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Abstract. In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for
minimizing smooth strongly convex functions. Their geometric descent algorithm, largely inspired by
the ellipsoid method, enjoys the optimal linear rate of convergence. We show that the same iterate
sequence is generated by a scheme that in each iteration computes an optimal average of quadratic
lower models of the function. Indeed, the minimum of the averaged quadratic approaches the true
minimum at an optimal rate. This intuitive viewpoint reveals clear connections to the original fast-
gradient methods and cutting plane ideas, and leads to limited-memory extensions with improved
performance.
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1. Introduction. Consider a function f: R™ — R that is g-smooth and a-
strongly convex. Thus each point = yields a quadratic upper estimator and a quadratic
lower estimator of the function. Namely, inequalities ¢(y;z) < f(y) < Q(y;x) hold
for all z,y € R™, where we set

alys ) == f(@) + (VF(@)y =) + 5 lly -l
Q) 1= J(x) + (VT @),y — ) + 5 Iy —

Classically, one step of the steepest descent algorithm decreases the squared distance of
the iterate to the minimizer of f by the fraction 1—«/f. This linear convergence rate is
suboptimal from a computational complexity viewpoint. Optimal first order methods,
originating in Nesterov’s work [11] achieve the superior (and the best possible) linear
rate 1 — /a/B; see also the discussion in [10, section 2.2]. Such accelerated schemes,
on the other hand, are notoriously difficult to analyze. Numerous recent papers
(e.g., [1, 2, 5,9, 13]) have aimed to shed new light on optimal algorithms.

This manuscript is motivated by the novel geometric descent algorithm of Bubeck,
Lee, and Singh [5]. Their scheme is highly geometric, sharing some aspects with the
ellipsoid method, and it achieves the optimal linear rate of convergence. Moreover,
the geometric descent algorithm often has much better practical performance than
accelerated gradient methods; see the discussion in [5]. Motivated by their work, in
this paper we propose an intuitive method that maintains a quadratic lower model
of the objective function, whose minimal value converges to the true minimum at an
optimal linear rate. We will show that the two methods are indeed equivalent in the
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sense that they produce the same iterate sequence. The quadratic averaging view-
point, however, has important advantages. First, it immediately yields a comparison
with the original accelerated gradient method [10, 11] and cutting plane techniques.
Secondly, quadratic averaging motivates a simple strategy for significantly accelerat-
ing the method in practice by utilizing accumulated information—a limited memory
version of the scheme.

The outline of the paper is as follows. In section 2, we describe the optimal
quadratic averaging framework (Algorithm 1)—the focal point of the manuscript. In
section 3, we propose a limited memory version of Algorithm 1, based on iteratively
solving small dimensional quadratic programs. In section 4, we show that our Algo-
rithm 1 and the geometric descent method of [5] produce the same iterate sequence.
Section 5 is devoted to numerical illustrations, in particular showing that the optimal
quadratic averaging algorithm with memory can be competitive with limited-memory
BFGS. We finish the paper with section 6, where we discuss the challenges that must
be overcome in order to derive proximal extensions. In the final stages of revising
this paper, a new manuscript [7] appeared explaining how to overcome exactly these
challenges.

1.1. Notation. We follow the notation of [5]. Given a point x € R", we define
a short step

1
xt =2 - -Vf(z
5V/(@)
and a long step
++ !
T =0 - =V f(z).
o
Setting y = =™ in the quadratic bound f(y) < Q(y;x) yields the standard inequality

1) ) + % IVF @) < £(z).

We denote the unique minimizer of f by z*, its minimal value by f*, and its condition
number by & := /a. Throughout, the symbol B(z, R?) stands for the Euclidean ball
of radius R around z. For any points z,y € R", we let line_search(x,y) be the
minimizer of f on the line between = and y.

2. Optimal quadratic averaging. The starting point for our development is
the elementary observation that every point T provides a quadratic underestimator
of the objective function, having a canonical form. Indeed, completing the square in
the strong convexity inequality f(x) > q(z;Z) yields

Vi@t |« 2
@) IOF (f<x>—2a N
Suppose we have now available two quadratic lower estimators:
« 2 « 2
@) > Qa@)=va+ S o —zal® and  f(@) > Qple) = vp + 5 o~ ap].

Clearly, the minimal values of @4 and of @p lower bound the minimal value of f.
For any A € [0, 1], the average @) := AQa + (1 — \)@p is again a quadratic lower

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/04/18 to 128.208.201.54. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

AN OPTIMAL FIRST ORDER METHOD BY OPTIMAL AVERAGING 253

20

15+

10 -

Optimal Averaging

FIG. 1. The optimal averaging of Qa(z) =1+ 0.5(x +2)? and Qp(z) = 3 + 0.5(x — 4)2.

estimator of f. Thus we are led to the question, what choice of A yields the tightest
lower bound on the minimal value of f7
To answer this question, observe the equality

Qr(®) == AQa(@) + (1 = NQs(x) = va + 5 o — a]*,

where
ex=Ma+(1—Nzp
and
3) on = v+ (va—vp+ 5 lea—2pl?) A= (5 24 —2l”) X2

In particular, the average @@ has the same canonical form as Q4 and Qp. A quick
computation now shows that vy (the minimum of @))) is maximized by setting

A= Projjo. 1 (; + 11,41132> .
alza—=zpl
With this choice of A, we call the quadratic function @ = v + £|| - —¢||* the optimal
averaging of Q4 and Qp. See Figure 1 for an illustration.

