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AN OPTIMAL FIRST ORDER METHOD BASED ON OPTIMAL
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Abstract. In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for
minimizing smooth strongly convex functions. Their geometric descent algorithm, largely inspired by
the ellipsoid method, enjoys the optimal linear rate of convergence. We show that the same iterate
sequence is generated by a scheme that in each iteration computes an optimal average of quadratic
lower models of the function. Indeed, the minimum of the averaged quadratic approaches the true
minimum at an optimal rate. This intuitive viewpoint reveals clear connections to the original fast-
gradient methods and cutting plane ideas, and leads to limited-memory extensions with improved
performance.
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1. Introduction. Consider a function f : Rn → R that is β-smooth and α-
strongly convex. Thus each point x yields a quadratic upper estimator and a quadratic
lower estimator of the function. Namely, inequalities q(y;x) ≤ f(y) ≤ Q(y;x) hold
for all x, y ∈ Rn, where we set

q(y;x) := f(x) + 〈∇f(x), y − x〉+
α

2
‖y − x‖2 ,

Q(y;x) := f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖2 .

Classically, one step of the steepest descent algorithm decreases the squared distance of
the iterate to the minimizer of f by the fraction 1−α/β. This linear convergence rate is
suboptimal from a computational complexity viewpoint. Optimal first order methods,
originating in Nesterov’s work [11] achieve the superior (and the best possible) linear
rate 1−

√
α/β; see also the discussion in [10, section 2.2]. Such accelerated schemes,

on the other hand, are notoriously difficult to analyze. Numerous recent papers
(e.g., [1, 2, 5, 9, 13]) have aimed to shed new light on optimal algorithms.

This manuscript is motivated by the novel geometric descent algorithm of Bubeck,
Lee, and Singh [5]. Their scheme is highly geometric, sharing some aspects with the
ellipsoid method, and it achieves the optimal linear rate of convergence. Moreover,
the geometric descent algorithm often has much better practical performance than
accelerated gradient methods; see the discussion in [5]. Motivated by their work, in
this paper we propose an intuitive method that maintains a quadratic lower model
of the objective function, whose minimal value converges to the true minimum at an
optimal linear rate. We will show that the two methods are indeed equivalent in the
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sense that they produce the same iterate sequence. The quadratic averaging view-
point, however, has important advantages. First, it immediately yields a comparison
with the original accelerated gradient method [10, 11] and cutting plane techniques.
Secondly, quadratic averaging motivates a simple strategy for significantly accelerat-
ing the method in practice by utilizing accumulated information—a limited memory
version of the scheme.

The outline of the paper is as follows. In section 2, we describe the optimal
quadratic averaging framework (Algorithm 1)—the focal point of the manuscript. In
section 3, we propose a limited memory version of Algorithm 1, based on iteratively
solving small dimensional quadratic programs. In section 4, we show that our Algo-
rithm 1 and the geometric descent method of [5] produce the same iterate sequence.
Section 5 is devoted to numerical illustrations, in particular showing that the optimal
quadratic averaging algorithm with memory can be competitive with limited-memory
BFGS. We finish the paper with section 6, where we discuss the challenges that must
be overcome in order to derive proximal extensions. In the final stages of revising
this paper, a new manuscript [7] appeared explaining how to overcome exactly these
challenges.

1.1. Notation. We follow the notation of [5]. Given a point x ∈ Rn, we define
a short step

x+ := x− 1

β
∇f(x)

and a long step

x++ := x− 1

α
∇f(x).

Setting y = x+ in the quadratic bound f(y) ≤ Q(y;x) yields the standard inequality

f(x+) +
1

2β
‖∇f(x)‖2 ≤ f(x).(1)

We denote the unique minimizer of f by x∗, its minimal value by f∗, and its condition
number by κ := β/α. Throughout, the symbol B(x,R2) stands for the Euclidean ball
of radius R around x. For any points x, y ∈ Rn, we let line search (x, y) be the
minimizer of f on the line between x and y.

2. Optimal quadratic averaging. The starting point for our development is
the elementary observation that every point x̄ provides a quadratic underestimator
of the objective function, having a canonical form. Indeed, completing the square in
the strong convexity inequality f(x) ≥ q(x; x̄) yields

f(x) ≥
(
f(x̄)− ‖∇f(x̄)‖2

2α

)
+
α

2

∥∥x− x̄++
∥∥2
.(2)

Suppose we have now available two quadratic lower estimators:

f(x) ≥ QA(x) := vA +
α

2
‖x− xA‖2 and f(x) ≥ QB(x) := vB +

α

2
‖x− xB‖2 .

Clearly, the minimal values of QA and of QB lower bound the minimal value of f .
For any λ ∈ [0, 1], the average Qλ := λQA + (1 − λ)QB is again a quadratic lower
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Fig. 1. The optimal averaging of QA(x) = 1 + 0.5(x+ 2)2 and QB(x) = 3 + 0.5(x− 4)2.

estimator of f . Thus we are led to the question, what choice of λ yields the tightest
lower bound on the minimal value of f?

To answer this question, observe the equality

Qλ(x) := λQA(x) + (1− λ)QB(x) = vλ +
α

2
‖x− cλ‖2 ,

where

cλ = λxA + (1− λ)xB

and

vλ = vB +
(
vA − vB +

α

2
‖xA − xB‖2

)
λ−

(α
2
‖xA − xB‖2

)
λ2.(3)

In particular, the average Qλ has the same canonical form as QA and QB . A quick
computation now shows that vλ (the minimum of Qλ) is maximized by setting

λ̄ := proj[0,1]

(
1

2
+

vA − vB
α ‖xA − xB‖2

)
.

