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Abstract

Estimation of functional connectivity (FC) has become an increasingly powerful tool for
investigating healthy and abnormal brain function. Static connectivity, in particular, has
played a large part in guiding conclusions from the majority of resting-state functional MRl
studies. However, accumulating evidence points to the presence of temporal fluctuations in
FC, leading to increasing interest in estimating FC as a dynamic quantity. One central issue
that has arisen in this new view of connectivity is the dramatic increase in complexity caused
by dynamic functional connectivity (dFC) estimation. To computationally handle this
increased complexity, a limited set of dFC properties, primarily the mean and variance, have
generally been considered. Additionally, it remains unclear how to integrate the increased
information from dFC into pattern recognition techniques for subject-level prediction. In this
study, we propose an approach to address these two issues based on a large number of
previously unexplored temporal and spectral features of dynamic functional connectivity. A
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to esti-
mate time-varying patterns of functional connectivity between resting-state networks. Time-
frequency analysis is then performed on dFC estimates, and a large number of previously
unexplored temporal and spectral features drawn from signal processing literature are
extracted for dFC estimates. We apply the investigated features to two neurologic popula-
tions of interest, healthy controls and patients with temporal lobe epilepsy, and show that
the proposed approach leads to substantial increases in predictive performance compared
to both traditional estimates of static connectivity as well as current approaches to dFC. Var-
iable importance is assessed and shows that there are several quantities that can be
extracted from dFC signal which are more informative than the traditional mean or variance
of dFC. This work illuminates many previously unexplored facets of the dynamic properties
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of functional connectivity between resting-state networks, and provides a platform for
dynamic functional connectivity analysis that facilitates its usage as an investigative mea-
sure for healthy as well as abnormal brain function.

Introduction

Functional connectivity (FC) between intrinsic functional networks is of increasing interest
for understanding the human brain. Recent work suggests that these networks are identifiable
during tasks as well as during the task-free resting state [1-3]. Furthermore, evidence has con-
sistently found that connectivity between these networks at rest is informative, not only with
respect to normal variations in cognitive function such as memory [4, 5], but also individual
variations in abnormal and healthy brain function [6-10]. Several studies have indicated that
the default mode network (DMN), which regulates introspective thought, is “anticorrelated”
with other resting-state networks [2, 11]. The nature of these resting-state network interactions
is thought to play a large role in facilitating normal cognitive function [5, 11].

Until recently, however, the majority of resting-state functional connectivity studies have
been based on static measures of connectivity, which rely on the inherent assumption that
inter-regional signal associations are constant over the length of the scan. With the discovery
that inter-regional signal associations fluctuate over time both within and across scanning ses-
sions [12, 13], increased attention has been paid towards understanding the dynamic proper-
ties of functional connectivity. Static measures of connectivity have been found to not fully
reflect the temporal dynamics of connectivity [14], with a significant degree of temporal vari-
ability in the degree of anticorrelation between the DMN and other resting-state networks
[15]. Further developments have found that the level of variability in dFC may itself be infor-
mative about brain function in normal aging [16], as well as disorders such as schizophrenia
[13], major depressive disorder [17], and temporal lobe epilepsy [18]. However, current under-
standing of dFC is limited for several reasons. Firstly, the vast majority of analyses have utilized
a sliding-window approach to estimate dynamic connectivity, which tends to produce artificial
fluctuations in connectivity [19]. Recently, some efforts have been made to separate dynamic
fluctuations caused by true changes versus those caused by statistical uncertainty [13, 18, 20].
Model-based approaches, such as Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) models, were investigated by [21] and found to provide more reliability than slid-
ing-window approaches for dFC detection due to decreased sensitivity to parameter settings
and susceptibility to noise. Secondly, the majority of studies have generally focused on a rather
narrow set of characteristics of dFC temporal dynamics—typically the mean, variance, or
number of state-to-state transitions in the time-domain. Recently, some studies have begun
modeling dFC in the time-frequency domain using wavelet transform coherence [15, 22].
These studies suggest that additional information may be gained by considering spectral prop-
erties such as the number of time-frequency points spent in various clustered states. However,
beyond this small set of features, much remains unknown about the temporal and spectral
characteristics of dFC.

The aims of this study are to (1) investigate previously unexplored temporal and spectral
characteristics of dynamic functional connectivity between the DMN and several other com-
monly investigated resting-state networks; (2) examine which temporal/spectral aspects of
dynamic functional connectivity are altered in temporal lobe epilepsy; and (3) propose a new
approach for integrating estimates of dFC into pattern recognition techniques for subject-level
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prediction, using as a feature vector the temporal and spectral features of dFC. GARCH is first
used to estimate dFC between the DMN and other resting-state networks. Next, dFC is trans-
formed into the spectral domain using Welch’s power spectral density estimate. Temporal and
spectral features drawn from signal processing literature are then computed for the estimated
dFC and corresponding spectral density. Lastly, Random Forests is used to assess the predic-
tive accuracy of the proposed method for identifying disease states. Our proposed approach of
investigating dFC in terms of its temporal and spectral features elucidates many previously
unexplored facets of the normal dynamics of functional connectivity in fMRI. Furthermore,
we show that the proposed approach provides an interpretable method for incorporating the
new field of dFC into clinical outcome prediction on the individual subject level, which
achieves superior performance compared to traditional estimates of the dFC variance or static
connectivity. We illustrate our approach using connectivity between the default mode network
and several commonly investigated resting-state networks in temporal lobe epilepsy.

Materials and methods
Participants and ethics statement

Participants consisted of 23 healthy controls (HC; average age, 31.1+6.5 SE (y); age range, 19-
44 (y); 8 females) and 25 patients with temporal lobe epilepsy (TLE; average age, 33.6+7.8 SE
(y); age range, 20-45 (y); 12 females; average epilepsy duration, 18.74+2.4 SE (y); epilepsy dura-
tion range, 2-39 (y)). Healthy control subjects had normal structural MRIs, no history of neu-
rologic illness, and were not taking neurologic medications. All subjects were right-handed
except four TLE patients. TLE patients were recruited from the University of California, Los
Angeles (UCLA) Seizure Disorder Center. Diagnostic evaluation for all patients included
video-EEG monitoring, high-resolution MRI, FDG-PET scanning, and neuropsychological
testing. Written informed consent was obtained prior to scanning for all subjects in accor-
dance with guidelines from the UCLA Institutional Review Board. The study protocol and
consent procedure was approved by the UCLA Institutional Review Board (IRB) #10-000568.
A two-sample t-test with unequal variances and Fisher exact test showed no significant differ-
ence in age, gender, or handedness at the a = 0.05 level of significance.

