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ABSTRACT. This paper develops two accelerated Bregman Operator Splitting
(BOS) algorithms with backtracking for solving regularized large-scale linear
inverse problems, where the regularization term may not be smooth. The
first algorithm improves the rate of convergence for BOSVS [5] in terms of
the smooth component in the objective function by incorporating Nesterov’s
multi-step acceleration scheme under the assumption that the feasible set is
bounded. The second algorithm is capable of dealing with the case where the
feasible set is unbounded. Moreover, it allows more aggressive stepsize than
that in the first scheme by properly selecting the penalty parameter and jointly
updating the acceleration parameter and stepsize. Both algorithms exhibit
better practical performance than BOSVS and AADMM |[21], while preserve
the same accelerated rate of convergence as that for AADMM. The numerical
results on total-variation based image reconstruction problems indicate the
effectiveness of the proposed algorithms.

1. Introduction. The main purpose of this paper is to develop accelerated Breg-
man Operator Splitting algorithms with backtracking for solving the following con-
vex composite optimization problem
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where U € C™ is a closed convex set, A € C™*" is a matrix, f € C™ is a vector,
1 C¥*" — R is a proper convex and Lipschitz continuous function, B : C4*7*" —
C?*" is a linear operator, and || - || is the 2-norm in Euclidean space.

The problem (1.1) has attracted much attention in recent years because of its
applications in various disciplines, such as signal and image processing [1, 2, 4, 22,
27, 28], compressive sensing [7, 12, 18], and machine learning [26, 17, 3]. In those
fields, the first term in (1.1) represents the data fidelity and the second term is a
regularization term. For instance, the total variation based image reconstruction is
often modeled by (1.1), where u = (uy, ..., u,)? is the n-vector form of the image u,
the matrix A depends on the physics of the data acquisition, f is the measurement,
and

(1.2) Y(Bu) = allullry = a Y [[(Vu)ll

i=1
is the discrete form of the total variation of u. In (1.2), (Vu); is a discrete gradient
(finite differences along the coordinate directions) of u at the i-th voxel, and « is a
parameter, which balances the fidelity term and the regularization term.

There have been a large number of algorithms developed for solving problem
(1.1)(see, e.g. [5, 13,12, 16, 23, 25, 27, 29, 30, 31, 32]). Among them, the alternating
direction method of multiplier (ADMM) [8, 9] is one of the most extensively used
techniques. By introducing an auxiliary variable w € C%*", the problem (1.1) is
equivalent to the following constrained optimization problem:

(1.3) min 1

|Au — f||* + ¢ (w) subject to w = Bu.
weU,weCdxn 2

The augmented Lagrangian function associated with (1.3) is
1
(14)  Llnw,N) = 5llAu— fIP +9(w) + (A Bu—w) + | Bu— wl.

The ADMM minimizes (1.4) by iteratively updating (u,w,\) as follows:

)

Uk+1 = arg min {1||Au — I+ 2 HBu w2

uelU 2 2 P
)
In many applications, the dimension of the matrix A could be very large and A might
be also dense and ill-conditioned. In those cases, the high computational cost for
solving the u-subproblem hindered the applicability of ADMM. Recently, there have
been active researches on improving the theoretical and practical performance of
ADMM. One type of efforts has been focused on developing backtracking strategies
to search for larger stepsize with convergence guaranteed [4, 5, 13]. The other effort
is on improving the iteration complexity of the ADMM algorithm by incorporating
Nesterov’s multi-step acceleration schemes [15, 6, 10, 19, 11, 20, 21]. To have more
insight from those two types of efforts, below we will discuss a few closely related
works.

In [29, 30], the u—subproblem of (1.5) is solved by Bregman operator splitting
(BOS) technique, i.e. linearized ADMM. It updates up41 of (1.5) by linearizing

(1.5) A
Wi41 = argmin < Y(w) + g HBukJrl —w+ 2k

weCdxn p

A1 = Mg — p(Wi1 — Bugyr).
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\

It has been shown in [30] that the BOS algorithm converges to an optimal solution
of (1.1) with the constant stepsize 1/n < 1/||AT A||. In [4], this stepsize is replaced
by the Barzilai-Borwein (BB) stepsize, i.e. n = nEB, where

1[|Au — f||* at uj, and adding a proximal term, i.e.

(1.6) uk41 = argmin {(AT(AU/c = f)u) + gllu — ug||? + g ‘
uelU

A
Bu—wk—k—k
P

Aug — up—1)|)?
. oo _ |
( ) e ||uk 7 uk—1||2

Their experimental results showed that the objective function value decreased much
faster by taking n = nP? than n = ||AT A|ls. However, the BB stepsize 1/nP8 >
1/||[AT A||5 violates the convergence condition of the BOS algorithm. Thus, the
convergence of the algorithm is not guaranteed. The improvement was made in [5],
where a scheme of BOS with variable stepsize (BOSVS) was developed to improve
the performance of ADMM for solving (1.1) with guaranteed convergence. In this
work a line search strategy was presented for searching for a better stepsize. The
stepsize rule starts with a safeguarded BB stepsize and gradually increases the
nominal stepsize 7, until the termination condition is satisfied. With a good choice
of parameters in the line search conditions, more aggressive stepsize is allowed,
especially at the early iterates. The global convergence of the iterates of the BOSVS
was established in [5]. Later on, it was shown in [14] that the objective function at
the average of the BOSVS iterates converge to an optimal value with the rate of
O(1/k), where k is the number of iterations.