With this choice of λ, we call the quadratic function Q = v̄ + α
2 ‖ · −c̄‖2 the optimal

averaging of QA and QB . See Figure 1 for an illustration.
An algorithmic idea emerges. Given a current iterate xk, form the quadratic lower

model Q(·) in (2) with x̄ = xk. Then let Qk be the optimal averaging of Q and the
quadratic lower model Qk−1 from the previous step. Finally define xk+1 to be the
minimizer of Qk, and repeat. Though attractive, the scheme does not converge at
an optimal rate. Indeed, this algorithm is closely related to the suboptimal method
in [5]; see section 4.1 for a discussion. The main idea behind acceleration, natural in
retrospect, is a separation of roles: one must maintain two sequences of points xk and
ck. The points xk will generate quadratic lower models as above, while ck will be the
minimizers of the quadratics. We summarize the proposed method in Algorithm 1.
The rule for determining the iterate xk by a line search is entirely motivated by the
geometric descent method in [5].
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Algorithm 1. Optimal quadratic averaging.

Input: Starting point x0 and strong convexity constant α > 0.
Output: Final quadratic QK(x) = vK + α

2 ‖x− cK‖
2

and x+
K .

Set Q0(x) = v0 + α
2 ‖x− c0‖

2
, where v0 = f(x0)− ‖∇f(x0)‖2

2α and c0 = x++
0 .

for k = 1, . . . , K do
Set xk = line search

(
ck−1, x

+
k−1

)
.

Set Q(x) =
(
f(xk)− ‖∇f(xk)‖2

2α

)
+ α

2

∥∥x− x++
k

∥∥2
.

Let Qk(x) = vk + α
2 ‖x− ck‖2 be the optimal averaging of Q and Qk−1.

end

Remark 2.1. When implementing Algorithm 1, we set x+
k = line search(xk,

xk −∇f(xk)). This does not impact the analysis as x+
k still satisfies the key inequal-

ity (1). With this modification, the algorithm does not require β as part of the input,
and we have observed that the algorithm performs better numerically.

To aid in the analysis of the scheme, we record the following easy observation.

Lemma 2.2. Suppose that Q = v̄ + α
2 ‖ · −c̄‖2 is the optimal averaging of the

quadratics QA = vA + α
2 ‖ · −xA‖2 and QB = vB + α

2 ‖ · −xB‖2. Then the quantity v̄
is nondecreasing in both vA and vB. Moreover, whenever the inequality |vA − vB | ≤
α
2 ‖xA − xB‖2 holds, we have

v̄ =
α

8
‖xA − xB‖2 +

1

2
(vA + vB) +

1

2α

(
vA − vB
‖xA − xB‖

)2

.

Proof. Define λ̂ := 1
2 + vA−vB

α‖xA−xB‖2
. Notice that we have

λ̂ ∈ [0, 1] if and only if |vA − vB | ≤
α

2
‖xA − xB‖2.

If λ̂ lies in [0, 1], equality λ̄ = λ̂ holds, and then from (3) we deduce

v̄ = vλ̄ =
α

8
‖xA − xB‖2 +

1

2
(vA + vB) +

1

2α

(
vA − vB
‖xA − xB‖

)2

.

If λ̂ does not lie in [0, 1], then an easy argument shows that v̄ is linear in vA either

with slope one or zero. If λ̂ lies in (0, 1), then we compute

∂v̄

∂vA
=

1

2
+

1

α ‖xA − xB‖2
(vA − vB),

which is nonnegative because |vA−vB |
α‖xA−xB‖2

≤ 1
2 . Since v̄ is clearly continuous, it follows

that v̄ is nondecreasing in vA, and by symmetry also in vB .

We now show that Algorithm 1 achieves the optimal linear rate of convergence.

Theorem 2.3 (Convergence of optimal quadratic averaging). In Algorithm 1,
for every index k ≥ 0, the inequalities vk ≤ f∗ ≤ f(x+

k ) hold and we have

f(x+
k )− vk ≤

(
1− 1√

κ

)k
(f(x+

0 )− v0).
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Proof. Since in each iteration, the algorithm only averages quadratic minorants
of f , the inequalities vk ≤ f∗ ≤ f(x+

k ) hold for every index k. Set r0 = 2
α (f(x+

0 )−v0)
and define the quantities rk := (1 − 1√

κ
)kr0. We will show by induction that the

inequality vk ≥ f(x+
k ) − α

2 rk holds for all k ≥ 0. The base case k = 0 is immediate,
and so assume we have

vk−1 ≥ f(x+
k−1)− α

2
rk−1

for some index k − 1. Next set vA := f(xk) − ‖∇f(xk)‖2
2α and vB := vk−1. Then the

function

Qk(x) = vk +
α

2
‖x− ck‖2

is the optimal averaging ofQA(x) = vA+α
2

∥∥x−x++
k

∥∥2
andQB(x) = vB+α

2 ‖x− ck−1‖2.
An application of (1) yields the lower bound v̂A on vA:

vA = f(xk)− ‖∇f(xk)‖2
2α

≥ f(x+
k )− α

2

‖∇f(xk)‖2
α2

(
1− 1

κ

)
:= v̂A.

The induction hypothesis and the choice of xk yield a lower bound v̂B on vB :

vB ≥ f(x+
k−1)− α

2
rk−1 ≥ f(xk)− α

2
rk−1

≥ f(x+
k ) +

1

2β
‖∇f(xk)‖2 − α

2
rk−1

= f(x+
k )− α

2

(
rk−1 −

1

α2κ
‖∇f(xk)‖2

)
:= v̂B .

Define the quantities d :=
∥∥x++

k − ck−1

∥∥ and h := ‖∇f(xk)‖
α . We now split the

proof into two cases. First assume h2 ≤ rk−1

2 . Then we deduce

vk ≥ vA ≥ v̂A = f(x+
k )− α

2
h2

(
1− 1

κ

)
≥ f(x+

k )− α

2
rk−1

(
1− 1

κ

2

)
≥ f(x+

k )− α

2
rk−1

(
1− 1√

κ

)
= f(x+

k )− α

2
rk,

where the third line follows since 2/
√
κ ≤ 1 + 1/κ holds. Hence in this case, the proof

is complete.
Next suppose h2 > rk−1

2 and let v + α
2 ‖ · −c‖2 be the optimal average of the two

quadratics v̂A + α
2 ‖ · −x++

k ‖2 and v̂B + α
2 ‖ · −ck−1‖2. By Lemma 2.2, the inequality

vk ≥ v holds. We claim that equality

v = v̂B +
α

8

(d2 + 2
α (v̂A − v̂B))2

d2
(4)
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holds. This follows immediately from Lemma 2.2, once we show 1
2 ≥

|v̂A−v̂B |
αd2 . To this

end, note first the equality |v̂A−v̂B |αd2 = |rk−1−h2|
2d2 . The choice xk = line search(ck−1,

x+
k−1) ensures

d2 − h2 = ‖xk − ck−1‖2 −
2

α
〈∇f(xk), xk − ck−1〉 = ‖xk − ck−1‖2 ≥ 0.

