+1〉+ ρui 〈wi+1 −Bui+1, w
e
i+1〉 ≤ 0

λi+1 = λi − ρλi (wi+1 −Bui+1),

Using the relationship 2〈a − b, a − c〉 = −‖b − c‖2 + ‖a − c‖2 + ‖a − b‖2 and the
definition of uei+1, w

e
i+1, the above equation can be rewritten as

(3.7)







ηi
2
(‖ui+1 − ui‖2 + ‖uei+1‖2 − ‖uei‖2) + 〈∇H(umd

i ), uei+1〉
+ ρui 〈Buei+1 − we

i , Bu
e
i+1〉 − ρui 〈w −Bu,Buei+1〉+ 〈λi, Buei+1〉 ≤ 0

〈si+1, w
e
i+1〉+ ρui 〈we

i+1 −Buei+1, w
e
i+1〉 − 〈λi, we

i+1〉
+ ρui 〈w −Bu,we

i+1〉 ≤ 0

λi+1 = λi − ρλi (wi+1 −Bui+1).

Substituting (3.7) to (3.5), we have

(3.8)

[H(uagi+1) + ψ(wag
i+1)−H(u)− ψ(w)]

− (1− αi)[(H(uagi ) + ψ(wag
i )−H(u)− ψ(w))]

≤αi

{

ηi
2
(‖uei‖2 − ‖uei+1‖2)−

1

2
(ηi‖ui+1 − ui‖2

− αi‖A(ui+1 − ui)‖2) + ρui 〈we
i −Buei+1, Bu

e
i+1〉

︸ ︷︷ ︸

(I)

+ 〈we
i+1 −Buei+1, λi〉

︸ ︷︷ ︸

(II)

−ρui 〈we
i+1 −Buei+1, w

e
i+1〉

︸ ︷︷ ︸

(III)

+ ρui 〈w −Bu,Buei+1 − we
i+1〉

︸ ︷︷ ︸

(IV)

}

.

To give a further estimation of (3.8), next we focus on estimating terms (I)-(IV).

(I) = ρui 〈Buei+1, w
e
i 〉 − ρui ‖Buei+1‖2

= −ρ
u
i

2
‖we

i −Buei+1‖2 +
ρui
2
‖we

i ‖2 −
ρui
2
‖Buei+1‖2

= −ρ
u
i

2
‖wi −Bui+1‖2 +

ρui
2
‖we

i ‖2 −
ρui
2
‖Buei+1‖2

+ ρui 〈wi −Bui+1, w −Bu〉 − ρui
2
‖w −Bu‖2,

(II) = 〈λi, wi+1 −Bui+1〉 − 〈λi, w −Bu〉

=
1

ρλi
〈λi, λi − λi+1〉 − 〈λi, w −Bu〉

=
1

2ρλi
(‖λi − λi+1‖2 − ‖λi+1‖2 + ‖λi‖2)− 〈λi, w −Bu〉

=
ρλi
2
‖wi+1 −Bui+1‖2 +

1

2ρλi
(‖λi‖2 − ‖λi+1‖2)− 〈λi, w −Bu〉,

Inverse Problems and Imaging Volume 11, No. 6 (2017), X–XX



Accelerated Bregman Operator Splitting 11

(III) = −ρui ‖we
i+1‖2 + ρui 〈Buei+1, w

e
i+1〉

= −ρ
u
i

2
‖we

i+1 −Buei+1‖2 −
ρui
2
‖we

i+1‖2 +
ρui
2
‖Buei+1‖2

= −ρ
u
i

2
‖wi+1 −Bui+1‖2 −

ρui
2
‖we

i+1‖2 +
ρui
2
‖Buei+1‖2

+ ρui 〈wi+1 −Bui+1, w −Bu〉 − ρui
2
‖w −Bu‖2,

and (IV) = ρui 〈Bui+1 − wi+1, w −Bu〉+ ρui ‖w −Bu‖2.

