


into electrical power through generators. The power generated by SCPPs scales with the product of the
collector area and the chimney height.2 This volumetric scaling is a distinctive advantage compared to other
power plants where the power scales with the area. A demonstration SCCP that was designed and built
by Schlaich, Bergermann and Partner in Manzanares, Spain (1982-1989) generated approximately 50kW of
electrical power.2–5 According to Schlaich,2 the generated electrical power can be estimated according to

P = ηcηt

2

3
g
HtπR2

cI

cpT∞
, (1)

where ηc and ηt are the collector and turbine efficiency, g is the gravitational acceleration, I is the solar
irradiation, and T∞ is the ambient temperature. The generated power scales with the collector area, πR2

c

and the chimney height, Ht.
Channel flows with temperature gradient and opposing gravity in the vertical direction are referred to

as Rayleigh-Bénard-Poiseuille (RBP) flows. Research on the stability of RBP flows has been carried out
over many years. Gage and Reid6 analyzed the linear temporal stability of plane RBP flows and provided
neutral curves for the onset of buoyancy-driven instability (critical Rayleigh number, Rac=1,708) and viscous
(Tollmien-Schlichting) instability (critical Reynolds number, Rec=5,400). When the Reynolds number is
below Rec=5,400 and the Rayleigh number is larger than Rac=1,708, buoyancy-driven instability occurs
and three-dimensional (3-D) waves with a wave angle of 90deg are amplified; For Re > Rec and Ra < Rac,
viscous instability occurs and two-dimensional (2-D) Tollmien-Schlichting waves with a wave angle of 0deg
are amplified. When the distubances are allowed to grow to nonlinear amplitudes, streamwise (longitudinal)
flow structures are expected to form for the former and spanwise (transverse) structures are expected to
appear for the latter. Various numerical7 and experimental8 investigations support the findings by Gage
and Reid.6 Mori and Uchida9 investigated the forced convective heat transfer between horizontal flat plates
and observed counter-rotating longitudinal vortices when the temperature difference between the plates was
increased above a critical value. Fukui and Nakajima10 considered free and forced laminar convection flows
between horizontal and inclined parallel plates and focused on the effect of longitudinal rolls on the transport
processes. A combined experimental and computational study for a range of channel aspect ratios, thermal
boundary conditions (inlet as well as walls), and Reynolds and Rayleigh numbers was carried out by Mergui
et al.11 The number of longitudinal vortices for a given aspect ratio was found to be independent of the
Rayleigh and Reynolds number. Fujimura and Kelly12 investigated the nonlinear interaction of longitudinal
and transverse flow structures. Below the critical Reynolds number (Re < Rec), the flow was found to become
unstable and longitudinal vortex rolls developed, provided that the Rayleigh number was high enough and
the spanwise extent of the channel was infinite.

The effect of the spanwise or transversal extent of the channel on the instability of plane RBP flows
has also received considerable attention in the literature. Luijkx et al.13 suggested that when the Reynolds
number is below its critical value (no viscous instability), transverse rolls are favored over longitudinal rolls
for aspect ratios (width to height) of less than five. Nicolas et al.14 also found that transverse rolls are
preferred for low aspect ratio plane RBP flows. Furthermore it was shown that reducing the aspect ratio
has a stabilizing effect and raises the critical Rayleigh number, Rac, for the buoyancy-driven instability. An
experimental analysis of the hydrodynamic instability of RBP flows with large aspect ratio was conducted
by Grandjean and Monkewitz.15 They reported that the appearance of transverse rolls is triggered by the
transition from a convective to an absolute instability.

The flow in the collector of the SCPP constitutes an inward radial RBP flow. Unlike for the square channel
flow, for the inward radial channel flow the velocity strongly increases in the streamwise direction (close to
1/r-relationship because of radial continuity equation) and the flow is non-parallel in planes parallel to the
walls. Assuming that the radial velocity in the chimney behaves according to v ' r1v1/r where r1 and v1

are the radius and velocity at the collector inlet, the radial acceleration behaves according to a ' (r1v1)
2/r3.

Since acceleration is typically stabilizing,16 the hydrodynamic stability of the inward radial RBP flow is
expected to differ significantly from the hydrodynamic stability of the plane RBP flow especially for small
r. The understanding of the hydrodynamic instabilities of radial RBP flows (both primary and secondary)
is of vital importance for the design of SCPP plants as it provides the critical parameters (such as Reynolds
number, Rayleigh number, Prandtl number) that determine if and where coherent flow structures will form.
Coherent flow structures modify the overall heat transfer and pressure drop in the collector and thus will
have a profound effect on the SCPP performance.