An algorithmic idea emerges. Given a current iterate x, form the quadratic lower
model Q(-) in (2) with Z = x. Then let @ be the optimal averaging of @) and the
quadratic lower model Q;_; from the previous step. Finally define xx1 to be the
minimizer of @, and repeat. Though attractive, the scheme does not converge at
an optimal rate. Indeed, this algorithm is closely related to the suboptimal method
in [5]; see section 4.1 for a discussion. The main idea behind acceleration, natural in
retrospect, is a separation of roles: one must maintain two sequences of points z and
cx. The points x; will generate quadratic lower models as above, while ¢ will be the
minimizers of the quadratics. We summarize the proposed method in Algorithm 1.
The rule for determining the iterate xj by a line search is entirely motivated by the
geometric descent method in [5].
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Algorithm 1. Optimal quadratic averaging.

Input: Starting point zy and strong convexity constant o > 0.
. . 2
Output: Final quadratic Qg (z) = vk + § ||z — ck||” and f}
Set Qo(z) = o + § |l — col®, where vy = f(zo) — ILEZIL and ¢g = 2§ .
fork=1,..., K do
Set x; = line_search (ck_l,xz_l).

Set Q) = (f(ox) — M) 4 g o — a1

2
Let Qi (x) = v + $||lz — cx|* be the optimal averaging of @ and Qx—1.
end

Remark 2.1. When implementing Algorithm 1, we set :z:; = line_search(xy,
xr — V f(zk)). This does not impact the analysis as kar still satisfies the key inequal-
ity (1). With this modification, the algorithm does not require 3 as part of the input,
and we have observed that the algorithm performs better numerically.

To aid in the analysis of the scheme, we record the following easy observation.

LEMMA 2.2. Suppose that Q = v + &| - —¢||? is the optimal averaging of the
quadratics Q4 = va + §|| - —x4||? and Qp = v + Sl —xgl||?. Then the quantity ©
is nondecreasing in both va and vg. Moreover, whenever the inequality lva — vp| <
2||za — 2p||? holds, we have

2
T | 1 va—vs
0= gllza—osl +2(UA+UB>+2a(|xAxB||> '

Proof. Define \ := 3 4 —%4="8 - Notice that we have

allea—zp|?

A€0,1] ifand only if |vg —vp| < %Hx,q — xB||2.

If A lies in [0, 1], equality A = A holds, and then from (3) we deduce

2
_ o 9 1 1 V4 — UB
v=vy=—|za—ap|P+s(vatvp)+—— ] .
= Sllea - ool + (oa + vm) + oo (A2
If A does not lie in [0,1], then an easy argument shows that ¥ is linear in v4 either
with slope one or zero. If A lies in (0,1), then we compute
o0v 1 1

5 =5+t ———=(wa—-uB
dva 2 allzg fxBH2( )

which is nonnegative because % < % Since o is clearly continuous, it follows
—IB
that v is nondecreasing in v4, and by symmetry also in vp. ]

We now show that Algorithm 1 achieves the optimal linear rate of convergence.

THEOREM 2.3 (Convergence of optimal quadratic averaging). In Algorithm 1,
for every index k > 0, the inequalities vy, < f* < f(a:;') hold and we have

k
Fat) — v < (1 - \}) () — vo).
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Proof. Since in each iteration, the algorithm only averages quadratic minorants
of f, the inequalities vy < f* < f(a:z') hold for every index k. Set rg = %(f(:ca') —0)
and define the quantities ry := (1 — ﬁ)kro. We will show by induction that the
inequality vy > f(xﬁ) — 57 holds for all £ > 0. The base case k = 0 is immediate,

and so assume we have

o
vp—1 > flaf_y) — 5 k-1
for some index k — 1. Next set v4 = f(xg) — w and vg := vi_;. Then the

function

a
Qr(z) = vg + 5 o — cxl?

is the optimal averaging of Qa(z) =va+%||z -z " H2 and Qp(r) =vp+5 |z —cp1 12
An application of (1) yields the lower bound 94 on v4:

oa = fag) — L@ S 5y VI @I (1 _ 1) — .

2c¢ 2 a?
The induction hypothesis and the choice of zy yield a lower bound vp on vp:
o o
vp > fz_)) — 3 Th-1 > flxr) — 5 Tk-1

> fai) + % IV f )2 = Srecs

2
+y_ @ 1 2 .
= flzy) - 5 "1 e IV f(e)l™ ) = o5.
Define the quantities d := ||z} * — cx_1|| and h = “Vf(SM_ We now split the
a—

proof into two cases. First assume h? < Then we deduce

5 -

where the third line follows since 2/+/k < 1+ 1/k holds. Hence in this case, the proof
is complete.

Next suppose h? > and let v + &|| - —c[|* be the optimal average of the two
quadratics 94 + 2| - —2;{ 7||? and 95 + 2| - —cx—1]/>. By Lemma 2.2, the inequality
v > v holds. We claim that equality

Tk—1
2

A d? + 2(04 — 0p))?
(4) v:v3+%( “(d;* z)
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1 [DaA—DB] :
5 > ——. To this

. The choice zj, = line_search(cg_1,

holds. This follows immediately from Lemma 2.2, once we show
N - 2
end, note first the equality |UAQ;§B| = ‘T’“‘;d;h |

+
x,_,) ensures

2
d* —h? = ||z — x| - o (VF(@r), 2 — ep-1) = llaw — ek > 0.