Combining those above terms, we have

(I) + (II) + (III) + (IV) = −ρ
u
i

2
‖wi −Bui+1‖2 +

ρui
2
(‖we

i ‖2 − ‖we
i+1‖2)

+
1

2ρλi
(‖λi‖2 − ‖λi+1‖2)−

ρui − ρλi
2

‖wi+1 −Bui+1‖2

+ ρui 〈wi −Bui+1, w −Bu〉 − 〈λi, w −Bu〉.

Applying the above summation to (3.8), we obtain (3.1).

The following lemma presents an important property of the out (uagk+1, w
ag
k+1)

generated by Algorithm 1.

Lemma 3.4. Suppose that the parameters ρui , ρ
w
i , and ρλi in Algorithm 1 satisfy

(2.1), the output (uagk+1, w
ag
k+1) generated by Algorithm 1 satisfies

(3.9)

1

α2
k

[H(uagk+1) + ψ(wag
k+1)−H(u∗)− ψ(w∗)]

≤
k∑

i=1

ηi
2αi

(‖ui − u∗‖2 − ‖ui+1 − u∗‖2) +
k∑

i=1

ρ

2αi

(‖wi − w∗‖2

− ‖wi+1 − w∗‖2) +
k∑

i=1

1

2ραi

(‖λi‖2 − ‖λi+1‖2) +
k∑

i=2

(1− βi)C

2(i− 1)2
+

C

2k2
.

Proof. Dividing both sides of (3.1) by α2
i , using (2.1) and step 1 in Algorithm 1,

we have
(3.10)

1

α2
i

[H(uagi+1) + ψ(wag
i+1)−H(u)− ψ(w)]

− (1− αi)

α2
i

[(H(uagi ) + ψ(wag
i )−H(u)− ψ(w))] +

(βiQi + Γi)

2

≤ ηi
2αi

(‖uei‖2 − ‖uei+1‖2) +
ρ

2αi

(‖we
i ‖2 − ‖we

i+1‖2) +
1

2ρλi αi

(‖λi‖2 − ‖λi+1‖2)

+
ρ

αi

〈wi −Bui+1, w −Bu〉 − 1

αi

〈λi, w −Bu〉+ (βk − 1)Qk

2
+
Qk

2
.
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Since Qi+1 = βiQi + Γi, 0 ≤ βi ≤ (1− 1
i
)2, and Qi ≥ − C

(i−1)2 , we obtain

(3.11)
1

α2
i

[H(uagi+1) + ψ(wag
i+1)−H(u)− ψ(w)]−

− (1− αi)

α2
i

[(H(uagi ) + ψ(wag
i )−H(u)− ψ(w))] +

Qi+1

2

≤ ηi
2αi

(‖uei‖2 − ‖uei+1‖2) +
ρ

2αi

(‖we
i ‖2 − ‖we

i+1‖2) +
1

2ρλi αi

(‖λi‖2 − ‖λi+1‖2)

+
ρ

αi

〈wi −Bui+1, w −Bu〉 − 1

αi

〈λi, w −Bu〉+ (1− βi)C

2(i− 1)2
+
Qi

2
.

Setting u = u∗ and w = w∗, by the relationship 1
α2

i

= 1−αi+1

α2
i+1

, Qi+1 ≥ −C
i2
, and

α1 = 1, we have (3.9) after summing (3.11) from i = 1 to k.

Now we are ready to prove the accelerated convergence rate of the ABOSVS-I
algorithm when the feasible sets U and V := dom ψ∗ are compact, where ψ∗ is the
convex conjugate of ψ(·).

Theorem 3.5. The output (uagk+1, w
ag
k+1) generated by Algorithm 1 satisfies

(3.12)

H(uagk+1) + ψ(Buagk+1)−H(u∗)− ψ(Bu∗)

≤2σ‖ATA‖D2
U + 2Cκ + 2C1

(k + 1)2
+

8D2
V

ρ(k + 1)
+

4ρD2
U,B

k + 1
,

where Cκ and C1, which are independent of k, are finite nonnegative numbers.

Proof. If ηmin ≥ ‖ATA‖, by the definition of (2.2), η0,i ≡ ηmin, which yields Γi > 0.
Thus, there is no line search needed based on the backtracking strategy in steps 1
and 2. We have to exclude this case by setting η0,1 < ‖ATA‖, which can be easily
satisfied.