To improve the iteration complexity of ADMM, in [21] an accelerated ADMM
(AADMM) was developed by incorporating Nesterov’s fast gradient scheme [20].
The AADMM solves a class of convex composite optimization problems with linear
equality constraints, which includes the problem (1.3) as a special case. AADMM
improves the rate of convergence of ADMM (or BOS) in terms of the smooth com-
ponent in the objective function from O(1/k) to O(1/k?). The accelerated rate of
convergence is achieved by the aggregated iterates rather than the average of the
iterates in [14]. To improve the practical performance of AADMM, a simple back-
tracking strategy is incorporated in the algorithm. The idea of the backtracking
technique is to search for an underestimated Lipschitz constants Lj; at the itera-
tion k in consideration of the dependence of the stepsize on Lj. The backtracking
procedure in [21] starts with a relatively smaller Ly, and properly selects involved
parameters to solve uyy1. If an employed line search condition is violated, then Ly
is doubled and used as the new Lj to solve ug1. This procedure is repeated until
the utilized line search condition holds.

Motivated by the aforementioned work, we propose two accelerated Bregman
Operator Splitting (BOS) schemes with backtracking for solving the problem (1.1).
The first proposed algorithm improves the convergence rate of BOSVS in terms
of the smooth component in the objective function by incorporating Nesterov’s
multi-step acceleration scheme [20] under the assumption that the feasible set is
bounded. The second one can deal with the situation when the feasible set is
unbounded. By jointly computing the acceleration parameter and stepsize, the
monotonicity condition on the nominal stepsize required in BOSVS [5] and the
first proposed algorithm can be removed in the second algorithm. Combining with
the good choices of the penalty parameters p for updating w, w and X in (1.5) (
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possibly different p’s in u,w, A\ subproblems ), more aggressive stepsize is allowed
in the second proposed algorithm. Instead of searching the local Lipschitz constant
to satisfy the conservative line search condition in AADMM [21], the proposed
algorithms utilize the product of the acceleration parameter and a safeguarded
Barzilai-Borwen (BB) choice as the initial stepsize, then gradually increase it until
a more relaxed line search conditions than that in [21] is satisfied. The proposed
algorithms are capable of hunting for more aggressive stepsize via conducting fewer
number of line searches. Meanwhile, the proposed algorithms preserve the same
accelerated rate of convergence as that for AADMM.

In [21], a center piece of the theoretical analysis is for the convergence rate
of AADMM in terms of the dependence on the Lipschitz constant of the smooth
objective. A simple backtracking scheme is proposed in [21] to demonstrate that
prior knowledge of the Lipschitz constant is not a definitive requirement. In this
work most of the convergence analyses is devoted to maintaining the accelerated
convergence results under aggressive stepsize strategy, which was not touched in
either [5] or [21]. The problem (1.1) is a special case of the problem of interest in
[21] which is called the unconstrained composite optimization (UCO) problem there.
The backtracking technique in [21] is designed to solve UCO with bounded primal
and dual feasible sets. In this manuscript, the proposed ABOSVS II algorithm is
able to solve (1.1) with an unbounded primal feasible set without any feasibility
residue, which was not discussed in [21]. It seems that the technical details for
studying (1.1) with unbounded primal feasible set is nontrivial comparing with the
analysis in [21]. Moreover, in this work we use a different termination criterion from
the one for AADMM in [21] to obtain the same accelerated rate of convergence. In
[21], the convergence analysis is based on the estimation of the duality gap function
for its corresponding saddle point problem. In this work, the termination criterion is
based on the error between the objective function values at the aggregated iterates
and the optimal solution. Consequently, we are able to conduct a different proof of
the accelerated rate of convergence when the feasible set is unbouned by observing
the relationship between the Lipschitz continuity of the function v in (1.1) and
the boundedness of its subgradients. We believe that the strategy in the proof of
the case with unbounded feasible sets provides a relatively simpler alternative of
the proof of accelerated convergence results in [21]. Our experimental results show
that the proposed algorithms outperform several state-of-the-art algorithms on total
variation based image reconstruction problems.

1.1 Outline of the paper

Our paper is organized as follows. Section 2 presents the proposed algorithms,
namely Accelerated BOSVS-I (ABOSVS-I) and Accelerated BOSVS-II (ABSOVS-
II), for solving the type of problems (1.1). Section 3 studies the convergence anal-
ysis for the proposed algorithms. Section 4 is devoted to numerical experiments
and comparisons with state-of-the-art algorithms on total-variation based image
reconstruction problems. The last section draws the conclusion for this paper.

1.2 Notation and terminologies

The Euclidean inner product of two column vectors z,y € C" is denoted by (x,y) =
2Ty, where the superscript 7 denotes the conjugate transpose. Assume u* is an
optimal solution of (1.1). Define Dy« := |uz — u*||, Dy».p = ||B(ur — u*)||,
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Dy- = ||\ — X*||, Du,p := sup |Bui — Bug||, Dy := sup |1 — va] for
w1, u2€U v1,02€
any compact sets U and V. For a convex function F' : C* — R, OF represents the

subdifferential of F'.

2. Proposed Algorithms. In this section, we present the frameworks of the
ABOSVS-T and ABOSVS-II. The first algorithm incorporates Nesterov’s multi-step
acceleration scheme to improve the rate of convergence of BOSVS under the as-
sumption that the feasible set is bounded. While the second one is capable of
dealing with the case where the feasible set is unbounded. In the second algorithm
the acceleration parameter and the stepsize are updated jointly and the penalty
parameters p in (1.5) are chosen differently for updating u—, w— and A. For conve-
nience, We use p¥, p¥, and p to replace p in those three subproblems, respectively.
For ABOSVS-I, with assumption of bounded feasible set, p can be chosen to be the
same constant in (1.5) without affecting the convergence rate, i.e.

(2.1) pi=py =p} =p>0.

In the proposed algorithms, the initial choice of the nominal step 7; is a safe-
guarded BB choice:

(2.2) 0,1 > Mmin and 7o,; = max {nmin,nfB} for 7> 1.

where nPP is defined in (1.7). Now we present the scheme of ABOSVS-I in Algo-
rithm 1 under the assumption that the feasible set U is bounded.