Thus we have h? — r,_; < h? < d?. Finally, the assumption h% > T’“T’l implies

(5) rh_1 —h% < rkT_l < h? < d°.

Hence we can be sure that (4) holds. Plugging in 04 and 9 yields

a 1 d? 4 rp_1 — h?)?
v=f( ﬁ)—2<rk1—mh2—( Zd; )>

Hence the proof is complete once we show the inequality
1 (d* + 71 — B?)? 1
- —h?— <l1-— 1.
Tl T Ad2 = Jr)
After rearranging, our task simplifies to showing the inequality
Th—1 < hj n (% +rp_1 — h2)2.
VE K 4d?

Taking derivatives and using inequality (5), one can readily verify that the right-hand
side is nondecreasing in d? on the interval d?> € [h% +oc0). Thus plugging in the
endpoint d? = h? we deduce

h2 42 L — h2)2 h2 T27
7_’_( +7E1 ) > Py T
K 4d? K 4h?

Tk—1
2

Minimizing the right-hand side over all h satisfying h? > yields the inequality

2 2
h7+rk71 Tk—1

ko 4h? T R

The proof is complete. ]

It is instructive to compare optimal averaging (Algorithm 1) with Nesterov’s
optimal methods in [10, 11]. For convenience, we record the optimal gradient method
following [10], in Algorithm 2.

Comparing Algorithms 1 and 2, we see that

e 1 is some point on the line between c;_; and x,if_l, and

e ()i is an average of the previous quadratic Qr_1 and the strong convexity

quadratic lower bound () based at x.

As we discuss in Appendix A, we can modify Nesterov’s method so that, as in optimal
quadratic averaging, we set z; = line_search (Ck—hIZ__l) in each iteration. After
this change, only two differences remain between the schemes:

e the initial quadratic Q) is different, and

e the averaging parameter is computed differently.
These differences, however, are fundamental. In Algorithm 1, the quadratic Qg lower
bounds f and therefore optimal averaging makes sense; in the accelerated gradient
method, Qg does not lower bound f, and the idea of optimal averaging does not apply.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/04/18 to 128.208.201.54. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

AN OPTIMAL FIRST ORDER METHOD BY OPTIMAL AVERAGING 257

Algorithm 2. General scheme of an optimal method (Nesterov).

Input: Starting points zg and ¢, strong convexity constant o > 0, smoothness pa-
rameter 8 > 0, and initial quadratic curvature v9 > a.
Output: Final quadratic Qk (z) = vk + 5 ||z — ek |
Set Qo(x) =vo + L ||z — coll?, where vy = f(xo) — ﬁ IV £ (z0)I.
for k=1,..., K do
Compute averaging parameter A\, € (0,1) from A2 = (1 — \g)Ve_1 + \pa.
Set v, = (1 — /\k)’)/k—l + A

_ + _
Set xp = (1 —0)cr—1 + Opz)_,, where 0, = m

T 2 (e} 2
Set Q(a) = (f(zx) — ERL) + 5 || — o
Let ¢i be the minimizer of the quadratic Q(z) = (1 — A\p)Qr—1(z) + M\ Q(x).
end

/* If we set 79 = «, then we have v = «, )‘k:ﬁ’ and 0 = 1)('%. */

3. Optimal quadratic averaging with memory. Each iteration of Algo-
rithm 1 forms an optimal average of the current lower quadratic model with the
one from the previous iteration; that is, as stated the scheme has a memory size of
one. We next show how the scheme easily adapts to maintaining limited memory, i.e.,
by averaging multiple quadratics in each iteration. We mention in passing that the
authors of [5] left open the question of efficiently speeding up their geometric descent
algorithm in practice. One approach of this flavor recently appeared in [4, section
4]. The optimal averaging viewpoint, developed here, provides a direct and satisfying
alternative. Indeed, computing the optimal average of several quadratics is easy, and
amounts to solving a small dimensional quadratic optimization problem.

To see this, fix ¢t quadratics Q;(z) :=v; + § ||z — ci||27 with i € {1,...,t}, and a
weight vector X in the ¢-dimensional simplex A; := {z € R’ : 22:1 x; =1, x > 0}
The average quadratic

Qi(z) = Z AiQi(z)

maintains the same canonical form as each @Q;.
PROPOSITION 3.1. Define the matric C = [cl cy ... ct] and vector v =

[vl vy ... vt}T. Then we have

where
ex=C\ and vy = <%diag (cTo) + v,)\> - % [CAI?.

Proof. The Hessian of @ is simply §1I, and therefore the quadratic @x(z) has
the form

« 2
nt g |z — el

for some vy and cy. Notice that ¢y is the minimizer of @) and, by differentiating, we
determine that ¢y = Z§=1 Aic; = CA. We then compute
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by
i =Qalen) = Y- (hi+ 22 jor— el

1=1

t
(8%
= .0+ 5 YA (IOAIP = 2(Cx ) + i)
=1

t t
i=1

i=1

ERYACEY T o« 2
f<2d1ag(C’ 0)+U,A> S lIox).

