
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A sensitivity analysis on parameters
that affect a multi-step material
decomposition for spectral CT

Nathaniel  R. Fredette, Amar  Kavuri, Mini  Das

Nathaniel  R. Fredette, Amar  Kavuri, Mini  Das, "A sensitivity analysis on
parameters that affect a multi-step material decomposition for spectral CT,"
Proc. SPIE 10573, Medical Imaging 2018: Physics of Medical Imaging,
105734K (9 March 2018); doi: 10.1117/12.2294956

Event: SPIE Medical Imaging, 2018, Houston, Texas, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 4/4/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



A sensitivity analysis on parameters that affect a multi-step material 
decomposition for spectral CT 

 
Nathaniel R. Fredette1, Amar Kavuri1 and Mini Das1,2,* 

 
1Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA 

2Department of Physics, University of Houston, Houston, TX 77204 USA 
 
 

ABSTRACT 
 
When using a photon counting detector (PCD) for material decomposition problems, a major issue is the low-count rate 
per energy bin which may lead to high image-noise with compromised contrast and accuracy. We recently proposed a 
multi-step algorithmic method of material decomposition for spectral CT, where the problem is formulated as a series of 
simpler and dose efficient decompositions rather than solved simultaneously. While the method offers higher flexibility in 
the choice of energy bins for each material type, there are several aspects that should be optimized for effective utility of 
these methods. A simple domain of four materials: water, calcium, iodine and gold was explored for testing these. The 
results showed an improvement in accuracy with low-noise over the single-step method where the materials were 
decomposed simultaneously. This paper presents a comparison of contrast-to-noise ratio (CNR) and retrieval accuracy in 
both single-step and multi-step methods under varying acquisition and reconstruction parameters such as Wiener filter 
kernel size, pixel binning, signal size and energy bin overlap. 
 
Keywords: Material decomposition, Spectral CT, Photon counting detectors, Sensitivity analysis 

 
1. INTRODUCTION 

 Photon counting spectral detectors have the potential to be used in several applications requiring tissue 
discrimination and quantitation such as breast imaging1-2, characterization of arterial plaques3-4, quantification of liver iron 
overload5-6, quantification of bone mineral density7, kidney stone composition analysis8 and phase contrast imaging9,10. 
Separating the total counts into multiple energy bins however leads to low count data sets with reduced signal to noise and 
accuracies in material decomposition. In order to effectively improve the utility of counts in each acquired data bin, we 
recently proposed a multi-step material decomposition method which breaks the decomposition problem into a series of 
steps where the most informative energy bins or bin combinations are chosen rather than solving the system simultaneously 
with all of the acquired data11. The method works by grouping similar materials in earlier steps thereby virtually reducing 
the number of unknowns in each step. Once a given material is retrieved in the earlier steps, this forms part of the data for 
subsequent steps thereby making the problem better conditioned in subsequent steps. Successful decomposition of up to 
six materials (as seen in Fig. 1) is presented using eight energy bins and comparison with single-step approach is 
demonstrated.  
 In this paper, we examine the capabilities and limitations of this method as it comes to a few parameters that affect 
material decomposition. First, we are interested in seeing how filtering influences material decomposition results. There 
are many filter types, but we chose the Wiener filter as it is an empirical filter that attempts to model the noise in the data. 
It is not an edge-preserving filter though, so rounding of edges is apparent in the decomposition results. Second, we are 
interested in the effects of binning pixels in the projection domain prior to reconstruction on resulting decomposition 
accuracies and noise properties. The study examines if the noise reduction due to averaging neighboring pixels is reflected 
in these image domain material decomposition techniques. Third, we are interested in capturing the trends in the 
decomposition results as signal size is varied. This study attempts to understand the limits of decomposition as it pertains 
to signal size for a common pixel and voxel size. Finally, it is of interest to determine the effect of collecting data with 
overlapping versus separated energy bins on material decomposition. This study tries to capture the ideal collection 
conditions as it comes to energy bin positions and widths. The Cramer Rao Lower Bound (CRLB) can be employed to 
capture theoretical limits on decomposition results as has been shown in other studies and this metric will be employed in 
future studies6,12-14. The digital phantom used in this study has signal and background properties that could emulate a breast 
imaging like problem with contrast materials. However, the results of parameter selection may have wider applications. 
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 The energy-resolved data was simulated at every keV from one to the tube peak voltage. Equal count bins were 
then defined by dividing the simulated x-ray energy spectrum into eight and the data at each keV was then summed into 
these bins. Poisson noise was then added to the binned data so that the data would have suitable statistics.  