Image acquisition and pre-processing

Imaging was performed with a 3T MRI system (Siemens Trio, Erlangen, Germany). Functional
imaging was performed with the following parameters: TR = 2000 ms, TE = 30 ms, FOV =210
mm, matrix = 64 x 64, slice thickness 4 mm, 34 slices. Subjects were instructed to relax with
eyes closed during imaging, with concomitant EEG monitoring to confirm awake status. No
auditory stimulus was present except for the acoustic noise from imaging. High-resolution
structural images were obtained during the same imaging study with the parameters: TR = 20
ms, TE = 3 ms, FOV = 256 mm, matrix = 256 x 256, slice thickness 1 mm, 160 slices. The
images were acquired in the axial plane using a spoiled gradient recalled (SPGR) sequence for
the anatomical images and an echo planar imaging (EPI) sequence for the functional images.
The imaging sessions included multiple simultaneous EEG and fMRI recordings, each lasting
5 to 15 minutes. The session with the least amount of motion was selected to include 10 to 15
minutes of BOLD fMRI data for each subject. To limit the influences of motion, image results
were checked to ensure that no subjects had a maximum translation of > 1.5mm (HC,

0.24 + 0.04 mm; TLE, 0.37 + 0.04 mm). Patients remained on their regular medications during
the fMRI. None of the patients had a seizure in the 24 hours preceding the imaging and none
had seizures during the study as confirmed by the simultaneous EEG obtained during fMRI.

PLOS ONE | https://doi.org/10.1371/journal.pone.0190220 January 10, 2018 3/25


https://doi.org/10.1371/journal.pone.0190220

@' PLOS | ONE

Temporal and spectral characteristics of dynamic functional connectivity in resting-state fMRI

The EEG results were not included in the data analysis other than to exclude seizures. Details
of the simultaneous EEG methods have been described previously [23].

Neuroimaging and fMRI pre-processing steps are similar to that described previously [24].
Preprocessing was performed using FSL (fMRIB Software Library) version 5.0.7 (Oxford,
United Kingdom, www.fmrib.ox.ac.uk/fsl) [25, 26] and included head movement artifact cor-
rection [27], non-brain tissue elimination [28], high-pass filtering (100 s), spatial smoothing at
5 mm full-width half-maximum, and mean-based intensity normalization as described previ-
ously for resting-state fMRI analyses [2, 11]. Excessive head movement was corrected using
motion scrubbing through nuisance regression. TRs that showed instantaneous changes in
blood oxygen level-dependent (BOLD) intensity that exceeded threshold (75th percentile
+ 1.5x interquartile range) were identified using FSL and added as single-timepoint nuisance
regressors for motion censoring [29]. The average number of identified outliers per participant
was 4.11% + 2.65%. Tissue-type segmentation was performed on each participant’s structural
image using FAST (FMRIB’s Automated Segmentation Tool) [30], before being aligned to
their respective BOLD images. The first eigenvectors of the white matter signal and cerebrospi-
nal fluid signal were obtained using the segmented masks. The following were included as tem-
poral covariates and regressed out using linear regression: motion outliers, six motion
parameters, white matter eigenvectors, cerebrospinal fluid eigenvectors, and their associated
derivatives. Recent work suggests that, while resting-state networks are dominated by low-fre-
quency fluctuations, the spectral range of resting-state networks contains meaningful informa-
tion in spectral components up to and possibly beyond 0.25 Hz [31-33]. In the interest of
capturing meaningful higher frequency information, a temporal low-pass filter was not applied
to the data [34]. Residuals were used in the seed-based correlation analysis below.

Extraction of resting-state networks

Functional connectivity networks were extracted for several commonly studied resting-state
networks using a seed-based analysis, including the motor, visual, memory, language, auditory,
and default mode networks. Seed-based correlation and spatial independent component analy-
sis (ICA) are two predominant methods used for extracting networks from fMRI data. While
seed-based and ICA approaches have distinct strengths, they have been found to yield similar
networks for resting-state networks such as the motor, visual, default mode, and attention net-
works [35]. Seeds related to each network were defined a priori based on the literature as
6-mm spheres in MNI space (Table 1). For selected ROIs, bilateral seeds were created by mir-
roring the contralateral side of the seed and were subsequently merged. We also explored
spheres with radii of 4-mm and 8-mm, and verified that the extracted networks were robust to
radius size. These seeds were transformed from standard MNI space to each subject’s individ-
ual BOLD space. The mean time course of each seed was computed by averaging across all
voxels within the seed and used as the dependent variable in a General Linear Model (GLM) as

Table 1. Montreal Neurological Institute (MNI) coordinates and abbreviations of resting-state networks.

Network Abbreviation Seed

Visual VIS Calcarine fissure: (-9,-89,1),(12,-88,1)

Default mode DMN Posterior cingulate cortex [69]: (2,-60,36)

Language LANG Pars opercularis [14, 70]: (-49, 13, 18)

Auditory AUD Primary auditory cortex [14, 71]: (-41,-22,6), (43,-22,6)
Motor MOT Primary motor cortex [14, 72]: (-42,-28,53),(43,-28,53)
Memory MEM Hippocampus: (-23,-15,-23), (26,-15,-23)

https://doi.org/10.1371/journal.pone.0190220.t001
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implemented by FSL’s FEAT, to obtain Z-statistic images. Z- (Gaussianized T or F) statistic
images were thresholded using clusters determined by Z > 2.0 and a (corrected) cluster signifi-
cance threshold of p < 0.05. Positively correlated voxels were used to construct network maps
[2, 36, 37], which provided the final ROIs for dynamic connectivity analysis. Due to spatial
overlap between networks, a winner-take-all approach was used in which overlapping voxels
were assigned to the network with the greater correlation. The BOLD time-series within each
session-wise network Z-map was extracted and averaged over all voxels in the session-wise
network Z-map using a weighted average, with weights proportional to the degree of correla-
tion with the seed voxel. The weighted approach allows for greater spatial homogeneity com-
pared to nonweighted networks, while relaxing the constraint for spatial contiguity enforced
by using the original spherical seeds as ROIs. Additionally, group analysis was performed to
characterize the functional networks across all subjects (Fig 1).

