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Abstract—We consider estimating the transition probability
matrix of a finite-state finite-observation alphabet hidden Markov
model with known observation probabilities. We propose a two-
step algorithm: a method of moments estimator (formulated as
a convex optimization problem) followed by a single iteration of
a Newton-Raphson maximum likelihood estimator. The two-fold
contribution of this letter is, firstly, to theoretically show that the
proposed estimator is consistent and asymptotically efficient, and
secondly, to numerically show that the method is computationally
less demanding than conventional methods — in particular for
large data sets.

Index Terms—Hidden Markov models, method of moments,
maximum likelihood, system identification

I. INTRODUCTION

HE hidden Markov model (HMM) has been applied in
a diverse range of fields, e.g., signal processing [1],
gene sequencing [2], [3] and speech recognition [4]. The
standard way of estimating the parameters of an HMM is by
employing a maximum likelihood (ML) criterion. However,
numerical “hill climbing” algorithms for computing the ML
estimate, such as direct maximization using Newton-Raphson
(and variants, e.g., [5]) and the expectation-maximization (EM,
e.g, [4], [6]) algorithm are, in general, only guaranteed to
converge to local stationary points in the likelihood surface. It
is also known that these schemes can, depending on the initial
starting point of the algorithms, the shape of the likelihood
surface and the size of the data set, exhibit long run-times.
An alternative to ML criterion is to match moments of an
HMM, resulting in a method of moments estimator (see, e.g.
[7] for details). In such a method, observable correlations in
the HMM data are related to the parameters of the system. The
correlations are empirically estimated and used in the inverted
relations to recover parameter estimates. A number of methods
of moments for HMMs have been proposed in the recent years;
e.g., [8]-[14]. The main benefits over iterative ML schemes
are usually consistency and a shorter run-time, however, since
typically only low-order moments are considered, there is a
loss of efficiency in the resulting estimate.
In the present letter, the problem of estimating the transition
probabilities of a finite discrete-time HMM with known sensor
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uncertainties, i.e., observation matrix, is considered. This setup
can be motivated in two ways: firstly, it can be seen as the
second step in a decoupling approach to learning the HMM pa-
rameters (see [11]), or alternatively, by any application where
the sensor used to measure the system is designed/known to
the user.

The main idea in this letter is a hybrid two-step algorithm
based on combining the advantages of the two aforementioned
approaches. The first step uses a method of moments estimator
which requires a single pass over the data set (compared
to iterative algorithms, such as EM, that require multiple
iterations over the data set). The second step uses the method
of moments estimate to initialize a non-iterative second-order
direct likelihood maximization procedure. This allows us to
avoid resorting to ad hoc heuristics for localizing a good
starting point. More importantly, we show that it is sufficient to
perform only a single iteration of the ML procedure to obtain
an asymptotically efficient estimate. Put differently, only two
passes through the data set are necessary in order to obtain an
asymptotically efficient estimate.

To summarize, the main contributions of this letter are:

¢ a proposed two-step identification algorithm that exploits
the benefits of both the method of moments approach
(low computational burden and consistency) and direct
likelihood maximization (high accuracy);

o we prove the consistency and asymptotic efficiency of
the proposed estimator. Hence, the problem of only local
convergence that may haunt iterative ML algorithms, such
as EM, is shown to be avoided;

o numerical studies that show that the proposed method
is up to an order of magnitude faster than the standard
EM algorithm — with comparable accuracy (when the EM
iterations approach the global optimum of the likelihood
function). Moreover, the run-time is, roughly, constant for
a fixed data size, whereas the run-time of EM is highly
dependent on the data (due to the number of iterations
needed for convergence).

The outline of the remaining part of this letter is as follows.
We first present a brief overview of related work below.
Section II then poses the problem formally and Section III
presents the algorithm. In Section IV asymptotic efficiency is
proven, and Section V presents numerical studies.

Related Work

HMM parameter estimation is by now a classical area (with
more than 50 years of literature). There has recently been
interest in the machine learning community for employing
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methods of moments for HMMs. The method presented in [10,
Appendix A] demonstrates how to recover explicit estimates
of the transition and observation matrices by exploiting the
special structure of the moments of an HMM. This method has
been further generalized and put in a tensor framework; see,
e.g., [9], [12] and references therein. The appealing attribute
of these methods is that they generate non-iterative estimates
using simple linear algebra operations (eigen and singular-
value decompositions). However, the non-negativity and sum-
to-one properties of the estimated probabilities cannot be
guaranteed.