 
2. METHODS 

The parameters investigated in this study 
were filtering kernel size, binning, signal size and 
energy bin overlap. These parameters were 
varied, and results of material decomposition 
were quantified using the existing single-step 
method11 and the new multi-step method11. The 
single-step method (described by Eqn. 1) states 
that the total attenuation of an 
object, 𝜇𝑡𝑜𝑡𝑎𝑙(𝑟, 𝐸𝑗), is comprised of the sum of 
the attenuations of each of its constituent 
materials, 𝜇𝑖(𝐸𝑗), multiplied by their respective 
geometric volume fraction distribution, 𝑓𝑖(𝑟), as 
seen in Eqn. 1 where 𝑟 is the spatial variable, 𝐸𝑗 
represents energy bin 𝑗 and 𝑖 represent the 
material index. Previously, the single-step method 
and the first step of the multi-step method were 
implemented in projection domain. For 
simplicity, all steps of both methods are now 
implemented in reconstruction space even though 
the method can be applied completely in either 
domain. 

 𝜇𝑡𝑜𝑡𝑎𝑙(𝐸𝑗 , 𝑟) = ∑ 𝜇𝑖

𝑀

𝑖=1

(𝐸𝑗)𝑓𝑖(𝑟) (1) 

We propose that the material decomposition can now be computed in a series of steps each separating one new material 
from the measured intensity data. The materials are separated by how distinct the material is from the other materials 
based on the linear attenuation versus energy curves. In our problem, this means that the background material, water, is 
separated from the attenuation data containing four materials first. Next, the K-edge contrast agent material iodine is 
separated from the remaining data of three materials because of its unique discontinuity at 33 keV. Third, the next most 
attenuating material of calcium is separated. Finally, a refinement step is used to separate the last material of gold.  
 The first step of the four material, material decomposition problem can be seen in Eqn. 2 where the linear 
attenuation coefficients of the low attenuating elements are combined, and the volume fraction of the mixture is 
represented. In this step, we assume that the linear attenuation coefficients of the low attenuating materials are similar 
enough that they can be represented by the average of the two materials or 𝜇̅3,4(𝐸𝑗). The index 𝑗 indicates the median 
energy of the bin from the acquired multi-bin data of a spectral detector forming our first system of equations. 

 𝜇𝑡𝑜𝑡𝑎𝑙(𝐸𝑗 , 𝑟) = 𝜇1(𝐸𝑗)𝑓1(𝑟) + 𝜇2(𝐸𝑗)𝑓2(𝑟) + 𝜇̅3,4(𝐸𝑗) 𝑓3̅,4(𝑟) (2) 
In our model problem, material 1 represents water, material 2 represents iodine, material 3 represents calcium and 
material 4 represents gold. The least squares solution to Eqn. 2 with reconstructed multiple energy bin intensity data 
(obtained using a PCD) yields volume fractions of 𝑓1(𝑟), 𝑓2(𝑟) and the average of 𝑓3(𝑟) and 𝑓4(𝑟). Here materials 3 and 
4 are lumped to mimic a material with average material properties. While we can also obtain 𝑓2(𝑟) from the prior 
solution, we seek to reformulate the problem, thereby enabling further iterations to yield better solutions of 𝑓2(𝑟), 𝑓3(𝑟) 
and 𝑓4(𝑟) which form signals in this problem. In the second step, the problem is reformulated to separate the K-edge 
material of iodine from the remaining three material mixture as represented in Eqn. 3. The same assumption about the 
similarity of calcium and gold is made in this step as well. 