From ABOSVS-I, we can see that if a; = 1, then u”? = u; and the aggregate
points ug{,, wi{,, \{7, are exactly the iterates w;y1,w;41, and \iy1, respectively. In
this case, ABOSVS-I becomes BOSVS with a minor modification. For ABSOVS-I,
the derivation of the accelerated convergence rate replies on the asymptotic mono-
tonicity of n;/«; for i = 1,2,.... Whenever 7n;/«; is not monotone decreasing, nmin
is increased by a factor 7 > 1 in step 3 for i = 1,2, .... Hence, if the monotonicity
of n;/«; violates continuously, then 7n; /c; will approach a constant, which is usually
smaller than |[[AT A||z, after a finite number of iterations. Moreover, it should be
note that from Q;+1 = 5;Q; + I';, we have

k

k
(2.3) 2 (Bi=1)Qi = Quyr == Ts

=2

k
where 8; and the condition on @; can be chosen jointly as long as that — > T'; is
i=1
a finite positive number.
ABOSVS-II can deal with the cases where the feasible set is either bounded or
unbounded. When the feasible set is unbounded, the penalty parameters p;', p¥¥,
and p) have to be chosen differently from those for bounded feasible set. More

precisely, if the feasible set U is unbounded, we choose

Kn; A
and p; = ,
Tlmin ¢ an

where K is the total number of iterations. If the feasible set U is bounded, we
choose

(2.4) P =pi =

; m; A TImin
2.5 U — HW — and p} = =2
(2.5) pi=p = =
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Algorithm 1 Accelerated BOSVS I (ABOSVS-I)
Choose C' > 0,0 > 1,p > 0,7 > 1,101 > Nmin > 0, and w1 € U. Set a; = 1,
ul? =y, wi? = w; = Buy, A\{Y =X\ =0, and Q; = 0.
Fori=1,2,...,k,

// Backtracking
1. Set n; = a;no,i, where 1o ; is from (2.2). Compute

md ag
u™ =(1 — ay)ug? + a;ug,

) u PR
U4 = arg min {(AT(Au;”d —f),u)+ %Hu —w|]? + % ’Bu —w; + 71 } ,
uelU i
r; :7”Uz+1 - ul||2 JF ||Buz+1 - w1|| — [|A(wit1 — uz)sz

1
Qit1 =BiQi + Ty, where 0 < f; < (1 — ;)2-

2. If Qi+1 < —C/i?, then replace n; by ono,; and return to step 1.
3. Update the safeguard threshold 7min by T0min if 7/ > 1n;-1/c;—1, for
1> 1.

// Updating iterates
4. Compute

ag _ ag
ug )y =(1 — a)u;? + auig,

Ai
w — Bu;y1 — ~w
[

_ . Py
wiy1 =argmin  Y(w) + —-
wECdX" 2

)
wily =(1 = a)wi? + awit,
Ai+1 =Ai — p}(wit1 — Buit),
Nidi =(1 = @)\ + aidiya,
a; (fai ++/ai + 4)
5 .

Qi1 =

EndFor
Output (uZil , wZil ).

in ABOSVS-II by jointly updating the acceleration parameter and the stepsize. The
scheme of ABOSVS-II is presented in Algorithm 2.

Two remarks are in place. First, step 3 from Algorithm 1 is not required anymore
in Algorithm 2. Second, in Algorithm 2, step 2 actually can be written as

(2.6) If Qiy1 < —C, thenng;:=o0mn,;, return to step 1

by settlng Bi; = 1 for i > 1. Obviously, it also satisfies the condition we impose on
- Z [; from (2.3). Additionally, in (2.6), we can also set 3; such that (1 —1/i?) <
Bi S I
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Algorithm 2 Accelerated BOSVS II (ABOSVS-II)
Choose C' > 0,0 > 1,70,1 2 Nmin, U1 and w; such that wy; = Bu;y. Set oy = 1,
ul? = ug, wi? =wy, A\ =X\ =0, and i = 1.
Fori:=1,2,...,k,

// Backtracking
1 11—y

1. Set n; = a;no,i, where ng; is from (2.2). Solve «; from T T am
for i > 1. Update p%, pi* and p? by (2.4) or (2.5). Compute

u™ = (1 — a;)uf? + au;.

s = angmin { (A7 (Aur — 1))+ % o — ol + 7 B - wi+ 2512}
ue o

2. If E Fj < -C,
j=1

u v
where I = [[uj1 — uyl|* + 2| Bujr —wy]|* = 32 [ Aujn —uy)?,
then ng; := o1no,;, return to step 1.

// Updating iterates

3. Compute the iterates ug?, wiy1, w;7, Aig1, Ay, from step 4 in Algorithm
1.
EndFor

Output (u%,,wp? ;).

3. Convergence analysis. In this section, we focus on proving the convergence
properties of the proposed algorithms. We start with two lemmas describing prop-
erties regarding the line search scheme in Algorithms 1 and 2. Lemma 1 below
shows that the safeguard stepsize threshold 7,,;, in step 3 of ABOSVS-I will stop
increasing after a finite number of iteration.

Lemma 3.1. The replacement of Mmin Y Thmin 0 step 8 of ABOSVS-I can occur
in at most a finite number of iterations, denoted by Ny.

Proof. See Lemma 3.2 (II) of [5]. O

Lemma 3.2. In steps 2 and 3 of Algorithm 1 and step 2 of Algorithm 2 , the
T

number of line search, denoted by [, is less than or equal to ﬂogg(Hf}%A”ﬂ

[x] is the smallest integer greater than or equal to x for any x € R.

, where

Proof. The proof for Algorithm 1 can be obtained by a a similar argument, we only
give the proof for Algorithm 2. By step 2 of Algorithm 2 (see also the remark on
(2.6)), the line search stops when @;+1 > —C. Noting (2.3) (with 8; =1 for i > 1)
and the definition of I'; in Algorithm 2, the condition ;11 > —C is equivalent to

U
: o
Qi + lluipr — wil* + %HBWH —wiy]? - #HA(UH-I —u)|* > —C.