Because of its great promise as an alternative energy source, the SCPP technology has been investigated
by numerous researchers over several decades. Bernardes et al.17 were the first to present a numerical analysis
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of the natural laminar convection in a SCPP. They investigated the effect of different geometric configurations
such as a straight, curved and slanted junction as well as a conic chimney and curved junction/diffuser on
the thermo-hydrodynamic behavior. It was observed that a conic chimney geometry resulted in a greater
mass flow rate and higher temperatures at the outlet. Pastohr et al.18 used the Manzanares prototype as a
reference for analytical calculations and Reynolds-averaged Navier-Stokes (RANS) calculations. They found
that the pressure drop across the turbines and the mass flow rate through the chimney had a profound impact
on the SCPP efficiency. Ming et al.19–21 performed RANS calculations and investigated the effect of various
parameters on the differential pressure between chimney and atmosphere, the efficiency of the SCPP, and
the effect of crosswind on the SCPP performance. A numerical analysis of the heat transfer, the generated
power and energy loss, and the turbine pressure drop has been carried out by Xu et al.22 Koonsrisuk and
Chitsomboon23 performed a numerical investigation of the relationship between the generated power and
the collector and chimney geometry and suggested that the combination of a sloping collector roof and a
divergent chimney can greatly enhance the power output. Fasel et al.24 employed RANS calculations for
investigating the validity of the cubic scaling law for the generated power. Nia and Ghazikhani25 employed
passive flow control for improving the heat transfer in the collector. An observed increase of the generated
power was attributed to a stronger wall-normal mixing. Longitudinal structures arising from buoyancy-
driven instability are expected to have a similar effect on the heat transfer. Shirvan et al.26 performed a
numerical simulation and sensitivity analysis to examine the effect of various parameters such as the collector
entrance gap, chimney diameter, chimney height, and inclination of the collector roof on the maximum power
production. The generated power was found to be proportional to the chimney diameter and chimney height
and inversely proportional to the collector entrance gap. Hu et al.27 investigated the effect of the chimney
geometry on the generated power output.

Van Santen et al.28,29 carried out simulations and experiments of a forced radial outward flow with
buoyancy-driven convection. Axisymmetric 3-D transverse rolls appeared for very low Reynolds numbers
when the Rayleigh number was above the critical value. This is an interesting finding since in accordance
with Gage and Reid6 longitudinal vortices should be favored when the Reynolds number is below its critical
value. The Van Santen et al.28,29 results thus indicate that the stability of radial RBP flows may be
different from the stability of plane RBP flows. Fasel et al.30 investigated the RBP flow in the collector
of a 1:33 scale Manzanares SCPP and discovered transverse rolls near the collector inlet and streamwise
longitudinal vortices near the collector outlet. Similar observations were also made by Meng et al.31 Recently,
Bernardes32 investigated the stability of the converging flow between two approximately parallel fixed disks
(a configuration that resembles the collector of a solar chimney power plant). Natural convection and vortex
rolls were observed towards the collector outlet when the Richardson number exceeded a critical value.

Temporal stability simulations for plane RBP flows by Hasan and Gross33 laid the foundation for the
stability simulations of radial RBP flows that constitute the main contribution of this paper. Towards this
end, a newly developed highly accurate compact finite difference computational fluid dynamics (CFD) code
in Cartesian coordinates was modified to allow for simulations of radial flows. Additional temporal stability
simulations of plane RBP flows (square channel) were performed to obtain validation data for the new code
and reference data for a comparison with the spatial radial flow simulations. The radial flow effect (radial
acceleration) for the spatial simulations was varied by keeping the streamwise domain extent constant and
varying the outflow radius. Based on a detailed analysis of the azimuthal mode amplitudes and growth rates,
a qualitative understanding of the radial flow effect on the stability characteristics is gained.

II. Methodology

Details on the Navier-Stokes code in Cartesian coordinates for square channel RBP simulations can
be found in an earlier paper.33 The discussion here focuses on the extension of the code to cylindrical
coordinates. All simulations were performed on a local work station.

A. Governing Equations

The code solves the compressible Navier-Stokes equations or more specifically the conservation equations
for mass, momentum, and total energy. According to Sandberg,34 the governing equations in cylindrical
coordinates are,

∂U

∂t
+

∂A

∂z
+

∂B

∂r
+

1

r

∂C

∂θ
+

1

r
D = H , (2)
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with state vector,

U =















ρ

ρu

ρv

ρw

ρe















, (3)

and flux vectors,

A =















ρu

ρu2 + p − τzz

ρuv − τrz

ρuw − τθz

u(ρe + p) − uτzz − vτrz − wτθz + qz















, (4)

B =















ρv

ρvu − τrz

ρv2 + p − τrr

ρvw − τθr

v(ρe + p) − uτrz − vτrr − wτθr + qr















, (5)

C =















ρw

ρwu − τθz

ρwv − τθr

ρw2 + p − τθθ

w(ρe + p) − uτθz − vτθr − wτθθ + qθ















. (6)

Here, u, v, and w are the velocities in the z (wall-normal), r (streamwise), and θ (azimuthal) direction, ρ is
the density, and p is the static pressure. The total energy is e = ε + 1/2(u2 + v2 + w2), where ε = cvT is
the internal energy, cv is the specific heat at constant volume, and T is the temperature. The source term
vectors are

D =















ρv

ρuv − τrz

ρv2 − ρw2 − τrr + τθθ

2ρvw − 2τθr

v(ρe + p) − uτrz − vτrr − wτθr + qr















, (7)

and

H =















0

g(ρref − ρ)

0

0

ug(ρref − ρ)















. (8)