The proof is complete. O

Naturally, we define the optimal averaging of the quadratics Q);, with i € {1,2,
...,t}, to be Qx, where X is the maximizer of the concave quadratic over the simplex:

max v, = <%diag (CTC) +v, /\> - % 1O

There is no closed form expression for A, but one can quickly find it by solving a
quadratic program in ¢ variables, for example by an active set method. Moreover,
some thought shows that the matrix C7C can be efficiently updated if one of the
centers changes; we omit the details.

We propose an optimal averaging scheme with memory in Algorithm 3. As we
see in section 5, the method performs well numerically. Moreover, the scheme enjoys
the same convergence guarantees as Algorithm 1; that is, Theorem 2.3 applies to
Algorithm 3, with nearly the same proof (which we omit).

Algorithm 3. Optimal quadratic averaging with memory.

Input: Starting point z(, strong convexity constant o > 0, and memory size ¢ > 1.
Output: Final quadratic Qg (z) = vk + < ||z — cx||” and z.

Set Qo(z) =vo+ § ||z — coll?, where vy = f(xo) — w and ¢g = 2 "
fork=1,..., K do
Set xj, =1line_search(cg—1, x;'_l).
z1)|? a 2
Set My () = f(xy) — LT 4 a|g g+ ||°,
Let Qp(z) :==vp + § ||z — c||” be the optimal averaging of the
k + 1 quadratics Qg_1, Mg, Mg_q, ..., My if kK <t, or of the
t + 1 quadratics Qr—1, Mg, Mr—1, ..., Mg_4+1 ifk>t+1.

end

The reader may notice that Algorithm 3 shows some similarity to the classical
Kelley’s method for minimizing nonsmooth convex functions [8]. In the simplest case
of minimizing a smooth convex function f on R™, Kelley’s method iterates the steps

Tpy1 = argmin fi ()
x
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for the functions

fulw) i= max {f(w:) + (VF(i),o - i)}

,,,,,

In other words, the scheme iteratively minimizes the (piecewise linear) lower models
fr of f. Coming back to the optimal averaging viewpoint, suppose that Q5 is an
optimal average of the lower-bounding quadratics @; for ¢ = 1,..., k. Then we may
write

vx = max mxin Z)\ZQZ(it) = rrz}in max Z)\lQl(x) = rrgin (Z_Hllaxk Qz(x)> .
7 3

Thus vy is the minimal value of the now different lower model, max;—1,.. x Q;, of f.
Kelley’s method is known to have poor numerical performance and convergence guar-
antees (e.g., [10, section 3.3.2]), while Algorithm 3 achieves the optimal linear con-
vergence rate. This disparity is of course based on the two key distinctions: (1) using
quadratic lower models coming from strong convexity instead of linear functions, and
(2) maintaining two separate sequences ¢, (centers) and zj (sources of lower model
updates).

4. Equivalence to geometric descent. Algorithm 1 is largely motivated by
the geometric descent method introduced by Bubeck, Lee, and Singh [5]. In this
section, we show that the two methods (Algorithm 1 and Algorithm 4) indeed generate
an identical iterate sequence.

4.1. Suboptimal geometric descent method. The basic idea of geometric
descent [5] is that, for each point z € R™, the strong convexity lower bound f* >
q(z*;x) defines a ball containing x*:

B (w, IVI@IT 2 50— f*)) .

o? o

In turn, taking into account (1) yields the guarantee

(6) e B <x++, (1 _ 1) w _ 2 (f(x+) - f*)> .

K o? o

A crude upper estimate of the radius above is obtained simply by ignoring the non-
negative term % (f(xz*) — f*). The suboptimal geometric descent method proceeds as
follows. Suppose we have available some ball B (co, Rg) containing z*. As discussed,
the quadratic lower bound at the center ¢y, namely f* > q(x*,¢g), yields another

ball B(cef™, (1 — é)”vféiﬁow) containing z*. Geometrically it is clear that the inter-
section of these two balls must be significantly smaller than either of the individual
balls. The following lemma from [5] makes this observation precise; see Figure 2 for

an illustration.

LEMMA 4.1 (Minimal enclosing ball of the intersection). Fiz a center x € R™,
square radius R?> > 0, step h € R™, and € € (0,1). Then there exists a new center
c € R™ with

B (z,R*) N B(z+h,(1—¢)|h]*) € B(c,(1—€)R?).
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Fic. 2. Minimal enclosing ball of the intersection.

An application of Lemma 4.1 yields a new center ¢; with

B (co,RY) N B <CE)H', (1 — i) Vfci;:o)2> CB <cl, (1 — i) Rg) .

Repeating the procedure with the new ball B (cl, (1 - %) R%) yields a sequence of

centers ¢y satisfying
\*
o-af < (1-1) R

We note that the centers ¢, and R3 of the minimal enclosing balls in Lemma 4.1 are
easy to compute; see Algorithm 1 in [5].