(2 3

After rearranging terms, the above relation can be reformulated to

1i(C + Q) +milluirr — will* + pi | Buisr — wiga||* — i Aluirr — wi)|* 2 0,
or the equivalent form
ail A(wivs —uw)|®  pfl|Buivs —wia|?  mi(C+ Qi)

it — uil|? l[witr — wil|? lJwivr —will®

i
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Noting the two negative terms at the right hand side of the above line search
A w2

stopping criterion, we observe that it is satisfied when n; > % By the

definition of 7;, such condition is satisfied after [ rounds of line search, as long as

[ A(wip1 — ug)||?
= Moy — w;|?

Noting that || A(uit1 — w;)||* < [|AT Alllluipr — wil|* and that 7,; > 7min, We have
I < log, (147AL)].

TImin

O

The following lemma plays a primary role for the convergence analysis of the
proposed Algorithms. Since we have p{’ = p}* for both proposed algorithms, in the
following proof p;’ is replaced by p}* for the purpose of a unified analysis. Through-
out this section, we use notations u{ = u; — v and w§ = w; — w for ¢+ > 1. For
convenience, we denote 1 [|Au — f||* by H(u).

Lemma 3.3. For allu € U and allw € C*™, the iterates {(uj?, w?)}i>1 generated
by Algorithms 1 and 2 satisfy

[H (u;{y) + ¥ (wify) — H(u) = (w)]
— (1= ai)[(H (ui”) + 2 (wi?) = H(u) = ¢(w))]

Mi 1, e 1w
{2 (gl = llugq I1?) — 5 (P lJwi — Bug|?
771‘HW+1 —ui|® = il Aluipr — ug)]?)
1
(||we||2 lw§ 1 11?) + = UIXll? = A l®)
2p;

u _— .
B %Hwiﬂ — Buiy1||* + p}'{w; — Buiy1,w — Bu)

+
(3.1)
+

-\, w— Bu)}

Proof. Since H is differentiable, we have

(2

1
(32) H(uf,) = H(ul) +/ < VH@uP + r(uify —u), uify —ul > dr.
0
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Applying the definition of H(u) and ug{, to the above equation, and observing the

relationship u;?, — u™ = a;(uiyq — ) we have
(3.3)
1
H(ui?,) = H(u™) +/ (ATAuP? + r(uffy —u®) = AT fuff) —u®)dr
0

1
= H@l) + / (AT (Au — f),ul9, — uydr
0

+ [ A, - ) Par
= H(u™) + (VH(u"),uff, — u") + fHA( uffy — up )|
= H(u™) + (1 - ;) (VH (u"), uf? - u;"d>
+ s VHP), ugr —u™) + “—?HA(u,»H )P
= (1= a) (H(u") + (VH(u"), uf? —uf™)) + o (H (u")
+(VH @), i =) + %HA(uM — )%
Here by the convexity of H(u) and (3.3), we have

H(uffy) = (1= aq) (H (") + (VH(u"), uf? — u")
+ o (H (w) + (VH(u), u — u"?))
(3.4) + i (VH (U)o — ) + %HA(uM — )|
< (1 —ai)H(u?) + o H(u)

2
+ @ (VH), i =) + S [ Awis — w)||?, Vu € U.

By (3.4) and the convexity of 1, we can calculate the following difference.

[H (ui{y) + ¥ (wify) — H(u) = (w)]
— (1= ai)[(H (ui”) + (wi?) = H(u) = ¢(w))]
=(H (uify) + P(wiy) — H(u) = ¢(w))
= (1= ai)(H (ui”) + ¢ (wi?) — H(u) = ¢(w))
55) =(H (uify) — (1 — i) H(uj) — i H(u))
' + (Y(w z+1) (1 — ai)tp(wi?) — cip(w))

<ai{(VH ), uf) + 5 Aluwies —w)|?
T (i) — Y(w) |
Saf (VH@),uf 1) + 51 A@i — w2+ (sien w0 |-

where s,11 € 0Y(w;4+1). On the other hand, by the first-order optimality conditions
for the sequence (u;y1,w;t1, Ait1) generated by Algorithm 1 and 2, for all u € U

INVERSE PROBLEMS AND IMAGING VoLuME 11, No. 6 (2017), X-XX
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and w € C¥*" we have
(VH(u), u ) + mi{uics — i, ufi )
+ P (Buit1 — wi + (pf) "' Ai, Bug, ) <0

(36) e e u e
(8it1,Wiy1) — (Ao, wiyq) + pi (Wit1 — Buigr, wiyq) <0
Xit1 = Ai = pi(wis1 — Buipa),
Using the relationship 2(a — b,a — ¢) = —||b — ¢|* + [la — ¢||* + |la — b||? and the

definition of u$, |, wg, , the above equation can be rewritten as

0

o i = will® + g [1* = g 11?) + (VH @), ugi)

+ pi(Buiy — wi, Bui ) — pi'(w — Bu, Buf 1) + (A, Bug; ;) <0

(3.7) (8iy1, wf+1> + P?<’wie+1 - Buz‘e+1awie+1> - <>‘i7wie+1>
+ ot (w — Bu,wf,,) <0

Aig1 = X — Pf‘(wiﬂ - Bui+1)~

Substituting (3.7) to (3.5), we have

[H (uiy) + ¢ (wify) — H(u) = ¢ (w)]

— (1= ) [(H (u”) + P(wi?) — H(u) = (w))]

i 1
Sai{;(U?llz — [Jugial?) — 5 (illuivs = uq|®

— | A(uitr — ug)||?) + pi(w§ — Bug, |, Buf,,)

?

(3.8) >

+ (Wit — Buiig, Ai) —pi (wipy — Buiq, wiyq)

(I1) (I11)

+ pi'(w — Bu, Bug — wyiq) }
Iv)
To give a further estimation of (3.8), next we focus on estimating terms (I)-(IV).