A visual overview of the methods can be found in Fig 2. Estimates of dynamic functional
connectivity are first obtained using a model-based approach to estimate dFC (Fig 2a).
Although a GARCH model is employed here, other popular dFC estimation approaches,
including sliding window techniques or other model-based approaches, could be used at this
step. Next, the estimated dFC is transformed into the frequency domain using Welch’s method
for spectral density estimation (Fig 2b). We extract temporal and spectral features of dFC from
the resulting signal (Fig 2¢). These temporal and spectral features of dFC are then concatenated
and used within pattern recognition techniques (Fig 2d and 2e). In the following sections, we
describe each of these steps in more detail.

Dynamic Conditional Correlation Model

To model dynamic functional connectivity between resting-state networks, we consider the
Dynamic Conditional Correlation (DCC) model of [38]. Let Z;; = (Z,;, Z»;;)' be a random vec-
tor representing a pair of BOLD time series of any two ROIs in the brain at time ¢, for each of
i=1,..., Nsubjects. For simplicity, below we omit the index i. Although the methods
described in the following sections may be applied to any choice of networks or regions, in this
study we investigate dynamic functional connectivity between the default mode network
(DMN) and the commonly investigated resting-state networks shown in Table 1, including the
visual, language, auditory, motor, and memory networks.

We model the dynamic relationship between any pair of networks with the following pro-
cess:

Z, = p, +eE, 1<t<T. (1)

In our work we assume that an ARMA(2,2) mean process is consistent with our data. In partic-
ular we let each element of the mean vector y;, to be defined as

Wy = 0+ ﬁle(t—l) + Bsz(:—m - elej(t—l) - 02610—2) for j=1,2.

Ljung-Box test and autocorrelation residual analysis were performed and confirmed our
assumption regarding the mean process of the time series. Further, we let the covariance
matrix associated with €; for each subject to be given by:

2, =DRD,, (2)
where D, = diag(oy,, 02y).

The correlation matrix R, contains the correlation coefficient p, representing the dynamic
connectivity between two regions Z;, and Z,, for every subject i. For the conditional covariance
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Fig 1. Resting-state connectivity patterns of resting-state networks across the whole group of subjects, overlaid in MNI space.
Network seed coordinates and descriptions are provided in Table 1. Images are displayed in radiologic convention.

https://doi.org/10.1371/journal.pone.0190220.9001

we assume a GARCH-DCC process of order one:

or =, +¢Z + e, , for j=1,2. (3)
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Fig 2. Schematic of proposed framework for studying temporal and spectral characteristics of dynamic functional connectivity. (a) Dynamic
functional connectivity (dFC) is first estimated from a model-based state-space approach. (b) dFC estimates are transformed to the spectral domain
using Welch’s power spectral density estimate. (c) Temporal and spectral features are extracted from the temporal and spectral domains. (d) Temporal
and spectral features are concatenated and (e) used as the feature vector for subject-level prediction.

https://doi.org/10.1371/journal.pone.0190220.g002

To complete the DCC specification of the model we further let:

u, = D;let (4)
Q = (1—n —n)E+nuu +nQ,, (5)
R, = diag(Q) *Qdiag(Q) ", (6)

where E represents the unconditional correlation matrix of u;and 0 < n; + 1, < 1.
The estimation of the model parameters 4 = (ay, @, B1., B2.» 015 02, 1, W2, b1, Ga, Y1, ¥2)
and the dynamic conditional correlations R, are of interest. The likelihood function of the
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model can be written as:

1< ,
L(Z|1) = —52("1%’(271) +log|Z,| + Z,X2,Z,)
=1
O o)
= - §Z(nlog(2n) + log|D,|” + Z\D;*Z, — ulu, + log|R,| + R 'u,).

t=1

The first three terms above involve only the variance and the last three only the correlation.
Moreover, the variance terms of the likelihood can be estimated using a univariate GARCH
model for each Zj, j = 1, 2. This motivates the use of a two-step procedure for the estimation of
all parameters of the DCC-GARCH mode as discussed in [38]. In the first step, a univariate
GARCH model is fit to the two time series individually. The residuals are then used to estimate
the parameters entering the correlation terms in Eq (7).

Feature extraction

The majority of fMRI functional connectivity studies are currently based on static functional
connectivity or the mean or variance of dynamic functional connectivity. Dynamic functional
connectivity contains a large amount of information which may be of use in increasing the
amount of signal extracted from fMRI connectivity analysis. However, direct usage of dynamic
functional connectivity time-series estimates may not work well in machine learning for sev-
eral reasons, including poor interpretability and noisiness of the raw time-series. Feature engi-
neering provides a commonly employed approach in signal processing literature, in which
domain knowledge is used to transform an otherwise noisy raw signal into simpler attributes
with higher predictive power.

Here, we use feature engineering to evaluate whether additional informative features can be
extracted from dFC signal in addition to the traditionally employed mean and variance. To do
so, we extract a large number of temporal and spectral features drawn from acoustic and EEG
signal processing literature. Due to the usefulness of these features in acoustic and EEG analy-
sis [39-41], we hypothesized that these features may also be useful for extracting information
from dynamic functional connectivity.

Table 2 summarizes the dynamic functional connectivity features investigated. The compu-
tation of each feature is described in detail below (see Temporal dFC features and Spectral dFC
features sections). As dynamic funtional connectivity is a still emerging area of research, the
physiologic interpretation of many of these features is not yet known; however, motivating
physiologic interpretations are also discussed below when known.