Next we show several important properties of the sequence {αi} for i ≥ 1. The
update of αi+1 in step 4 of Algorithm 1 is actually equivalent to solving αi+1 from
1
α2

i

= 1−αi+1

α2
i+1

, based on which, we have

(3.13)
1

αi

=

√
1− αi+1

αi+1
≤ 1− αi+1

2

αi+1
=

1

αi+1
− 1

2
,

(3.14) and
1

αi

=

√
1− αi+1

αi+1
≥ 1− αi+1

αi+1
≥ 1

αi+1
− 1 for i ≥ 1.

Summing (3.13) and (3.14) from i = 1 to k and by α1 = 1, easily we can derive

(3.15) αi ≤
2

i+ 1
and 0 <

1

αi+1
− 1

αi

≤ 1 for i ≥ 1.

In the following proof, we estimate the terms on the right hand side of (3.9). In
view of lemma 3.1, there is N0 such that ηi+1

αi+1
≤ ηi

αi
for any i ≥ N0 + 1. Then the
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first term of the right hand side of (3.9) can be estimated by

(3.16)

k∑

i=1

ηi
2αi

(‖ui − u∗‖2 − ‖ui+1 − u∗‖2)

=
η1
2α1

‖ue1‖2 −
k−1∑

i=1

(
ηi
2αi

− ηi+1

2αi+1
)‖ui+1 − u∗‖2 − ηk

2αk

‖uk+1 − u∗‖2

=
η1
2α1

‖u1 − u∗‖2 − (

N0∑

i=1

+

k−1∑

i=N0+1

)(
ηi
2αi

− ηi+1

2αi+1
)‖ui+1 − u∗‖2

− ηk
2αk

‖uk+1 − u∗‖2

≤η1
2
‖u1 − u∗‖2 + Cκ

2
≤ σ‖ATA‖

2
D2

U +
Cκ

2
,

where

Cκ =

{

0 : if
∑N0

i=1(
ηi

αi
− ηi+1

αi+1
)‖ui+1 − u∗‖2 ≥ 0

C0 : if
∑N0

i=1(
ηi

αi
− ηi+1

αi+1
)‖ui+1 − u∗‖2 < 0,

since U is a compact set, clearly Cκ is a finite nonnegative number.
By the optimality condition of u-subproblem in step 4, we have λi − ρui (wi+1 −
Bui+1) ∈ ∂ψ(wi+1) ⊆ domψ∗ = V , which indicates that

(3.17)

‖wi+1 − w∗‖2 ≤ 2‖wi+1 −Bui+1‖2 + 2‖Bui+1 − w∗‖2

≤2
D2

V

(ρui )
2
+ 2‖Bui+1 −Bu∗‖2 ≤ 2

D2
V

ρ2
+ 2D2

U,B .

By the second inequality of (3.15), α1 = 1, and (3.17), we have

(3.18)

k∑

i=1

ρ

2αi

(‖wi − w∗‖2 − ‖wi+1 − w∗‖2)

=
ρ

2α1
‖w1 − w∗‖2 + ρ

2

k−1∑

i=1

(
1

αi+1
− 1

αi

)‖wi+1 − w∗‖2

− ρ

2αk

‖wk+1 − w∗‖2

≤ρ
2

k∑

i=1

‖wi − w∗‖2 ≤ ρk

2
(
2D2

V

ρ2
+ 2D2

U,B).

Also,

(3.19)

k∑

i=1

1

2ραi

(‖λi‖2 − ‖λi+1‖2)

=
1

2ρα1
||λ1||2 +

1

2ρ

k−1∑

i=1

(
1

αi+1
− 1

αi

)||λi+1||2 −
1

2ραk

||λk+1||2

≤ 1

2ρ

k∑

i=1

‖λi‖2 ≤ k

2ρ
D2

V .
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By (3.16), (3.18), and (3.19), we have

(3.20)

H(uagk+1) + ψ(wag
k+1)−H(u∗)− ψ(w∗)

≤α2
k(
σ‖ATA‖

2
D2

U +
Cκ

2
+
ρk

2
(
2D2

V

ρ2
+ 2D2

U,B) +
k

2ρ
D2

V +
C1

2
).

where C1 =
∑k

i=2
(1−βi)C
(i−1)2 + C

k2 , which is a finite nonnegative number.

