ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Chemical
Engineering

Combining biological and chemical approaches for

green synthesis of chemicals

Pooja Jambunathan and Kechun Zhang

Recent advances have allowed semi-synthetic production of
complex pharmaceutical compounds and commodity
chemicals by combining chemical and biological approaches.
This approach offers several advantages including synthesis of
chirally pure precursors for drugs, design of greener and more
sustainable production routes for commodity chemicals by
eliminating the use of hazardous chemicals and generation of
waste and improving overall process efficiencies by reducing
total number of steps involved in synthesis. In this review, we
will discuss in detail the synthesis of three pharmaceuticals —
simvastatin, artemisinin, and warfarin — and two commaodity
chemicals — B-methyl-8-valerolactone and butadiene, all of
which have wide applications in the pharmaceutical and
polymer industry.
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Introduction

Over the past several years, there have been numerous
reports of semi-synthesis of important pharmaceuticals
and other commodity chemicals that combines biological
and chemical pathways to achieve the final products
[1,2°°,3,4,5°]. In most of these cases, biological fermenta-
tion allows the production of an important precursor/
intermediate using renewable biomass-derived sugars,
following which the precursor is transformed using single
or multi-step chemical reactions to yield the final
compound. This hybrid process can convert bio-derived
precursors into useful commodity chemicals, thus estab-
lishing a more sustainable and greener route for the
production of these high-volume compounds. This ap-
proach is also useful for the synthesis of chiral drug
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precursors since biological enzymes offer much better
stereoselectivity as compared to chemical catalysts at
milder reaction conditions [6].

In this review, we have divided target compounds into
two categories: pharmaceuticals and commodity chemi-
cals. In the first section, we discuss the most recent
advancements in the semi-synthesis of three widely pre-
scribed drugs — simvastatin, artemisinin, and warfarin. In
the second section, we focus on chembiosynthesis of
commodity chemicals including monomers for industrial-
ly relevant polymers such as B-methyl-8-valerolactone
and butadiene. For few of the compounds discussed in
this review, a direct total biosynthetic [7°°] or chemical
synthetic [8,9] pathway has been established, but the
titers obtained are very low for industrial relevance,
making semi-synthesis an attractive option at this stage.

Pharmaceuticals

In the past, there have been several successful stories in the
pharmaceutical industry where biological route has been
used to synthesize an optically pure precursor which is
subsequently subjected to chemical reactions to yield the
target drug. Examples include the biosynthesis of the taxol
precursor, taxadiene [1], and Tamiflu precursor, shikimic
acid [10], in engineered Escherichia coli. This semi-synthet-
ic approach reduces dependence on isolation of relevant
metabolites from natural resources and also significantly
improves process economics and sustainability of drug
production. In case of drugs such as Lipitor [11] and
Sitagliptin [12,13], while pure chemical synthetic routes
exist, biosynthesis has been used to replace some of the
chemical reactions with the objective of reducing waste
and eliminating use of hazardous catalysts. Over the past
few years there have been significant advancements in the
synthesis of other drugs, some of which are covered in
detail in this section. We have reviewed the recent progress
made in the field for semi-synthesis of three widely used
drugs — first, simvastatin, a cholesterol-lowering drug;
second, artemisinin, an antimalarial drug, and third, warfa-
rin, an anticoagulant used for prevention of thrombosis.

Simvastatin

As a derivative of lovastatin, simvastatin has a 2,2-
dimethylbutyroloxy side chain at C8 position as against
a 2-methylbutyroloxy side chain in its natural counterpart.
T'raditionally, the semi-synthetic process for producing
simvastatin involves isolation of lovastatin from Aspergi/lus
terreus fermentation, hydrolysis to yield monacolin J, pro-
tection of free alcohol to allow subsequent regioselective
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esterification of C8 alcohol with dimethylbutyryl chloride
[14-16]. In an effort to improve the overall efficiency of the
process, Xie ¢ al. demonstrated the ability to use the acyl
transferase homolog, L.ovD, which catalyzes the last step of
lovastatin biosynthesis, to selectively acylate monacolin ]
for the single-step synthesis of simvastatin using chemi-
cally synthesized a-dimethylbutyryl-§-methylmercapto-
propionate (DMB-S-MMP) as the acyl donor [17,18] as
shown in Figure 1. This one-step process significantly
reduces the number of chemical transformations needed,
improves process efficiency and also reduces the cost of
manufacturing of simvastatin. In a more recent report, a
variant of LoovD with 29 mutations was identified by
directed evolution, which is 1000-fold more efficient in
synthesizing simvastatin than the wild type enzyme. The
authors used microsecond molecular dynamics (MD) in
solution to explain how distant mutations could improve
catalytic efficiency of the active site by lowering the free
energy of catalytic conformation of active site [2°°].