There are a number of proposed methods of moments for
HMMs formulated as optimization problems (which allow
constraints to be forced on the estimates), e.g., [8], [11] and
[14]. The identification problem is decoupled in [11] into
two stages: first an estimation of the output parameters, and
then a moment matching optimization problem. The resulting
optimization problem is related to the one in [8] and to the
problem in the present work. The method we propose in this
letter could be seen as a possible improvement of the second
step in the setting of [11].

In the general setting, hybrid approaches, such as the
combination of EM and direct likelihood maximization, and
other attempts to accelerate EM has been studied in, e.g.,
[15], [16]. Iterative direct likelihood maximization for HMMs,
as well as methods for obtaining the necessary gradient and
Hessian expressions, are treated in, e.g., [5], [17]-[21]. The
combination of a method of moments and EM has, in the
case of HMMs, been considered in [11].

II. PRELIMINARIES AND PROBLEM FORMULATION

All vectors are column vectors unless transposed, 1 denotes
the vector of all ones. The vector operator diag : R" — R™*"
gives the matrix where the vector has been put on the diagonal,
and all other elements are zero. || - || denotes the Frobenius
norm of a matrix. The element at row ¢ and column j of a
matrix is [-];;, and the element at position ¢ of a vector is [-];.
Inequalities (>, >, <, <) between vectors or matrices should
be interpreted elementwise. The indicator function I{-} takes
the value 1 if the expression - is fulfilled and O otherwise.
Let —, and —4 denote convergence in probability and in
distribution, respectively, and let O, and o, be stochastic-order
symbols. ~ denotes “distributed according to”.

A. Problem Formulation

Consider a discrete-time finite-state hidden Markov model
(HMM) on the state space X = {1,2,...,X} with the
transition probability matrix

[P]Zj = PI“[CUkJrl = j|1‘k = Z} (1)

Observations are made from the set Y = {1,2,...,Y}
according to the observation probability matrix

[Blij = Prlyr = jlox = il. )

These matrices are row-stochastic, i.e., the elements in each
row sum to one. Denote the initial distribution as 7y and the
stationary distribution as 7.

The HMM moments are joint probabilities of tuples of
observations. The second order moments can be represented
by Y x Y matrices M}, with elements

[Mi]ij = Prlyr = i, yry1 = J- 3)

The following equation (see [22] for a derivation) relates the
second order moments and the system parameters,

M,, = BT diag((P")*ry)PB, “)

and is the key to the method of moments formulation of the
problem.

As we are interested in the asymptotic behaviour, we
make the assumption that the initial distribution 7 is known
to us — its influence will anyway diminish over time. The
most important assumption we make is that the observation
probabilities B are known. There are three motivations for this
assumption: i) it admits the problem to a convex formulation,
ii) it holds in any real-world application where the sensor
is designed by the user, and iii) our method can be seen as
an intermediate step of the decoupling approach in [11]. The
identification problem we consider is, hence,

Problem 1. Consider an HMM with known initial distribution
o and known observation matrix B. The HMM is initialized
according to my and a sequence of observations yo, Y1, - - -, YN
is obtained. Given the sequence of N + 1 observations
{yr}2_, estimate the transition matrix P.

III. ASYMPTOTICALLY EFFICIENT TWO-STEP ALGORITHM

In this section, we outline the two-step algorithm which is
the main contribution of this letter.

Step 1. Initial Method of Moments Estimate

In light of (3), use the empirical moments estimate

N-1
“ 1 X .
(Moo)ij = N E Hyr = i, ykt1 = j}, &)
k=0

for the (stationary) second order moments.

In the moment matching optimization problem, we need
to impose a number of constraints. Firstly, that the transition
matrix is a valid stochastic matrix, that is: the non-negativity
and sum-to-one properties of its rows. We will require that
the transition matrix of the HMM is ergodic (aperiodic and
irreducible). This implies, first of all, that 7., is the right
eigenvector of PT corresponding to the eigenvalue 1 and
therefore satisfies the condition 7o, = PP 7., and secondly,
that 7., has strictly positive entries. We therefore also include
in the optimization problem a polytopic bound II on 7., such
that for a vector # € Il = 2 > 0.!