To obtain (3.12), we also need the following estimation:

(3.21)

− 1

α2
k

〈λ,wag
k+1 −Buagk+1〉 = −〈λ,

k∑

i=1

1

αi

(wi+1 −Bui+1)〉 =

−
k∑

i=1

1

αi

〈λ,wi+1 −Bui+1〉 = −
k∑

i=1

1

ραi

〈λ, λi − λi+1〉 ≤

k∑

i=1

1

2ραi

(‖λi − λ‖2 − ‖λi+1 − λ‖2) ≤ k

2ρ
D2

V , ∀λ ∈ V,

where the first equality was obtained by summing the sequences of {uagi+1 −Buagi+1}
for i ≥ 1 and using the same technique in Lemma 3.4 and the last inequality was
derived by using the same process as that in (3.19).

By the convexity of ψ(·), for ∀λ ∈ V , we have

(3.22)

H(uagk+1) + ψ(Buagk+1)−H(u∗)− ψ(Bu∗)

≤H(uagk+1) + ψ(Buagk+1)−H(u∗)− ψ(Bu∗)

+ sup
λ∈V

[ψ(wag
k+1)− ψ(Buagk+1)− 〈λ,wag

k+1 −Buagk+1〉]

=H(uagk+1) + ψ(wag
k+1)−H(u∗)− ψ(Bu∗) + sup

λ∈V

−〈λ,wag
k+1 −Buagk+1〉

By the first inequality of (3.15), combining (3.20), (3.21) and (3.22), we obtain
(3.12).

Next we focus on analyzing the accelerated convergence rate of ABOSVS-II al-
gorithm. First we need to establish an important lemma similarly as lemma 3.4
before giving the accelerated convergence rate of ABOSVS-II.

Lemma 3.6. Suppose that the parameters ρui , ρ
w
i , and ρλi in Algorithm 2 satisfy

(2.4) or (2.5), the output (uagk+1, w
ag
k+1) generated by Algorithm 2 satisfy

(3.23)

1

αkηk
[H(uagk+1) + ψ(wag

k+1)−H(u∗)− ψ(w∗)]

≤
k∑

i=1

1

2
(‖ui − u∗‖2 − ‖ui+1 − u∗‖2) +

k∑

i=1

ρui
2ηi

(‖wi − w∗‖2

− ‖wi+1 − w∗‖2) +
k∑

i=1

1

2ρλi ηi
(‖λi‖2 − ‖λi+1‖2)

−
k∑

i=1

(ρui − ρλi )

2(ρλi )
2ηi

‖λi+1 − λi‖2 −
k∑

i=1

Γi

2
.
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Proof. Dividing by αkηk from both sides of (3.1), we have

(3.24)

1

αiηi
[H(uagi+1) + ψ(wag

i+1)−H(u)− ψ(w)]

− (1− αi)

αiηi
[(H(uagi ) + ψ(wag

i )−H(u)− ψ(w))]

≤1

2
(‖uei‖2 − ‖uei+1‖2) +

1

2ρλi ηi
(‖λi‖2 − ‖λi+1‖2)

+
ρui
2ηi

(‖we
i ‖2 − ‖we

i+1‖2)−
ρui − ρλi
2(ρλi )

2ηi
‖λi − λi+1‖2

+
ρ

ηi
〈wi −Bui+1, w −Bu〉 − 1

ηi
〈λi, w −Bu〉 − Γi

2
.

Setting u = u∗ and w = w∗, by the relationship 1
αiηi

= 1−αi+1

αi+1ηi+1
, and α1 = 1, we

get (3.23) after summing (3.24) from i = 1 to k.