Vector H contains a buoyancy term (Boussinesq approximation), g(ρref −ρ), with gravitational acceleration,
g = 9.81m/s2. The shear stress tensor components are,

τzz =
2

3
µ

[

2
∂u

∂z
− ∂v

∂r
− 1

r

(

∂w

∂θ
+ v

)]

, (9)

τrr =
2

3
µ

[

− ∂u

∂z
+ 2

∂v

∂r
− 1

r

(

∂w

∂θ
+ v

)]

, (10)

τθθ =
2

3
µ

[

− ∂u

∂z
− ∂v

∂r
+ 2

1

r

(

∂w

∂θ
+ v

)]

, (11)
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and

τrz = µ

[

∂u

∂r
+

∂v

∂z

]

, (12)

τθz = µ

[

∂w

∂z
+

1

r

∂u

∂θ

]

, (13)

τθr = µ

[

1

r

(

∂v

∂θ
− w

)

+
∂w

∂r

]

, (14)

with dynamic viscosity, µ. The heat flux vector components are,

qz = −k
∂T

∂z
, (15)

qr = −k
∂T

∂r
, (16)

qθ = −k
1

r

∂T

∂θ
, (17)

with heat conduction coefficient, k. The set of equations is closed by the ideal gas equation,

p = ρRT, (18)

with gas constant, R, and Sutherland’s law for the viscosity.

B. Non-Dimensionalization

The governing equations were made dimensionless with a reference velocity, vref , a reference length scale,
Lref , a reference temperature, Tref , and a reference density, ρref . Pressure was made dimensionless with
ρrefv2

ref . The Reynolds number based on bulk velocity and hydraulic diameter is

Re =
ub2h

ν
, (19)

where h is the channel height. For the present simulations the bulk velocity was taken as reference velocity,
vref = ub, and the channel half-height was taken as reference length, Lref = h/2. The resulting reference
Reynolds number is

Reref =
vrefLref

ν
=

ub
h
2

ν
=

1

4
Re . (20)

The Rayleigh number is defined as

Ra =
γh3g∆T

να
, (21)

where γ = 1/Tav with Tav = (Thot + Tcold)/2 is the thermal expansion coefficient for a perfect gas, ∆T =
Thot −Tcold, is the temperature difference between the bottom and top wall, and α is the thermal diffusivity.
The Prandtl number is defined as

Pr =
ν

α
. (22)

For the chosen reference quantities, the Rayleigh number can be rewritten as

Ra = Re2

∆T
Tav

(

h
Lref

)3 (

g
Lref

v2
ref

)

Pr
, (23)

where gLref/v2
ref is the dimensionless gravitational acceleration. The specific heats are cp = γ/[(γ − 1)M2]

and cv = 1/[γ(γ − 1)M2] and the gas constant is R = cp − cv = 1/(γM2), where M is the Mach number.
The heat conduction coefficient is k = µ/[Pr(γ − 1)M2Re], where Pr is the Prandtl number.
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C. Discretization

The first and second derivatives in the radial direction were discretized with fourth-order-accurate compact
finite differences,

f ′
i−1 + 4f ′

i + f ′
i+1 =

3fi+1 − 3fi−1

∆r
(24)

f ′′
i−1 + 10f ′′

i + f ′′
i+1 =

12fi+1 − 24fi + 12fi−1

∆r2
. (25)

Fourth-order-accurate compact finite differences for non-uniform grids by Shukla et al.,35

ai−1f
(d)
i−1 + f

(d)
i + ai+1f

(d)
i+1 = bi−1fi−1 + bifi + bi+1fi+1 , (26)

were employed in the wall-normal direction. Here d (either one or two) symbolizes the order of the derivative.
The coefficients are provided in Tab. 1 where hi = zi−zi−1 is the wall-normal grid line spacing. The resulting

d = 1 d = 2

ai−1 { hi+1

hi+1+hi
}2 { hi+1

hi+hi+1
}{ h2

i +hihi+1−h2
i+1

h2
i +3hihi+1+h2

i+1

}

ai+1 { hi

hi+1+hi
}2 { hi

hi+hi+1
}{ h2

i+1+hihi+1−h2
i

h2
i +3hihi+1+h2

i+1

}

bi−1 − 2h2
i+1{2hi+hi+1}

hi{hi+1+hi}3 { hi+1

hi+hi+1
}{ 12

h2
i +3hihi+1+h2

i+1

}
bi

2{hi+1−hi}
hihi+1

−12
h2

i +3hihi+1+h2
i+1

bi+1
2h2

i {hi+2hi+1}
hi+1{hi+1+hi}3 { hi

hi+hi+1
}{ 12

h2
i +3hihi+1+h2

i+1

}

Table 1. Coefficients for fourth-order-accurate compact finite difference stencils for non-uniform grids.35

tridiagonal systems of equations in the radial and wall-normal directions were solved with the Thomas
algorithm. Derivatives in the periodic azimuthal (θ-coordinate) direction were calculated in Fourier space.33

The forward and backward Fourier transforms were computed with fast Fourier transforms (FFTs).36,37

When the flux derivatives are brought to the right-hand-side, the governing equations can be written as,

∂U

∂t
= R =

(

H − ∂A

∂z
− ∂B

∂r
− 1

r

∂C

∂θ
− 1

r
D

)

. (27)

A fourth-order-accurate explicit low-storage Runge-Kutta method38 was employed for time integration,

Q1 = Qn +
∆t

2
R(Qn) (28)

Q2 = Qn +
∆t

2
R(Q1)

Q1 ⇐ Q1 + 2Q2 (29)

Q2 = Qn + ∆tR(Q2)

Q1 ⇐ 1

2
(−Qn + Q1 + Q2) (30)

Qn+1 = Q1 +
∆t

6
R(Q2) . (31)

Here, n and n + 1 are the old and new time step.