Thus we have h2 − rk−1 < h2 ≤ d2. Finally, the assumption h2 > rk−1

2 implies

rk−1 − h2 <
rk−1

2
< h2 ≤ d2.(5)

Hence we can be sure that (4) holds. Plugging in v̂A and v̂B yields

v = f(x+
k )− α

2

(
rk−1 −

1

κ
h2 − (d2 + rk−1 − h2)2

4d2

)
.

Hence the proof is complete once we show the inequality

rk−1 −
1

κ
h2 − (d2 + rk−1 − h2)2

4d2
≤
(

1− 1√
κ

)
rk−1.

After rearranging, our task simplifies to showing the inequality

rk−1√
κ
≤ h2

κ
+

(d2 + rk−1 − h2)2

4d2
.

Taking derivatives and using inequality (5), one can readily verify that the right-hand
side is nondecreasing in d2 on the interval d2 ∈ [h2,+∞). Thus plugging in the
endpoint d2 = h2 we deduce

h2

κ
+

(d2 + rk−1 − h2)2

4d2
≥ h2

κ
+
r2
k−1

4h2
.

Minimizing the right-hand side over all h satisfying h2 ≥ rk−1

2 yields the inequality

h2

κ
+
r2
k−1

4h2
≥ rk−1√

κ
.

The proof is complete.

It is instructive to compare optimal averaging (Algorithm 1) with Nesterov’s
optimal methods in [10, 11]. For convenience, we record the optimal gradient method
following [10], in Algorithm 2.

Comparing Algorithms 1 and 2, we see that
• xk is some point on the line between ck−1 and x+

k−1, and
• Qk is an average of the previous quadratic Qk−1 and the strong convexity

quadratic lower bound Q based at xk.
As we discuss in Appendix A, we can modify Nesterov’s method so that, as in optimal
quadratic averaging, we set xk = line search

(
ck−1, x

+
k−1

)
in each iteration. After

this change, only two differences remain between the schemes:
• the initial quadratic Q0 is different, and
• the averaging parameter is computed differently.

These differences, however, are fundamental. In Algorithm 1, the quadratic Q0 lower
bounds f and therefore optimal averaging makes sense; in the accelerated gradient
method, Q0 does not lower bound f , and the idea of optimal averaging does not apply.
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Algorithm 2. General scheme of an optimal method (Nesterov).

Input: Starting points x0 and c0, strong convexity constant α > 0, smoothness pa-
rameter β > 0, and initial quadratic curvature γ0 ≥ α.

Output: Final quadratic QK(x) = vK + γK
2 ‖x− cK‖

2
.

Set Q0(x) = v0 + γ0
2 ‖x− c0‖

2
, where v0 = f(x0)− 1

2β ‖∇f(x0)‖2.

for k = 1, . . . , K do
Compute averaging parameter λk ∈ (0, 1) from βλ2

k = (1− λk)γk−1 + λkα.
Set γk = (1− λk)γk−1 + λkα.
Set xk = (1− θk)ck−1 + θkx

+
k−1, where θk = γk

γk−1+λkα
.

Set Q(x) =
(
f(xk)− ‖∇f(xk)‖2

2α

)
+ α

2

∥∥x− x++
k

∥∥2
.

Let ck be the minimizer of the quadratic Qk(x) = (1− λk)Qk−1(x) + λkQ(x).
end

/* If we set γ0 = α, then we have γk = α, λk = 1√
κ
, and θk =

√
κ

1+
√
κ
. */

3. Optimal quadratic averaging with memory. Each iteration of Algo-
rithm 1 forms an optimal average of the current lower quadratic model with the
one from the previous iteration; that is, as stated the scheme has a memory size of
one. We next show how the scheme easily adapts to maintaining limited memory, i.e.,
by averaging multiple quadratics in each iteration. We mention in passing that the
authors of [5] left open the question of efficiently speeding up their geometric descent
algorithm in practice. One approach of this flavor recently appeared in [4, section
4]. The optimal averaging viewpoint, developed here, provides a direct and satisfying
alternative. Indeed, computing the optimal average of several quadratics is easy, and
amounts to solving a small dimensional quadratic optimization problem.

To see this, fix t quadratics Qi(x) := vi + α
2 ‖x− ci‖

2
, with i ∈ {1, . . . , t}, and a

weight vector λ in the t-dimensional simplex ∆t := {x ∈ Rt :
∑t
i=1 xi = 1, x ≥ 0}.

The average quadratic

Qλ(x) :=
t∑
i=1

λiQi(x)

maintains the same canonical form as each Qi.

Proposition 3.1. Define the matrix C =
[
c1 c2 . . . ct

]
and vector v =[

v1 v2 . . . vt
]T

. Then we have

Qλ(x) = vλ +
α

2
‖x− cλ‖2 ,

where

cλ = Cλ and vλ =
〈α

2
diag (CTC) + v, λ

〉
− α

2
‖Cλ‖2 .

Proof. The Hessian of Qλ is simply α
2 I, and therefore the quadratic Qλ(x) has

the form

vλ +
α

2
‖x− cλ‖2

for some vλ and cλ. Notice that cλ is the minimizer of Qλ and, by differentiating, we
determine that cλ =

∑t
i=1 λici = Cλ. We then compute
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vλ = Qλ(cλ) =
t∑
i=1

(
λivi +

λiα

2
‖Cλ− ci‖2

)

= 〈v, λ〉+
α

2

t∑
i=1

λi

(
‖Cλ‖2 − 2 〈Cλ, ci〉+ ‖ci‖2

)
= 〈v, λ〉+

α

2
‖Cλ‖2 − α

〈
Cλ,

t∑
i=1

λici

〉
+
α

2

t∑
i=1

λi ‖ci‖2

=
〈α

2
diag

(
CTC

)
+ v, λ

〉
− α

2
‖Cλ‖2 .