There is a very close connection between finding the minimal enclosing ball of the
intersection of two balls and of optimally averaging quadratics. To see this, consider
again two quadratics

f@) 2 Qa(@) i=va+ 3o —zal®  and  f(2) 2 Qp(e) =vs + 5 o — s’

Let Q be the optimal average of Q4 and Q. Notice that since Q 4, @p, and @Q lower
bound f, the minimizer x* of f is guaranteed to lie in the three balls:

(f —va),

(f - ’UB)a

B (¢, R*) where R®= E(f - ),

B(xA,RQA) where R? =

B(xB,RQB) where R% =

N o2 |

where f is any upper bound on f*. We observe the following elementary fact.

PROPOSITION 4.2 (Minimal enclosing ball and optimal averaging).  The ball
B (E, RQ) is precisely the minimal enclosing ball of the intersection B (acA,Ri) N
B (xBa R2B) :

Proof. Define the quantity \ = 14+ —asus o f A lies in the unit interval [0, 1],

allza—zpl®
then a quick computation using Lemma 2.2 shows the expressions

2
(||:CA — UCBH2 + R% — Ri)

R® = Ry —
dfjza = zp]’
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and

— _ 1 2 _ p2
EZ)\IAJr(l*/\)l‘B:*(IA‘FIB)* RA RB

—2—= (x4 —2B).
2 2||za — x5

Now observe

A<0 ifandonlyif |lza—ap|? < R4 — RS
Ae[0,1] ifandonlyif |lza—2zg|*>|R% — R%|, and

A>1 ifandonlyif |lzs —ap|° < RS — R.
Comparing with the recipe [5, Algorithm 1] for computing the minimal enclosing ball,
we see that B (¢, R?) is the minimal enclosing ball of the intersection B (x4, R%) N
B (xp, R). 0

4.2. Optimal geometric descent method. To obtain an optimal method,

the authors of [5] observe that the term 2 (f(z") — f*) in the inclusion (6) cannot be
ignored. Exploiting this term will require maintaining two sequences ¢ (the centers
of the balls) and zj, (points for generating new balls). Suppose in iteration & we know
that «* lies in the ball

B (e it =2 (D) - 1)

Consider now an arbitrary point, denoted suggestively by 1. Then (6) implies the
inclusion

o . (,Im’ (1 i 1) IVf(zee )" 2 (Flat,)) — f*)) .

K o?

If we choose x1 to satisfy f(agy1) < f(:cZ') and apply inequality (1) with = x4,
we can get a new upper estimate of the initial ball,

(8) x*eB(ck,Ri—ﬁ —a(f(wiﬂ)—f*))-

It seems clear that if the centers ¢, and z;f of the two balls in (7) and (8) are
“sufficiently far apart,” then their intersection is contained in an even smaller ball.
This is the content of following lemma from [5].

LEMMA 4.3 (Two balls shrinking). Fiz centers x4,x5 € R" and square radii
r%,r% > 0. Also fix € € (0,1) and suppose ||z ] = r%. Then there ezists a
new center ¢ € R™ such that for any 6 > 0 we have

B (33,4,7“,24 — er% — 5) NB (xB,(l — 6)7”23 — 6) CcB (c,(l —Very — (5) .
A quick application of this result shows that, provided

v 2
(9) ||xz_:r1 _ CkH2 > ”f(z+l)|‘

holds, there exists a new center cx41 with

z* € B <ck+1, (1 — \}E> R — % (flzfy) — f*)) )
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One way to ensure that 41 satisfies the two key conditions, f(zx4+1) < f(z}))
and inequality (9), is to simply let 2511 be the minimizer of f along the line between
cr and ;. Trivially this guarantees the inequality f(xx+1) < f(z}), while the uni-
variate optimality condition V f(xg41) L (ckx — Zx+1) means the triangle with vertices
Thtl, x;:fl, and ¢, is a right triangle and inequality (9) becomes “the hypotenuse is
longer than a leg.” This is exactly the motivation for the line-search procedure in
Algorithm 1. Repeating the process yields iterates ¢; that satisfy the optimal linear
rate of convergence

.2 1\,
llex —a*[I” < 1_ﬁ Rp.

The precise method is described in Algorithm 4.

Algorithm 4. Geometric descent method (Bubeck, Lee, and Singh)
Input: Starting point xg, strong convexity constant a > 0.

Output: ;.
Set ¢g = 2y " and R% = W — 2 (f(xo) — f(z7)).
for k=1,..., K do

Set zj, = line_search (37;:,1,01@—1)-
Set x4 =z — a 'V f(x)) and R = ”vfi% =2 (f(zk) = flz})).

Set 253 = ey—1 and By = B2, — 2 (f(ai ) — F(«})).
Let B (ck7 Rﬁ) be the smallest enclosing ball of B (xA, Ri) NB (xB, RQB).

end

Remark 4.4. When applying an iterative method to compute x;; =1ine_search
(ck,x;), one can use the following termination criterion. Check if ¢y, satisfies f(cy) <
f(acﬁ)7 then stop and set 11 := cx. Notice (9) holds trivially with this choice of x4 1.
Else stop with a trial point z on the line joining ¢y and x} satisfying f(z) < f(z})
and

v 2
||Z++ _CkH2 > I J;(;)H .

We claim that the line search will terminate in finite time, unless line_search (ck, x?)
is the true minimizer of f. Indeed, since ¢y # line_search (ck.,x:) (otherwise we
would have terminated in the if clause), one can easily check that z = line_search
(ck, xﬁ) satisfies the above inequality strictly.