D. Boundary Conditions

Flow periodicity was enforced in the azimuthal direction. Isothermal no-slip and no-penetration boundary
conditions were employed at both walls. The wall-normal pressure gradient at the wall was computed as33

∂p

∂z
= g(1 − ρ) . (32)
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The one-sided derivative was discretized with a fourth-order-accurate compact finite difference stencil. Non-
reflecting boundary conditions based on Riemann invariants39 were employed at the inflow boundary. The
outgoing and incoming characteristic at the inflow boundary are,

R+ = vi +
2ci

γ − 1
, (33)

R− = va − 2ca

γ − 1
. (34)

The internal velocity, vi, and speed of sound, ci, at the boundary were extrapolated from inside the com-
putational domain assuming zero fourth derivatives, ∂4/∂r4 = 0 (the derivatives were discretized with
fourth-order-accurate one-sided finite difference stencils). The subscript “a” denotes the known ambient
state. The entropy at the inflow boundary was taken as sb = c2

a/(γργ−1
a ) and the velocity and speed of

sound were computed from

vb =
1

2
(R+ + R−) , (35)

and

cb =
γ − 1

4
(R+ − R−) . (36)

The remaining flow quantities were computed as

ρb =

(

c2
b

γsb

)
1

γ−1

, (37)

pb =
ρbc

2
b

γ
, (38)

and Tb = (Mcb)
2. A characteristics-based boundary condition by Gross and Fasel40 was employed at the

outflow boundary.
A shooting method was employed to solve the equations describing one-dimensional laminar RBP flow,

∂p

∂x
= µ

∂2u

∂y2
, (39)

∂p

∂y
= (1 − ρ)g , (40)

k
∂2T

∂y2
+ µ

(

∂u

∂y

)2

= 0 . (41)

The equations were derived from the 3-D incompressible Navier-Stokes equations in Cartesian coordinates
assuming parallel flow (∂/∂x = 0, where x is the streamwise coordinate), a zero wall-normal (y-direction)
velocity (v = 0), and steady flow (∂/∂t = 0). The computed profiles provided the ambient values for the
inflow and outflow boundary conditions.

E. Computational Domain

A coordinate transformation that clusters grid points near the walls was employed in the wall-normal direction
(grid line index: j, total number of points: J),

zj =

[

tan−1(jc − f1)

f2
+ 1

]

× h

2
, (42)

where h = 2 is the channel height, f1 = Jc/2 and f2 = tan−1(f1), and c=0.1 is a user specified constant.
Equidistant grid point distributions were employed in the streamwise and azimuthal directions. The stream-
wise extent (length) of the computational domain was L=12 for the square channel flow simulations and
L=10 for the radial flow simulations. The spanwise grid extent at the inflow boundary was Z=12 (Fig. 1).
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a) b)

Figure 1. (a) Computational domain boundaries and (b) details of mesh for square channel flow simulations.

a) b)

Figure 2. (a) Computational domain boundaries and (b) details of mesh for inward radial channel flow simu-
lations.

Different outflow and inflow radii were chosen for the radial channel flow simulations. In Fig. 2a a compu-
tational domain with outflow boundary at r1 = 3 and inflow boundary at r2 = 13 is shown. The azimuthal
extent of the inflow boundary (arclength) was held constant at 12 for all radial channel flow simulations.
The azimuthal grid opening angle was adjusted accordingly, ∆θ = s/r2. The number of grid points in the
streamwise and wall-normal direction was 32 and 49, respectively. For the 3-D simulations, 32 collocation
points were used in the spanwise/azimuthal direction.

F. Linear Stability

In linear stability theory a wave ansatz,

v′ = V (y)ei(αx+βz−ωt) , (43)

is made for the disturbances with streamwise wavenumber, α=αr+iαi, spanwise wavenumber, β=βr+iβi

and frequency, ω=ωr+iωi. The real part of the streamwise and spanwise wavenumbers is related to the
wavelengths via αr = 2π/λx and βr = 2π/λz; The real part of the frequency is related to the period,
ωr = 2π/T . Since λx = L/l and λz = Z/k, the modes can also be referenced by their streamwise, l, and
spanwise or azimuthal mode number, k. For the present simulations the disturbances grow either in time
(temporal simulations) or space (spatial simulations). Temporal growth occurs for ωi > 0 and αi = βi = 0.
Spatial growth occurs for αi < 0 and βi = ωi = 0.