Now we analyze the accelerated convergence rate of the ABSOVS-II algorithm
when the feasible sets U is unbounded. In this case, the total number of iterations
has to be fixed in advance and chosen based on a worst-case complexity analysis.
Additionally, since ψ is Lipschitz continuous , for all w ∈ C

d×n, we have ‖ξ‖ ≤ ∆,
for ∀ξ ∈ ∂ψ(w).

Theorem 3.7. Suppose that the parameters ρui , ρ
w
i , and ρ

λ
i in Algorithm 2 satisfy

(2.4), then the output (uagk+1, w
ag
k+1) generated by Algorithm 2 satisfies

(3.25) ‖wag
K −BuagK ‖ ≤ 4σ‖ATA‖

ηminK
∆,

(3.26)

H(uagK ) + ψ(BuagK )−H(u∗)− ψ(Bu∗)

≤2σ‖ATA‖(D2
u∗ + C)

K2
+

2σ‖ATA‖D2
u∗,B

ηminK
+

4σ‖ATA‖
ηminK

∆2.

Proof. Since ηmin ≤ η0,1, we have ηmin ≤ ‖ATA‖. Then, by definition of η0,i, we
get

(3.27) ηmin ≤ η0,i ≤ ‖ATA‖.
Denote σlη0,i by η

′

i, where l is the number of line searches in step 3 of ABOSVS-II.

By 1
αiηi

= 1−αi+1

αi+1ηi+1
and the definition of ηi, we have

(3.28)
1

αi

√

η
′

i

=

√
1− αi+1

αi+1

√

η
′

i+1

≤ 1− 1
2αi+1

αi+1

√

η
′

i+1

≤ 1

αi+1

√

η
′

i+1

− 1

2η
′

i+1

for i ≥ 1.

Then, by induction we can get, with α1 = 1,

(
1

√

η
′

1

+
1

2

k∑

i=2

1
√

η
′

k

)2 ≤ 1

α2
kη

′

k

,

which implies

(3.29) αkηk ≤ 1

( 1√
η
′

1

+ 1
2

∑k
i=2

1√
η
′

k

)2
≤ 4σ‖ATA‖

(k + 1)2
for k ≥ 1,
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where we used (3.27) and the definition of η
′

i. This estimate is crucial for obtaining
the accelerated rate of convergence. Also, since

(3.30)
1

αi

√

η
′

i

=

√
1− αi+1

αi+1

√

η
′

i+1

≥ 1− αi+1

αi+1

√

η
′

i+1

=
1

αi+1

√

η
′

i+1

− 1

η
′

i+1

,

by induction again, we obtain 1

αk

√
η
′

k

≤ k√
ηmin

, i.e. αkηk ≥ ηmin

k2 , which implies

(3.31)
1

ηk
≤ k

ηmin
for k ≥ 1.

Next we estimate the terms on the right hand side of (3.23). By the definition
of ρui and ρλi , and (3.31), it is clear that ρui ≥ ρλi for i ≥ 1. Thus,

(3.32)

k∑

i=1

(ρui − ρλi )

2(ρλi )
2ηi

‖λi+1 − λi‖2 ≥ 0.

Also, using the definition of ρui and ρλi and the non-increasing property of the

sequences { ρu
i

2ηi
} and { 1

2ρλ
i
ηi
} for i = 1, 2, ..., k, we have

(3.33)

k∑

i=1

1

2
(‖ui − u∗‖2 − ‖ui+1 − u∗‖2)

=
1

2
‖u1 − u∗‖2 − 1

2
‖uk+1 − u∗‖2 ≤ 1

2
D2

u∗ ,

(3.34)

k∑

i=1

ρui
2ηi

(‖wi − w∗‖2 − ‖wi+1 − w∗‖2)

=
ρu1
2η1

‖w1 − w∗‖2 −
k−1∑

i=1

(
ρui
2ηi

− ρui+1

2ηi+1
)‖wi+1 − w∗‖2 − ρuk

2ηk
‖wk+1 − w∗‖2

≤ K

2ηmin
‖w1 − w∗‖2 =

K

2ηmin
‖Bu1 −Bu∗‖2 ≤ K

2ηmin
D2

u∗,B ,

(3.35)

and
k∑

i=1

1

2ρλi ηi
(‖λi‖2 − ‖λi+1‖2)