Artemisinin

Artemisinin is a potent antimalarial drug which is natu-
rally produced by the plant Arzemisia annua and has a long
history of use in Chinese medicine. Because of tremen-
dous fluctuations in the price and supply of this drug as a
consequence of inconsistent weather [19,20], the semi-
synthetic artemisinin project was started which involved

Figure 1

microbial production of artemisinic acid, a chemical pre-
cursor of artemisinin, followed by a chemical transforma-
tion step to produce artemisinin. After studying the
artemisinin pathway in A. annua [21], E. coli was originally
chosen as the chassis organism to produce artemisinic acid
[22], but due to the problem of expression of eukaryotic
enzymes in K. co/i [23], the pathway was transferred into a
Saccharomyces cerevisiae CEN.PK2 strain [24]. Over-ex-
pression of mevalonate pathway genes along with expres-
sion of amorphadiene synthase (ADS), the P450 enzyme
(CYP71AV1) and its cognate reductase (CPR1) allowed
the production of 40 g/L. of amorphadiene, but artemisi-
nic acid production was still very low [25,26]. Expression
of cytochrome 45 (CYB5) [27] and the aldehyde and
alcohol dehydrogenase (ADH1 and ALDHT1) [28] from
A. annua improved P450 activity and increased artemi-
sinic acid titer to 25 g/LL as shown in Figure 2, which was
the starting goal of the semi-synthetic artemisinin project
[29°°]. Artemisinic acid was extracted from the fermenta-
tion medium with isopropyl myristate (IPM) at high
purities and was subsequently used as a substrate for
chemical transformation to artemisinin [29°°].

The chemical process for converting artemisinic acid to
artemisinin involves the following steps: first, hydrogena-
tion of artemisinic acid (AA) to dihydroartemisinic acid
(DHAA); second, esterification of DHAA to avoid formation
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Conversion of lovastatin to simvastatin using LovD. Biologically produced lovastatin is first hydrolyzed in a reaction catalyzed by LovD, followed
by an acylation reaction catalyzed by LovD mutant (LovD9 obtained after nine rounds of evolution). Chemically synthesized a-dimethylbutyryl-S-
methylmercaptopropionate (DMB-SMMP) acts as an acyl donor for the reaction.
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Semi-synthetic pathway for production of artemisinin. Biological route in S. cerevisiae for synthesis of the precursor, artemisinic acid using the
mevalonate pathway. Chemical conversion of artemisinic acid to artemisinin developed by Sanofi which includes diastereoselective hydrogenation
of artemisinic acid to dihydroartemisinic acid, followed by its esterification to mixed anhydrides and finally a Schenck ene reaction and Hock

cleavage cyclization to produce artemisinin.

of by-products; and third, generation of a singlet oxygen by
chemical or photochemical means to convert DHAA methyl
ester to artemisinin [29°°]. For stereoselective conversion of
AA to DHAA, several catalysts have been screened
[29°°,30] to achieve high diastereoselectivities, and recent-
ly, work performed by researchers at Sanofi provided RuCl,
[(R)-D'TBM-Segphos] (DMF), catalyst which yielded
95:5 selectivity [31,32]. The conversion of DHAA ester
to artemisinin involves regioselective Schenck ene reac-
tion between a singlet oxygen (either derived by chemical
reaction or photochemically) and the double bond of
DHAA, followed by a Hock cleavage catalyzed by a strong
Lewis acid and a subsequent addition of triplet oxygen and
cyclization [33°°]. Sanofi designed a one-pot synthesis
route to convert a DHAA derivative (mixed anhydride)
to artemisinin and they obtained an overall yield of 55% of
artemisinin starting with artemisinic acid. This semi-syn-
thetic route has capacity to produce 60 tons of artemisinin
annually, which corresponds to a third of the global annual
need for the drug [33°°].