To summarize, estimating the transition matrix P involves
solving the optimization problem (as the limit is taken in

equation (4) towards stationarity):
min  ||M. — BT diag(ro)PB|%

Moo s

IThis polyhedron can, for example, be obtained if it is possible to a priori
lower bound the elements of the transition matrix P using another matrix L.
In particular, this is possible since then the stationary distribution 7o lies
in a polyhedron II spanned by the normalized (i.e., non-negative and with
elements that sum to one) columns of the matrix (I — LT)*1 — see [23] for
details.
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st. P>0, Moo = 0,
Pl=1, 177, =1,
Too €U, 7o = PT7ree. (6)

This is, in general, a non-convex optimization problem. The
lemma below shows that convex optimization techniques can
be used to solve the problem.

Lemma 1. The solution of problem (6) is obtainable by
solving the convex problem

min |Ms — BTAB|%
st. A>0,1TA1 =1,
Al €11, A1 = AT, (7N

and using (9) and (10), see below, to recover o, and P from
the variable A.

Proof. In problem (7), we identify the product diag(ms )P in
problem (6) as a new parameter A, i.e.,

A= diag(ﬂ—oo)P7 (3)

and optimize over its elements instead of over 7., and P
jointly. Notice that it is possible to recover 7, and P from
A as follows: Firstly, recover 7w, from

Al = diag(meo ) P1 = 7o, 9
employing the fact that P1 = 1. Secondly, recover P from
diag(woo)_lA = diag(ﬂ'oo)_1 diag(me )P = P. (10)

The lemma follows by noting that the cost functions in
problems (6) and (7) are the same, and then mapping feasible
solutions between the two problems. O

Solving problem (7) requires only a single pass over the
data to obtain M., and then solving a data-size indepen-
dent convex (quadratic) optimization problem to compute an
estimate of the transition matrix P. The trade-off compared
to ML estimation, which requires multiple iterations over the
observation data set, is of course between estimation accuracy
and computational cost: the method of moments outlined
above employs only the second order moments and will hence
have disregarded some of the information in the observed data.

Step 2. Single Newton-Raphson Step

We propose to exploit the trade-off by first obtaining an
estimate of P using the convex method of moments (7), and
then taking a single Newton-Raphson step on the likelihood
function to increase the accuracy of the estimate.

The (log-)likelihood function of the observed data is

In(0) = log Pr[{yx}iio | w0 ~ mo; 0], (11)

where 6 is a parametrization of the transition matrix P. Denote
the estimate resulting from the method of moments (7) as .
Then a single Newton-Raphson step is performed as follows:?

Onr = Ot — [VEIN (Ovim)] ! Voln(Ou),  (12)

2We assume that parametrization handles the constraints, if not, then the
Newton-Raphson step can be formulated as a constrained quadratic program.

where the gradient Vyly(0) and Hessian V2Ix(f) can be
computed recursively — see e.g., [5], [17]-[21].

Compared to direct maximization of the likelihood function
using the Newton-Raphson method (see, e.g., [5], [19]), this
procedure is non-iterative and hence, the gradient and Hessian
need only to be computed once.

IV. ANALYSIS

In this section we analyze the properties of the proposed
algorithm. First we state the assumptions.

Assumption 1. The transition matrix P has positive elements.
The observation matrix B is given, has full rank and is
positive. There is a polytopic bound on m., such that all
components of T, are strictly greater than zero.

The following lemma establishes (strong) consistency of the
method of moments procedure.

Lemma 2. The estimates of P and 1., obtained using (9) and
(10) from problem (7) with the estimator Moo in (5), converge
to their true values as the number of observations N — oo
with probability one.

Proof (outline). The lemma follows by showing

1) that the estimate M. converges to M, (using a law of
large numbers, [5, Theorem 14.2.53]);

2) that the solution A of the optimization problem converges
to A (follows by the fundamental theorem of statistical
learning [24, Lemma 1.1] and the convexity of the cost
function [25, Theorem 10.8]);

3) that the solution of the optimization problem A can be
uniquely mapped to P and 7.

Full details are available in the supplementary material, [22].
O

Next, we provide the main theorem of this letter.

Theorem 1. The estimate Oyg obtained by the two-step algo-
rithm (7)-(12) is asymptotically efficient, i.e., as N — oo,

VN (g — 6%) —a N(0,I5(0%)), (13)

where N is a normal distribution, 6* corresponds to the true
parameters and Ip is the Fisher information matrix.