=
1

2ρλ1η1
‖λ1‖2 −

k−1∑

i=1

(
1

2ρλi ηi
− 1

2ρλi+1ηi+1
)‖λi+1‖2 −

1

2ρλkηk
‖λk+1‖2

=
K

2ηmin
(‖λ1‖2 − ‖λk+1‖2) ≤ 0,

By (3.32), (3.33), (3.34), (3.35), and the fact that −
k∑

i=1

Γi ≤ C, we have

(3.36)

1

αkηk
[H(uagk+1) + ψ(wag

k+1)−H(u∗)− ψ(w∗)]

≤D
2
u∗ + C

2
+
KD2

u∗,B

2ηmin
.
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Next we focus on estimating ‖wag
k+1 −Buagk+1‖ in order to obtain (3.26).

Similarly as (3.21), for ∀λ ∈ C
d×n, we can obtain

(3.37)

1

αkηk
(wag

k+1 −Buagk+1) =
k∑

i=1

1

ηi
(wi+1 −Bui+1)

=

k∑

i=1

1

ηi
(wi+1 −Bui+1) =

k∑

i=1

1

ρλi ηi
(λi − λi+1).

Thus, by 1
αkηk

(wag
k+1 −Buagk+1) =

∑k
i=1

1
ρλ
i
ηi
(λi − λi+1), we have

(3.38) wag
k+1 −Buagk+1 =

Kαkηk
ηmin

(λ1 − λk+1).

By setting k = K − 1, we have

(3.39) ‖wag
k+1 −Buagk+1‖ =

4σ‖ATA‖
ηminK

‖λk+1‖.

The only left work is to bound the term ‖λk+1‖. By the optimality condition of
w-subproblem in step 3 of Algorithm 2, we have

0 ∈ ∂ψ(wi+1)− λi + ρwi (wi+1 −Bui+1) ∀i ≥ 1,

or

λi+1 = λi − ρwi (wi+1 −Bui+1) ∈ ∂ψ(wi+1) ∀i ≥ 1.

Therefore we have ‖λi+1‖ ≤ ∆, which leads to

(3.40) ‖wag
k+1 −Buagk+1‖ =

4σ‖ATA‖
ηminK

∆.

By the convexity of ψ(·), we have

(3.41)

H(uagK ) + ψ(BuagK )−H(u∗)− ψ(w∗) ≤ H(uagK ) + ψ(wag
K )

+ 〈ξ, BuagK − wag
K 〉 −H(u∗)− ψ(w∗) ≤ H(uagK ) + ψ(wag

K )

‖ξ‖‖BuagK − wag
K ‖ −H(u∗)− ψ(w∗),

where ξ ∈ ∂ψ(BuagK ). Then, by (3.36), (3.40), (3.41), we have (3.26).

The following theorem gives the accelerated convergence rate of the ABOSVS-II
algorithm when the feasible sets U is compact. Since its proof is similar with that
for Theorem 3.7, we just present the convergence rate result without proof.

Theorem 3.8. Suppose that the parameters ρui , ρ
w
i , and ρ

λ
i in Algorithm 2 satisfy

(2.5), then the output (uagk+1, w
ag
k+1) generated by Algorithm 2 satisfies

(3.42)

H(uagk+1) + ψ(Buagk+1)−H(u∗)− ψ(Bu∗)

≤2σ‖ATA‖(D2
U + C)

(k + 1)2
+

10σ‖ATA‖D2
V

ηmin(k + 1)
+

4σ‖ATA‖D2
U,B

ηmin(k + 1)
.

