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ABSTRACT

Our previous work on DBT image texture indicates that certain texture features may impact human observer
performance for the task of low-contrast mass detection. Despite this, little is yet known about these texture
statistics in the context of medical imaging. In this study, we investigate the factors that influence texture features
in simulated DBT images. Specifically, we explore whether or not changes in quantum noise and anatomical
variations are reflected in image texture curves. Our findings concerning the effects of Wiener filtration and
changes in DBT system parameters indicate that texture statistics are affected by both anatomical variations
and quantum noise.

1. INTRODUCTION

Optimization of imaging systems with radiological tasks in mind is critical to improving the diagnostic power of
a modality. The task of optimizing acquisition geometry is especially relevant to Digital Breast Tomosynthesis
(DBT), where there are several key parameters that can be changed. In order to evaluate different acquisition
geometries, Receiver Operator Characteristic (ROC) analysis and its derivatives (e.g. LROC) are typically
employed.’»? Within the realm of assessing imaging systems through observer performance, human observers
still remain as the gold standard. However, conducting human observer ROC studies is both time and resource
intensive, thus creating the opportunity for a cheaper alternative to flourish.

Texture features are a class of computationally inexpensive metrics that characterize image appearance.
Amongst these, several texture statistics belong to a subcategory known as second-order texture features, which
utilize pixel-by-pixel gray-level relationships in order to describe image texture.® Previously, some groups have
explored the possibilities of using image texture for risk assessment in medical images.*® Findings from our
previous work on image texture show that texture features vary significantly with DBT system parameters and
that certain second-order texture features correlate well with human observer performance for the task of low-
contrast mass detection.” In spite of this, fundamental aspects of medical image texture still remain unclear. In
this study, we investigate the physical origins of texture through examining the contributions of quantum noise
and anatomical variations to six texture features identified in our previous study as having strong correlations
with human observer performance.

2. METHODOLOGY
2.1 Breast and Mass Models

The breast phantoms used in this study are anthropomorphic software breast volumes generated by Bakic et
al. at the University of Pennsylvania.® Each phantom was simulated with one of three different volumetric
glandular fractions (VGF), 25%, 50%, or 75%, so as to mimic breasts of different densities. To create the set
of lesion-present cases utilized in our LROC study, a single homogeneous, spherical lesion of 8-mm diameter
was inserted at a random position within the fibroglandular compartment of a subset of the phantoms. The
attenuating properties of these lesions modeled those of infiltrating ductal carcinoma as a function of energy and
were based upon empirical measurements.
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Figure 1: An example of three simulated DBT images used in our study. Each image is of the same 25% dense
phantom taken over a 60° span with varying numbers of projections (from left to right: 3, 19, and 41). A target
lesion is present in the bottom-left region of each image.

2.2 Image Generation

DBT imaging data was created using a rigorous computer simulation, which accounted for both focal-spot
blur and scintillator blur.® In the simulation, Siddons ray-tracing method was utilized to model x-ray trans-
mission through the phantom.'® A serially cascaded linear systems model was implemented to model sig-
nal and noise propagation through a CSI-based amorphous silicon at-panel detector. Quantum detector ef-
ficiency, scintillator gain, and optical collection efficiency were also considered in this step. In each sim-
ulation, a number of projections, P, was acquired through some angular span, [, of the phantom, where
P e {3,7,11,15,19,21,25,31,35,41,45,51} and 3 = 60°. For each simulation, a total amount of Poisson
noise equivalent to 1.5 mGy of dose was evenly distributed across the P projections.

Reconstruction was performed using Feldkamps filtered back projection (FBP) method, which was then
followed by the application of a 3D Butterworth filter (0.25 cycles/pixel cut-off frequency). From each recon-
structed volume of data, a single slabbed image of 1mm thickness was produced. For lesion-present cases, this
was achieved by first locating the slice that intersected the lesion’s center, and then performing a boxcar average
of this slice with the two slices above and two slices below it. In the case of lesion-free phantoms, a random slice
in the volume was chosen and the same slabbing procedure was performed to produce the final image. Examples
of the simulated images can be seen in Fig. 1. A total of 1728 images were simulated with each of the three
phantom densities comprising exactly one-third of the total images.

2.3 LROC Study

Two non-radiologists participated in the human LROC study, reading images obtained with an angular span of
60° for a subset of the projection numbers (3, 7, 25, 45). In this study, observers were tasked with determining
whether or not a lesion was present in each image, as well as assigning a confidence rating to their decision. In
addition, when categorizing an image as lesion-present, observers were also tasked with localizing the lesion to
within a 15-by-15 square-pixel region of its center. For each projection number in the aforementioned subset,
participants read a 25% and 50% combined-density set of 144 images. Wilcoxon estimates of the Area Under the
LROC Curve (AUC) were utilized to assess observer performance. For each set of images, observer performance
was then averaged across all observers.
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Figure 2: Texture features, such as GLN, vary as a function of projection number and also correlate strongly
with observer performance.