Different criteria can be chosen for plotting the disturbance amplitudes. For the results shown in this
paper, it was decided to show the wall-normal velocity at the mid-channel height. This quantity is zero in the
mean for the temporal simulations (parallel flow). For the spatial simulations, a very small non-zero value
is obtained because the differential heating makes the flow slightly asymmetric in the wall-normal direction.
Because of the streamwise and spanwise periodicity of the temporal simulations, the disturbances can easily
be Fourier-transformed in both directions,

v′(x, y, z, t) = v̂(y)ei[αrx+βrz−(ωr+iωi)t]

= v̂(y)ei(αrx+βrz−ωrt)eωit

= ei(αrx+βrz−ωrt)A[v′(y, t)] . (44)
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The temporal growh rates can then be computed via,

ωi =
∂lnA(v′)

∂t
. (45)

Similarly, for the spatial simulations the growth rates are obtained from

αi = −∂lnA(v′)

∂s
, (46)

where s is the arclength in the streamwise direction,

s = r2 − r . (47)

G. Defining Parameters for Different Cases

The bottom and top wall temperature were held constant at 350K and 300K, respectively. The latter was
also chosen as reference (ambient) temperature. The reference Mach number was set to 0.3 for the square
channel flow simulations and 0.05 for the radial channel flow simulations. In accordance with Gage and
Reid,6 the Prandtl number was set to 1.

Figure 3. Investigated cases (symbols and dashed lines) plotted in stability diagram by Gage and Reid.6

Various stable and unstable cases were set up according to the neutral curves provided by Gage and
Reid6 (Fig. 3). For the radial RBP flow cases, the velocity and hence the Reynolds number are changing
in the streamwise direction and the cases thus appear as horizontal lines in Fig. 3. According to Gage and
Reid,6 when the Reynolds number is less than its critical value (Re < Rec=5, 400, black line in Fig. 3)
and the Rayleigh number is greater than its critical value (Ra > Rac=1, 708,

√
Rac = 41.3, brown line in

Fig. 3), buoyancy-driven instability occurs. According to the Gage and Reid6 stability diagram, 3-D modes
become unstable first when the Rayleigh number is increased above its critical value. However, when 3-D
disturbances are artificially suppressed (such as in 2-D simulations), the λ=0deg neutral curve (black line)
determines the onset of buoancy driven instability.

A total of fifteen cases (Tab. 2) were investigated. The cases were chosen such that the flow is either (1)
stable, (2) unstable w.r.t. 3-D waves, or (3) unstable w.r.t. 2-D waves (3-D waves are suppressed). Eleven
simulations were performed with the new spatial Navier-Stokes code in radial coordinates. In addition, tem-
poral flow simulations were carried out with a code in Cartesian coordinates that employs Fourier transforms
in the streamwise direction.33 To allow for a direct comparison with the temporal simulations, for some of
the spatial simulations the outflow radius was set to 107 to obtain a nominally 2-D flow (Tab. 2). For all
cases, a steady basic flow was computed first. Very small (linear) disturbances were then introduced inside
the domain (temporal simulations) or at the inflow boundary (spatial simulations).
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Dimensions Re
√

Ra Code Geometry Inflow radius (r2) Outflow radius (r1)

Case 1 3-D 30 100 Temporal Square - -

Case 2 3-D 30 100 Spatial Square 107+10 107

Case 3 3-D 30 30 Temporal Square - -

Case 4 3-D 30 30 Spatial Square 107+10 107

Case 5 2-D 100 300 Temporal Square - -

Case 6 2-D 100 300 Spatial Square 107+10 107

Case 7 2-D 100 100 Temporal Square - -

Case 8 2-D 100 100 Spatial Square 107+10 107

Case 9 3-D 30 100 Spatial Radial 110 100

Case 10 3-D 30 100 Spatial Radial 60 50

Case 11 3-D 30 100 Spatial Radial 35 25

Case 12 3-D 30 100 Spatial Radial 15 5

Case 13 3-D 30 100 Spatial Radial 13 3

Case 14 3-D 30 30 Spatial Radial 60 50

Case 15 3-D 30 30 Spatial Radial 110 100

Table 2. Parameters for 2-D and 3-D simulations. For spatial simulations, Re is inflow Reynolds number.

III. Results

A. Validation Cases

Four temporal (cases 1, 3, 5, and 7) and four spatial (cases 2, 4, 6, and 8) square RBP flow simulations
were performed and the stability behavior was compared. For the spatial simulations the outflow radius was
set to 107 to simulate a square channel flow. For cases 1 & 2,

√
Ra >

√
Rac = 41.3 and 3-D disturbances

(λ=90deg) are expected to grow. Cases 3 & 4 are expected to be stable. For cases 5 & 6, the Rayleigh number
is above the λ=0deg neutral curve in the Gage and Reid6 stability diagram (Fig. 3) and 2-D disturbances
are expected to grow. Although

√
Ra > 41.3 for cases 7 & 8, these cases are expected to be stable since 3-D

disturbances are artificially suppressed in the 2-D simulations.

a) b)

Figure 4. a) Time evolution of spanwise Fourier modes of wall-normal velocity at mid-channel height and b)
growth rates for case 1 (unstable).