All code was written in R version 3.1.3. R code to carry out implementation is available at
the corresponding author’s website.

Temporal dFC features

Static connectivity measures the average value of the statistical dependence between two time-
series over a given time period [42]. To capture this, the mean value (MV) of the estimated
dynamic functional connectivity was computed for every subject, defined as the average mag-
nitude of the dynamic functional connectivity. Based on recent observations that the variance
in dFC may also be informative about brain function [13, 17, 18], we also compute a variance
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Table 2. Temporal and spectral features of dynamic functional connectivity. Features and abbreviations are shown. dFC, dynamic functional connectivity.

Abbreviation

ALFF-dFC
CREST
FLAT
FLUX
KURT
MV
PAV
PEAK
PSE
SCO
SLOPE
SMED
SKW
SPR
SRO
VAR
ZC

Feature Interpretation
Amplitude of Low Frequency Fluctuations in dFC Energy of dFC power spectrum in low-frequency range (0.01-0.08 Hz)
Spectral Crest Peakiness of dFC power spectrum

Spectral Flatness
Spectral Flux
Spectral Kurtosis
Mean Value

Noisiness of dFC power spectrum
Rate of change of dFC power spectrum
Kurtosis of dFC power spectrum

Average magnitude of dFC

Proportion of Anticorrelated Volumes Proportion of time points for which dFC is negative

Dominant Frequency
Power Spectral Entropy
Spectral Centroid
Spectral Slope

Median Frequency
Spectral Skewness
Spectral Spread
Spectral Rolloff
Variance

Zero-Crossing Rate

https://doi.org/10.1371/journal.pone.0190220.t002

Most prominent frequency in dFC

Entropy of dFC power spectrum

Center of mass of dFC power spectrum

Rate of change of dFC power spectrum toward higher frequencies
Median frequency of dFC power spectrum

Skewness of dFC power spectrum

Measure of bandwidth of dFC power spectrum

Right-skewness of dFC power spectrum

Variance of dFC fluctuations

Rate at which dFC changes signs

(VAR) feature which is calculated as the unbiased sample variance of dFC:

- . 2
VAR, = ——— S (R, — MV))". (9)

The mean value and variance of dFC have typically been considered in dFC research. To
examine whether additional information is present in dFC signal that can improve prediction,
we examine additional temporal and spectral quantities previously unexplored in dFC
research. Two additional time-domain features of dFC were considered: (a) proportion of
anticorrelated volumes (PAV), which is defined as the proportion of time points for which dFC
is negative in sign, capturing the degree of “anticorrelation” between networks, and (b) zero-
crossing rate (ZC), which provides a measure of the rate at which dFC changes signs (e.g. from
positive to negative and vice versa). The mathematical definitions for PAV and ZC for the ith
subject are given in equations Eqs (10) and (11), where 1g ¢ is an indicator function equal to
1if R; < 0, and 0 otherwise:

10
PAV, = ?Zl}zn«) (10)
=1

1 T-1
7C=——Y 1 (11)

i T-—1 Ri¢R;s—1 <ON|Rj—R;;_1|>¢c?
t=1

where Ry, is the estimated dynamic functional connectivity for subject i at time point ¢, as
described above (see Dynamic Conditional Correlation Model), and the threshold ¢ was
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included in Eq (11) in order to avoid signal crossings due to low-level noise. Here, we set
¢=0.001.

Spectral dFC features

Welch’s method [43] was used to obtain power spectra of the estimated dynamic functional
connectivity. We investigate the utility of several spectral features for dFC analysis. To capture
the distributional properties of the power spectra, we examined the first four spectral central
moments of dFC, including the (a) spectral centroid (SCO), which measures the center of mass
of the dFC spectrum, with higher values indicating greater energy concentrated at higher fre-
quencies; (b) spectral spread (SPR), which measures the bandwidth of the dFC spectrum; (c)
spectral skewness (SKW), which measures the symmetry of the power spectral density, with
positive (negative) values indicating positive (negative) skewness; and (d) spectral kurtosis
(KURT), which measures the distribution of frequencies around the spectral centroid, with
higher values indicating dFC frequencies more highly clustered around the spectral centroid.
Definitions are provided in Eqs (12)-(15):

$CO, = %”ﬁjf"k (12)
ik

ik SCOi 2Mik
Zk(f’z N ) (13)

1 3
Z My Zk(fik - SCOi) Mik
SKW, = &= - (14)
SPR}5

SPR, =

: Zk(ﬁk - SCOi)4Mik

D
KURT. = k - 3. 15
, i (15)

Here, M, and f are the magnitude of the spectra at frequency bin k and the frequency of bin
k, respectively, for subjects i = 1, .. ., N. In addition, we examined the median frequency
(SMED), or the frequency at which the power spectrum is divided into two regions with equal
amplitude. The median frequency and the spectral centroid are both measures of the central
tendency of the spectral distribution. However, estimated values of SMED are less affected by
random noise. The definition of SMED is given in Eq (16):

SMED;
argmin M, >05» M,. 16

The spectral rolloff (SRO), a measure of the right-skewness of the power spectra, was also com-
puted. SRO is the frequency below which 85% of the spectral distribution magnitude is con-
centrated, as given in Eq (17):

SRO;

argmin ZMik > 0.85ZM,7<7 (17)
k

SRO; k=1

where SRO; is the rolloff frequency.
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Seven other features in the frequency domain were considered: (a) dominant frequency
(PEAK), which is the dominant frequency of dFC oscillations, calculated as the peak with the
largest average power in its bin [39]; (b) spectral crest (CREST), which measures the peakiness
of the power spectral density; (c) spectral flux (FLUX), which measures the rate of change of
the power spectrum; (d) spectral slope (SLOPE), which is the tendency for the signal to have
less energy at higher frequencies, calculated through linear regression of Welch’s estimate for
the magnitude spectrum on the frequencies; (e) spectral flatness (FLAT), which is a measure of
the noisiness of the dFC magnitude spectrum and is calculated as the ratio between the geo-
metric and arithmetic means; (f) power spectral entropy (PSE), which is calculated as the infor-
mation entropy of the dFC power spectrum, with small values of PSE indicating a narrow
spectral peak and large values indicating a more smooth spectral peak; and (g) amplitude of
low-frequency fluctuations in dFC (ALFF-dFC), which is a measure of the energy of the dFC in
the low-frequency range. ALFF-dFC is a derivation of the amplitude of low-frequency fluctua-
tions (ALFF) [44], which was originally proposed as an index for fluctuations in BOLD inten-
sity in given regions of the brain. Similar to ALFF, we computed ALFF-dFC as the square root
of the power spectrum of dFC, averaged across the low frequency range of 0.01-0.08 Hz. The
mean of the derived R, was removed prior to estimating the power spectrum for features for
which a peak at the zero frequency was not informative about the feature of interest (PEAK,
ALFF-dFC).