The proof is complete.

Naturally, we define the optimal averaging of the quadratics Qi, with i ∈ {1, 2,
. . . , t}, to be Qλ̄, where λ̄ is the maximizer of the concave quadratic over the simplex:

max
λ∈∆t

vλ =
〈α

2
diag

(
CTC

)
+ v, λ

〉
− α

2
‖Cλ‖2 .

There is no closed form expression for λ̄, but one can quickly find it by solving a
quadratic program in t variables, for example by an active set method. Moreover,
some thought shows that the matrix CTC can be efficiently updated if one of the
centers changes; we omit the details.

We propose an optimal averaging scheme with memory in Algorithm 3. As we
see in section 5, the method performs well numerically. Moreover, the scheme enjoys
the same convergence guarantees as Algorithm 1; that is, Theorem 2.3 applies to
Algorithm 3, with nearly the same proof (which we omit).

Algorithm 3. Optimal quadratic averaging with memory.

Input: Starting point x0, strong convexity constant α > 0, and memory size t ≥ 1.
Output: Final quadratic QK(x) = vK + α

2 ‖x− cK‖
2

and x+
K .

Set Q0(x) = v0 + α
2 ‖x− c0‖

2
, where v0 = f(x0)− ‖∇f(x0)‖2

2α and c0 = x++
0 .

for k = 1, . . . , K do
Set xk = line search(ck−1, x

+
k−1).

Set Mk(x) = f(xk)− ‖∇f(xk)‖2
2α + α

2

∥∥x−x++
k

∥∥2
.

Let Qk(x) := vk + α
2 ‖x− ck‖

2
be the optimal averaging of the

k + 1 quadratics Qk−1, Mk, Mk−1, . . . , M1 if k ≤ t, or of the

t+ 1 quadratics Qk−1, Mk, Mk−1, . . . , Mk−t+1 if k ≥ t+ 1.

end

The reader may notice that Algorithm 3 shows some similarity to the classical
Kelley’s method for minimizing nonsmooth convex functions [8]. In the simplest case
of minimizing a smooth convex function f on Rn, Kelley’s method iterates the steps

xk+1 = argmin
x

fk(x)
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for the functions

fk(x) := max
i=1,...,k

{f(xi) + 〈∇f(xi), x− xi〉}.

In other words, the scheme iteratively minimizes the (piecewise linear) lower models
fk of f . Coming back to the optimal averaging viewpoint, suppose that Qλ̄ is an
optimal average of the lower-bounding quadratics Qi for i = 1, . . . , k. Then we may
write

vλ̄ = max
λ∈∆k

min
x

∑
i

λiQi(x) = min
x

max
λ∈∆k

∑
i

λiQi(x) = min
x

(
max

i=1,...,k
Qi(x)

)
.

Thus vλ̄ is the minimal value of the now different lower model, maxi=1,...,k Qi, of f .
Kelley’s method is known to have poor numerical performance and convergence guar-
antees (e.g., [10, section 3.3.2]), while Algorithm 3 achieves the optimal linear con-
vergence rate. This disparity is of course based on the two key distinctions: (1) using
quadratic lower models coming from strong convexity instead of linear functions, and
(2) maintaining two separate sequences ck (centers) and xk (sources of lower model
updates).

4. Equivalence to geometric descent. Algorithm 1 is largely motivated by
the geometric descent method introduced by Bubeck, Lee, and Singh [5]. In this
section, we show that the two methods (Algorithm 1 and Algorithm 4) indeed generate
an identical iterate sequence.

4.1. Suboptimal geometric descent method. The basic idea of geometric
descent [5] is that, for each point x ∈ Rn, the strong convexity lower bound f∗ ≥
q(x∗;x) defines a ball containing x∗:

x∗ ∈ B
(
x++,

‖∇f(x)‖2
α2

− 2

α
(f(x)− f∗)

)
.

In turn, taking into account (1) yields the guarantee

x∗ ∈ B
(
x++,

(
1− 1

κ

) ‖∇f(x)‖2
α2

− 2

α

(
f(x+)− f∗

))
.(6)

A crude upper estimate of the radius above is obtained simply by ignoring the non-
negative term 2

α (f(x+)− f∗). The suboptimal geometric descent method proceeds as
follows. Suppose we have available some ball B

(
c0, R

2
0

)
containing x∗. As discussed,

the quadratic lower bound at the center c0, namely f∗ ≥ q(x∗, c0), yields another

ball B(c++
0 , (1− 1

κ )‖∇f(c0)‖2
α2 ) containing x∗. Geometrically it is clear that the inter-

section of these two balls must be significantly smaller than either of the individual
balls. The following lemma from [5] makes this observation precise; see Figure 2 for
an illustration.

Lemma 4.1 (Minimal enclosing ball of the intersection). Fix a center x ∈ Rn,
square radius R2 > 0, step h ∈ Rn, and ε ∈ (0, 1). Then there exists a new center
c ∈ Rn with

B
(
x,R2

)
∩B

(
x+ h, (1− ε) ‖h‖2

)
⊂ B

(
c, (1− ε)R2

)
.
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x

x + h

c

(1 � ✏)khk2

Fig. 2. Minimal enclosing ball of the intersection.

An application of Lemma 4.1 yields a new center c1 with

B
(
c0, R

2
0

)
∩B

(
c++
0 ,

(
1− 1

κ

) ‖∇f(c0)‖2
α2

)
⊂ B

(
c1,

(
1− 1

κ

)
R2

0

)
.

Repeating the procedure with the new ball B
(
c1,
(
1− 1

κ

)
R2

0

)
yields a sequence of

centers ck satisfying

‖ck − x∗‖2 ≤
(

1− 1

κ

)k
R2

0.