Proof (outline). The theorem follows by showing that
1) the estimate Moo follows a central limit theorem [26,
Corollary 5], and using this, concluding that My =
Mo, + O,(N~/2) [27, Appendix Al;
2) this order in probability can be propagated through the
optimization problem (7) to obtain a similar order on P
and 7, [28, Theorem 2.1];
3) verifying that certain regularity conditions hold to ensure
that we have a central limit theorem for the gradient and
a law of large numbers for the Hessian matrix of the
log-likelihood function [5, Theorems 12.5.5 and 12.5.6];
4) verifying by explicit computation that the single Newton-
Raphson step yields an asymptotically efficient estimator.
Again, full details are available in the supplementary material,
[22].
O
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Figure 1: RMSE and run-time simulation data for a varying number of samples.

V. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed
two-step algorithm and compare it to the standard EM algo-
rithm for ML estimation. The EM implementation of Matlab
R2015a was employed (modified as to account for the fact that
the observation matrix is assumed known). The first step of
the proposed algorithm, i.e., solving the convex optimization
problem (7), was performed using the CVX package [29].
The second step, i.e., the single Newton-Raphson update (12),
can be implemented in (at least) two ways. The first is to
recursively compute the gradient and Hessian as explained
in, e.g., [5], [17]-[21]. The second, and the one we opted
for, is to use automatic differentiation (AD, e.g., [30]). We
interfaced Matlab to the ForwardDiff jl-package in Julia [31]
in our implementation. A small regularization term was added
to the Hessian. Each simulation was run on an Intel Xeon CPU
at 3.1 GHz.

We sampled observations from randomly generated systems
of size X =Y = 5. Notice that there are a total of 20 unknown
parameters (i.e., elements of P) to estimate for such systems.
We used an elementwise lower bound II of one tenth of the
minimum element of the true stationary distribution of each
system. We compared the performance of the proposed two-
step algorithm (2S) to the estimate resulting from the method
of moments (MM), as well as, the EM algorithm started in two
different initial points: a random point (EM) and the method
of moments estimate (EM-MM).
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Figure 2: Each box contains 100 simulations. Left: RMSE of
the proposed algorithm at different data sizes; Right: RMSE
at 5-10° samples (one outlier not seen).

Fig. 1 presents the median over 100 simulations for each
batch size of, left, the root mean squared errors (RMSEs)
and, right, the run-times. Fig. 2 presents box plots of, left,
the RMSEs of the proposed algorithm at various data sizes
and, right, the RMSEs of the compared algorithms for 5 - 10°
samples. All boxes contain 100 simulations. Three things can
be noted from the figures.

Firstly, in the left plot of Fig. 1, the loss of accuracy re-
sulting from only using the second order moments (compared
to all moments in EM) is apparent from the distance between
the MM-curve and the EM-curves. This can also be seen in
the right plot of Fig. 2.

Secondly, also in the left plot of Fig. 1, we see that the
asymptotic results become valid at around 10° samples when
the accuracy of the 2S estimate becomes comparable to that
of EM. In other words, the initial estimate is now sufficiently
close to the optimum for the second order approximation to
be appropriate. That the number of observed outliers drop
in the left plot of Fig. 2 indicates the same conclusion: The
outliers occurred when the Hessian was not negative definite —
aresult of the Newton-Raphson step leading the iterate towards
a local stationary point. Note that this can be detected prior
to employing the method.

Thirdly, in the right plot of Fig. 1, it can be see that the
run-times of the compared algorithms differ by up to an order
of magnitude. It should moreover be noted that the run-time
of the proposed algorithm is more or less constant for a fixed
data size (i.e., independent of the system and the observations),
whereas the run-time of EM is highly dependent on the data
(due to the number of iterations needed to converge): The
maximum run-times for 5 - 10 observations were 1083 and
480 seconds for EM and EM-MM, respectively, whereas for
the proposed method it was 54 seconds.

VI. CONCLUSION

This letter has proposed and analyzed a two-step algorithm
for identification of HMMs with known sensor uncertainties.
A method of moments was combined with direct likelihood
maximization to exploit the benefits of both approaches:
lower computational cost and consistency in the former, and
accuracy in the later. Theoretical guarantees were given for
asymptotic efficiency and numerical simulations showed that
the algorithm can yield an accuracy comparable to that of the
standard EM algorithm, but in up to an order of magnitude
less time.
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