 𝜇𝑡𝑜𝑡𝑎𝑙(𝐸𝑗 , 𝑟) − 𝜇1(𝐸𝑗)𝑓1(𝑟) = 𝜇2(𝐸𝑗)𝑓2(𝑟) + 𝜇̅3,4(𝐸𝑗) 𝑓3̅,4(𝑟) (3) 
In implementing the least squares solution to this equation, one assumes the knowledge of the water map obtained from 
step 1 as a prior information as shown on the left-hand side of Eqn. 3. The solution yields a map of material 2 (iodine) 

 
 Figure 1: Color coded (a) single-step (left) and (b) multi-step 
 (right) decomposition results for the six-material problem. 
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and a map of a material that mimics a combination of materials 3 and 4, which is discarded when proceeding to the next 
step. In step 3, the problem is reformulated again to separate the next most attenuating material of calcium from the 
remaining two material mixture as represented in Eqn. 4. 

 𝜇𝑡𝑜𝑡𝑎𝑙(𝐸𝑗 , 𝑟) − 𝜇1(𝐸𝑗)𝑓1(𝑟) − 𝜇2(𝐸𝑗)𝑓2(𝑟) = 𝜇3(𝐸𝑗)𝑓3(𝑟)+𝜇4(𝐸𝑗)𝑓4(𝑟) (4) 
In the final step, the last material, gold, is refined to improve the accuracy of the decomposition of this material in Eqn. 
5. 

 𝜇𝑡𝑜𝑡𝑎𝑙(𝐸𝑗 , 𝑟) − 𝜇1(𝐸𝑗)𝑓1(𝑟)−𝜇2(𝐸𝑗)𝑓2(𝑟) − 𝜇3(𝐸𝑗)𝑓3(𝑟) = 𝜇4(𝐸𝑗)𝑓4(𝑟) (5) 
At each step, the respective equation (Eqn. 2, 3, 4 or 5) is solved using multiple energy bin data collected via the initial, 
single acquisition with a PCD. The same data can be reformulated in later steps to reduce the number of bins and 
increase count statistics. Using the conservation of volume assumption, the system of energy based equations (based on 
Eqns. 2, 3, 4 and 5) can be used to solve for material volume fractions using a weighted bounded variable least-squares 
approach. 

Percent errors, CNRs and noise standard deviations (NSDs) were computed for each of the materials in both single 
step and multi-step decomposition. Percent errors were computed for the single and multi-step decomposition techniques 
via Eqn. 6 where 𝑓𝑅𝑂𝐼,𝑖 and 𝑓𝑅𝑂𝐼,𝑖,𝑡𝑟𝑢𝑒 indicate the calculate and true volume fractions in ROI 𝑖, respectively.  

 𝐸𝑟𝑟𝑜𝑟𝑅𝑂𝐼,𝑖 =
|𝑓𝑅𝑂𝐼,𝑖 − 𝑓𝑅𝑂𝐼,𝑖,𝑡𝑟𝑢𝑒|

𝑓𝑅𝑂𝐼,𝑖,𝑡𝑟𝑢𝑒

× 100 (6) 

The CNR calculations were conducted for the single and multi-step decomposition techniques using the relationship in 
Eqn. 7 where 𝜎𝑅𝑂𝐼,𝑖

2  and 𝜎𝑅𝑒𝑠𝑡𝑂𝑓𝐼𝑚𝑎𝑔𝑒 
2 indicate the calculated variances in the volume fractions in ROI 𝑖 and the rest of the 

image, respectively. 

 𝐶𝑁𝑅 =
|𝑓𝑅𝑂𝐼,𝑖 − 𝑓𝑅𝑒𝑠𝑡𝑂𝑓𝐼𝑚𝑎𝑔𝑒|

√𝜎𝑅𝑂𝐼,𝑖
2 + 𝜎𝑅𝑒𝑠𝑡𝑂𝑓𝐼𝑚𝑎𝑔𝑒

2

 (7) 

The NSDs were computed for the single and multi-step decomposition techniques using the relationship seen in Eqn. 8 
where 𝜎𝑅𝑂𝐼,𝑖 is the standard deviation in the volume fractions of the voxels in ROI 𝑖. 

 𝑁𝑆𝐷𝑅𝑂𝐼,𝑖 = 𝜎𝑅𝑂𝐼,𝑖 × 100 (8) 
 

3. RESULTS AND DISCUSSION 
In all cases, a four-material cylindrical digital phantom model was generated with three contrast wells embedded. 