Temporal and spectral features of dFC in healthy controls and temporal
lobe epilepsy patients

We investigated differences in each of the above dynamic functional connectivity features
between TLE and healthy controls. S1 Table provides a simulation study to characterize the
ability of the features to capture the true dynamic connectivity. Further details can be found in
the supplementary material.

To compare each dynamic functional connectivity feature between healthy controls and
TLE, confidence intervals for the difference in means were estimated through bias-corrected
and accelerated (BCa) bootstrap confidence intervals. The BCa procedure is a nonparametric
approach for estimating confidence limits from a bootstrap distribution, which is used to esti-
mate confidence intervals in data in which the underlying distribution is unknown. The BCa
approach improves coverage accuracy over the standard percentile interval approach for boot-
strap confidence intervals by accounting for two additional parameters: a bias-correction fac-
tor, which estimates the median bias of statistic, and an acceleration factor which estimates the
rate of change of the standard error of the statistic with respect to the true parameter [45]. The
bootstrap distribution of the sample difference in means for each feature was drawn through
the ordinary nonparametric bootstrap with 1000 resamples. Significant differences were iden-
tified through BCa bootstrap confidence intervals, with false discovery rate (FDR) control at
the 0.05 level to correct for multiple comparisons [46]. Corresponding corrected p-values are
also provided.

Dynamic connectivity and class prediction

Next, we investigate the utility of the proposed features for improving disease prediction using
dynamic functional connectivity. Temporal and spectral features are highly collinear, render-
ing prediction using traditional regression methods ill-posed. Therefore, we used the classifier
Random Forests (RF) [47] to perform simultaneous variable selection and subject-level predic-
tion. We assume a two-class classification problem (TLE versus healthy controls), with tempo-
ral and spectral features of the estimated dynamic functional connectivity as predictor
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variables Xj; where i =1, ..., Nindexes subjectsand j = 1, . . ., p indexes the temporal and spec-
tral dFC features described above. Let y; denote the disease class of subject i. The Random For-
est algorithm proceeds by generating a sequence of weak learners, such as decision trees, on
bootstrapped samples of the data. Each tree is built based on a random subset of the features.
More specifically, if we let G,,,(X), for m = 1,...,M trees, be a sequence of learners, then the
final prediction of the Random Forest algorithm is obtained by combining all learners via:

M
m=1"

G(x) = majority vote{G,,(x)}

Five-fold cross-validation was used to assess the predictive performance of all temporal and
spectral features. Random Forest parameters were optimized within each training set using a
two-dimensional grid search to minimize cross-validated error.

To assess the relative contribution of the proposed dFC features for differentiating TLE
from healthy controls, relative importance was quantified through variable importance scores.
In particular, the conditional variable importance estimation procedure of [48] was used due
to the inter-subject correlation structure observed between features (sample correlation matrix
shown in Fig 3). To better assess predictive performance and provide more stable estimates of
variable importance, repeated 5-fold cross-validation over thirty replications was used.

Comparison of predictive performance to static connectivity and
traditional estimates of dFC

Predictive performance of our approach for predicting disease class on the individual subject
level was assessed using classification accuracy:

A TP + TN
ccuracy =
YT TP+ FP+FN+ IN’

where TP is the number of true positives; TN is the number of true negatives; FP is the number
of false positives; and FN is the number of false negatives. Repeated 5-fold cross-validation was
used to compare predictive accuracy using our approach to predictive accuracy using static
connectivity. To investigate the additional information added by including dynamic features
compared to static functional connectivity alone, we compared to predictive performance of a
Random Forests classifier trained on Pearson correlation estimates of static functional connec-
tivity (sFC-RF). For reference, performance using static functional connectivity under a logis-
tic classifier is also shown (sFC). Lastly, we compared to predictive performance using the
approach more commonly employed currently in dFC analysis, based on the mean and vari-
ance of sliding window dynamic functional connectivity, including (a) the mean of dynamic
functional connectivity (SW-Mean), (b) the variance of dynamic functional connectivity
(SW-Var), and (c) the mean and variance of dFC combined (SW-MeanVar). Allen and col-
leagues (2014) studied varying window sizes and overlap for estimating dynamic functional
connectivity and found that window sizes of 30s to 2min have little effect on functional
dynamics [49]. Here, a sliding window size of 80s with 50% overlap was used.