Warfarin

Warfarin is one of the most commonly prescribed
4-hydroxycoumarin (4HC) type anticoagulant used in
the prevention of thrombosis or thromboembolism, which
is one of the leading causes of morbidity and mortality

worldwide. Recently, a @e #novo biosynthetic pathway was
designed in K. co/i for the production of 4HC [34°°] as
shown in Figure 3 by employing a biphenyl synthases (BIS)
to catalyze the decarboxylative condensation of salicoyl-
CoA with malonyl-CoA to form a diketide intermediate
which undergoes intracellular cyclization and enolization
to form 4HC [35]. The pathway used EntC from E. co/i and
PfPchB from Pseudomonas fluorescens as isochorismate
synthase (ICS) and isochorismate pyruvate lyase (IPL)
respectively, to convert chorismate to salicylate and a
salicylate: CoA ligase (SCL) SdgA from Srrepromyces sp.
to convert salicylate to salicoyl-CoA, the substrate for BIS
enzyme [34°°]. After identifying BIS catalyzed step as the
bottleneck of the pathway, they identified 4-hydroxy-2
(1H)-quinolone synthase (PgsD) by function-based bio-
prospecting and this enzyme allowed >99% vyield for 4HC
synthesis and with further engineering they achieved
~483 mg/l. 4HC, a ~11-fold increase compared to their
parent strain [34°°].

The synthesis of warfarin proceeds via Michael addition
reaction of 4HC and benzylideneacetone [36] and while
most of the studies involve the use of harmful organic
solvents, Rogozinska e a/. carried out the reaction on water
using commercially available amines ((S,8)-diphenylethy-
lenediamine) and achieved 70% e¢ with reasonable yield
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Figure 3
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Chemoenzymatic pathway for warfarin production. 4-Hydroxycoumarin (4HC) is first biologically produced in E. coli from chorismate, derived via
the shikimic acid pathway. 4HC is then converted to warfarin by a Michael addition reaction with benzylideneacetone.

(~30%) [37]. When ultrasound bath was applied to the
reaction, yields were significantly improved and this meth-
od was later used by Lin ¢z /. to demonstrate 7 situ semi-
synthesis of warfarin using biologically derived 4HC [34°°].
In more recent reports, a novel chiral porous metal organic
framework (MOF) [38] and a novel polystyrene bound
1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) [39], was used
for Michael addition of 4HC to o, 3-unsaturated ketones to
synthesize (§8)-warfarin and its analogs.

Commodity polymers

Apart from pharmaceuticals, semi-synthesis has also been
used successfully for the industrial production of high-
volume commodity chemicals such as polyethylene,
acrylic acid, and butanediene, by adopting a biological
route for synthesis of their precursors—ethanol [4], 3-
hydroxypropionic acid [40], and 1,4-butanediol [41,42]
respectively from biomass-derived sugars. This approach
addresses the growing concern associated with use of
fossil-based feedstocks and helps to establish a sustain-
able and more environment-friendly route for the

production of these compounds. In this section we will
discuss the recent work done in establishing a semi-
synthetic pathway for two monomers — B-methyl-8-
valerolactone (BM38VL.) and butadiene — both of which
can be polymerized to produce bio-based high-perfor-
mance polymers.

pB-Methyl-3-valerolactone (3M&VL)

Polymer industry is the third largest manufacturing in-
dustry in US with an annual market of nearly $400 billion.
The stiff nature of current biodegradable polyesters such
as polylactic acid (PLA) and polyhydroxybutyrate (PHB)
has limited their applications in the polymer industry. It is
envisioned that this challenge can be addressed by de-
veloping ABA type triblock polymers with a rigid, glassy
end block A (such as PLLA) and a soft, rubbery block B in
center with low glass transition temperature. However,
there is no biobased soft block available, and to this end,
Xiong et al. recently developed a biosynthetic route to
produce B-methyl-8-valerolactone followed by block
copolymerization of BM3VL with lactide (LA) to yield