() = p{(Bufy, wf) — pf'l| Busy |12

oY Py Py

= = lwf = Buf|® + St P = Sl Buga
oY pY Pil

=~ lwi = Buip |* + S wf P = 5| Bug |

+ pi{(wi — Buji1,w — Bu) — %Hw — Bul?,
(IT) = (A, wit1 — Buj1) — (A, w — Bu)
1
= pj</\i,)\i — Xi+1) — (\j,w — Bu)
1
= ﬂ(”)‘i = Xigtl* = [[Aieal? + 1Al = (Ai, w — Bu)

A
P 1
= 5 llwivs — Bui|* + ﬁ(H)\iHQ —[Air1ll*) = (Niyw — Buy),

INVERSE PROBLEMS AND IMAGING VoLuME 11, No. 6 (2017), X-XX



ACCELERATED BREGMAN OPERATOR SPLITTING 11

(ID) = —pf[[wiyy |I* + pf (Bugyy, wi)

L ~w

;0 Py
=—— sz+1 B“§+1”2 z+1H2 - ||Buz+1H2

—;‘uwm ~ Buip? - ;'uw;;ln? P Bug, |

u
+ piwi1 = Buigr,w — Bu) = 2w Bu||2,

and (IV) = p¥(Bui11 — wiy1,w — Bu) + pi*||w — Bul|*.

Combining those above terms, we have

pi e .
(D) + (1) + (U1 + (V) = == fJws — Bui|* + 5 (||’w 17 = llw§y 1 11%)
Py —p}
— (||)\ 12 = X ll?) — THU%H — Bui|?

K2

pi{w; — Bujy1,w — Bu) — (\;, w — Bu).

2p

Applying the above summation to (3.8), we obtain (3.1). O

The following lemma presents an important property of the out (ugf,w;?;)
generated by Algorithm 1.

Lemma 3.4. Suppose that the parameters p%, p¥, and p) in Algorithm 1 satisfy
(2.1), the output (up5 ,, wis ) generated by Algorithm 1 satisfies

S THO) + (i) — H ) — gw)]
(3.9) Z T [ [ +z;2gz [T
A | ) b N (1-B)C C
— Jwiy1 — w*|| )+; Qpai(ll)\iH = [Niall7) + ;W + 53

Proof. Dividing both sides of (3.1) by aZ, using (2.1) and step 1 in Algorithm 1,
we have

(3.10)
%[H( z+1) + 1/)( 7,+1) - H(’LL) — iﬂ(w)]
= S ) + wlwf) — 1) — ()] + “Q%”
<12 = I lP) 4 g I = )+ 5 Ol = Dral)
20(1 2a 2
+ 04£<wl — Bujt1,w — Bu) — E()\i,w — Bu) + w + %

INVERSE PROBLEMS AND IMAGING VoLuME 11, No. 6 (2017), X-XX
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Since Qi41 = iQi + T, 0< B < (1—1)2, and Q; > — 1)27 we obtain
(3.11)
1
LTH@E) + () — ) — () -
K3
1-— a; a a Ql
-0 ) + () - Hew) — vw))] +
e P lne 1
SZQ (lugll® = llugpa 1?) + E(HwiHQ = Jwi i |1?) + S (X1 = i1 l1?)
P 1 (1-8)C Qs
- i B i+15 - B - )\iv - B
g (Wi = B, w = Bu) = 2o (v, 0 “>+2(z—1) T
Setting u = u* and w = w*, by the relationship é = %,Qiﬂ > —%, and
i i+1
a1 = 1, we have (3.9) after summing (3.11) from i =1 to k. O

Now we are ready to prove the accelerated convergence rate of the ABOSVS-I
algorithm when the feasible sets U and V := dom 9™ are compact, where ¥* is the
convex conjugate of ¢(-).

Theorem 3.5. The output (u’,, w9 ) generated by Algorithm 1 satisfies
H(ups) + 9 (Buyhy) — H(u") — (Bu”)

(3.12) _20||ATA|IDE +2C +2C, 8Dy 4pDip
- (k+1)2 plk+1) k+17

where Cy, and C1, which are independent of k, are finite nonnegative numbers.

Proof. 1f nmin > ||AT A||, by the definition of (2.2), 19.; = Tmin, which yields T'; > 0.
Thus, there is no line search needed based on the backtracking strategy in steps 1
and 2. We have to exclude this case by setting 791 < ||AT A||, which can be easily
satisfied.

Next we show several important properties of the sequence {«;} for ¢ > 1. The
update of a; 41 in step 4 of Algorithm 1 is actually equivalent to solving ;41 from

L= 1=t based on which, we have
i i+1
(313) i_\/lfai+1<1_a7;.1 B 1 _1
a; Qir1  Qhy a1 2

1 T a1« 1
(3.14)  and — Qi Jit

= > > —1 for ¢>1.
Q; Qi1 Q41 (C7E |

Summing (3.13) and (3.14) from ¢ = 1 to k and by ay = 1, easily we can derive

2 1
(3.15) a; < —— and 0< —— <1 for i>1.
1+ 1 Q41 (673

In the following proof, we estimate the terms on the right hand side of (3.9). In
view of lemma 3.1, there is Ny such that Z—:ll < Z— for any ¢ > Ny + 1. Then the
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first term of the right hand side of (3.9) can be estimated by

k

D g (s = 2 = s = ")

=1
k—1

M jen2 i Mit1 o2 Mk 2

=g 101 = G = g s = 1P = g s = 7|
Z_

(316) No k—1

=l =P = (3 DT )G — g s — |
2001 20; 20441
i=1 i=No+1

Cs UIIATAII +Q
2 = 2 Dy 2

where
. N ; i
o [0 it SR - 2 e — P> 0
T Coorif R (2 - 2L —ut|f? <O,

Q41
since U is a compact set, clearly Cj is a finite nonnegative number.
By the optimality condition of u-subproblem in step 4, we have A; — p¥(w;+1 —
Bu;t1) € 0Y(wig1) C domyp* = V| which indicates that
[wipr = w*[|* < 2fwigr — Buipa|? + 2| Buipr — w*||®

3.17 D2
N

(ni')?