We note that the centers ck and R2
0 of the minimal enclosing balls in Lemma 4.1 are

easy to compute; see Algorithm 1 in [5].
There is a very close connection between finding the minimal enclosing ball of the

intersection of two balls and of optimally averaging quadratics. To see this, consider
again two quadratics

f(x) ≥ QA(x) := vA +
α

2
‖x− xA‖2 and f(x) ≥ QB(x) := vB +

α

2
‖x− xB‖2 .

Let Q be the optimal average of QA and QB . Notice that since QA, QB , and Q lower
bound f , the minimizer x∗ of f is guaranteed to lie in the three balls:

B
(
xA, R

2
A

)
where R2

A =
2

α
(f̂ − vA),

B
(
xB , R

2
B

)
where R2

B =
2

α
(f̂ − vB),

B
(
c̄, R2

)
where R2 =

2

α
(f̂ − v̄),

where f̂ is any upper bound on f∗. We observe the following elementary fact.

Proposition 4.2 (Minimal enclosing ball and optimal averaging). The ball
B
(
c̄, R2

)
is precisely the minimal enclosing ball of the intersection B

(
xA, R

2
A

)
∩

B
(
xB , R

2
B

)
.

Proof. Define the quantity λ̂ = 1
2 + vA−vB

α‖xA−xB‖2
. If λ̂ lies in the unit interval [0, 1],

then a quick computation using Lemma 2.2 shows the expressions

R2 = R2
B −

(
‖xA − xB‖2 +R2

B −R2
A

)2

4 ‖xA − xB‖2
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and

c̄ = λ̄xA + (1− λ̄)xB =
1

2
(xA + xB)− R2

A −R2
B

2 ‖xA − xB‖2
(xA − xB) .

Now observe

λ̂ < 0 if and only if ‖xA − xB‖2 < R2
A −R2

B

λ̂ ∈ [0, 1] if and only if ‖xA − xB‖2 ≥ |R2
A −R2

B |, and

λ̂ > 1 if and only if ‖xA − xB‖2 < R2
B −R2

A.

Comparing with the recipe [5, Algorithm 1] for computing the minimal enclosing ball,
we see that B

(
c̄, R2

)
is the minimal enclosing ball of the intersection B

(
xA, R

2
A

)
∩

B
(
xB , R

2
B

)
.

4.2. Optimal geometric descent method. To obtain an optimal method,
the authors of [5] observe that the term 2

α (f(x+)− f∗) in the inclusion (6) cannot be
ignored. Exploiting this term will require maintaining two sequences ck (the centers
of the balls) and xk (points for generating new balls). Suppose in iteration k we know
that x∗ lies in the ball

B

(
ck, R

2
k −

2

α

(
f(x+

k )− f∗
))

.

Consider now an arbitrary point, denoted suggestively by xk+1. Then (6) implies the
inclusion

x∗ ∈ B
(
x++
k+1,

(
1− 1

κ

) ‖∇f(xk+1)‖2
α2

− 2

α

(
f(x+

k+1)− f∗
))

.(7)

If we choose xk+1 to satisfy f(xk+1) ≤ f(x+
k ) and apply inequality (1) with x = xk+1,

we can get a new upper estimate of the initial ball,

x∗ ∈ B
(
ck, R

2
k −

1

κ

‖∇f(xk+1)‖2
α2

− 2

α

(
f(x+

k+1)− f∗
))

.(8)

It seems clear that if the centers ck and x++
k+1 of the two balls in (7) and (8) are

“sufficiently far apart,” then their intersection is contained in an even smaller ball.
This is the content of following lemma from [5].

Lemma 4.3 (Two balls shrinking). Fix centers xA, xB ∈ Rn and square radii

r2
A, r

2
B > 0. Also fix ε ∈ (0, 1) and suppose ‖xA − xB‖2 ≥ r2

B. Then there exists a
new center c ∈ Rn such that for any δ > 0 we have

B
(
xA, r

2
A − εr2

B − δ
)
∩B

(
xB , (1− ε)r2

B − δ
)
⊂ B

(
c, (1−√ε)r2

A − δ
)
.

A quick application of this result shows that, provided∥∥x++
k+1 − ck

∥∥2 ≥ ‖∇f(xk+1)‖2
α2

(9)

holds, there exists a new center ck+1 with

x∗ ∈ B
(
ck+1,

(
1− 1√

κ

)
R2
k −

2

α

(
f(x+

k+1)− f∗
))

.
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One way to ensure that xk+1 satisfies the two key conditions, f(xk+1) ≤ f(x+
k )

and inequality (9), is to simply let xk+1 be the minimizer of f along the line between
ck and x+

k . Trivially this guarantees the inequality f(xk+1) ≤ f(x+
k ), while the uni-

variate optimality condition ∇f(xk+1) ⊥ (ck−xk+1) means the triangle with vertices
xk+1, x++

k+1, and ck is a right triangle and inequality (9) becomes “the hypotenuse is
longer than a leg.” This is exactly the motivation for the line-search procedure in
Algorithm 1. Repeating the process yields iterates ck that satisfy the optimal linear
rate of convergence

‖ck − x∗‖2 ≤
(

1− 1√
κ

)k
R2

0.

The precise method is described in Algorithm 4.

Algorithm 4. Geometric descent method (Bubeck, Lee, and Singh)

Input: Starting point x0, strong convexity constant α > 0.
Output: x+

K .

Set c0 = x++
0 and R2

0 = ‖∇f(x0)‖2
α2 − 2

α

(
f(x0)− f(x+

0 )
)
.

for k = 1, . . . , K do
Set xk = line search

(
x+
k−1, ck−1

)
.

Set xA = xk − α−1∇f(xk) and R2
A = ‖∇f(xk)‖2

α2 − 2
α

(
f(xk)− f(x+

k )
)
.

Set xB = ck−1 and R2
B = R2

k−1 − 2
α

(
f(x+

k−1)− f(x+
k )
)
.

Let B
(
ck, R

2
k

)
be the smallest enclosing ball of B

(
xA, R

2
A

)
∩B

(
xB , R

2
B

)
.

end

Remark 4.4. When applying an iterative method to compute xk+1 = line search

(ck, x
+
k ), one can use the following termination criterion. Check if ck satisfies f(ck) ≤

f(x+
k ), then stop and set xk+1 := ck. Notice (9) holds trivially with this choice of xk+1.

