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Recent advances have allowed semi-synthetic production of

complex pharmaceutical compounds and commodity

chemicals by combining chemical and biological approaches.

This approach offers several advantages including synthesis of

chirally pure precursors for drugs, design of greener and more

sustainable production routes for commodity chemicals by

eliminating the use of hazardous chemicals and generation of

waste and improving overall process efficiencies by reducing

total number of steps involved in synthesis. In this review, we

will discuss in detail the synthesis of three pharmaceuticals —

simvastatin, artemisinin, and warfarin — and two commodity

chemicals — b-methyl-d-valerolactone and butadiene, all of

which have wide applications in the pharmaceutical and

polymer industry.
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Introduction
Over the past several years, there have been numerous

reports of semi-synthesis of important pharmaceuticals

and other commodity chemicals that combines biological

and chemical pathways to achieve the final products

[1,2��,3,4,5�]. In most of these cases, biological fermenta-

tion allows the production of an important precursor/

intermediate using renewable biomass-derived sugars,

following which the precursor is transformed using single

or multi-step chemical reactions to yield the final

compound. This hybrid process can convert bio-derived

precursors into useful commodity chemicals, thus estab-

lishing a more sustainable and greener route for the

production of these high-volume compounds. This ap-

proach is also useful for the synthesis of chiral drug
www.sciencedirect.com 
precursors since biological enzymes offer much better

stereoselectivity as compared to chemical catalysts at

milder reaction conditions [6].

In this review, we have divided target compounds into

two categories: pharmaceuticals and commodity chemi-

cals. In the first section, we discuss the most recent

advancements in the semi-synthesis of three widely pre-

scribed drugs — simvastatin, artemisinin, and warfarin. In

the second section, we focus on chembiosynthesis of

commodity chemicals including monomers for industrial-

ly relevant polymers such as b-methyl-d-valerolactone

and butadiene. For few of the compounds discussed in

this review, a direct total biosynthetic [7��] or chemical

synthetic [8,9] pathway has been established, but the

titers obtained are very low for industrial relevance,

making semi-synthesis an attractive option at this stage.

Pharmaceuticals
In the past, there have been several successful stories in the

pharmaceutical industry where biological route has been

used to synthesize an optically pure precursor which is

subsequently subjected to chemical reactions to yield the

target drug. Examples include the biosynthesis of the taxol

precursor, taxadiene [1], and Tamiflu precursor, shikimic

acid [10], in engineered Escherichia coli. This semi-synthet-

ic approach reduces dependence on isolation of relevant

metabolites from natural resources and also significantly

improves process economics and sustainability of drug

production. In case of drugs such as Lipitor [11] and

Sitagliptin [12,13], while pure chemical synthetic routes

exist, biosynthesis has been used to replace some of the

chemical reactions with the objective of reducing waste

and eliminating use of hazardous catalysts. Over the past

few years there have been significant advancements in the

synthesis of other drugs, some of which are covered in

detail in this section. We have reviewed the recent progress

made in the field for semi-synthesis of three widely used

drugs — first, simvastatin, a cholesterol-lowering drug;

second, artemisinin, an antimalarial drug, and third, warfa-

rin, an anticoagulant used for prevention of thrombosis.

Simvastatin

As a derivative of lovastatin, simvastatin has a 2,2-

dimethylbutyroloxy side chain at C8 position as against

a 2-methylbutyroloxy side chain in its natural counterpart.

Traditionally, the semi-synthetic process for producing

simvastatin involves isolation of lovastatin from Aspergillus
terreus fermentation, hydrolysis to yield monacolin J, pro-

tection of free alcohol to allow subsequent regioselective
Current Opinion in Chemical Engineering 2015, 10:35–41

http://crossmark.crossref.org/dialog/?doi=10.1016/j.coche.2015.07.007&domain=pdf
mailto:kzhang@umn.edu
http://www.sciencedirect.com/science/journal/22113398/10
http://dx.doi.org/10.1016/j.coche.2015.11.001
http://dx.doi.org/10.1016/j.coche.2015.07.007