The following theorem shows that Algorithm 1 and Algorithm 4 indeed produce
the same iterate sequence.

THEOREM 4.5. Given the same initial point xo, Algorithm 1 and Algorithm 4
produce the same iterates xj and ci.. Moreover, we have v, = f(asg') — %Ri, where vy,
is the minimum value of the quadratic Qy, in Algorithm 1 and Ry, is the radius of the
ball in Algorithm 4.

Proof. Let xp and c¢i denote the iterates in Algorithm 1, and let & and ¢ be
the iterates in Algorithm 4. We proceed by induction on k. It follows immediately
from the definition of the algorithms that zg = &g, ¢ = ¢g, and vy = f(xar) — %Rg.
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Now suppose, as an inductive assumption, xx_1 = Tp_1, Ck—1 = Cp_1, and vp_1 =
+ a P2 i = 7
f(xp_y) — §R;_,. To see the equality x) = 2y, observe

rp = line_search (13;,1, ck,l) = line_search (i‘ﬁp ék,l) = Ip.

Let 24 = zﬁ', xp = cg—1, d = ||xra — xp||, and define the quantities

2
on= s - VLGOI g = RO 2 () — sa1),
VB = Uk—1; R} = Ri—l - % (f(wi_l) - f(x:)) :

Notice that Qx(z) = vr + § [l — cx||? is the optimal averaging of Qa(z) :=
va+ 9 ||z — zal” and Qp(z) := vp+< ||z — x5|?, and that B(é, R}) is the minimum
enclosing ball of the intersection of B(z4, R) and B(xp, R%). Simple algebra shows
the relation

R =

[=NEN]

(f(ﬂ?z_) - UA) 5
and, from the inductive assumption vy_1 = f(z}{ ) — %Rifp we also have

RE = = (f(zf) —vB).

Q1w

Thus, by Proposition 4.2 and the discussion preceding it, we have ¢, = ¢, and vy =
f(zf) — 2R?. This completes the induction. |

As we saw in section 3, computing the optimal averaging of several quadratic
functions is simple. On the other hand, it is far from clear how to find the minimum
radius ball that encloses the intersection of more than two balls. Indeed, instead
the authors of Algorithm 4 in the followup work [4] considered a “relaxation” that
involves minimizing a self-concordant barrier for the intersection. While revising the
current manuscript, we became aware that Beck in [3, Theorem 3.2] proved that the
minimum enclosing ball of the intersection of finitely many balls can be computed
by solving a convex quadratic program (QP). Namely, Beck showed that the squared
radius of the minimal ball enclosing the intersection ﬂle B(c;,7?) is exactly equal to

2 t

= > Ailllaill* = r?).

i=1

min
AEA,

¢
E Aici
i=1

provided ¢t < n — 1 and the intersection of the balls has nonempty interior. This QP
is exactly the one we derived in section 3 for the optimal quadratic averaging method
with memory. Note that our derivation of the QP in section 3 was completely elemen-
tary; the proof of [3, Theorem 3.2], on the other hand, is much more sophisticated,
relying on an S-lemma-type result.

PROPOSITION 4.6 (Optimal quadratic averaging and minimal enclosing ball). Let
Qz) =v+5 ||z - c||? be the optimal averaging of quadratics Qi(x) = v; + Sl — aill?

fori=1,...t witht <n. Fiz a real number s > v; for alli=1...,t and define the
balls B; := {Q; < s}. Then provided that the intersection (\._, B; has a nonempty
interior, the ball B := {Q < s} is the minimal enclosing ball of the intersection
Ni_. Bi.
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Proof. Let R? be the square radius of B and let R? be the square radius of B;
for ¢ =1,...,t. Using Proposition 3.1, we deduce

2

t
2 2 « « o
R?Z=Z(s— Zls— = ,\,<, 12 ,)_7
a(s v) o | ¢~ max 2; i 2||Cz|| + v 5

t
E Aici
i=1

2 t 9
3o (he+ 2o 9))
i=1

¢
E Aic;
i=1

= min
AEA,
t 2 t
— i ol — . 12 _ p2
= min > he| - (||cz|| RZ).
i=1 i=1

The center of B is ¢ = 2221 Aic; where A is the minimizer of the expression above.
Comparing with [3, Theorem 3.2], we see that B is exactly the minimum radius ball
enclosing the intersection n§:1 B;. d

5. Numerical examples. In this section, we numerically illustrate optimality
gap convergence in Algorithm 1, and explore how Algorithm 3, the variant of Algo-
rithm 1 with memory, aids performance. To this end, we focus on minimizing two
functions: the regularized logistic loss function

N
1
Liw) =5 > log (L+e™" ) 4 2w,

i=1

where x; € R™ and y; € {£1} are labeled training data, and the “world’s worst”
function for first-order methods:

n—1 n
f(z) = g ((1 —x1)”+ ;(% —2iy1)? +JU,2L> + % ;xf

(see [10, sections 2.1.2 and 2.1.4]). For the logistic regression examples, we use the
Library for Support Vector Machines (LIBSVM) [6] data sets ala (N = 1605, n = 123)
and colon-cancer (N = 62, n = 2000).