The phantom is 2cm diameter of water with 2mm signals of calcium, iodine and gold. A depiction of the four-material 
model can be seen in Fig. 2 (a). The x-ray energy spectrum is depicted in Fig. 2 (b) with the nominal choice of energy bins 
overlaid. The material linear attenuation curves for the four materials versus energy with the nominal energy bins overlaid 
is shown in Fig. 2 (c). The concentrations of calcium, iodine and gold in the model were 140mg/mL, 18mg/mL and 
8mg/mL, respectively. The x-ray energy spectrum was divided into eight equal count bins that define the nominal energy 
bins chosen for this study. A 120kVp spectrum was used and the x-ray spectrum was filtered by 1.68mm of aluminum. A 
total dose of 7.92mGy was distributed over 360 projections measured over a 360-degree arc. A CdTe detector was 
simulated with a sensor thickness of 1.0mm and eight energy bins. The nominal detector pixel size was 110X110 micron 
squared. The nominal reconstruction voxel size was 118.75X118.75X118.75 micron cubed. The filtered back projection 
(FBP) method was used for reconstructing the projection data into 3D images. Color-coded qualitative results of single 
and multi-step decomposition for the nominal four-material problem can be seen in Fig. 3 for reference. It can be noticed 
that single-step method fails to decompose the gold region accurately and the multi-step technique does much better. For 
all other cases, the maximum percent error out of the four ROIs seen in Fig. 2 (a) is reported for the single and multi-step 
techniques. The value of the true volume fractions in each of the ROIs is 1.0 and this was used in the percent error and 
CNR calculations. The maximum NSD of all four ROIs was reported for each simulation as this should provide the worst 
case. The average of the CNRs of all ROIs was computed for the decomposition techniques to provide a description of the 
CNRs for all regions. 
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Figure 2: (a) Layout of materials for the four-material model. (b) 120 kVp x-ray source spectrum divided into eight equal count 
energy bins based on the flat field. The baseline representative energies used in the material decomposition are shown as open circles. 

(c) Attenuation curves for calcium, iodine, gold and water with energy bins and representative energy values used to calculate the 
model linear attenuation coefficients used in material decomposition. 

 
3.1 Filtering 
The effects of filtering in the projection domain 
were explored with a Wiener filter of differing 
kernel sizes. The goal was to determine the effects 
of noise reduction in the projection domain via a 
common filter on material decomposition. It is 
expected that there is a sweet-spot in the amount 
of filtering due to the kernel size where noise is 
sufficiently reduced while edges are maintained, 
and this study aimed to find it. In all cases, the 
projection data was generated based on 
simulations of the four-material model 
represented in Fig. 2 with 110μmX110μm pixels. 
Poisson noise was added and then the noisy 
projections were filtered using differing kernel 
size Wiener filters. These kernel sizes were 1X1 
(no filter), 3X3, 5X5, 7X7, 9X9 and 11X11. The 
filtered projections were then reconstructed using 
filtered back projection to a voxel size of 
118.75μmX118.75μmX118.75μm. Material 
decomposition was then calculated using the 
single and multi-step methods and the results can 
be seen in Fig. 4. The maximum decomposition errors increased with increasing kernel size. Therefore, filtering with a 
small kernel Wiener filter yielded the best results. This is because the Wiener filter introduces more rounding of edges as 
the kernel size increases and this rounding decreases accuracies.  However, because of the much greater accuracy of the 
multi-step method, the CNR of the multi-step technique vastly outperforms the single-step technique. This can be attributed 
to the iterative operations leading to non-linearities in multi-step and energy bin optimization that are performed. The 
single-step method has lower noise for higher kernel dimensions than the multi-step technique. The noise in multi-step can 
build up as the noisy volume fraction results from earlier steps are used in later steps in the decomposition. But overall, 
the multi-step technique outperforms single-step as seen in the lower errors and higher CNRs. 
 