36 Biotechnology and bioprocess engineering
esterification of C8 alcohol with dimethylbutyryl chloride

[14–16]. In an effort to improve the overall efficiency of the

process, Xie et al. demonstrated the ability to use the acyl

transferase homolog, LovD, which catalyzes the last step of

lovastatin biosynthesis, to selectively acylate monacolin J

for the single-step synthesis of simvastatin using chemi-

cally synthesized a-dimethylbutyryl-S-methylmercapto-

propionate (DMB-S-MMP) as the acyl donor [17,18] as

shown in Figure 1. This one-step process significantly

reduces the number of chemical transformations needed,

improves process efficiency and also reduces the cost of

manufacturing of simvastatin. In a more recent report, a

variant of LovD with 29 mutations was identified by

directed evolution, which is 1000-fold more efficient in

synthesizing simvastatin than the wild type enzyme. The

authors used microsecond molecular dynamics (MD) in

solution to explain how distant mutations could improve

catalytic efficiency of the active site by lowering the free

energy of catalytic conformation of active site [2��].

Artemisinin

Artemisinin is a potent antimalarial drug which is natu-

rally produced by the plant Artemisia annua and has a long

history of use in Chinese medicine. Because of tremen-

dous fluctuations in the price and supply of this drug as a

consequence of inconsistent weather [19,20], the semi-

synthetic artemisinin project was started which involved
Figure 1
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microbial production of artemisinic acid, a chemical pre-

cursor of artemisinin, followed by a chemical transforma-

tion step to produce artemisinin. After studying the

artemisinin pathway in A. annua [21], E. coli was originally

chosen as the chassis organism to produce artemisinic acid

[22], but due to the problem of expression of eukaryotic

enzymes in E. coli [23], the pathway was transferred into a

Saccharomyces cerevisiae CEN.PK2 strain [24]. Over-ex-

pression of mevalonate pathway genes along with expres-

sion of amorphadiene synthase (ADS), the P450 enzyme

(CYP71AV1) and its cognate reductase (CPR1) allowed

the production of 40 g/L of amorphadiene, but artemisi-

nic acid production was still very low [25,26]. Expression

of cytochrome b5 (CYB5) [27] and the aldehyde and

alcohol dehydrogenase (ADH1 and ALDH1) [28] from

A. annua improved P450 activity and increased artemi-

sinic acid titer to 25 g/L as shown in Figure 2, which was

the starting goal of the semi-synthetic artemisinin project

[29��]. Artemisinic acid was extracted from the fermenta-

tion medium with isopropyl myristate (IPM) at high

purities and was subsequently used as a substrate for

chemical transformation to artemisinin [29��].

The chemical process for converting artemisinic acid to

artemisinin involves the following steps: first, hydrogena-

tion of artemisinic acid (AA) to dihydroartemisinic acid

(DHAA); second, esterification of DHAA toavoid formation
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vastatin is first hydrolyzed in a reaction catalyzed by LovD, followed

ne rounds of evolution). Chemically synthesized a-dimethylbutyryl-S-

tion.
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Semi-synthetic pathway for production of artemisinin. Biological route in S. cerevisiae for synthesis of the precursor, artemisinic acid using the

mevalonate pathway. Chemical conversion of artemisinic acid to artemisinin developed by Sanofi which includes diastereoselective hydrogenation

of artemisinic acid to dihydroartemisinic acid, followed by its esterification to mixed anhydrides and finally a Schenck ene reaction and Hock

cleavage cyclization to produce artemisinin.
of by-products; and third, generation of a singlet oxygen by

chemical or photochemical means to convert DHAA methyl

ester to artemisinin [29��]. For stereoselective conversion of

AA to DHAA, several catalysts have been screened

[29��,30] to achieve high diastereoselectivities, and recent-

ly, work performed by researchers at Sanofi provided RuCl2
[(R)-DTBM-Segphos] (DMF)n catalyst which yielded

95:5 selectivity [31,32]. The conversion of DHAA ester

to artemisinin involves regioselective Schenck ene reac-

tion between a singlet oxygen (either derived by chemical

reaction or photochemically) and the double bond of

DHAA, followed by a Hock cleavage catalyzed by a strong

Lewis acid and a subsequent addition of triplet oxygen and

cyclization [33��]. Sanofi designed a one-pot synthesis

route to convert a DHAA derivative (mixed anhydride)

to artemisinin and they obtained an overall yield of 55% of

artemisinin starting with artemisinic acid. This semi-syn-

thetic route has capacity to produce 60 tons of artemisinin

annually, which corresponds to a third of the global annual

need for the drug [33��].