5.1. Optimality gap convergence. From inequality (2), we get the well-known
optimality gap estimate for strongly convex functions

2
o o IVI@)]
10 _ < Y/ /0
(10) fla) - g7 < L
How does this estimate compare with the gaps gr := f (z;) — vy generated by Al-
gorithm 17 Obviously the answer depends on the point where we evaluate the gap
estimate in (10). Nonetheless, we can say that the gaps g are tighter than the gaps
Gy = |\Vf§1k)|\2
«

and thus

. Indeed, by the definition of vy, we trivially have vy > f(xp) — Gg

gk = f(z) — v < f(ar) — v < Gy

On a relative scale, the difference between g and Gy, is striking; see Figure 3. Notice
that Gy is an optimality gap estimate before averaging, and gj is an optimality gap
estimate after averaging; the plots in Figure 3 show that optimal quadratic averaging
makes great relative progress per iteration.
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1o_Relative Difference in Gaps in Minimizing “World’s Worst” 1o Relative Difference in Gaps in Minimizing Logistic Loss
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F1a. 3. Relative differences in gaps G kgk on the “world’s worst” function (B = 109, n = 200),
and on the logistic loss on the colon-cancer data set with reqularization o = 0.0001.
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FIG. 4. Comparison of various optimality gaps on the “world’s worst” function (B = 106,
n =200), and on the logistic loss on the ala data set with regularization o = 0.0001.

In Figure 4, we plot g, the true gaps f(z;) — f*, and the gap estimate in (10) at

Tr, x;, and ¢, for the “world’s worst” function and the logistic loss function. The true
. . . . IV f (e II?

gaps are the tightest, albeit unknown at runtime. Surprisingly, the gaps =5~ are

quite bad: several orders of magnitude larger than gi. So even though the centers

cr may appear to be the focal points of the algorithm, the points xz are the ones to

viE)|’
20

monitor in practice. Finally we note that the gaps g, and I are comparable,

even though g, does not rely on gradient information at x',:

5.2. Optimal quadratic averaging with memory. To demonstrate the effec-
tiveness of optimal quadratic averaging with memory, we use it to minimize the logistic
loss (see Figure 5). The speedup over the memoryless method is significant, even when
taking into account the extra work per iteration needed to solve the small dimensional
quadratic subproblems. In Figure 6, we compare Algorithm 3 with L-BFGS. The two
schemes are on par with each other, and neither is better than the other in all cases.

It is perhaps fairer to compare L-BFGS with memory size m to Algorithm 3 with
memory size ¢ = 2m (see Figure 7). Indeed, L-BFGS with memory size m actually
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Minimizing Logistic Loss on LIBSVM ala Data Set Minimizing Logistic Loss on LIBSVM colon-cancer Data Set
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Fi1a. 5. Algorithm 3 with various memory sizes t. The case t = 1 corresponds to the memoryless
optimal averaging method in Algorithm 1. The task is logistic regression, with regularization o =
0.0001, on data sets ala and colon-cancer.
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Fic. 6. Algorithm 3 with memory size t versus L-BFGS with memory size m. The task is
logistic regression, with reqularization o = 0.0001, on data sets ala and colon-cancer.

Minimizing Logistic Loss on LIBSVM ala Data Set Minimizing Logistic Loss on LIBSVM colon-cancer Data Set
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Fic. 7. A fairer (equal memory) comparison of Algorithm 3 and L-BFGS. The task is still
logistic regression, with regularization a = 0.0001, on data sets ala and colon-cancer. We focus on
lower accuracy than we did in Figure 6.
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Minimizing Logistic Loss on LIBSVM ala Data Set Minimizing Logistic Loss on LIBSVM colon-cancer Data Set
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Fic. 8. Algorithm 3 with memory size t versus L-BFGS with memory size m. The task is
logistic regression on data sets ala and colon-cancer, with ov = 1076 (top row) and o = 1078
(bottom row).

stores m pairs of vectors, whereas Algorithm 3 with memory size ¢ only stores ¢
vectors. Moreover, the most expensive operation per iteration in L-BFGS requires
4mn multiplications (see [12, Algorithm 7.4]); in contrast, computing a new center
in Algorithm 3 requires 2n(t 4+ 1) multiplications plus the cost of solving a small
quadratic program. (Updating the matrix CTC takes t + 1 inner products in R,
finding A amounts to solving a small quadratic program, and computing C'\ takes n
inner products in R**1.) In Figure 8, we again compare L-BFGS and Algorithm 3 on
logisitic regression, but with less regularization.

We noticed that the small dimensional quadratic program in Algorithm 3 must
be solved to high accuracy, especially on poorly conditioned problems; an active-set
method works well. Accuracy in the line search is less important. Minimizing the one-
dimensional function r + f(x+rd), with ||d|| = 1, to within 10~* accuracy in r works
well in general. In Figure 9, we show how line search accuracy affects Algorithm 1.