Current Opinion in Chemical Engineering 2015, 10:35-41
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P(L)LA-PBMSVL-P(LL)LA with mechanically tunable
properties [7°°] (Figure 4). They designed a semi-syn-
thetic approach to BM8VL, which included a biological
pathway to synthesize the key intermediate, mevalonate,
followed by its chemical conversion to BM8VL. The
authors employed the endogenous enzyme AtoB of E.
coli to produce acetoacetyl-CoA and the HMG-CoA
synthase (MvaS) and HMG-CoA reductase (MvaE) from
Lactobacillus casei to produce 88 g/l mevalonate from
acetyl-CoA with a productivity of 2 g/lL/h in a 1.3 L
fermentor [7°°]. Mevalonate was dehydrated to anhydro-
mevalonolactone using sulfuric acid and the unsaturated
lactone was hydrogenated to BM3VL using Pd/C as cata-
lyst. The polymerization of BM8VL was carried out in bulk
monomer at room temperature using triazabicyclodecene
(TBD) as organocatalyst and subsequently chain extension
with lactide yielded triblock P(L)LA-P(BM3VL)-P(LL)LLA
whose mechanical and thermal properties could be tuned
by controlling molar mass, architecture and end block
tacticity [7°°].

Figure 4

Butadiene

1,3-Butadiene is used as feedstock for synthetic rubbers
and for Nylon production, making it one of the most
important conjugated dienes in the petrochemical indus-
try [5°]. Because of the recent shale gas revolution, there
has been lightening of the feedstock [43] and this has
resulted in an increased interest in exploring catalytic
conversion of bio-derived ethanol and C4 alcohols and
diols to butadiene. Recently there have been several
studies investigating the use of different metal catalysts
to carry out the conversion of ethanol to BD [44,45] and in
2013, Axens, IFPEN and Michelin launched a joint
research program to develop an economically competitive
process for bio-synthetic rubber from bioethanol [5°].
Apart from ethanol, bio-derived C4 alcohols could also
be used for sustainable BD production. The biological
production of #-butanol is via ABE fermentation (ace-
tone-butanol-ethanol) of biomass-derived sugars in C/los-
tridia species [46,47], and subsequent dehydration using
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Semi-synthetic pathway for production of branched lactone, B-methyl-3-valerolactone (BM3VL), and its copolymerization with lactide. Mevalonate
was first produced in E. coli, followed by sulfuric acid catalyzed dehydration and hydrogenation to BM3VL. BM38VL and lactide were then
copolymerized using ring-opening transesterification polymerization (ROTEP) to produce a triblock polymer P(L)LA-P(BM3VL)-P(L)LA with

mechanically tunable properties.
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which can further be dehydrogenated to yield BD [48,49].
Because of prior commercialization of ABE fermentation
[46] and dehydrogenation of butenes [50], this route
shows great potential for production of bio-based BD.
Butanediols (1,4-BDO, 2,3-BDO, and 1,3-BDO) could
also be used as substrate to produce BD through double
dehydration reactions. Recently, Genomatica developed
a bio-based route for the synthesis of 1,4-BDO from
biomass-derived sugars [41] and this process has been
tested to produce five million pounds of BDO in 2012. Ad-
ditionally, 2,3-BDO production has also been reported in
Clostridia sp. from CO-containing industrial waste gas or
syngas via Wood-Ljungdahl pathway [51,52] and this has
been commercialized by LanzaTech and INVISTA. The
final BDO isomer, 1,3-BDO is an intermediate of the old
BD synthesis pathway based on acetaldehyde. Although
there are several groups focusing on fermentative pro-
duction of this diol from biomass sugars, none of the
pathways have been commercialized or licensed for in-
dustrial production. All three BDOs undergo double
dehydration reactions to produce BD, but they have
different by-products owing to different dehydration
mechanisms [5°].

Conclusion

Merging chemical and biological methods have improved
overall efficiencies and allowed production of much
higher yields of certain compounds by reducing the total
number of steps involved in synthesis [2°°]. In some
cases, it has also made some processes more environment
friendly by reducing waste and use of hazardous chemi-
cals [34°°]. Furthermore, when biosynthesis is used for
the production of a chiral precursor from biomass-derived
sugar, it allows high enantioselectivities and regioselec-
tivities, important in case of drugs, and also eliminates
dependence on fossil-based feedstocks. In this review, we
have covered the recent developments in the semi-syn-
thesis of three widely prescribed pharmaceutical
drugs — simvastatin, artemisinin, and warfarin — and
two commodity chemicals — BM8VL, which shows great
potential in production of high-performance ABA-type
bio-based polyesters and butadiene with wide applica-
tions in synthetic rubber industry.
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