Warfarin

Warfarin is one of the most commonly prescribed

4-hydroxycoumarin (4HC) type anticoagulant used in

the prevention of thrombosis or thromboembolism, which

is one of the leading causes of morbidity and mortality
www.sciencedirect.com 
worldwide. Recently, a de novo biosynthetic pathway was

designed in E. coli for the production of 4HC [34��] as

shown in Figure 3 by employing a biphenyl synthases (BIS)

to catalyze the decarboxylative condensation of salicoyl-

CoA with malonyl-CoA to form a diketide intermediate

which undergoes intracellular cyclization and enolization

to form 4HC [35]. The pathway used EntC from E. coli and

PfPchB from Pseudomonas fluorescens as isochorismate

synthase (ICS) and isochorismate pyruvate lyase (IPL)

respectively, to convert chorismate to salicylate and a

salicylate: CoA ligase (SCL) SdgA from Streptomyces sp.

to convert salicylate to salicoyl-CoA, the substrate for BIS

enzyme [34��]. After identifying BIS catalyzed step as the

bottleneck of the pathway, they identified 4-hydroxy-2

(1H)-quinolone synthase (PqsD) by function-based bio-

prospecting and this enzyme allowed >99% yield for 4HC

synthesis and with further engineering they achieved

�483 mg/L 4HC, a �11-fold increase compared to their

parent strain [34��].

The synthesis of warfarin proceeds via Michael addition

reaction of 4HC and benzylideneacetone [36] and while

most of the studies involve the use of harmful organic

solvents, Rogozińska et al. carried out the reaction on water

using commercially available amines ((S,S)-diphenylethy-
lenediamine) and achieved 70% ee with reasonable yield
Current Opinion in Chemical Engineering 2015, 10:35–41
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Chemoenzymatic pathway for warfarin production. 4-Hydroxycoumarin (4HC) is first biologically produced in E. coli from chorismate, derived via

the shikimic acid pathway. 4HC is then converted to warfarin by a Michael addition reaction with benzylideneacetone.
(�30%) [37]. When ultrasound bath was applied to the

reaction, yields were significantly improved and this meth-

od was later used by Lin et al. to demonstrate in situ semi-

synthesis of warfarin using biologically derived 4HC [34��].
In more recent reports, a novel chiral porous metal organic

framework (MOF) [38] and a novel polystyrene bound

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) [39], was used

for Michael addition of 4HC to a,b-unsaturated ketones to

synthesize (S)-warfarin and its analogs.

Commodity polymers
Apart from pharmaceuticals, semi-synthesis has also been

used successfully for the industrial production of high-

volume commodity chemicals such as polyethylene,

acrylic acid, and butanediene, by adopting a biological

route for synthesis of their precursors–ethanol [4], 3-

hydroxypropionic acid [40], and 1,4-butanediol [41,42]

respectively from biomass-derived sugars. This approach

addresses the growing concern associated with use of

fossil-based feedstocks and helps to establish a sustain-

able and more environment-friendly route for the
Current Opinion in Chemical Engineering 2015, 10:35–41 
production of these compounds. In this section we will

discuss the recent work done in establishing a semi-

synthetic pathway for two monomers — b-methyl-d-

valerolactone (bMdVL) and butadiene — both of which

can be polymerized to produce bio-based high-perfor-

mance polymers.

b-Methyl-d-valerolactone (bMdVL)

Polymer industry is the third largest manufacturing in-

dustry in US with an annual market of nearly $400 billion.

The stiff nature of current biodegradable polyesters such

as polylactic acid (PLA) and polyhydroxybutyrate (PHB)

has limited their applications in the polymer industry. It is

envisioned that this challenge can be addressed by de-

veloping ABA type triblock polymers with a rigid, glassy

end block A (such as PLA) and a soft, rubbery block B in

center with low glass transition temperature. However,

there is no biobased soft block available, and to this end,

Xiong et al. recently developed a biosynthetic route to

produce b-methyl-d-valerolactone followed by block

copolymerization of bMdVL with lactide (LA) to yield
www.sciencedirect.com
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P(L)LA-PbMdVL-P(L)LA with mechanically tunable