6. Comments on proximal extensions. It is natural to try to extend geo-

metric descent and optimal quadratic averaging to a proximal setting. For the sake of
concreteness, let us focus on geometric descent. We can easily extend the suboptimal
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Fi1Gc. 9. A comparison of how the line search tolerance in Algorithm 1 affects convergence. In
the top row, we do the comparison with logistic regression on the ala and colon-cancer data sets
with regularization o = 10~%. In the bottom row, we use regularization 1078,

dent Version of MATLAB Student Vegsion of MATLAB

version of the algorithm to tfie proximal setting, but some difficulties” arise when
accelerating the method. Suppose we are interested in solving the problem

mwin f(x) :=g(x) + h(x),

where g: R® — R is f-smooth and a-strongly convex, and h: R”™ — R U {+o0} is
closed, convex, and is such that the proximal mapping

1
proxy, (¢) i= axgmin {(z) + o |12 — |}

is easily computable. In the analysis of first order methods for such problems, the

gradient mapping Gy(x) := 1 (z — proxy,(z — tVg(z))) plays the role of the usual
gradient. The following is a standard estimate; see for example [10, section 2.2.3]. We
provide a proof for completeness.

LEMMA 6.1. Fiz a step length t > 0 and define a prozimal gradient step x :=
x —tGi(x). Then for every y € R™ the following inequality holds:

F0) = 1)+ (Gatady =) o (1= ) 1G4+ 5 =l
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Proof. Appealing to S-smoothness of g, we deduce

f@®) < gla) —t(Vg(2), Gi()) + Tt IGs (@) 1” + h(z™).

Furthermore, strong convexity of g implies

F@*) < o) + (Vo(a)a® ) — o Iy — 2l + 5 [Gu@) I + hiat).

Finally, using the observation that G¢(z) — Vg(z) belongs to dh(z™"), we have

Fat) < )+ (Galw),a* = y) = 5 Iy = 2l + 5 1Gu(@) .

Rearrangement completes the proof. ]

If we let y = ™ in Lemma 6.1 and rearrange we get

1 2 B

1 2
x*eB(m—Gt(x), <2—t—|— —
a a2 a o«

#) G - 2 (1) - 1) )

How should we choose the step length ¢? A simple approach is to choose ¢t to minimize
the quantity % — %t—i—th, ie., sett = % With this choice of ¢, we deduce the inclusion
I

¥ €B <x++, (1 — 1) LGUBQ(@ _

K « «

(f=") —f*)) :

where 27 =z — LGy /5(z) is a long step and z =z — %Gl/ﬁ(x) is a short step. A
proximal version of the suboptimal geometric descent follows easily from Lemma 4.1.

To accelerate the proximal geometric descent algorithm we assume in iteration k
that z* lies in some ball

B (et = 2 ) - ).

We then consider a second minimizer enclosing ball derived from information at some
point zyq:

z* e B (aczjl, <1 — 1) M 2 (f(:EZH) - f*)> :

o?

Following the same pattern as in section 4.2, if we choose xgy1 to satisfy f(zr41) <

. . 2
f(yx) and appegl to the smoothness inequality f(xa_l) < f(xk+1)_i HGl/ﬁ(fckH)H ,
we deduce the inclusion

G 2
B (R CUCustol 2y f*>> |

a?

By Lemma 4.3 there is a new center cx41 with

ve 8 (an (102 ) B2 (16t - 1)
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provided the old centers x;:rl and ¢y, are far apart; specifically, we must be sure that
the inequality

G 2
iy = el > WN
holds. How do we choose xj1 to satisfy both f(zg+1) < f(yx) and Hm;-il - CkH2 >

2
G Tr . . . .
W? The desired xy41 does exist; for example, xx41 = z* is such a point. In
the proximal setting, it is not clear how to choose xx41 to ensure these two inequalities

(even for specific problem classes). This is an interesting topic for future research.

Appendix A. Exact line search in accelerated gradient descent. Nesterov’s
method is based on an estimate sequence; that is, a sequence of functions Q; and non-
negative numbers Aj with

A =0 and Qp(z) < (1— Ag)f(z) + ApQo(z).

Estimate sequences are useful because if yy satisfies f(yx) < vg := mingegrn Qx(x),
then

Flyw) = 7 < Ak (Qo(z™) — )

that is, f(yx) approaches f* with error proportional to Ag; see [10].

The quadratics in Algorithm 2 (with appropriately chosen Ag) form an estimate
sequence. To explain, for & > 1, pick vectors z; and numbers A, € (§,1) with 6 > 0.
Next, recursively define

Qo(x) = vg + % ||z — co||2 and

Qula) = (1= M)Qu1(0) + (fm) i A xzﬂf) -

Then the quadratics @ and numbers A, = Hle

for f. Nesterov’s method is designed to ensure the inequality f (xﬁ) < v with the
added optimal rate condition A\ > \/%

The scheme in Algorithm 2 with z; = line_search (ck,l, xz_l) also guarantees

(1 — ;) are an estimate sequence

these conditions. Trivially we have f(zd) < vg. Assume, for induction, that we have
f(z ) < wvg—1. From [10, Lemma 2.2.3], we know

2
o = (1 A )okor + A () — ;7‘; 1V ()2

(1 — A _
+ k( k)’Yk 1

Vi (% s — C’f—1||2 +(Vf(rk), -1 — $k>> )

Since z, = 1line_search (ck_l,xﬁfl), we have f(xp) < f(wﬁ,l) < vp_; and
(Vf(zk),ck—1 — xk) = 0, and therefore

2
vk 2 fak) — 2/\72 IV f@)ll* = fan) - % IV f@)ll* = £ ().

Provided we set 79 > «, we get the optimal rate condition Ay = /2>, /5.
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