Else stop with a trial point z on the line joining ck and x+
k satisfying f(z) ≤ f(x+

k )
and

∥∥z++ − ck
∥∥2 ≥ ‖∇f(z)‖2

α2
.

We claim that the line search will terminate in finite time, unless line search
(
ck, x

+
k

)
is the true minimizer of f . Indeed, since ck 6= line search

(
ck, x

+
k

)
(otherwise we

would have terminated in the if clause), one can easily check that z = line search

(ck, x
+
k ) satisfies the above inequality strictly.

The following theorem shows that Algorithm 1 and Algorithm 4 indeed produce
the same iterate sequence.

Theorem 4.5. Given the same initial point x0, Algorithm 1 and Algorithm 4
produce the same iterates xk and ck. Moreover, we have vk = f(x+

k )− α
2R

2
k, where vk

is the minimum value of the quadratic Qk in Algorithm 1 and Rk is the radius of the
ball in Algorithm 4.

Proof. Let xk and ck denote the iterates in Algorithm 1, and let x̂k and ĉk be
the iterates in Algorithm 4. We proceed by induction on k. It follows immediately
from the definition of the algorithms that x0 = x̂0, c0 = ĉ0, and v0 = f(x+

0 ) − α
2R

2
0.
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Now suppose, as an inductive assumption, xk−1 = x̂k−1, ck−1 = ĉk−1, and vk−1 =
f(x+

k−1)− α
2R

2
k−1. To see the equality xk = x̂k, observe

xk = line search
(
x+
k−1, ck−1

)
= line search

(
x̂+
k−1, ĉk−1

)
= x̂k.

Let xA = x++
k , xB = ck−1, d = ‖xA − xB‖, and define the quantities

vA = f(xk)− ‖∇f(xk)‖2
2α

,

vB = vk−1,

R2
A =

‖∇f(xk)‖2
α2

− 2

α

(
f(xk)− f(x+

k )
)
,

R2
B = R2

k−1 −
2

α

(
f(x+

k−1)− f(x+
k )
)
.

Notice that Qk(x) = vk + α
2 ‖x− ck‖

2
is the optimal averaging of QA(x) :=

vA+ α
2 ‖x− xA‖

2
and QB(x) := vB+ α

2 ‖x− xB‖
2
, and that B(ĉk, R

2
k) is the minimum

enclosing ball of the intersection of B(xA, R
2
A) and B(xB , R

2
B). Simple algebra shows

the relation

R2
A =

2

α

(
f(x+

k )− vA
)
,

and, from the inductive assumption vk−1 = f(x+
k−1)− α

2R
2
k−1, we also have

R2
B =

2

α

(
f(x+

k )− vB
)
.

Thus, by Proposition 4.2 and the discussion preceding it, we have ck = ĉk and vk =
f(x+

k )− α
2R

2
k. This completes the induction.

As we saw in section 3, computing the optimal averaging of several quadratic
functions is simple. On the other hand, it is far from clear how to find the minimum
radius ball that encloses the intersection of more than two balls. Indeed, instead
the authors of Algorithm 4 in the followup work [4] considered a “relaxation” that
involves minimizing a self-concordant barrier for the intersection. While revising the
current manuscript, we became aware that Beck in [3, Theorem 3.2] proved that the
minimum enclosing ball of the intersection of finitely many balls can be computed
by solving a convex quadratic program (QP). Namely, Beck showed that the squared
radius of the minimal ball enclosing the intersection

⋂t
i=1B(ci, r

2
i ) is exactly equal to

min
λ∈∆t

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2

−
t∑
i=1

λi(‖ai‖2 − r2
i ),

provided t ≤ n− 1 and the intersection of the balls has nonempty interior. This QP
is exactly the one we derived in section 3 for the optimal quadratic averaging method
with memory. Note that our derivation of the QP in section 3 was completely elemen-
tary; the proof of [3, Theorem 3.2], on the other hand, is much more sophisticated,
relying on an S-lemma-type result.

Proposition 4.6 (Optimal quadratic averaging and minimal enclosing ball). Let

Q(x) = v+ α
2 ‖x− c‖

2
be the optimal averaging of quadratics Qi(x) = vi+

α
2 ‖x− ci‖

2

for i = 1, . . . , t with t < n. Fix a real number s ≥ vi for all i = 1 . . . , t and define the
balls Bi := {Qi ≤ s}. Then provided that the intersection

⋂t
i=1Bi has a nonempty

interior, the ball B := {Q ≤ s} is the minimal enclosing ball of the intersection⋂t
i=1Bi.
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Proof. Let R2 be the square radius of B and let R2
i be the square radius of Bi

for i = 1, . . . , t. Using Proposition 3.1, we deduce

R2 =
2

α
(s− v) =

2

α

s− max
λ∈∆t

α2
t∑
i=1

λi

(α
2
‖ci‖2 + vi

)
− α

2

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2



= min
λ∈∆t

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2

−
t∑
i=1

λi

(
‖ci‖2 +

2

α
(vi − s)

)

= min
λ∈∆t

∥∥∥∥∥
t∑
i=1

λici

∥∥∥∥∥
2

−
t∑
i=1

λi

(
‖ci‖2 −R2

i

)
.

The center of B is c =
∑t
i=1 λici where λ is the minimizer of the expression above.

Comparing with [3, Theorem 3.2], we see that B is exactly the minimum radius ball
enclosing the intersection

⋂t
i=1Bi.