properties [7��] (Figure 4). They designed a semi-syn-

thetic approach to bMdVL, which included a biological

pathway to synthesize the key intermediate, mevalonate,

followed by its chemical conversion to bMdVL. The

authors employed the endogenous enzyme AtoB of E.
coli to produce acetoacetyl-CoA and the HMG-CoA

synthase (MvaS) and HMG-CoA reductase (MvaE) from

Lactobacillus casei to produce 88 g/L mevalonate from

acetyl-CoA with a productivity of 2 g/L/h in a 1.3 L

fermentor [7��]. Mevalonate was dehydrated to anhydro-

mevalonolactone using sulfuric acid and the unsaturated

lactone was hydrogenated to bMdVL using Pd/C as cata-

lyst. The polymerization of bMdVL was carried out in bulk

monomer at room temperature using triazabicyclodecene

(TBD) as organocatalyst and subsequently chain extension

with lactide yielded triblock P(L)LA-P(bMdVL)-P(L)LA

whose mechanical and thermal properties could be tuned

by controlling molar mass, architecture and end block

tacticity [7��].
Figure 4
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Butadiene

1,3-Butadiene is used as feedstock for synthetic rubbers

and for Nylon production, making it one of the most

important conjugated dienes in the petrochemical indus-

try [5�]. Because of the recent shale gas revolution, there

has been lightening of the feedstock [43] and this has

resulted in an increased interest in exploring catalytic

conversion of bio-derived ethanol and C4 alcohols and

diols to butadiene. Recently there have been several

studies investigating the use of different metal catalysts

to carry out the conversion of ethanol to BD [44,45] and in

2013, Axens, IFPEN and Michelin launched a joint

research program to develop an economically competitive

process for bio-synthetic rubber from bioethanol [5�].
Apart from ethanol, bio-derived C4 alcohols could also

be used for sustainable BD production. The biological

production of n-butanol is via ABE fermentation (ace-

tone–butanol–ethanol) of biomass-derived sugars in Clos-
tridia species [46,47], and subsequent dehydration using

acid-catalyzed gas phase reaction produces 1-butene
β-methyl-δ-valerolactone
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erolactone (bMdVL), and its copolymerization with lactide. Mevalonate

 and hydrogenation to bMdVL. bMdVL and lactide were then

) to produce a triblock polymer P(L)LA-P(bMdVL)-P(L)LA with

Current Opinion in Chemical Engineering 2015, 10:35–41
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which can further be dehydrogenated to yield BD [48,49].

Because of prior commercialization of ABE fermentation

[46] and dehydrogenation of butenes [50], this route

shows great potential for production of bio-based BD.

Butanediols (1,4-BDO, 2,3-BDO, and 1,3-BDO) could

also be used as substrate to produce BD through double

dehydration reactions. Recently, Genomatica developed

a bio-based route for the synthesis of 1,4-BDO from

biomass-derived sugars [41] and this process has been

tested to produce five million pounds of BDO in 2012. Ad-

ditionally, 2,3-BDO production has also been reported in

Clostridia sp. from CO-containing industrial waste gas or

syngas via Wood–Ljungdahl pathway [51,52] and this has

been commercialized by LanzaTech and INVISTA. The

final BDO isomer, 1,3-BDO is an intermediate of the old

BD synthesis pathway based on acetaldehyde. Although

there are several groups focusing on fermentative pro-

duction of this diol from biomass sugars, none of the

pathways have been commercialized or licensed for in-

dustrial production. All three BDOs undergo double

dehydration reactions to produce BD, but they have

different by-products owing to different dehydration

mechanisms [5�].

Conclusion
Merging chemical and biological methods have improved

overall efficiencies and allowed production of much

higher yields of certain compounds by reducing the total

number of steps involved in synthesis [2��]. In some

cases, it has also made some processes more environment

friendly by reducing waste and use of hazardous chemi-

cals [34��]. Furthermore, when biosynthesis is used for

the production of a chiral precursor from biomass-derived

sugar, it allows high enantioselectivities and regioselec-

tivities, important in case of drugs, and also eliminates

dependence on fossil-based feedstocks. In this review, we

have covered the recent developments in the semi-syn-

thesis of three widely prescribed pharmaceutical

drugs — simvastatin, artemisinin, and warfarin — and

two commodity chemicals — bMdVL, which shows great

potential in production of high-performance ABA-type

bio-based polyesters and butadiene with wide applica-

tions in synthetic rubber industry.
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