The spanwise disturbance mode amplitudes and growth rates for case 1 are shown in Fig. 4. As expected
based on the Gage and Reid6 stability diagram, the flow is unstable and spanwise modes k=1-7 are growing
exponentially (linear growth). The spanwise mode k=4 has a constant growth rate of ωi≈0.33 (Fig. 4b) and
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saturates around t ≈ 110. Spanwise modes k=5 and k=3 also exhibit strong linear growth. For t > 50 the
growth rates of modes 1, 2, 6, and 7 suddenly increase, possibly as a result of resonances or non-linear effects.
From t≈53.3 to t≈96.58 mode k=2 has the highest growth rate (Fig. 4b). However, mode k=4, which has a
spanwise wavelength of λz = 12/4 = 3, remains dominant (highest amplitude). In Fig. 5a the growth rates of
modes 2, 3, 4 & 5 are plotted over the time interval 22 < t < 42. Mode 4 with spanwise wavenumber β=2.1
has the highest growth rate (Fig. 5b). A visualization of the flow field at t=150 reveals 8 counter-rotating
longitudinal vortices (Fig. 6). Shown are iso-surfaces of the Q-criterion41 flooded by the streamwise vorticity.
In Fig. 7 spanwise Fourier modes of the wall-normal velocity at the mid-channel height are plotted for case

a) b)

Figure 5. Growth rates of spanwise modes versus a) time and b) spanwise wavenumber (at t=31.9) for case 1
(unstable).

Figure 6. Iso-surfaces of Q=0.2 flooded by streamwise vorticity (ωx) for t=150 (case 1).

3. In agreement with Gage and Reid,6 all Fourier modes decay over time.
The first spatial stability simulations for case 2 indicated that the flow response to the disturbance input

at the inflow boundary depended on the disturbance mode shape (receptivity). For certain disturbance mode
shapes, linear growth was either not observed at all or occured close to the outflow boundary. It was therefore
decided to first extract the saturated disturbance modes from case 1 (unstable temporal simulation), to then
rescale them to a maximum wall-normal disturbance velocity of 5.1×10−11, and finally, to superimpose them
on the ambient conditions at the inflow boundary for the spatial simulations. For all spatial cases, the
simulations were terminated when the flow field did no longer change in time.

In Fig. 8 the spanwise Fourier modes of the wall-normal disturbance velocity at the mid-channel height
are plotted versus the arclength for case 2. Modes 3-7 exhibit linear growth (Fig. 8a). Modes 2 and 1 grow
for s > 2 possibly as a result of resonances or nonlinear effects. In agreement with the temporal simulation
for case 1, mode 4 has the largest growth rate (most negative αi for 6.5 < s < 8.5) followed by modes 3 and
5 (Fig. 9). The temporal and spatial growth rates are related via the Gaster transform.42 Since the wave
speeds are unknown (the longitudinal structures are steady) no attempt was made at employing the Gaster
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Figure 7. Time evolution of spanwise Fourier modes of wall-normal velocity at mid-channel height for case 3
(stable).

a) b)

Figure 8. a) Spatial evolution of spanwise Fourier modes of wall-normal velocity at mid-channel height and b)
growth rates for case 2 (unstable).

Figure 9. Growth rates of spanwise modes versus spanwise wavenumber (s=7.42) for case 2.
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transform for comparing the temporal and spatial stability results. For case 4 (Fig. 10), in agreement with
case 3, all disturbances are damped.

Figure 10. Spatial evolution of spanwise Fourier modes of wall-normal velocity at mid-channel height for case
4 (stable).

a) b)

Figure 11. a) Streamwise and b) temporal Fourier modes of wall-normal velocity at mid-channel height for
cases 5 & 7 (temporal simulations) and 6 & 8 (spatial simulations).

Results for the 2-D simulations (cases 5-8) are shown in Fig. 11. In agreement with Gage and Reid,6

linear growth (unstable) is observed for case 5 (since the chosen Re-
√

Ra combination is above the λ=0deg
neutral curve in Fig. 3) and linear decay is observed for case 7 (stable in Fig. 11a). The saturated disturbance
mode was extracted from the case 5 temporal simulation. The mode was rescaled to a maximum wall-normal
velocity of 3×10−4 and introduced at the inflow boundary of the spatial simulations. The inflow disturbance
frequency was set to 0.63 which is the frequency of the unstable mode in the temporal simulation. For cases
6 & 8 the disturbance amplitudes undergo some adjustment at the inflow and outflow boundaries (Fig. 11b).
This behavior is most likely a consequence of the chosen boundary conditions. Other than that, the results
are in qualitative agreement with the temporal simulations and with Gage and Reid.6

B. Inward Radial Flow Stability Simulations

Based on the good qualitative agreement of the temporal and spatial stability simulations for the square
channel, it was decided to employ the Navier-Stokes code in cylindrical coordinates for spatial stability
simulations of inward radial flows. The intent of the radial stability simulations was to determine whether
the neutral curves by Gage and Reid6 remain valid for the inward radial RBP flow. In accordance with
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the radial continuity equation, the radial velocity in the collector exhibits an almost hyperbolic behavior.
Because acceleration is typically stabilizing and because non-parallel effects are present (the profiles change
in the streamwise direction) the neutral curves by Gage and Reid6 are expected to be only approximately
applicable to inward radial RBP flows. The discrepanices are expected to get larger the closer the outflow
boundary is located near r=0. Therefore, a series of spatial simulations was carried out where the streamwise
extent of the domain, r2−r1, was kept fixed at ten while the outflow boundary location, r1, was successively
reduced from 100 to 3 (cases 9-15, Tab. 2). The outflow boundary was placed at r1=100 for cases 9 &
15, at 50 for cases 10 & 14, at 25 for case 11, at 5 for case 12, and at 3 for case 13. For cases 9-13 the
inflow Reynolds number was Re = 30 and the square root of the Rayleigh number was

√
Ra >

√
Rac = 100.