By the second inequality of (3.15), aq =1, and (3.17), we have

D2
+ 2||Buiy 1 — Bu*||? < 27; +2D7 5

k
3 L (lws = w |~ wies — w*?)

= 20
k—1
* P 1 1 .
=g Wt =P+ 5D (= —)lwigs —w'?
(318) 20[1 2 i=1 Q41 Q5
p
- Enwkﬂ — w*||?
k
p cva _ pk 2D
<5 2 llwi —wr|? < B (=5 + 2D )
=1
Also,
k
1
(p¥ 2 I\aql?
2 gy (I = el
1 1 k—1 1 1 1
3.19 — M2 = bl — )
(3.19) 2pa1|| 1| +2p;(ai+1 o Pl 2/m\l k|

1< k
<—> INl? < ~DY.
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14 YUNMEI CHEN, XIANQI LI, YUYUAN OUYANG AND EDUARDO PASILIAO

By (3.16), (3.18), and (3.19), we have

H(uply) +(wily) — H(uw") —d(w”)
(3.20) o ol|ATA|| Cy pk(2D2 k Ciy

D2

2 vty

where C7 = Zf 9 (b 1))2 + k2, which is a finite nonnegative number.
To obtain (3.12), we also need the following estimation:

k
1 @ a 1
_ —2<)\, wk-gi-l Bukil = )\, Z — wz+1 Bul+1)>
Qg i=1 @i
A "ol
(3.21) - Z — (XN wiy1 — Buj) = Z Ai — Aig1) <
o1 i i=1 pozz
ool k
(1N = A% = [[Xig1 = A|?) € ==DZ. VA€V,
> ey I = A~ =17 < gDk €

where the first equality was obtained by summing the sequences of {u{, — Bu;{,
for 4 > 1 and using the same technique in Lemma 3.4 and the last inequality was
derived by using the same process as that in (3.19).

By the convexity of 1(-), for VA € V| we have

H(ui ) +¥(Bupd,) — H(u") — ¢(Bu”)
<H(up%,) +¢(Bupf,) — H(u") — ¢(Bu")
(3'22) + SUP [7/1("%4-1) - 7/’(BUZ{J|-1) <>‘a wgi_l BUZ?HH

H(uk+1) + ¢(wk+1) H(u") —(Bu*) + i‘é‘}? —(A, wgi]u - BUZiD

By the first inequality of (3.15), combining (3.20), (3.21) and (3.22), we obtain
(3.12). O

Next we focus on analyzing the accelerated convergence rate of ABOSVS-II al-
gorithm. First we need to establish an important lemma similarly as lemma 3.4
before giving the accelerated convergence rate of ABOSVS-II.

Lemma 3.6. Suppose that the parameters p¥, p¥, and p} in Algorithm 2 satisfy
(2.4) or (2.5), the output (uyf |, w,? ) generated by Algorithm 2 satisfy

1 o . .
W[H(ukﬂ) + w(wkil) — H(u") — (w)]
1 by
g 5 (s = w12 = [fuigr — " |%) + ; (s = w |
(3.23) oo
— JJwigr —w*|?) + (Nl = P l1?)
; 2p7n;
k k
pz pz) 2 Fl
_ i i
> G e - -2
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Proof. Dividing by agny from both sides of (3.1), we have

1
o [H (ugfy) +(wify) — H(u) —(w)]
(1—ai)
- ) + w<w?g> ~ H(u) — ()]
1 el2 e 2 2 2
(3.24) <5 Udll™ = lufa ) + 20?77 Al = X l17)
Py 2 e o= 2
; i — N\
* o ([wf 1 = llwi 1?) = 2(01) H Aigrl]
T
+ ﬁ( ; — Bujy1,w — Bu) — ;()\i,w — Bu) — ?Z
Setting © = v* and w = w*, by the relationship ﬁ = al;'f‘nill, and a1 = 1, we
get (3.23) after summing (3.24) from ¢ = 1 to k. O

Now we analyze the accelerated convergence rate of the ABSOVS-II algorithm
when the feasible sets U is unbounded. In this case, the total number of iterations
has to be fixed in advance and chosen based on a worst-case complexity analysis.
Additionally, since 1 is Lipschitz continuous , for all w € C4*" we have ||¢]| < A,
for V& € 0y (w).

Theorem 3.7. Suppose that the parameters pt, p¥, and p} in Algorithm 2 satisfy
(2.4), then the output (up% |, w,%,) generated by Algorithm 2 satisfies

a ag  4o||ATA|
(3.25) lw — Bu || < mAv
H(ug) +(Buy) — H(u") — y(Bu")
(3.26) L20[ATA|DE +O) | 20| AT A|D;. 5 L Aol ATA] s
- K2 nminK 77minK

Proof. Since Nmin < 70,1, we have nmin < |AT A||. Then, by definition of g ;, we
get

(3.27) Tmin < M0, < [[ATA].
Denote a'lng; by 77;, where [ is the number of line searches in step 3 of ABOSVS-II.
By ailm = al;i;::l and the definition of 7;, we have

1 i 1- i
(3.28) V1= ain 2041

!’
7% Qi1y /771+1 Qg /T]H_1 Qg1 /771+1 241

Then, by induction we can get, with a; =1,

for ¢>1.

- 1 )2 < L
=2 \/77;@ g,
which implies
1 40| AT A
(3.29) apme < <ol AT AL E>1,

FHili, 2 (kD)
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16 YUNMEI CHEN, XIANQI LI, YUYUAN OUYANG AND EDUARDO PASILIAO

where we used (3.27) and the definition of 7;. This estimate is crucial for obtaining
the accelerated rate of convergence. Also, since

1 1 - 1 K3
(3.30) V-~ %t — Qi

N Qi g1y /771+1 Qg1 /771+1 i1/ Migq 771—&-1

1

by induction again, we obtam

,ie. agpne > 2, which implies

771,c - \/77m
1
(3.31) — < for k> 1.
Mk Tlmin

Next we estimate the terms on the right hand side of (3.23). By the definition
of p% and p, and (3.31), it is clear that p¥ > p) for ¢ > 1. Thus,

k
(3.32) Z Hml Al > 0.