3.2 Binning 
The effects of binning the projection data from smaller to larger pixels before reconstruction versus acquiring data with 
larger pixels directly on material decomposition were investigated. This study attempts to understand if the noise in the 
projections can be improved by combining every four pixels (through averaging) thereby improving the pixel statistics 
over the baseline where no binning is performed. To test this, projection data was generated from 4-material models based 
on Fig. 2 with five different pixel sizes of 55μmX55μm, 110μmX110μm, 220μmX220μm, 440μmX440μm and 
880μmX880μm. The data with the four smallest pixels sizes was then binned in a 2X2 fashion. The four binned datasets 
and the four larger pixel size datasets were then reconstructed to slightly larger voxels of  

 
 Figure 3: Color coded (a) single-step (left) and (b) multi-step 
 (right) decomposition results for the nominal four-material 
 problem. 
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Figure 4: Filtering effects on material decomposition examined through single and multi-step decomposition techniques. (a) Displays 
the maximum percent errors, (b) displays the maximum NSDs and (c) displays the average CNRs of the four material regions. 
 
118.75μmX118.75μmX118.75μm, 237.5μmX237.5μmX237.5μm, 475μmX475μmX475μm and 950μmX950μmX950μm 
via filtered back projection. The single and multi-step material decompositions were then performed on both datasets. 
Images with equivalent effective voxels sizes were then compared and the results can be seen in Fig. 5. The maximum 
errors generally increase as the effective voxel size increases. This is effectively a sampling problem as fewer voxels are 
used to represent a material region as voxels size increases leading to a higher fraction of the total voxels in the region 
capturing the transition between materials and resulting in lower accuracies. Acquiring data with larger pixels directly 
generally produces decomposition results with lower errors, but the errors are very similar for the two decomposition 
methods. The large peak in the CNRs for the multi-step technique can be attributed to a nearly zero variance in the water 
region of the water map. This CNR was capped at 100.0 for the sake of plotting but was much larger and is due to the 
thresholding performed after the first step of multi-step material decomposition. The NSDs for the single and multi-step 
methods are similar except for the larger effective voxel sizes. However, these large voxel size images had very few voxels 
making the images low in quality and less practical for a real imaging task. Overall, single and multi-step decomposition 
show similar performance in terms of binning as displayed in the percent errors and CNRs. 

Figure 5: Binning effects on material decomposition examined through single and multi-step decomposition techniques. (a) Displays 
the maximum percent errors, (b) displays the maximum NSDs and (c) displays the average CNRs of the four material regions. "Recon" 

denotes a larger pixel acquisition where as "Bin" denotes a smaller pixel acquisition with binning. 
 

3.3 Signal size 
Next, the effects of signal size on material decomposition were explored. It is expected that there is a spatial resolution 
limit for the modeled 110μmX110μm pixel size detector for a 7.92mGy measurement and it is desired to explore this limit 
with respect to material decomposition. Therefore, four-material models based on Fig. 2 were constructed with varying 
signal sizes of 0.5mm, 1.0mm, 2.0mm, 3.0mm, 4.0mm, 5.0mm and 6.0mm. These models were used to generate projection 
data and then this data was reconstructed using filtered back projection. Material decomposition was then performed using 
single and multi-step decomposition techniques. The decomposition results for the differing signal size problems can be 
seen in Fig. 6. As the signal size increases, the error tends to decrease, and the standard deviation tends to remain relatively 
constant. However, the error changes very little for signal sizes of 1.0mm and above indicating that this may be the limiting 
size for this pixel size and dose combination. The reason for this trend can be explained again by sampling as signal size 
increases more voxels lie within the material region leading to a more accurate representation of the mean in the region. 
This trend is more evident in the errors of the multi-step method as the single-step results tend to flatten off. This is because 
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the noise in the gold region of the gold material map (as seen in Fig. 3) is much more prominent in the single-step technique 
and limits the accuracy of the decomposition. The attenuation properties of 8mg/mL of gold are the most similar to water 
of the decomposed materials making it the most difficult to distinguish. The single-step NSDs remain rather flat indicating 
that noise and signal size are independent. The decrease in NSD as signal size increases for multi-step can be explained 
again by the thresholding operations in multi-step. If the accuracy increases and the noise remains the same (as indicated 
by single-step), then the thresholding in multi-step becomes more effective as more voxels lie on the correct side of the 
thresholds. The CNRs decrease as this signal size increases. This is probably due to the slight increase in noise in the signal 
and background regions as the signals become larger. Again, thresholding and flexibility in the choice of number and 
location of energy bins used in the multi-step method allow for CNRs greater than single-step. The maximum CNR for the 
multi-step technique seen for the 1.0mm signal size occurs because the noise in the water region is nearly zero for this 
case. The CNR for this case was 133.7. If the simulation was run again with different noise, these decomposition results 
may change resulting in a smaller CNR. The multi-step method clearly out performs single-step as evidenced by the lower 
maximum errors and higher average CNRs for all signal sizes. 