5. Numerical examples. In this section, we numerically illustrate optimality
gap convergence in Algorithm 1, and explore how Algorithm 3, the variant of Algo-
rithm 1 with memory, aids performance. To this end, we focus on minimizing two
functions: the regularized logistic loss function

L(w) :=
1

N

N∑
i=1

log
(
1 + e−yiw

T xi
)

+
α

2
‖w‖2 ,

where xi ∈ Rn and yi ∈ {±1} are labeled training data, and the “world’s worst”
function for first-order methods:

f(x) =
B

2

(
(1− x1)2 +

n−1∑
i=1

(xi − xi+1)2 + x2
n

)
+

1

2

n∑
i=1

x2
i

(see [10, sections 2.1.2 and 2.1.4]). For the logistic regression examples, we use the
Library for Support Vector Machines (LIBSVM) [6] data sets a1a (N = 1605, n = 123)
and colon-cancer (N = 62, n = 2000).

5.1. Optimality gap convergence. From inequality (2), we get the well-known
optimality gap estimate for strongly convex functions

f(x)− f∗ ≤ ‖∇f(x)‖2
2α

.(10)

How does this estimate compare with the gaps gk := f(x+
k ) − vk generated by Al-

gorithm 1? Obviously the answer depends on the point where we evaluate the gap
estimate in (10). Nonetheless, we can say that the gaps gk are tighter than the gaps

Gk := ‖∇f(xk)‖2
2α . Indeed, by the definition of vk, we trivially have vk ≥ f(xk) − Gk

and thus

gk = f(x+
k )− vk ≤ f(xk)− vk ≤ Gk.

On a relative scale, the difference between gk and Gk is striking; see Figure 3. Notice
that Gk is an optimality gap estimate before averaging, and gk is an optimality gap
estimate after averaging; the plots in Figure 3 show that optimal quadratic averaging
makes great relative progress per iteration.
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“World’s Worst”

Fig. 3. Relative differences in gaps Gk−gk
Gk

on the “world’s worst” function (B = 106, n = 200),

and on the logistic loss on the colon-cancer data set with regularization α = 0.0001.

“World’s Worst”

Fig. 4. Comparison of various optimality gaps on the “world’s worst” function (B = 106,
n = 200), and on the logistic loss on the a1a data set with regularization α = 0.0001.

In Figure 4, we plot gk, the true gaps f(x
+
k )−f∗, and the gap estimate in (10) at

xk, x
+
k , and ck for the “world’s worst” function and the logistic loss function. The true

gaps are the tightest, albeit unknown at runtime. Surprisingly, the gaps ‖∇f(ck)‖2

2α are
quite bad: several orders of magnitude larger than gk. So even though the centers
ck may appear to be the focal points of the algorithm, the points x+

k are the ones to

monitor in practice. Finally we note that the gaps gk and
‖∇f(x+

k )‖2
2α are comparable,

even though gk does not rely on gradient information at x+
k .

5.2. Optimal quadratic averaging with memory. To demonstrate the effec-
tiveness of optimal quadratic averaging with memory, we use it to minimize the logistic
loss (see Figure 5). The speedup over the memoryless method is significant, even when
taking into account the extra work per iteration needed to solve the small dimensional
quadratic subproblems. In Figure 6, we compare Algorithm 3 with L-BFGS. The two
schemes are on par with each other, and neither is better than the other in all cases.

It is perhaps fairer to compare L-BFGS with memory size m to Algorithm 3 with
memory size t = 2m (see Figure 7). Indeed, L-BFGS with memory size m actually
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Fig. 5. Algorithm 3 with various memory sizes t. The case t = 1 corresponds to the memoryless
optimal averaging method in Algorithm 1. The task is logistic regression, with regularization α =
0.0001, on data sets a1a and colon-cancer.

Fig. 6. Algorithm 3 with memory size t versus L-BFGS with memory size m. The task is
logistic regression, with regularization α = 0.0001, on data sets a1a and colon-cancer.

Fig. 7. A fairer (equal memory) comparison of Algorithm 3 and L-BFGS. The task is still
logistic regression, with regularization α = 0.0001, on data sets a1a and colon-cancer. We focus on
lower accuracy than we did in Figure 6.
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Fig. 8. Algorithm 3 with memory size t versus L-BFGS with memory size m. The task is
logistic regression on data sets a1a and colon-cancer, with α = 10−6 (top row) and α = 10−8

(bottom row).

stores m pairs of vectors, whereas Algorithm 3 with memory size t only stores t
vectors. Moreover, the most expensive operation per iteration in L-BFGS requires
4mn multiplications (see [12, Algorithm 7.4]); in contrast, computing a new center
in Algorithm 3 requires 2n(t + 1) multiplications plus the cost of solving a small
quadratic program. (Updating the matrix CTC takes t + 1 inner products in Rn,
finding λ amounts to solving a small quadratic program, and computing Cλ takes n
inner products in Rt+1.) In Figure 8, we again compare L-BFGS and Algorithm 3 on
logisitic regression, but with less regularization.

We noticed that the small dimensional quadratic program in Algorithm 3 must
be solved to high accuracy, especially on poorly conditioned problems; an active-set
method works well. Accuracy in the line search is less important. Minimizing the one-
dimensional function r 7→ f(x+rd), with ‖d‖ = 1, to within 10−4 accuracy in r works
well in general. In Figure 9, we show how line search accuracy affects Algorithm 1.

6. Comments on proximal extensions. It is natural to try to extend geo-
metric descent and optimal quadratic averaging to a proximal setting. For the sake of
concreteness, let us focus on geometric descent. We can easily extend the suboptimal
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Fig. 9. A comparison of how the line search tolerance in Algorithm 1 affects convergence. In
the top row, we do the comparison with logistic regression on the a1a and colon-cancer data sets
with regularization α = 10−4. In the bottom row, we use regularization 10−8.

version of the algorithm to the proximal setting, but some difficulties arise when
accelerating the method. Suppose we are interested in solving the problem

min
x

f(x) := g(x) + h(x),

where g : Rn → R is β-smooth and α-strongly convex, and h : Rn → R ∪ {+∞} is
closed, convex, and is such that the proximal mapping

proxth(x) := argmin
z
{h(z) +

1

2t
‖z − x‖2}

is easily computable. In the analysis of first order methods for such problems, the
gradient mapping Gt(x) := 1

t (x− proxth(x− t∇g(x))) plays the role of the usual
gradient. The following is a standard estimate; see for example [10, section 2.2.3]. We
provide a proof for completeness.