Results
Resting-state network differences in dynamic functional connectivity

Our approach was applied to two populations of interest in brain connectivity research,
healthy controls and patients with temporal lobe epilepsy. Fig 4 shows the estimated dynamic
functional connectivity, dFC power spectra, and estimated temporal/spectral dFC features for
connectivity between the DMN and memory network for two sample TLE patients.
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Fig 3. Pearson correlation heatmap of dFC features for DMN-memory network connectivity. Red indicates
positive correlations; blue indicates negative correlations. Abbreviations: MV, Mean Value; VAR, Variance; ZC, Zero
Crossing Rate; PSE, Power Spectral Entropy; PAV, Proportion of Anticorrelated Volumes; SRO, Spectral Rolloff; SCO,
Spectral Centroid; SMED, Median Frequency; ALFF-dFC, Amplitude of Low Frequency Fluctuations in dFC; SPR,
Spectral Spread; SKW, Spectral Skewness; KURT, Spectral Kurtosis; FLAT, Spectral Flatness; PEAK, Spectral Peak;
FLUX, Spectral Flux; CREST, Spectral Crest; SLOPE, Spectral Slope.

https://doi.org/10.1371/journal.pone.0190220.g003

Clinical deficits in memory are often reported by patients with temporal lobe epilepsy [50-
53]. The largest number of significantly altered characteristics of dFC was found for connectiv-
ity between the DMN and memory network. Connectivity between the DMN and memory
network in TLE patients differed significantly from controls with respect to the zero-crossing
rate (p = 0.008), power spectral entropy (p < 0.001), proportion of anticorrelated volumes
(p < 0.001), spectral roll-off (p = 0.014), spectral centroid (p = 0.008), spectral median
(p = 0.045), spectral spread (p < 0.001), spectral skewness (p = 0.008), spectral kurtosis
(p =0.03), spectral flatness (p < 0.001) and spectral crest (p < 0.001). Connectivity between
the DMN and visual network was significantly different in TLE with respect to the variance of
dFC (p < 0.001) and spectral flux (p = 0.045). Connectivity between the DMN and language
network was significantly different for the mean value of dFC (p < 0.001) and proportion of
anticorrelated volumes (p < 0.001). Estimated 95% BCa bootstrap confidence intervals for the
difference in means for each proposed dFC feature are shown in Fig 5.

A number of between-network differences were also noted for both TLE and healthy con-
trols, primarily involving the mean value and proportion of anticorrelated volumes. For more
details on between-network differences, we refer the readers to the Supplementary Material.

Prediction of disease status with proposed dFC features

Fig 6 compares predictive performance using the proposed approach to prediction using static
functional connectivity (e.g., the Pearson correlation) and prediction based on the mean and/
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Fig 4. Estimated dynamic functional connectivity, power spectra, and dFC features for connectivity between the DMN and memory network for two
sample patients with temporal lobe epilepsy. (a) original BOLD time-series, (b) estimated dynamic functional connectivity and dFC power spectra, and (c)
estimated dFC features. Abbreviations: MV, Mean Value; VAR, Variance; ZC, Zero Crossing Rate; PSE, Power Spectral Entropy; PAV, Proportion of
Anticorrelated Volumes; SRO, Spectral Rolloff; SCO, Spectral Centroid; SMED, Median Frequency; ALFF-dFC, Amplitude of Low Frequency Fluctuations
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CREST, Spectral Crest; SLOPE, Spectral Slope.

https://doi.org/10.1371/journal.pone.0190220.g004

or variance of dFC. To provide a baseline for comparison, the null rate based on a naive classi-
fier is also shown (horizontal line). We found that our approach provides higher predictive
accuracy for the DMN/memory and DMN/visual networks compared to static functional con-
nectivity as well as traditional methods (e.g. the first two moments of dynamic functional con-
nectivity). Compared to static connectivity, our approach obtains 11% and 31% higher
accuracies in differentiating TLE patients from healthy controls using connectivity between
the DMN/memory and DMN/visual networks, respectively. For the DMN/motor, DMN/audi-
tory, and DMN/language networks, equivalent predictive performance was observed. Connec-
tivity between the DMN and motor networks was found to be uninformative for
discriminating TLE from healthy controls, with no added improvement over the null rate
based on a naive classifier.
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The conditional variable importance score of each proposed dFC feature for discriminating
TLE from healthy controls is shown in Fig 7. These scores estimate the contribution of each
dFC feature for subject classification based on mean decrease in accuracy. The mean value and
variance of dFC, two quantities which have been considered most commonly to date in dFC
investigations, were found to have relatively high levels of variable importance across most net-
works (black and dark gray bars). This result corroborates the importance of static connectiv-
ity and the variance of dFC in connectivity research to date. However, as shown in Fig 7,
several other features of connectivity contained a significant amount of FC signal in discrimi-
nating disease groups. In particular, for the network interactions for which our method
resulted in higher predictive accuracy (DMN-MEM and DMN-VIS), several features had
higher variable importance than the mean or variance of dFC. In the DMN-VIS network inter-
action, the variance (VAR) of dFC was found to be the most important feature. However, as
Fig 7 shows, the amplitude of low frequency fluctuations (ALFF-dFC) contained a larger
amount of signal than the mean value (MV). For DMN-VIS interactions, the mean value,
which is a measure analogous to static connectivity, was in fact identified as a poor predictor
of DMN-VIS connectivity differences between TLE and HC.
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With regards to DMN-MEM, the mean value (MV) of network interactions was contrib-
uted highly to group differences in connectivity, providing a potential explanation for why
prior static connectivity analyses have consistently identified significant network differences
between TLE and controls using Pearson correlations. However, as shown in Fig 7, the propor-
tion of anticorrelated volumes (PAV) may provide more information than the Pearson corre-
lation about changes in memory in TLE patients. The five most important connectivity
features in discriminating TLE from healthy controls for each resting-state network are listed
in Table 3.

Discussion

In this work, we investigate a number of previously unexplored temporal and spectral charac-
teristics of dynamic functional connectivity between the DMN and intrinsic connectivity net-
works. We show that a number of unexplored temporal and spectral dFC features exist, which
are useful for understanding the dynamics of functional connectivity and may have utility in
increasing the sensitivity of future connectomic analyses. Our feature engineering approach
provides an interpretable way to capture the complex information present in dFC and inte-
grate this information into subject-level prediction, which provides deeper insight into the spe-
cific aspects of dynamic functional connectivity that are altered in disease pathology. We
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estimate normal levels of the proposed dFC features in healthy controls and in temporal lobe
epilepsy patients, which allows for insight into which particular aspects of dFC are abnormal
in TLE resting-state networks. In our application of this framework to temporal lobe epilepsy,
we show that there are several dFC characteristics other than the traditionally considered
mean and variance which are abnormal in epilepsy. We show that inclusion of these features
into machine learning may permit increased sensitivity for disease detection.