According to Gage and Reid6 these cases are therefore expected to be unstable (Fig. 3). Cases 14 & 15 are
expected to be stable (Re = 30 and

√
Ra = 30 <

√
Rac).

a) b)

Figure 12. a) Azimuthal Fourier modes of wall-normal disturbance velocity at mid-channel height and b)
growth rates for case 9.

a) b)

Figure 13. a) Azimuthal Fourier modes of wall-normal disturbance velocity at mid-channel height and b)
growth rate for case 10.

Azimuthal Fourier modes of the wall-normal velocity and growth rates for case 9 are plotted in Fig. 12.
Mode 5 has the largest amplitude for 2.25 < s < 9. For s > 2 the growth rate of mode 4 surpasses that of
mode 5 (Fig. 12b). Overall, the case 9 results are similar to the results for the square channel flow (Fig. 8).
For case 10 (decreased outflow radius, r1=50) mode 4 reaches a higher amplitude at saturation (Fig. 13a).
The changes in the growth rates in the streamwise direction for case 10 (Fig. 13b) are larger than for case
9 (Fig. 12b). For example, the growth rates for modes 5-7 are decreasing more quickly in the streamwise
direction for case 10. Because the mode 4 growth rate for both cases is approximately the same, this explains
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why mode 4 becomes dominant near the outflow for case 10.

a) b)

Figure 14. a) Azimuthal Fourier modes of wall-normal disturbance velocity at mid-channel height and b)
growth rates for case 11.

a) b)

Figure 15. a) Azimuthal Fourier modes of wall-normal disturbance velocity at mid-channel height and b)
growth rates for case 12.

The outflow radius was then decreased to r1=25 (case 11) and 5 (case 12). The reference Reynolds
number, square root of the Rayleigh number, and inflow arc-length remained the same as for case 9. For
case 11 (Fig. 14a), mode 5 is dominant first (2 < s < 6.5) and mode 4 is dominant for s > 6.5. For case
12 (Fig. 15a), mode 5 is dominant for 1.5 < s < 3.5 and followed by mode 4 (dominant for 3.5 < s < 6.5)
and mode 3 (dominant for 6.5 < s < 10). The results appear consistent, since as the outflow radius is
decreased, the higher modes become less amplified or even damped while the lower modes become more
amplified (Figs. 14b & Fig. 15b). Since the stability simulation for the square channel flow revealed that the
spatial disturbance growth rate depends on the spanwise wavenumber (Fig. 9) this behavior was expected.
As a consequence, the dominant mode changes in the streamwise direction. Alternatively, one may say
that as the outflow boundary radius is increased, the square channel flow results are approached (Fig. 8).
Another interesting observation is that the growth rates near the inflow boundary (s = 0) are increasing as
the outflow boundary is moved towards r = 0. In fact, for case 12 the range of the Fig. 15b ordinate had to
be changed compared to cases 10 and 11 (Figs. 13b & 14b) to accommodate the larger growth rates. This
suggests that acceleration is destabilizing the buoyancy-driven instability which is counter-intuitive.

For case 13, the outflow boundary is at r1=3, the inflow boundary is at r2=13, and the grid opening
angle is ∆θ = s/r2 = 12/13 = 53deg. As a result, the flow is strongly accelerated in the streamwise
direction. In Fig. 16 the local Reynolds number (based on the maximum radial velocity) is plotted over the
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Figure 16. Local Reynolds number based on velocity maximum versus streamwise arclength.

Radius, r Distance, s Local Re Azimuthal arc-length

13 0 28.50 12

12 1 24.58 11.07

11 2 23.23 10.15

10 3 24.04 9.23

9 4 26.25 8.30

8 5 29.13 7.38

7 6 32.83 6.46

6 7 37.77 5.53

5 8 44.22 4.61

4 9 54.14 3.69

3 10 73.68 2.77

Table 3. Various local parameters for case 13.

streamwise arclength. Downstream of the inlet the local Reynolds number initially drops slightly below the
reference Reynolds number (30) and then increases hyperbolically in the radial direction. The intial drop
must be attributed to the inflow boundary condition. A maximum local Reynolds number of 74 is obtained
at the outflow boundary. Also as a result of the convergence of the channel, the azimuthal arc-length and
the channel aspect ratio (width to height) decrease in the streamwise direction. Table 3 provides the local
radius, Reynolds number and azimuthal arc-length (equivalent to span in square channel flow simulations)
for several streamwise locations. The square channel flow simulations (case 2) have shown that disturbances
with a spanwise wavelength of λz ≈ 3 are the most amplified. Since for the spatial simulations,