2.4 Texture Analysis

Analysis of DBT image texture was performed using MATLAB (R2016a). Prior to ROI selection and texture
analysis, image pixels were linearly quantized from intensity values into 256 gray-levels. Black and white thresh-
olds (i.e. thresholds for bins 0 and 255 respectively) for each image were automatically determined at runtime and
were chosen in such a way as to eliminate the influence of the background on pixel quantization. A 9-by-4 lattice
of ROIs covering a total area of 315-by-140 square-pixels was created atop the central, dense region of the breast
since, clinically, breast abnormalities are more frequent in this area. Texture analysis was performed separately
on each of these ROIs through the calculation of six texture descriptors, each of which was derived from one of
three spatial gray-level matrices: the Gray-level Co-occurrence Matrix (GLCM),! the Neighborhood Gray-tone
Difference Matrix (NGTDM),'? and the Run Length Matrix (RLM).!? Definitions for all texture features were
taken from the literature and are explicitly given in Table 1. The texture features in a given image were averaged
across all ROIs and then these average textures feature for each image in a set were then averaged once more
across the entire set.

Type Feature Definition
. G(i,5
GLCM Homogeneity > i 1+§i2.| .
Entropy -2 G, 5)loga(G (i, )
Energy Zi,j G(i,5)?
NGTDM Contra,s.t [m Zl,] PlP] (7’ - -7)2] [»,Tl2 Zz D(l)] )
Complexity >0 Ali =il P+ n?P)}{P.D(i) + P,D()}
RLM Gray Level Nonuniformity | + (2 R(i,7))?

Table 1: Definitions for each of the six statistics utilized in this study.

3. RESULTS & DISCUSSION

In the case of each texture feature, a gradual change in feature magnitude is noted at relatively large projection
numbers. Specifically, for positively correlating statistics this change is a decrease, while for negatively correlating
statistics it is an increase. Visual inspection of the images reveals that image quality appears to slightly worsen
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at large projection numbers due to a subtle increase in image noise. In DBT, it is well known that as the number
of projections is increased and total dose is kept constant, the noise content per slice increases as well. One would
expect this increasing quantum noise to hinder observer performance at higher projections, which is indeed the
case according to our previous work.”

Figure 3: A side-by-side comparison of a lesion-present image before (left) and after (right) application of an
adaptive Wiener filter.
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Figure 4: Comparison of GLN texture curves for filtered and unfiltered images.

To confirm this, an adaptive Wiener filter!* was applied to the projections prior to reconstruction and
slabbing. A visual comparison of these Wiener-filtered DBT images with those unfiltered ones reveals that the
image quality drastically improved due to application of the filter (Fig. 3). Texture analysis of these newly filtered
images elicits interesting findings, especially when compared with the unfiltered texture. The texture curve for
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each feature experienced a significant change at high projection numbers; rather than changing gradually as
projection number increases, the texture becomes nearly constant at high projections (Fig. 4). Furthermore,
an overall increase in positively correlating feature values (and decrease in negatively correlating feature values)
was noted at all projections. In terms of observer performance, this implies that application of the Wiener filter
should improve observer performance at all projection numbers, which one would expect. In sum, these results
indicate that texture is significantly affected by quantum noise and that a causal relationship between image
texture and observer performance still remains plausible.

25 X 10°  Density Comparison: 60°
7,
36'5_
X
o2 6 "
2 6l
S | & L&
O L\ _A
550 \ A o
A P ¥
/AA a--r
51 Fa-AT ¥ - §-25%
g a¥” -4 -50%
75%
45 ' : . :

0 10 20 30 40 50 60
Projection Number

Figure 5: A comparison of Complexity in image sets with different densities reveals that texture features are
affected by breast density.

In order to determine whether or not anatomical variations impact image texture, texture curves for all three
densities of phantom were compared (Fig. 5). Increases in breast density saw feature magnitudes decrease in
positively correlated statistics and increase in negatively correlated statistics. In terms of observer performance,
this indicates that higher breast density hinders an observer’s ability to detect low-contrast masses, which is again
in line with our expectations. Furthermore, this result also indicates that texture features are indeed impacted
by anatomical variations and the amount of structural information available in an image. Finally, there appears
to be a negative relation between breast density and the peak number of projections; that is, as breast density
increases, the peak number of projection decreases for both positively and negatively correlated features alike.

4. CONCLUSIONS AND FUTURE WORKS

Based on our results, it is clear that not only do DBT system parameters such as acquisition span and projection
affect image texture, but reconstruction methods such as filtering do as well. As such, using image texture to
draw conclusions about the content of medical images should be avoided since it is heavily impacted by system
parameters and reconstruction methods. In this study, we also showed that both quantum and anatomical noise
individually contribute to image texture and also found that trends observed in the texture features continued
to match with expectations and previous research concerning observer performance for the task of low-contrast
mass detection. As a result, these findings both shed light on the fundamental processes that influence image
texture and also further support the idea that image texture may indeed impact observer performance. In the
future, we intend to expand the set of texture features in our analysis to include not only those of the secondary
variety, but also higher order features as well. Future works could also include investigating the effects of varying
filter strength on image texture and also examining the spatial distribution of feature magnitudes in images.
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