Our observation that intrinsic functional networks differ with respect to specific features of
dFC suggests that the features proposed in our work may have potential clinical utility in delin-
eating areas of cortex associated with specific tasks. This is a task which is of interest in applica-
tions such as epilepsy presurgical planning. Task-based fMRI has traditionally been used for
this purpose, with newer methods utilizing seed-based cross-correlation analysis to identify
areas of eloquent cortex such as the sensorimotor or language networks. Cross-correlation
approaches typically rely on estimates of static connectivity, computed based on the Pearson
correlation, to produce projected network maps. Although such methods have worked well for
delineation of sensorimotor cortex, fMRI studies have historically reported poor positive

Table 3. Ranked top five dFC features for discriminating TLE patients from healthy controls for various resting-state networks. (a) DMN/auditory network,(b)
DMN/language network, (c)DMN/memory network, (d) DMN/motor network, (e) DMN/visual network. ALFF-dFC, amplitude of low-frequency fluctuations in dFC;
CREST, spectral crest; KURT, spectral kurtosis; MV, mean value; PAV, proportion of anticorrelated volumes; PEAK, dominant frequency; PSE, power spectral entropy;
SCO, spectral centroid; SKW, spectral skewness; SLOPE, spectral slope; SPR, spectral spread; VAR, variance.
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predictive value for delineating language cortex [54, 55]. Generation of feature maps based on
this expanded set of dFC features may allow for more accurate delineation of these functional
networks and is a potentially exciting topic of future investigation.

Our proposed approach to dFC is novel in the respect that we investigate a large number of
previously unexplored quantities in dFC between intrinsic functional networks. This is in con-
trast to previous studies, which have typically focused on the first- and second-order moments
of dFC fluctuations. Previous work has found that static functional connectivity and the vari-
ability of dynamic fluctuations [9, 13, 17, 18, 56] elucidate pathology in neurological disorders
such as temporal lobe epilepsy. Our study corroborates the reliability of the mean and variance
for FC characterization, by showing that these features often capture a large amount of the sig-
nal which is useful in discriminating patient groups.

Although our results confirm the importance of the mean and variance of dFC in signal
processing, our examination of variable importance scores shows that limiting dFC assessment
to only these features may ignore information present in dFC fluctuations that may potentially
increase the accuracy of dFC in machine learning. The physiologic implications of these fea-
tures and how group differences between patients with epilepsy and healthy subjects relate to
brain function is of great interest. It is thought that flexibility in cognitive processing, such as
that required by higher-order association cortices, results from the ability of regions to exhibit
more dynamic variability over different network configurations [42, 57]. Supporting this
hypothesis, homotopic regions (corresponding regions in opposite hemispheres) have been
found to have the lowest variability in connectivity, followed by regions within sensory and
motor networks, with the greatest amount of variability between higher-order network nodes
[58-60]. Regions with bidirectional anatomical projections generally exhibit more stable FC
(e.g., lower variance), followed by those with unidirectional anatomical connectivity and those
with no direct anatomical connectivity [61]. Due to the still emerging nature of dynamic func-
tional connectivity, however, the physiologic meaning of the large majority of these features,
such as why functional connectivity may fluctuate at a particular dominant frequency, is still
unknown. To our knowledge, this study is the first to evaluate these features in functional con-
nectivity data, and provides evidence that these features may contain useful information. Dis-
tinct EEG signatures have been found to correlate with fMRI dFC states [62], and further
investigation using electrophysiologic data is of interest for illuminating underlying neuro-
physiological correlates.

Patients with temporal lobe epilepsy often report cognitive deficits with working memory
and declarative memory [50-53]. Current research has found reduced static functional con-
nectivity between the mesial temporal lobes and the posterior DMN in temporal lobe epilepsy,
with worse memory performance correlating with more severe alterations in static functional
connectivity [63, 64]. Consistent with previous studies, we found the mean value of dFC
between the DMN and memory network to have high variable importance in discriminating
TLE from controls. This supports the clinical relevance of our approach, and connects our
results with previous research which have found replicable differences using static connectiv-
ity. However, groupwise comparison of TLE and controls in our study demonstrates the inter-
esting finding that a number of other unexplored spectral aspects of connectivity between the
DMN and memory network are abnormal in TLE, including decreased levels of the zero-cross-
ing rate, spectral roll-off, spectral centroid, spectral median, spectral spread, spectral flatness,
power spectral entropy, and proportion of anticorrelated volumes; and increased levels of the
spectral skewness, spectral kurtosis, and spectral crest. The zero-crossing rate, spectral cen-
troid, and spectral median characterize different aspects of the frequency at which FC fluctu-
ates; for example, the zero-crossing rate measures the rate at which dFC changes signs, while
the spectral centroid and spectral median characterize the center of the dFC power spectrum,
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with smaller spectral centroids/medians indicating that the power spectrum is concentrated at
a lower frequency. The spectral roll-off, spectral spread, spectral flatness, power spectral
entropy, spectral kurtosis, and spectral crest are different measures of the variability of differ-
ent frequencies involved in dFC. Taken together, therefore, the alteration in these features sug-
gests that the frequency at which FC between the DMN and memory networks fluctuates in
TLE is abnormal, and specifically involves fluctuations at overall lower frequencies and with
less variability. As discussed above, less dynamic variability around network configurations
may result in decreased flexibility for higher-order cognitive processing [42, 57], and may
explain the memory deficits commonly reported by patients with TLE. Additionally, we find
that the levels of anticorrelation between the DMN/memory network and between the DMN/
language network, estimated based on the proportion of anticorrelated volumes (PAV), are
significantly lower in TLE than in healthy controls. As anticorrelation between resting-state
networks is increasingly recognized to play a role in facilitating normal cognitive function [5,
11], the PAYV feature proposed may provide a useful marker for measuring anticorrelation in
future dFC studies. Furthermore, we show that inclusion of these additional features into
machine learning allows for more accurate discrimination of disease status in TLE.