4. Numerical Results. In this section, we conduct several experiments on syn-
thetic data and the data from partially parallel imaging (PPI) to examine the
performance of the proposed algorithms. We also compare them with several state-
of-the-art algorithms. All the algorithms are implemented in MATLAB, R2015a on
a computer with a 2.6GHz Intel i5 processor.
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Figure 1. The objective function values and relative error vs.
CPU time for first instance

4.1. Total-variation based image reconstruction. In this subsection, we present
the numerical results on solving the following TV based image reconstruction prob-
lem:

(4.1) min
u∈U

1

2
‖Au− f‖22 + α‖u‖TV

where U := {u ∈ <n : l∗ ≤ u(i) ≤ u∗ for all i = 1, ..., n} or <n, the entries of
A ∈ <m×n are randomly generated from a normal distributionN (0, 1) or a Bernoulli
distribution that takes equal probability for the value 1 and −1, respectively. The
measurements f are generated by f = Autrue + ε, where utrue is the true image, ε
is the Gaussian noise with distribution N (0, σ). We apply ABSOVS-I, ABOSVS-II,
BOSVS 1, TVAL3 2 and ALADMML 3 to solve (4.1).

We consider two instances of this problem. In the first instance, we set U := {u ∈
<n : 0 ≤ u(i) ≤ 1 for all i = 1, ..., n}. The dimension of A is 22500 × 22500. The
true image utrue is a 150× 150 Shepp-Logan phantom [24] generated by MATLAB
with intensities in [0, 1]. Moreover, we set the standard derivation σ = 10−2. We
run 100 iterations to compare the performance of ABOSVS-I, ABOSVS-II, BOSVS,
TVAL3 and ALADMML. In the second instance, we have U := <n. The dimension
of A is 11250× 22500. utrue is a brain image [4] of dimension 150× 150. The σ is
the same as that in first instance and 200 iterations are executed in this case.

The parameters setting for both instances is provided in Table 1. The decreasing
of the objective function and the relative error of the reconstruction ũ, defined by
‖ũ−utrue‖
‖utrue‖ , are presented in Figure 1 and 2, respectively. In the first instance, we

1Code is available at http://people.math.gatech.edu/œxye33/software/BOSVS.zip
2Code is available at http://www.caam.rice.edu/~optimization/L1/TVAL3
3AADMM [21] with backtracking techniques. Code is available at https://github.com/o3y/

m.aadmm.2014
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Figure 2. The objective function values and relative error vs.
CPU time for second instance

Table 1. Parameter settings for ABOSVS-I and ABOSVS-II in
4.1. Note that ρ and τ are only used in the first instance

Parameters α σ ηmin C βk ρ τ

Values 10 2 ‖A‖2/10 100 1/k 1 2

can see that the proposed algorithms perform much better than BOSVS, especially
ABOSVS-II. Also, it is evident that ABOSVS-I and ABOSVS-II outperform TVAL3
and ALADMML in this case. In the second instance, ABOSVS-II and ALADMML
achieve better performance than BOSVS, and it is also evident that ABOSVS-II
outperforms TVAL3 and ALADMML.

4.2. Partially parallel imaging. In this section, we apply the proposed algo-
rithm to two PPI datasets denoted data1 and data2 and compare the performance
of ABOSVS-II with ALADMM and TVAL3, and BOSVS. Details of PPI recon-
struction problems can be found in [4]. The underlying image can be reconstructed
by solving the following optimization problem:

(4.2) min
u∈Cn

{

1

2

L∑

l=1

‖Fp(sl � u)− fl‖22 + α‖u‖TV

}

where Fp is the undersampled Fourier transform defined by Fp := PF , and F is the
Fourier transform, P is a binary matrix representing the undersampling pattern, sl
is the sensitivity map for the l-th channel, and fl is the measurement. The symbol
� is the Hadamard product between two vectors. For notation simplicity, let

A = [FpS1;FpS2; ...;FpSL], f = [f1; f2; ...; fL],

Inverse Problems and Imaging Volume 11, No. 6 (2017), X–XX











24 Yunmei Chen, Xianqi Li, Yuyuan Ouyang and Eduardo Pasiliao

française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9 (1975),
41–76.

[10] D. Goldfarb, S. Ma and K. Scheinberg, Fast multiple-splitting algorithms for convex opti-
mization, SIAM Journal on Optimization, 22 (2012), 533–556.