=1

Also, using the deﬁnition of p“ and pf‘ and the non-increasing property of the

sequences {p i} and

,2, ..., k, we have

"1

> 5 Ulws = w1 = fluigr = w?)
(3.33) i=1

1 2 2 o 12

Sur — w2 = 2 - Ip2

=L — ) = S s 2 < 22

(lwi = w*[* = wiss — w|?)

w k-1 o, U
(3 34) _ P1 ||w1 —w H2 _ 2 :( P _ 'L+1 )||w1+ —w ||2 pk ||wk+1 —w ||2

1 =2 2 21k
K ) K .
<ol —w'|* = o= Buy = Bu"|]* < o —Dj. p,
TImin Tlmin Tlmin
"
and > o — i l?)
=1 ?
(3.35) 1 =, 1 1
' = Ml =) ( - M|l
2pim ; 2000 2p3 1M 2007k
K
= 5 — (Ml = e [®) <0

k
By (3.32), (3.33), (3.34), (3.35), and the fact that — Y T'; < C, we have
i=1
1

M[H(Uk+1) + 1/’(“%211) — H(u") — ¢(w")]
2 Lo KD2
<wrC B
2 2"7min

(3.36)

INVERSE PROBLEMS AND IMAGING VoLuME 11, No. 6 (2017), X-XX



ACCELERATED BREGMAN OPERATOR SPLITTING 17

Next we focus on estimating |lw;%,; — Bu;?,|| in order to obtain (3.26).
Similarly as (3.21), for YA € C?*" we can obtain

1 . 1
—(wph — Buply) = ) —(wis1 — Buita)
kTNk i—1 7
(3.37) X .
1 1
=)  —(wit1 — Buj1) = Z ——(Ai = Ait1).
i=1 1 i=1 Pilli
k
117 (wpy — Buphy) = >0, ﬁ()\i — Xix1), we have
Koagng
(338) wZil Bqu’H = ] ()\1 — /\k—i-l)-
By setting k = K — 1, we have
o do|| AT A
(3.39) iy = Bty = ALy

The only left work is to bound the term |[A;x11]. By the optimality condition of
w-subproblem in step 3 of Algorithm 2, we have
0 € 0Y(wit1) — Ai + pi (wit1 — Buiya) Vi > 1,

or

/\i+1 =\ — pll»u(wi_H — BuH_l) S aw(wiﬂ) Vi > 1.
Therefore we have || A;+1]] < A, which leads to
a do| ATA]l
(3.40) iy = Buh, | = A

By the convexity of 9(-), we have

H(uy) + Y(Buif) — H(u") — (w”) < H(uyl) + ¢ (wy)
(3.41) + (& Buy! —wil) — (U*) Y(w") < H(ugl) + d(wy)
€11 Buy — wi[| = H(u") = ¢ (w”),
where £ € 0Y(Buj). Then, by (3.36), (3 40), (3.41), we have (3.26). O

The following theorem gives the accelerated convergence rate of the ABOSVS-II
algorithm when the feasible sets U is compact. Since its proof is similar with that
for Theorem 3.7, we just present the convergence rate result without proof.

Theorem 3.8. Suppose that the parameters pt, p¥, and p} in Algorithm 2 satisfy
(2.5), then the output (upf ,,w,%,) generated by Algorithm 2 satisfies

H(upy) +¥(Bup%,) — H(u") — 9(Bu”)
(3.42) _20|ATA|(D} + C)  100]|ATA|D}, | 4ol ATA|DE
- (k+ 1)2 Nmin (kK + 1) Nmin(k + 1)

4. Numerical Results. In this section, we conduct several experiments on syn-
thetic data and the data from partially parallel imaging (PPI) to examine the
performance of the proposed algorithms. We also compare them with several state-
of-the-art algorithms. All the algorithms are implemented in MATLAB, R2015a on
a computer with a 2.6GHz Intel i5 processor.
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FicURE 1. The objective function values and relative error vs.
CPU time for first instance

4.1. Total-variation based image reconstruction. In this subsection, we present
the numerical results on solving the following TV based image reconstruction prob-
lem:

1 )
(11) min 5 [ 4u — f13 + afulrv

where U := {u € R" : [, < u® <y, forall i = 1,...,n} or N, the entries of
A € R™*™ are randomly generated from a normal distribution N (0, 1) or a Bernoulli
distribution that takes equal probability for the value 1 and —1, respectively. The
measurements f are generated by f = Augrye + €, Where g is the true image,
is the Gaussian noise with distribution N (0, ¢). We apply ABSOVS-I, ABOSVS-II,
BOSVS !, TVAL3 ? and ALADMML * to solve (4.1).

We consider two instances of this problem. In the first instance, we set U := {u €
R :0<u® <1 forall i=1,..,n}. The dimension of A is 22500 x 22500. The
true image ugrye is a 150 X 150 Shepp-Logan phantom [24] generated by MATLAB
with intensities in [0,1]. Moreover, we set the standard derivation o = 1072. We
run 100 iterations to compare the performance of ABOSVS-I, ABOSVS-II, BOSVS,
TVAL3 and ALADMML. In the second instance, we have U := R™. The dimension
of A is 11250 x 22500. wsye is a brain image [4] of dimension 150 x 150. The o is
the same as that in first instance and 200 iterations are executed in this case.