Interestingly, we found that temporal and spectral characteristics of the connectivity
between the DMN and resting-state networks involving the temporal lobe, such as the memory
and language networks, achieved the highest accuracy in discriminating temporal lobe epilepsy
patients from healthy controls. This concurs with previous imaging research, which has most
strongly implicated memory and language networks as aberrant in TLE [65], and suggests that
connectivity between the DMN and memory and language networks may be more severely
affected in TLE. Previous research also indicates that connectivity involving less classically
involved networks, such as the visual network, may also aberrant in TLE [66], a finding which
is supported here by the relatively high predictive accuracy that our approach attained using
visual network connectivity. The improvement in predictive performance may be due to
increased sensitivity of dynamic functional connectivity estimates to pathological inputs from
other areas or cognitive processes. For example, although temporal lobe epilepsy may not
directly affect the occipitally located visual network, inputs from the temporal lobe to the visual
network are likely abnormal compared to that of a healthy control. Our study suggests that,
while static connectivity estimates may not be sensitive to detecting abnormal inputs from
other areas or cognitive processes, the added information provided by including features of
dynamic connectivity may allow for improved detection of responses to these abnormal
inputs.

Limitations and future work

Although the properties of DCC-GARCH models have been studied and found to outperform
current approaches for estimating dFC, particularly in data with no true correlation between
time courses or with slowly varying temporal fluctuations [21], some sensitivity to noise is
expected in all dynamic connectivity fMRI analysis due to the relatively limited number of
sample time points [42]. Reduction of non-neural sources of noise, such as scanner drift, head
motion, and non-neural physiologic signal is therefore critical in these analyses. However,
even with denoising, a residual level of noise inevitably remains, and further progress in
dynamic connectivity is likely to benefit highly from developments in fMRI preprocessing
[42]. Additional variability is likely introduced by the use of a two-stage process to estimate
dFC features, in which a single point estimate of R;; is obtained and conditioned upon to
estimate feature values. Two-step statistical approaches generally cause loss of information

in the use of a point estimate to summarize the dynamic functional connectivity, which in
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turn introduces random variability in downstream estimation of dFC features. Bayesian
approaches, which allow for hierarchical modeling to avoid the use of two-step processes, pro-
vide a potential solution. Methods for bootstrapping the original time-series [67] provide an
alternative approach. However, while such approaches capture the variability in dFC estimates,
these methods lead to computational challenges which limit the applicability of our approach
to data in which large numbers of ROIs are of interest. For example, in order to accurately rep-
resent the distribution of the group means, a large number of bootstrap samples are necessary.
Since for each bootstrapped time-series a DCC-GARCH model must be fit, selection of the
order of the mean (ARMA) process and the covariance (GARCH) process through manual
inspection of each individual bootstrapped time-series is not feasible. Automatic procedures
for selecting the order of the mean and covariance process exist, but introduce their own limi-
tations and must be weighed against potential benefit. While outside the scope of this study,
these factors should be taken into consideration when interpreting results from dynamic
analysis.

The framework for quantifying dynamic functional connectivity described in this paper,
while examined in the context of resting-state fMRI, is broadly applicable to other electrophys-
iological modalities such as EEG or magnetoencephalography (MEG). The physiologic inter-
pretation of the proposed dynamic connectivity features is intriguing and requires further
investigation with EEG or MEG. Although fMRI provides the advantage of higher spatial reso-
lution, its basis for studying neuronal activity is based on the hemodynamic response as an
indirect measure of neuronal metabolism, and is potentially affected changes in blood flow
induced by non-neuronal physiological processes such as cardiac and respiratory function.
Future research may potentially benefit from improvements in signal by incorporating data on
physiological processes. As shown in the present study, the subset of which particular temporal
or spectral features are affected by different disease processes is a reflection of and may be
informative about the underlying disease process, potentially analogous to the relationship of
EEG slowing to pathology or PET hypometabolism to decreased neuronal activity. Applica-
tions to larger samples of healthy controls may also be useful for understanding the origin of
these features.

As discussed in the Dynamic Conditional Correlation Model section, the evolution of
dynamic connectivity is modeled in this work as a DCC-GARCH process of order one. If there
is evidence of the presence of a long memory process in dynamic functional connectivity, an
extension to higher orders is possible. Although no deviations from the weak stationarity
assumption were observed for the current data, further investigation into the effects of such
deviations on dynamic connectivity estimates might be of interest. Future work may also wish
to explore a stochastic evolution of the covariance matrix rather than the deterministic
assumption inherent in all GARCH type models. Although preliminary analyses comparing
spectra between initial and later volumes did not suggest evolution of spectral properties over
time, further extensions to allow for changing spectral properties within the scan [68] are pos-
sible within this context.

Future work may also benefit from investigation of connectivity involving higher-frequency
fMRI BOLD fluctuations. In this work, fMRI volumes were collected using a TR of 2000 ms, a
common sampling rate in resting-state fMRI studies. Consequently, dynamics in this study
reflect connectivity between BOLD fluctuations at a maximum frequency of 0.25 Hz. Some
recent research suggests that common resting-state networks emerge at frequencies even up to
1.4 Hz, and that higher frequencies may also contain meaningful information about resting-
state networks [34]. The hemodynamic response that produces BOLD signal has a long time
decay over seconds, rendering fMRI insensitive to shorter duration (higher frequency) activity.
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Additional work is needed to understand the additional information about dynamic connec-
tivity that may be gained by sampling at higher frequencies.

Additional limitations of the approach utilized here suggest avenues for future work. In the
present work, we focus on dynamic connectivity between the DMN and several commonly
examined resting-state networks in resting-state fMRI. However, it is important to note that
the proposed framework is applicable to the connectivity between any choice of regions,
including connectivity between voxels, regions, or other resting-state networks. Further
insight may be obtained by investigating the properties of dynamic connectivity under net-
works extracted through other commonly employed methods. Although seed-based correla-
tions and ICA have been found to yield similar networks [35], results are similar but not
identical. There are various advantages and disadvantages to each approach, including the
advantage of spatially orthogonal components in ICA, a constraint which is not enforced in
seed-based analysis, but the disadvantage of the need to specify the number of components in
ICA. Comparison to an ICA-based approach for network extraction would be useful and is of
interest in future replicability studies.
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