Lemma 6.1. Fix a step length t > 0 and define a proximal gradient step x+ :=
x− tGt(x). Then for every y ∈ Rn the following inequality holds:

f(y) ≥ f(x+) + 〈Gt(x), y − x〉+ t

(
1− βt

2

)
‖Gt(x)‖2 +

α

2
‖y − x‖2 .
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Proof. Appealing to β-smoothness of g, we deduce

f(x+) ≤ g(x)− t 〈∇g(x), Gt(x)〉+
βt2

2
‖Gt(x)‖2 + h(x+).

Furthermore, strong convexity of g implies

f(x+) ≤ g(y) +
〈
∇g(x), x+ − y

〉
− α

2
‖y − x‖2 +

βt2

2
‖Gt(x)‖2 + h(x+).

Finally, using the observation that Gt(x)−∇g(x) belongs to ∂h(x+), we have

f(x+) ≤ f(y) +
〈
Gt(x), x+ − y

〉
− α

2
‖y − x‖2 +

βt2

2
‖Gt(x)‖2 .

Rearrangement completes the proof.

If we let y = x∗ in Lemma 6.1 and rearrange we get

x∗ ∈ B
(
x− 1

α
Gt(x),

(
1

α2
− 2

α
t+

β

α
t2
)
‖Gt(x)‖2 − 2

α

(
f(x+)− f∗

))
.

How should we choose the step length t? A simple approach is to choose t to minimize
the quantity 1

α2− 2
α t+

β
α t

2, i.e., set t = 1
β . With this choice of t, we deduce the inclusion

x∗ ∈ B
(
x++,

(
1− 1

κ

) ∥∥G1/β(x)
∥∥2

α2
− 2

α

(
f(x+)− f∗

))
,

where x++ = x− 1
αG1/β(x) is a long step and x+ = x− 1

βG1/β(x) is a short step. A
proximal version of the suboptimal geometric descent follows easily from Lemma 4.1.

To accelerate the proximal geometric descent algorithm we assume in iteration k
that x∗ lies in some ball

B

(
ck, R

2
k −

2

α
(f(yk)− f∗)

)
.

We then consider a second minimizer enclosing ball derived from information at some
point xk+1:

x∗ ∈ B
(
x++
k+1,

(
1− 1

κ

) ∥∥G1/β(xk+1)
∥∥2

α2
− 2

α

(
f(x+

k+1)− f∗
))

.

Following the same pattern as in section 4.2, if we choose xk+1 to satisfy f(xk+1) ≤
f(yk) and appeal to the smoothness inequality f(x+

k+1) ≤ f(xk+1)− 1
2β

∥∥G1/β(xk+1)
∥∥2

,
we deduce the inclusion

x∗ ∈ B
(
ck, R

2
k −

1

κ

∥∥G1/β(xk+1)
∥∥2

α2
− 2

α

(
f(x+

k+1)− f∗
))

.

By Lemma 4.3 there is a new center ck+1 with

x∗ ∈ B
(
ck+1,

(
1− 1√

κ

)
R2
k −

2

α

(
f(x+

k+1)− f∗
))

,
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provided the old centers x++
k+1 and ck are far apart; specifically, we must be sure that

the inequality

∥∥x++
k+1 − ck

∥∥2 ≥
∥∥G1/β(xk+1)

∥∥2

α2

holds. How do we choose xk+1 to satisfy both f(xk+1) ≤ f(yk) and
∥∥x++

k+1 − ck
∥∥2 ≥

‖G1/β(xk+1)‖2
α2 ? The desired xk+1 does exist; for example, xk+1 = x∗ is such a point. In

the proximal setting, it is not clear how to choose xk+1 to ensure these two inequalities
(even for specific problem classes). This is an interesting topic for future research.

Appendix A. Exact line search in accelerated gradient descent. Nesterov’s
method is based on an estimate sequence; that is, a sequence of functions Qk and non-
negative numbers Λk with

Λk → 0 and Qk(x) ≤ (1− Λk)f(x) + ΛkQ0(x).

Estimate sequences are useful because if yk satisfies f(yk) ≤ vk := minx∈Rn Qk(x),
then

f(yk)− f∗ ≤ Λk (Q0(x∗)− f∗) ;

that is, f(yk) approaches f∗ with error proportional to Λk; see [10].
The quadratics in Algorithm 2 (with appropriately chosen Λk) form an estimate

sequence. To explain, for k ≥ 1, pick vectors xk and numbers λk ∈ (δ, 1) with δ > 0.
Next, recursively define

Q0(x) = v0 +
γ0

2
‖x− c0‖2 and

Qk(x) = (1− λk)Qk−1(x) + λk

(
f(xk)− ‖∇f(xk)‖2

2α
+
α

2

∥∥x− x++
k

∥∥2

)
.

Then the quadratics Qk and numbers Λk =
∏k
j=1(1 − λj) are an estimate sequence

for f . Nesterov’s method is designed to ensure the inequality f(x+
k ) ≤ vk with the

added optimal rate condition λk ≥
√

α
β .

The scheme in Algorithm 2 with xk = line search
(
ck−1, x

+
k−1

)
also guarantees

these conditions. Trivially we have f(x+
0 ) ≤ v0. Assume, for induction, that we have

f(x+
k−1) ≤ vk−1. From [10, Lemma 2.2.3], we know

vk = (1− λk)vk−1 + λkf(xk)− λ2
k

2γk
‖∇f(xk)‖2

+
λk(1− λk)γk−1

γk

(α
2
‖xk − ck−1‖2 + 〈∇f(xk), ck−1 − xk〉

)
.

Since xk = line search
(
ck−1, x

+
k−1

)
, we have f(xk) ≤ f(x+

k−1) ≤ vk−1 and
〈∇f(xk), ck−1 − xk〉 = 0, and therefore

vk ≥ f(xk)− λ2
k

2γk
‖∇f(xk)‖2 = f(xk)− 1

2β
‖∇f(xk)‖2 ≥ f(x+

k ).

Provided we set γ0 ≥ α, we get the optimal rate condition λk =
√
γk
β ≥
√

α
β .
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