 
Figure 6: Signal size effects on material decomposition examined through single and multi-step decomposition techniques. (a) 
Displays the maximum percent errors, (b) displays the maximum NSDs and (c) displays the average CNRs of the four material 

regions. 
 
3.4 Energy bin overlap 
Finally, the effects of energy bin overlap or spacing on material decomposition were explored. As the bins become wider 
and overlap more, each bin becomes less unique from its neighbor and the system becomes more underdetermined. As the 
bins become narrower with greater spacing, bins are more unique, but count statistics get worse. So, it was desired to 
discover this trade-off and find an optimal configuration. The energy-resolved data was generated with equal width bins 
with 1keV spacing (-1keV overlap) as [9,22], [23,36], [37,50], [51,64], [65,78], [79,92], [93,106] and [107,120] keV, 
respectively. Additional four-material models based on Fig. 2 were constructed with varying amounts of overlap of -9keV, 
-5keV, -1keV, 1keV, 5keV, 9keV, 13keV, 17keV, 21keV, 25keV and 29keV. These projection datasets were then 
reconstructed using FBP and decomposition using both techniques was performed. Energy weighting based on the signal-
to-noise ratio (SNR) of each region of the data was used in the multi-step decomposition and weighting based on the SNR 
of the water region was used for single-step decomposition15. The decomposition results for the differing amounts of 
energy bin overlap can be seen in Fig. 7. Increasing the overlap generally decreases the decomposition errors until 17keV 
for single-step and 5keV for multi-step. Therefore, it seems that some overlap can successfully improve photon statistics 
without creating too much data redundancy. The errors are much larger for single-step. The multi-step CNR exceeds the 
single-step CNRs for all amounts of overlap. The sharp peaks in the multi-step CNRs can again be attributed to nearly zero 
variance in the water region after thresholding. These variances may change with different noise realizations. Single-step 
has lower NSDs than multi-step and this is again due to the propagation of noise from step to step in multi-step. The noise 
for both material decomposition methods generally decreases as the bins become wider and overlap increases. The multi-
step method clearly out performs single-step as evidenced by the lower maximum errors and higher average CNRs for all 
amounts of energy bin overlap. 
 

4. CONCLUSIONS 
The effects of filtering, binning, varying signal sizes and varying amounts of energy bin overlap were studied to 

explore the capabilities and limitations of the single and multi-step decomposition techniques. Although the NSDs for 
single-step are often lower than those of multi-step, the vast improvement in accuracy achieved by the multi-step method 
allowed for greater CNRs than single-step. This is due to steps in the decomposition process that introduce non-linearities 
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Figure 7: Energy bin overlap effects on material decomposition examined through single and multi-step decomposition techniques. (a) 

Displays the maximum percent errors, (b) displays the maximum NSDs and (c) displays the average CNRs of the four material 
regions. In these graphs, negative overlap indicates that the energy bins were separated by the given amount. 

 
such as thresholding and energy bin optimization. Material specific weighting in multi-step material decomposition based 
on SNR to overcome measured attenuation data with unequal statistics was demonstrated in the energy bin overlap study. 
This preferential weighting based on the material being decomposed in a multi-step approach provides the method with 
even more flexibility not available in the single-step approach and resulted in low percent errors and high CNRs. And 
overall, the multi-step method consistently outperformed the single-step technique for the problems analyzed herein. 
Future simulations will include a realistic breast phantom with realistic breast texture and material properties. The problem 
will be examined in both projection domain and reconstruction domain decomposition. Furthermore, this method will be 
tested with bench top PCD based CT system using a CdTe detector. These results will be presented at the conference. 
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