The parameters setting for both instances is provided in Table 1. The decreasing
of the objective function and the relative error of the reconstruction u, defined by
w, are presented in Figure 1 and 2, respectively. In the first instance, we

I|ut7'ue H

LCode is available at http://people.math.gatech.edu/exye33/software/BOSVS.zip

2Code is available at http://www.caam.rice.edu/~optimization/L1/TVAL3

3AADMM [21] with backtracking techniques. Code is available at https://github.com/03y/
m.aadmm.2014
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& ) )
GPU Time. CPU Time

FIGURE 2. The objective function values and relative error vs.
CPU time for second instance

TABLE 1. Parameter settings for ABOSVS-I and ABOSVS-II in
4.1. Note that p and 7 are only used in the first instance

Parameters o o Mmin C pBr p T
Values 10 2 |JA|°/10 100 Lk 1 2

can see that the proposed algorithms perform much better than BOSVS, especially
ABOSVS-II. Also, it is evident that ABOSVS-I and ABOSVS-II outperform TVAL3
and ALADMML in this case. In the second instance, ABOSVS-II and ALADMML
achieve better performance than BOSVS, and it is also evident that ABOSVS-II
outperforms TVAL3 and ALADMML.

4.2. Partially parallel imaging. In this section, we apply the proposed algo-
rithm to two PPI datasets denoted datal and data2 and compare the performance
of ABOSVS-II with ALADMM and TVAL3, and BOSVS. Details of PPI recon-
struction problems can be found in [4]. The underlying image can be reconstructed
by solving the following optimization problem:

L
. 1
(4.2) min {QZH]:p(sl@u)—fz||§+o<|u||TV}
=1

ueCn

where F,, is the undersampled Fourier transform defined by F, := PF, and F is the
Fourier transform, P is a binary matrix representing the undersampling pattern, s;
is the sensitivity map for the [-th channel, and f; is the measurement. The symbol
® is the Hadamard product between two vectors. For notation simplicity, let

A = [FpS1; FpSas s FpSil,  f = [f15 fo; 5 fil,

INVERSE PROBLEMS AND IMAGING VoLuME 11, No. 6 (2017), X-XX
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FIGURE 3. Sensitivity maps of datal

FIGURE 4. Left: True image; Right: Cartesian mask for data 1

where S; := diag(s;) € C™*" is the diagonal matrix with s; € C" on the diagonal,
I =1,2,..., L. Then the above optimization problem can be rewritten as

1
(@3) i { 5140 718 + alulr |
which clearly can be solved by the proposed algorithm. Figure 3 and 6 show the
sensitivity maps of datal and data2, respectively. Figure 4 and 7 show the true
images and sampling pattern corresponding to datal and data2, respectively. The
Cartesian mask only samples 18% of the Fourier coefficients. In this experiment,
the measurements {f;} are generated by

fi = P(FSitypue +€7¢/V2 + ™ //=2), for 1=1,...,L,

where €;¢ and Efm are the noise with entries independently generated from distri-
bution N(0,107%y/nl,). The size of datal is n = 256 x 256 and the size of data2 is
n = 512 x 512. The parameter settings for ABOSVS-II are given in Table 2.

For datal and data2, the performance of BOSVS, TVAI3, ALADMML, and
ABOSVS-IT is shown in Table 3 and 4 in terms of the objective function value,
relative error, and CPU time in seconds. From Table 3 and 4, we can see that
ABOSVS-II, ALADMML converge much faster than BOSVS, and the performance
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TABLE 2. Parameter settings for ABOSVS-II in 4.2

Parameters « 0 Mmin C

Values 107 2 JA[?/5 100

TABLE 3. Comparison of objective function value, relative error,
and CPU time in seconds using datal

Algorithms  Objective value Relative error CPU

BOSVS 15.46841 0.0596 2528.0

TVAL3 56.7263 0.050 228.6
ALADMML 15.46810 0.0499 66.5
ABOSVS-11 15.44535 0.0479 49.7

FiGURE 5. Comparison of 400 iterations of BOSVS, TVAL3, AL-
ADMML, and ABOSVS-II in partially parallel image reconstruc-
tion (Top) and their differences with true image (Bottom) using
datal. From left to right: BOSVS, TVAL3, ALADMML, and
ABOSVS-II

of TVAL3 is between ALADMML and BOSVS. ABOSVS-II has the best perfor-
mance among them.

The reconstructed images by those three algorithms and the differences between
the reconstructed images and the true images are shown in Figure 5 and 8 for com-
parison. Clearly, the images recovered by ABOSVS-1I, ALADMML, and TVAL3
have much sharper resolution than that by BOSVS, and the image recovered by
ABOSVS-IT is slightly better than that by ALADMML and better than that by
TVALS.

5. Conclusions. In this paper, we propose two accelerated Bregman Operator
Splitting schemes with backtracking for solving regularized large-scale linear inverse
problems. The proposed schemes, named ABOSVS-I and ABOSVS-II, are well
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FIGURE 6. Sensitivity maps of data2

FIGURE 7. Left: True image; Right: Cartesian mask for data 2

TABLE 4. Comparison of objective function value, relative error,
and CPU time in seconds using data2

Algorithms  Objective value Relative error CPU

BOSVS 5.007e+2 0.0646 7448.4
TVAL3 1.704e+43 0.050 681.2
ALADMML 5.006e-+2 0.0499 180.0
ABOSVS-11 4.970e+2 0.0497 144.7

suited for solving total-variation based large-scale linear inverse problems, especially
when the matrix in the fidelity term is large, dense and ill-conditioned. ABOSVS-I,
which improves the convergence rate of BOSVS in terms of the smooth component
in the objective function, can handle the case where the feasible set is bounded.
ABOSVS-II can deal with the case where the feasible set is unbounded. For both
cases of bounded and unbounded feasible sets, we employ an error between the
objective function values at the aggregated iterates and at a solution of problem
(1.3) to estimate the rate of convergence instead of using the duality gap technique
in AADMM. Both algorithms maintain the same accelerated rate of convergence
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Ficure 8. Comparison of 400 iterations of BOSVS, TVAL3, AL-
ADMML, and ABOSVS-II in partially parallel image reconstruc-
tion (Top) and their differences with true image (Bottom) using
data2. From left to right: BOSVS, TVAL3, ALADMML, and
ABOSVS-II.

as that for AADMM. Experimental results show that the proposed algorithms are
promising for large-scale image reconstruction problems.
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