[11] T. Goldstein, B. O’Donoghue, S. Setzer and R. Baraniuk, Fast alternating direction optimiza-
tion methods, SIAM Journal on Imaging Sciences, 7 (2014), 1588–1623.

[12] T. Goldstein and S. Osher, The Split Bregman Method for L1-Regularized Problems, SIAM

Journal on Imaging Sciences, 2 (2009), 323-343.
[13] W. Hager, C. Ngo, M. Yashtini and H. Zhang, An alternating direction approximate Newton

algorithm for ill-conditioned inverse problems with application to parallel MRI, Name of the

Journal, 3 (2015), 139–162.

[14] W. Hager, M. Yashtini and H. Zhang, An \mathcalO(1/k) Convergence Rate for the Variable
Stepsize Bregman Operator Splitting Algorithm, SIAM Journal on Numerical Analysis, 54

(2016), 1535–1556.
[15] M. Hong and Z. Luo, On the linear convergence of the alternating direction method of mul-

tipliers, arXiv:1208.3922.
[16] C. Li, W. Yin, H. Jiang and Y. Zhang, An efficient augmented Lagrangian method with

applications to total variation minimization, Computational Optimization and Applications,
56.3 (2013), 507–530.

[17] Q. Liu, J. Luo, S. Wang M. Xiao and M. Ye, An augmented Lagrangian multi-scale dictionary
learning algorithm, EURASIP Journal on Advances in Signal Processing, 2011 (2011), 1–16.

[18] M. Lustig, D. Donoho and J. Pauly, Sparse MRI: The application of compressed sensing for

rapid MR imaging, Magnetic resonance in medicine, 58 (2007), 1182–1195.
[19] R. Monteiro and B. Svaiter, Iteration-complexity of block-decomposition algorithms and the

alternating direction method of multipliers, SIAM Journal on Optimization, 23 (2013), 475–

507.
[20] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical programming, 103

(2005), 127–152.
[21] Y. Ouyang, Y. Chen, G. Lan and E. Pasiliao, An accelerated linearized alternating direction

method of multipliers, SIAM Journal on Imaging Sciences, 8 (2015), 644–681.
[22] K. Pruessmann, M. Weiger, P. Börnert and P. Boesiger, Advances in sensitivity encoding with

arbitrary k-space trajectories, Magnetic Resonance in Medicine, 46 (2001), 638–651.
[23] K. Scheinberg, D. Goldfarb and X. Bai, Fast first-order methods for composite convex opti-

mization with backtracking, Foundations of Computational Mathematics, 14 (2014), 389–417.
[24] L. Shepp and B. Logan, The Fourier reconstruction of a head section, IEEE Transactions on

Nuclear Science, 21 (1974), 21–43.

[25] Y. Wang, J. Yang, W. Yin and Y. Zhang A new alternating minimization algorithm for total
variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248–272.

[26] B. Wohlberg, Efficient Algorithms for Convolutional Sparse Representations, IEEE

Transactions on Image Processing, 25 (2016), 301–315.
[27] J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal

reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing,
4 (2010), 288–297.

[28] X. Ye, Y. Chen and F. Huang, Computational acceleration for MR image reconstruction in
partially parallel imaging, IEEE Transactions on Medical Imaging, 30 (2011), 1055–1063.

[29] X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for
deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253–
276.

[30] X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on
Bregman iteration, Journal of Scientific Computing, 46 (2011), 20–46.

[31] M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation
image restoration, UCLA CAM Report, (2008), 08–34.

[32] M. Zhu, S. Wright and T. Chan, Duality-based algorithms for total-variation-regularized
image restoration, Computational Optimization and Applications, 47 (2010), 377–400.

Received 1111 2016; revised 0424 2017.

Inverse Problems and Imaging Volume 11, No. 6 (2017), X–XX


	1. Introduction
	2. Proposed Algorithms
	3. Convergence analysis
	4. Numerical Results
	4.1. Total-variation based image reconstruction
	4.2. Partially parallel imaging

	5. Conclusions
	Acknowledgments
	REFERENCES