λz =
r∆θ

k
, (48)

one may expect mode,

k =
r∆θ

λz

=
(r2 − s)∆θ

λz

, (49)

to experience the strongest amplification at streamwise location, s.
The disturbance amplitudes and growth rates for case 13 are plotted in Fig. 17. Modes 3-7 have about

equal amplitudes at the inflow boundary. As expected the dominant mode switches to lower mode numbers
in the streamwise direction. Unfortunately, the growth rate curves in Fig. 17 do not exhibit clear minima
(maximum spatial growth) and therefore the previously proposed relationship for the most amplified spanwise
mode (Eq. 49) cannot be confirmed.
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a) b)

Figure 17. a) Azimuthal Fourier modes of wall-normal velocity at mid-channel height and b) spatial growth
rates for case 13.

a) b)

Figure 18. a) Spanwise Fourier modes of wall-normal velocity at mid-channel height and b) growth rates
obtained from temporal simulations for Reynolds number and spanwise domain widths of Tab. 3.

a) b)

Figure 19. Azimuthal Fourier modes of wall-normal velocity at mid-channel height for a) case 14 and b) case
15.
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Additional temporal square channel flow simulations (not listed in Tab. 2, same
√

Ra as for case 13) were
performed where the Reynolds number and spanwise domain widths of the different streamwise locations
in Tab. 3 were matched. The most amplified spanwise modes for the different cases are plotted in Fig.
18a and the growth rates are provided in Fig. 18b. For Z=11.07, spanwise mode k=4 with a wavelength of
λz = 2.76 is the most amplified; For Z=10.15, 9.23 & 8.30, mode k=3 experiences the strongest amplification
(the corresponding wavelengths are 3.38, 3.07 and 2.76); For Z ≤ 7.38 mode 2 with λz = 3.69 is the most
amplified and finally for Z=3.69 mode 1 (λz = 3.69) is the most amplified. The temporal simulations do
thus provide additional evidence that the spanwise wavenumber of the most amplified mode is adjusting
according to the local azimuthal extent of the domain. Finally, for cases 14 and 15 the square-root of the
Rayleigh number was lowered below its critical value (

√
Ra=30<

√
Rac=41.3). Figure 19 illustrates that

both cases are stable.

Conclusions

The radial Rayleigh-Bénard-Poiseuille (RBP) flow in the collector of Solar Chimney Power Plants is
potentially susceptive to buoyancy-driven and viscous (Tollmien-Schlichting) instabilities. As a result of
mass conservation, the flow is strongly accelerated in the streamwise direction. Gage and Reid6 were the
first to provide neutral curves for the buoyancy-driven and viscous instabilities of square RBP flows. How
the neutral curves are affected by the radial acceleration remains an open question. Since acceleration
is typically stabilizing and also introduces weak non-parallel effects, differences with respect to the square-
channel flow results have to be expected. Spatial stability simulations are proposed as a tool for investigating
the stability of radial RBP flows. Towards that end a fourth-order-accurate compressible Navier-Stokes code
in cylindrical coordinates has been developed. Spatial simulations for a square channel flow were in good
qualitiative agreement with temporal simulations that were carried out with a double-Fourier code (Fourier
transforms in the streamwise and spanwise directions).33 The results also agreed with the stability behavior
(stable or unstable) predicted by Gage and Reid.6

Spatial stability simulations were then performed for various stable and unstable (w.r.t. the buoyancy-
driven instability) radial RBP flows. The Reynolds number was kept low enough to avoid the onset of viscous
instability. The streamwise and azimuthal (at the inflow boundary) domain extent were held constant and
the radial location of the outflow boundary was varied between r1=100 and 3. For large r1 the square-
channel flow solution is approached. The most unstable azimuthal mode was found to have a wavelength
of approximately 3. Since the channel height was normalized to 2, this corresponds to 1.5/2=0.75 vortices
per channel height at mode saturation. As the outflow radius was successively reduced, the difference in
azimuthal arc-length between the inflow and outflow boundary increased. Because of continuity, this led
to an increase of the outflow velocity. However, even when the outflow boundary was placed at r1=3 (the
most “extreme” case), the wavelength of the most amplified azimuthal mode was found to remain close to
3. Although the wavelength of the most amplified mode remained approximately constant in the streamwise
direction, the corresponding azimuthal mode number was found to be decreasing (because the azimuthal
arc-length of the domain decreases in the streamwise direction). Similar findings were made by Meng et al.31

In the future, the viscous instability of the radial RBP flow will be investigated as well. The viscous
instability depends on the local Reynolds number which increases in the streamwise direction. Cases may
be perceived where the critical Reynolds number is exceeded somewhere inside the collector. Also of interest
are cases with both bouyancy and viscous driven instability where the mode amplitudes are allowed to grow
to large enough amplitudes to allow for nonlinear interactions. Finally, a linearization of the spatial code
appears desirable to avoid inaccuracies when the disturbance amplitudes are near machine roundoff as well
as non-linear mode interactions when the disturbance amplitudes are large.
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